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Topological superfluids and the BEC-BCS crossover in the attractive Haldane-Hubbard model
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Motivated by the recent realization of the Haldane model in a shaking optical lattice, we investigate the effects
of attractive interaction and the BEC-BCS crossover in this model at and away from half-filling. We show that,
contrary to the usual s-wave BEC-BCS crossover in the lattice, a topological superfluid with Chern number
C = 2 appears in an extended region of the phase space for intermediate strength of the attractive interaction on
the interaction-density plane. When inversion symmetry is broken, a gapless weak topological state is realized.
We also investigate the fluctuations in these superfluid phases and show that the Anderson-Bogoliubov mode
is quadratic due to time-reversal symmetry breaking and the existence of an undamped Leggett mode in the
strong-coupling limit. Near the topological phase transition, the damping of the Leggett mode reaches its
maximum.
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I. INTRODUCTION

Cold atoms in optical lattices can be used to simulate im-
portant models in condensed-matter physics due to their high
controllability and versatility [1,2]. This was demonstrated
beautifully by the recent realizations of the Haldane [3–5] and
Hofstadter models using a shaking lattice and Raman laser
techniques, respectively. In these experiments, the existence
of topological bands is verified using Bloch oscillations with
either a Bose condensate [6] or free fermions [3]. With tunable
interactions in the optical lattices, these advances open new
avenues for the controlled study of interaction effects in
topological system and pave the way for the possibility of
realizing fractional Chern insulators.

Perhaps by far the best-studied interacting topological state
is the fractional quantum Hall state in which the strong
Coulomb repulsion between electrons generates emergent
fractional quasiparticles that obey Abelian or non-Abelian
statistics [7–13]. Naturally, with the discovery of topological
insulators [14,15], a great deal of effort has been made to
investigate its interacting counterparts [16–19]. In the case
of the Haldane model, several recent studies have focused
on the interplay between magnetic instabilities and possible
topological ground states in the case of repulsive interac-
tions [20–24] as well as possible superconducting states with
attractive interactions at half-filling [25] (see also Ref. [26]).

In this paper, we consider the analogous nature of the
BEC-BCS crossover [27] in the attractive Haldane-Hubbard
model. In contrast to the usual BEC-BCS crossover, we found
that, away from half-filling, there are extended regions in the
parameter space (interaction density) for which a topological
superfluid is the ground state. With increasing breaking of in-
version symmetry, a gapless weak topological state intervenes
before the system enters a trivial superfluid. We also consider
the fluctuation effects on the ground states and show that the
usual Anderson-Bogoliubov mode becomes quadratic in the
absence of time-reversal symmetry and an undamped Leggett
mode appears in the strong-coupling limit. Damping of the
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collective modes due to coupling to quasiparticles reaches its
maximum as one approaches the phase-transition critical point.

II. THE HALDANE-HUBBARD MODEL
AND ITS SYMMETRY

Consider a two-component Fermi gas with spin σ = ↑,↓,
interacting via an on-site attractive interaction −U (U > 0),
which can be modeled by the following Haldane-Hubbard
model:

H =
∑
ijσ

tij c
†
iσ cjσ +

∑
iσ

(Mεi − μ)niσ − U
∑

i

ni↑ni↓, (1)

where μ is the chemical potential. tij is the hopping amplitude
between sites i and j . For nearest-neighbor hopping,
tij = t and will be set equal to one in the following. For
the next-nearest-neighbor hopping tij = t ′ exp(−iνφ) with
ν = 1 for clockwise hopping and ν = −1 for anticlockwise
hopping [28] (see Fig. 1). Experimentally, φ is induced
by a circular shaking of the optical lattice and, except for
φ = 0,π , will break the time-reversal symmetry. M describes
the energy offset of the two sublattices with εi = 1(−1) for
the A (B) sublattices and breaks the inversion symmetry
of A-B sublattices. In the following, we use operators a

†
i

and b
†
i to denote the fermion creation operator at sublattices

A and B, and i now indexes the unit cell, which consists
of neighboring A and B sites. Now, introducing the three
Pauli matrices τ ≡ (τx,τy,τz) that describe the sublattice
degrees of freedom, the noninteracting Hamiltonian H0 can
conveniently be written in momentum space as H0(k) =∑

σ ψ†
σ (k)h(k)ψσ (k), where ψ†

σ (k) = [a†
σ (k),b†σ (k)] and

h(k) = ε(k) + d(k) · τ . ε(k) = 2t ′ cos φ
∑

δ cos(k · bδ) − μ,

dx(k) = t
∑

δ cos(k · aδ), dy(k) = −t
∑

δ sin(k · aδ), and
dz(k) = M − 2t ′ sin φ

∑
δ sin(k · bδ), where k = (kx,ky) and

the vectors aδ and bδ are depicted in Fig. 1.
For half-filling and with U = 0, the system is either a trivial

insulator for |M| > 3
√

3t ′| sin φ| or two copies of the Chern
insulator for |M| < 3

√
3t ′| sin φ| because of spin degeneracy.

Away from half-filling, in general, the Fermi surface consists
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FIG. 1. Panel (a): the honeycomb lattice in the Haldane model.
Taking the distance of nearest-neighbor sites as the length unit, here
two-dimensional vectors a1 = [

√
3/2,−1/2], a2 = [−√

3/2,−1/2],
and a3 = [0,1]. b1 = [

√
3,0], b2 = [−√

3/2,−3/2], and b3 =
[−√

3/2,3/2]. The red (black) sites denote sublattices A (B). The
phase factor eiφ associated with next-nearest-neighbor anticlock
hopping also is labeled. Panel (b) is Haldane’s topological phase
diagram on the M-φ plane. Panel (c) shows two Fermi pockets around
Dirac points K and K′ in the Brillouin zone (BZ).

of two (particle or hole) pockets located at K and K′, and the
system behaves as a metal.

Particle-hole symmetry

In addition to the SU(2) spin rotation symmetry of the full
Hamiltonian in Eq. (1), for φ = π/2, the Hamiltonian is also
invariant under the particle-hole transformation,

ciσ → εic
†
iσ , c

†
iσ → εiciσ (2)

for M = 0 where we recall εi = 1(−1) for the A (B) sub-
lattices. Under this transformation, it is easy to see that
both the nearest- and the next-nearest-neighbor hopping terms
are invariant when φ = π/2. The interaction term remains
invariant at half-filling with chemical potential μ = 0. On the
other hand, when M �= 0, however, one needs to perform an ad-
ditional inversion transformation r → −r and an interchange
of the A and B sublattices in order that the Hamiltonian remains
invariant. Thus, for φ = π/2, which will be our focus in the
following, it is only necessary to consider the case when n > 2
(here n = 2 means two particles per unit cell on average, i.e.,
half-filling), and the chemical potential satisfies the relation,

μ(−
n) = −μ(
n), (3)

where 
n ≡ n − 2 is the deviation from half-filling. As a
result, μ remains zero at half-filling, irrespective of the strength
of U .

III. MEAN-FIELD PHASE DIAGRAM
AND TOPOLOGICAL SUPERFLUIDS

To take into account the attractive interactions between
opposite spins, we perform the mean-field decoupling in
the Cooper channel and introduce 
i = −U 〈ci↑ci↓〉. In the
following, we take the following specific parameters: t = 1

as the energy unit, φ = π/2, and t ′ = 0.15. We have checked
that, for M = 0, 
i is uniform and real, in which case, we
will denote it as 
. For M �= 0, however, 
i is real but differs
for the A and B sublattices, and we denote them as 
A and

B, respectively. In the latter case, the Bogoliubov–de Gennes
(BdG) equation takes the form

HBdG =
∑

k

�†(k)HBdG(k)�(k), (4)

with �†(k) = [a†
↑(k),b†↑(k),a↓(−k),b↓(−k)] and

HBdG =

⎡
⎢⎢⎣

h11(k) h12(k) 
A 0
h21(k) h22(k) 0 
B


∗
A 0 −h∗

11(−k) −h∗
12(−k)

0 
∗
B −h∗

21(−k) −h∗
22(−k)

⎤
⎥⎥⎦.

(5)

Upon diagonalizing HBdG, we obtain the excitation energies
given by Ep(h)±(k), where ± labels the two branches arising
from the underlying A-B sublattices and p(h) denotes the
particle (hole) branch due to the particle-hole symmetry of
HBdG. The particle-hole symmetry of the BdG Hamiltonian
implies Eh±(k) = −Ep±(−k). The thermodynamic potential
(per unit cell) � at zero temperature is then given by

� = 1

N

∑
k

[2ε(k) − |Ep+(k)| − |Ep−(k)|] +
(

2

A + 
2
B

)
U

.

(6)

The mean-field gaps are determined by setting ∂�/∂
A,B = 0,
and the chemical potential μ is fixed by requiring the average
number of particles to be n = −∂�/∂μ.

We solve these three equations self-consistently for μ and

A,B. To further characterize the mean-field phase diagram, we
also compute the following quantities: (1) the Chern number
C [29] corresponding to the two quasihole bands with energies
Eh±(k), (2) the existence or not of the edge states in a finite
stripe, and (3) the existence or not of the bulk gap Egap in the
quasiparticle spectrum.

(i) M = 0. In this case, inversion symmetry is respected,
and 
i ≡ 
 is uniform. The phase diagram on the n-U
plane is shown in Fig. 2. At half-filling, the system is a
Chern insulator with C = 2 due to spin degeneracy for small
attractive interaction (red dashed line in Fig. 2). At a critical
value of U ≈ 3.526, the system enters a topological superfluid
state with C = 2 which, however, occupies only a very small
parameter regime before it enters the trivial superfluid with
C = 0 (crossing the phase boundary at U ≈ 3.57). Above
half-filling n > 2, the situation changes dramatically. The
noninteracting system is metallic with two Fermi surfaces
located around the K and K′ points, which become superfluid
due to attractive interactions. When U is either small or
large, the superfluid state is trivial and characterized by
C = 0. However, for intermediate attractive interactions, the
system enters a topological superfluid state with C = 2 in a
significantly enlarged portion of the phase space as compared
to that at half-filling. Inside the topological phase, a bulk gap
is always present. In a finite stripe, a pair of edge states with
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FIG. 2. (a) Phase diagram for M = 0 on the n-U plane. The
region within the black line (except the red dashed line) is in
a topological superfluidity phase with Chern number C = 2. The
exterior region of the black line is topologically trivial (C = 0).
The red dashed line denotes the anomalous quantum Hall insulator
(
A(B) ≡ 0) at half-filling (n = 2). With increasing interaction, e.g.,
from point a to point c, the system crosses the phase boundary. The
inset shows chemical μ potentials and the pairing gaps (
A = 
B =

) as functions of interaction strength U for filling factor n = 2.1.

opposite spin exist on both sides of the stripe and carries a net
charge current but no spin current as shown in Fig. 3(b).

The main feature of the mean-field phase diagram can be
understood from the following observations. It is well known
that the topological transition is accompanied by the change in
the topology of the energy band and at the transition point the
energy gap will close. In the case when M = 0, the band
closing occurs when 3

√
3t ′ =

√
μ2 + 
2 at the K and K′

points. As one increases the interaction U, 
 increases, but
μ decreases (see the inset of Fig. 2). As a result, in the
intermediary value of U , the condition 3

√
3t ′ >

√
μ2 + 
2

is satisfied, and a C = 2 topological state emerges.
(ii) M �= 0. In this case, the inversion symmetry is broken,

and 
A �= 
B. In addition to the trivial superfluid state for
which C = 0, there appear two different topological superfluid
states. When |M| is small, a fully gapped topological state
appears with C = 2 [Fig. 3(a)], much the same as the case for
M = 0 with a pair of edge states [Fig. 3(c)]. As one increases
M , a gapless weak topological superfluid state appears when
M = Mcr1 for which the bulk gap Egap becomes zero, whereas
the gaps at K and K′ remain finite. This weak topological state
is sensitive to disorder which can couple the edge states to the
bulk band and thus delocalizes the former. Further increasing
M , the system enters into a trivial superfluid state when M =
Mcr2, the quasiparticle gap δ at K or K′ closes, and edge states
disappear.

Explicitly, for M > 0, the closing of the bulk gap
Egap = mink|Ep−(k)| that determines Mcr1 is given by

3
√

3t ′ −
√

(μ + Mcr1)2 + 
2
B = 0. (7)

For M < 0, one only needs to replace 
B with 
A. Further
increasing M , the gaps at K or K′ will close. The critical value

(a) (b)

(c) (d)

FIG. 3. (a) Egap and δ as a function of M for U = 3.0 (filling
n = 2.1). There exist two critical values Mcr1 = 0.1135 and Mcr2 =
0.5718. When M < Mcr1, the bulk gap Egap remains finite, and the
system is in the gapped topological phase. Further increasing M

until M = Mcr1, Egap closes, and the system is in the gapless weak
topological phase. For M > Mcr2, the system becomes a topologically
trivial superfluid. For Mcr1 < M < Mcr2, the system is in the gapless
weak topological superfluid state. The Chern number is shown in
the inset. (b) Edge states in the boundary of strip geometry. (c) The
quasiparticle spectrum (blue) and edge states [red dashed line (black
solid line) for left (right) going] in the gapped topological phase for
M = 0. (d) The quasiparticle spectrum (blue) and edge states [red
dashed line (black solid line) for left (right) going] in the gapless
weak topological phase for M = 0.3.

of Mcr2 is given by setting δ = 0 with

δ ≡ 3
√

3t ′ −
√

(μ + Mcr2)2 + 
2
B +

√
(μ − Mcr2)2 + 
2

A

2
.

(8)

For M < 0, we only need to interchange 
A and 
B in Eq. (8).
The calculated Chern number C as a function of M is shown
in the inset of Fig. 3(a) where it remains at 2 for M < Mcr2.

In the absence of inversion symmetry, it is possible for
the system to develop the Fulde-Ferrell-Larkin-Ovchinnikov
pairing state [30,31] in which the order parameter 
i modu-
lates periodically in real space [32–34]. We have carried out
an inhomogeneous Bogoliubov–de Gennes calculation in real
space and find no indication of its existence for our chosen
parameters. Further inclusion of density wave and stripe
orders in our mean-field calculations shows that they are not
important in the parameter regime that we have examined (see
Appendix A). We note that the SU(2) spin rotational symmetry
is respected, whereas the time-reversal symmetry is broken for
our model. Accordingly, the topological superfluidity phases
found here belong to class C in the BdG class, which are
characterized by an even Chern number [35,36]. This is in
contrast to the model considered in Ref. [37] where a staggered
Zeeman field is present, and thus the spin SU(2) invariance is
broken.

043640-3



YI-CAI ZHANG, ZHIHAO XU, AND SHIZHONG ZHANG PHYSICAL REVIEW A 95, 043640 (2017)

0 0.5 1
0

1

2

q/(4π/
√

3)

ω
/
t

0 0.5 1
0

1

2

q/(4π/
√

3)
0 0.5 1

0

1

2

q/(4π/
√

3)

0.5 1 1.5 2 2.5
0

5

10

15

ω/t

A
R
(q

=
2.

5,
ω

)

3 3.4 3.8
0

1

U/t

Γ/
t

(b) U = 3.4(a) U = 3.8U = 3. (0 c)

(d) × 10

× 5

 Transition point at U=3.4

FIG. 4. The collective excitation spectrum for various values
of interaction strength (M = 0): (a) U = 3.0, (b) U = 3.4, and
(c) U = 3.8, corresponding to the three blue points a, b, and c,
respectively, in Fig. 2. The momentum q is chosen along the
x̂ direction q = qx̂. The shaded region denotes the quasiparticle
continuum with its lowest boundary (red) given by mink[E−

k + E−
k+q ].

There are two types of collective excitations. The lower black line
corresponds to the gapless Goldstone mode, whereas the upper blue
line is the Leggett mode. (d) The spectral function of the Leggett mode
for various values of interaction strength U = 3.0,3.2,3.4,3.6,3.8
(the corresponding peaks are from right to left). Note that the maximal
damping occurs at the transition point (U = 3.4). The inset shows
the variations of the half-width of the spectral function with the
interaction strength.

IV. GOLDSTONE MODE, LEGGETT MODE,
AND ITS DAMPING

We now turn to the discussions of collective modes of
the attractive Haldane-Hubbard model. For simplicity, we
will only consider the situation when M = 0 and calculate
the collective modes by considering Gaussian fluctuations
around the mean-field ground state for n = 2.1 with two Fermi
surfaces around K and K′ points (see Fig. 1). To go beyond
mean-field theory and calculate the mode frequencies, we
expand the order parameters: 
A,B(q) = 
A,B + ηA,B(q) and
integrate out the fermions to arrive at the effective action for the
order parameter fluctuation Seff = 1

2

∑
q η̂∗(q)M(q)η̂(q) with

q = (q,iωn) and ωn as the bosonic Matsubara frequencies.
η̂∗(q) = [η∗

A(q),η∗
B(q),ηA(−q),ηB(−q)] defines the fluctua-

tion vector in the A,B sublattices, and M(q) is the fluctuation
matrix whose explicit form is given in Appendix B. The
excitation energy is determined by the zeros of its determinant
Det|M(q,iωn → ω + i0+)| = 0 [38].

Because of the existence of two Fermi surfaces, in addition
to the usual Goldstone (or Anderson-Bogoliubov) mode,
which corresponds to the oscillation of total density, an
additional Leggett mode appears [39], which corresponds
to the oscillation of the relative densities of the two Fermi
pockets located at the K and K′ points. In Figs. 4(a)–4(c), we
show the excitation spectra for three different values of U ,

corresponding to a C = 2 topological superfluid (point a in
Fig. 2), at the phase boundary (point b in Fig. 2) and inside
the trivial superfluid (point c in Fig. 2). The shaded region
corresponds to the quasiparticle continuum, which touches
zero at the transition point, as expected for a quantum phase
transition from the topological to the trivial superfluid state.
In addition, there are a few further notable features of the
collective modes.

First, we note that the long-wavelength Goldstone excita-
tion has a quadratic dispersion ω(q) = c|q|2, unlike the usual
linear dependence, typical of a superfluid [38,40]. This is
because, for the Haldane-Hubbard model Eq. (1), time-reversal
symmetry is broken, so the low-energy effective theory de-
scribing the total phase fluctuation contains the term ∂tϕ with
ϕ as the corresponding fluctuation field. On the other hand,
for M = 0, inversion symmetry is respected, and so the spatial
derivative must be of the form ∇2ϕ. Consequently, one finds
ω(q) = c|q|2 at a long wavelength. Furthermore, although the
Goldstone mode is always present when |q| → 0, it can merge
into the quasiparticle continuum and cease to be a well-defined
elementary excitation at larger |q| [see Figs. 4(a) and 4(b)].

Second, we observe that, at strong coupling (U = 3.8),
a well-defined Leggett mode appears in the first Brillouin
zone, whereas at weak coupling, it merges into the continuum
and damps away. To investigate the damping of the Leggett
mode when it merges into the quasiparticle continuum, we
calculate the spectral function of the relative phase fluctu-
ations, AR(q) = 1/π Im〈θ∗(q)θ (q)〉, where θ (q) ≡ θA(q) −
θB(q) and θA,B(q) = Im ηA,B. In Fig. 4(d), we show AR(|q| =
2.5,ω) and found that the damping is maximum at the
quantum critical point U = 3.4. This enhancement is due to
the combined effect of the quasiparticle density of states and
the enhanced coupling of the Leggett mode to the quasiparticle
continuum at the transition.

With the recent realization of the Haldane model in cold
atoms, it is possible now to study the topological superfluid
states and their quantum phase transitions discussed here. Un-
like the noninteracting Haldane model in which the quantum
phase transitions can be monitored by using Block oscillation
and the band mapping technique, here the phase transition is
signaled by the closing of the quasiparticle gap, which will
have dramatic effects on the dynamic structure factor that can
be measured experimentally with Bragg spectroscopy [41].
The Leggett modes in the multiband superconductor MgB2
have been observed experimentally by tunneling spectroscopy
techniques [42], Raman spectroscopy [43], and angle-resolved
photoemission spectroscopy [44]. Here we expect that, for neu-
tral atoms, the Leggett modes and their dampings can be mea-
sured by the Bragg spectroscopy or modulation spectroscopy.

V. CONCLUSIONS

To summarize, away from half-filling for the attractive
Haldane-Hubbard model, there exists a gapped nontrivial
topological superfluid phase in an extended interaction-density
parameter space. When spatial inversion symmetry is broken
in the Haldane model, there exists a gapped topological
phase to a gapless weak topological phase transition with
the increasing in inversion symmetry breaking. In addition,
a quadratic dispersion Anderson-Bogliubov mode and a
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gapped Leggett mode appear in such a superfluidic system.
Accompanying a phase transition from a topological superfluid
to a trivial superfluid, the damping of the Leggett mode
reaches its maximum. The damping of the collective mode
near the topological phase transition may also be relevant to
other topological systems in the condensate matter field, for
example, a topological insulator or a superconductor.
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APPENDIX A: COMPETITION BETWEEN THE DENSITY
WAVE AND THE SUPERFLUID PHASE

In the following, we show that the role of the density wave
order is insignificant as compared with superfluid pairing
instability in the attractive Haldane-Hubbard model. The
density wave order can be written as

niσ − n̄iσ ≡ δniσ =
∑

q

ρqσ eiq·ri . (A1)

Here σ = ↑/↓ is the spin index. Furthermore, we assume
there is only one component χ±qσ ≡ −U 〈ρ±qσ 〉 �= 0, and it
satisfies χ∗

qσ = χ−qσ . Then the density profile follows δniσ ∝
cos(q · ri). The attractive interaction in momentum space is
(U > 0)

V = −U
∑

q

[ρ†
A,q↑ρA,q↓ + ρ

†
B,q↑ρB,q↓], (A2)

with ρAqσ = ∑
k a

†
kσ ak+qσ , ρBqσ = ∑

k b
†
kσ bk+qσ . Due to

spin degeneracy, in the following, we assume χA(B)q ≡
χA(B)q↑ = χA(B)q↓.

In order to perform the calculation in momentum space,
we need to assume the momentum q commensurate with
reciprocal vectors K, e.g., q = K/Z, and here Z is some
integer. Due to the density wave order, the order parameter χq
couples different unit cells of momentum space. In addition,
the superfluid pairing parameters 
A(B) may also be spatially
modulated due to density modulation. The pairing amplitude
(for sublattice A) is


Ai = −U 〈ai↓ai↑〉 = −U

N

∑
k,k′

〈ak′↓ak↑〉ei(k′+k)·ri . (A3)

Furthermore, we assume the pairing amplitude 
i shares the
same modulation period with density wave δni , i.e.,


A,i+l = −U

N

∑
k,k′

〈ak′↓ak↑〉ei(k′+k)·ri+i(k′+k)·l = 
A,i , (A4)

with l = 2π/q. Comparing the above two equations, we get
ei(k′+k)·l = 1. So we have two possibilities:

(a) k′ + k = 0 results in the usual gap equation 
A =
−U

N

∑
k〈ak↓a−k↑〉.

(b) k′ + k = {±1,±2, . . . ,±(Z − 1)} 2π
l

results in the gaps
which couple the different sub-bands,


A12 = −U

N

∑
k

〈ak↓a−(k+q)↑〉, (A5)


A13 = −U

N

∑
k

〈ak↓a−(k+2q)↑〉, (A6)

...


A1,Z = −U

N

∑
k

〈ak↓a−(k+(Z−1)q)↑〉. (A7)

Because of 
1,m(−q) = 
1,Z−m+2(q) with m = 2,3, . . . ,Z−1,

Z, there are only Z − 1 extra pairing amplitudes for
sublattices A (B). For example, taking q = K/3, we need
to extend the bases to three unit cells in momentum space
with ψ

†
k = [a†

k↑,b
†
k↑,a−k↓,b−k↓; a

†
k+q↑,b

†
k+q↑,a−(k+q)↓,b−(k+q)↓;

a
†
k+2q↑,b

†
k+2q↑,a−(k+2q)↓,b−(k+2q)↓]. The Hamiltonian then

takes following form:

(H )12×12 =

⎛
⎜⎝

HBdG(k) H12 H13

H
†
12 HBdG(k + q) H12

H
†
13 H

†
12 HBdG(k + 2q)

⎞
⎟⎠,

(H12)4×4 =

⎛
⎜⎜⎝

χ∗
Aq 0 
A12 0
0 χ∗

Bq 0 
B12


∗
A13 0 −χAq 0
0 
∗

B13 0 −χBq

⎞
⎟⎟⎠, (A8)

(H13)4×4 =

⎛
⎜⎜⎝

χAq 0 
A13 0
0 χBq 0 
B13


∗
A12 0 −χ∗

Aq 0
0 
∗

B12 0 −χ∗
Bq

⎞
⎟⎟⎠.

Applying a Bogoliubov transformation ψ
†
k = ψ̃

†
kÔ

† with a
12 × 12 transformation matrix Oij = uij where uij are the
matrix elements satisfying

∑
δ=1,12 |uδ,m|2 = 1. The Hamilto-

nian then is reduced to the diagonal form arranged such that
the hole elements appear first, namely,

H̃ii = Eh
ik (1 � i � 6),

H̃ii = E
p

(i−6)k (7 � i � 12). (A9)

The mean-field equations become (δ′ = δ + 6)


A = −U

3N

∑
kδ=1,6

{
n
(
Eh

δk

)
u1δu

∗
3δ + n

(
Eh

δk

)
u5δu

∗
7δ + n

(
Eh

δk

)
u9δu

∗
11δ + n

(
E

p

δk

)
u1δ′u∗

3δ′ + n
(
E

p

δk

)
u5δ′u∗

7δ′ + n
(
E

p

δk

)
u9δ′u∗

11δ′
}
,


B = −U

3N

∑
kδ=1,6

{
n
(
Eh

δk

)
u2δu

∗
4δ + n

(
Eh

δk

)
u6δu

∗
8δ + n

(
Eh

δk

)
u10δu

∗
12δ + n

(
E

p

δk

)
u2,δ′u∗

4δ′ + n
(
E

p

δk

)
u6δ′u∗

8δ′ + n
(
E

p

δk

)
u10δ′u∗

12δ′
}
,
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A12 = −U

3N

∑
kδ=1,6

{
n
(
Eh

δk

)
u1δu

∗
7δ + n

(
Eh

δk

)
u5δu

∗
11δ + n

(
Eh

δk

)
u9δu

∗
3δ + n

(
E

p

δk

)
u1δ′u∗

7δ′ + n
(
E

p

δk

)
u5δu

∗
11δ′ + n

(
E

p

δk

)
u9δ′u∗

3δ′
}
,


A13 = −U

3N

∑
kδ=1,6

{
n
(
Eh

δk

)
u1δu

∗
11δ + n

(
Eh

δk

)
u5δu

∗
3δ + n

(
Eh

δk

)
u9δu

∗
7δ + n

(
E

p

δk

)
u1δ′u∗

11δ′ + n
(
E

p

δk

)
u5δ′u∗

3δ′ + n
(
E

p

δk

)
u9δ′u∗

7δ′
}
,


B12 = −U

3N

∑
kδ=1,6

{
n
(
Eh

δk

)
u2δu

∗
8δ + n

(
Eh

δk

)
u6δu

∗
12δ + n

(
Eh

δk

)
u10δu

∗
4δ + n

(
E

p

δk

)
u2δ′u∗

8δ′ + n
(
E

p

δk

)
u6δ′u∗

12δ′ + n
(
E

p

δk

)
u10δ′u∗

4δ′
}
,


B13 = −U

3N

∑
kδ=1,6

{
n
(
Eh

δk

)
u2δu

∗
12δ + n

(
Eh

δk

)
u6δu

∗
4δ + n

(
Eh

δk

)
u10δu

∗
8δ + n

(
E

p

δk

)
u2δ′u∗

12δ′ + n
(
E

p

δk

)
u6δu

∗
4δ′ + n

(
E

p

δk

)
u10δ′u∗

8δ′
}
,

χAq = −U

3N

∑
kδ=1,6

{
n
(
Eh

δk

)
u∗

1δu5δ + n
(
Eh

δk

)
u∗

5δu9δ + n
(
Eh

δk

)
u∗

9δu1δ + n
(
E

p

δk

)
u∗

1δ′u5δ′ + n
(
E

p

δk

)
u∗

5δ′u9δ′ + n
(
E

p

δk

)
u∗

9δ′u1δ′
}
,

χBq = −U

3N

∑
kδ=1,6

{
n
(
Eh

δk

)
u∗

2δu6δ + n
(
Eh

δk

)
u∗

6δu10δ + n
(
Eh

δk

)
u∗

10δu2δ + n
(
E

p

δk

)
u∗

2δ′u6δ′ + n
(
E

p

δk

)
u∗

6δ′u10δ′ + n
(
E

p

δk

)
u∗

10δ′u2δ′
}
,

(A10)

where n(E) = 1
eβE+1 is the Fermi distribution function with

β = 1/T and if Eh < 0, n(Eh) = 1 − n(|Eh|). The appear-
ance of factor 1/3 is because the summations over k repeat
three times in momentum space (we sum over k in the
original Brillouin zone, whereas the Brillouin zone with
density modulation is 1/3 of the original one). At T = 0, we
take β → ∞. The number equation is

n = 2

3N

∑
kδ=1,2,...,6; m=0,4,8

{
n
(
Eh

δk

)
[|u1+mδ|2 + |u2+mδ|2]

+ n
(
E

p

δk

)
[|u1+mδ′ |2 + |u2+mδ′ |2]

}
, (A11)

where the factor 2 arises from the spin degeneracy and
δ′ = δ + 6.

The results of our calculation are shown in Fig. 5 where
we take t = 1, t ′ = 0.15, U = 3, n = 2.1 as in the paper.
Figure 5 shows two typical mean-field parameters 
’s and χ ’s
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√
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FIG. 5. The variations of order parameters with M at U = 3. For
our chosen parameters, the order parameters for the density wave are
always very small.

as a function of M for q = {0,4π/3}/3 (left panel) and q =
{2√

2π/3,2π/3}/2 (right panel). We can see the parameters
of density wave order χ and other pairing parameters are
very small for most of the cases, e.g., |χ/
A/B| < 10−4.
Only when M = 0.2,0.3, are the parameters a bit enhanced
|χ/
A/B| ∼ 10−2 (the left panel). So the effects of the density
wave orders in the Haldane model are not evident. The pairing
superfluid orders are still stable against density wave orders as
a whole. One way to understand this result is that, in our model,
there is no next-nearest-neighbor interaction, which in the case
of the standard Hubbard model would have favored density
orders. Furthermore, there is no nesting in our model, so
charge-density wave instability is not particularly enhanced.

APPENDIX B: FLUCTUATIONS
AND THE COLLECTIVE MODE

To investigate the collective mode and its damping, it is
most straightforward to formulate the theory in functional
integration. The partition function in the grand canonical
ensemble is written as a functional integral of Grassman fields
ψ̄ and ψ [40],

Z ≡
∫

Dψ̄Aiσ (τ )DψAiσ (τ )Dψ̄Bjσ (τ )DψBjσ (τ )e−S, (B1)

where we have the action S given by

S =
∑

Ai,σ ;Bj,σ

∫ β

0
dτ

[
ψ̄Aiσ (τ )

∂ψAiσ (τ )

∂τ

+ ψ̄Bjσ (τ )
∂ψBjσ (τ )

∂τ
+ H (ψA,ψB)

]
, (B2)

where β = 1/T . In this paper, we will only focus on the
properties at zero temperature and will take β → ∞ at the
end. In the following, it is assumed that the subscript i or i ′ (j
or j ′) always denotes the position of sublattices A (B) unless
stated otherwise.
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By introducing the Hubbard-Stratanovich fields 
A(B)i for sublattices A (B) as usual, we have

Z =
∫

D 
∗D 
D ψ̄Dψe−S
, (B3)

and the effective action is given by

S
 =
∫ β

0
dτ

∑
Ai,σ ;Bj,σ

[ |
Aiσ (τ )|2
U

+ |
Bjσ (τ )|2
U

− ψ̄G−1(
Ai(τ ),
Bj (τ ))ψ
]
. (B4)

In the basis ψ̄ = [· · · ψ̄Ai↑ · · · ψ̄Bj↑, . . . ; . . . ψAi↓ · · · ψBj↓, . . .], the inverse Nambu-Gorkov Green’s function G−1 takes following
form:

G−1 =

⎛
⎜⎜⎝

(A)i,i ′ (A)i,j (B)i,i ′ 0
(A)j,i (A)j,j ′ 0 (B)j,j ′

(B)∗i,i ′ 0 (D)i,i ′ (D)i,j
0 (B)∗j,j ′ (D)j,i (D)j,j ′

⎞
⎟⎟⎠.

where

Ai,i ′ = (−∂τ − M + μ)δi,i ′δ(τ − τ ′) − t ′δ(τ − τ ′)
∑

δ

[δi,i ′−bδ
eiφ + δi,i ′+bδ

e−iφ],

Ai,j = −t
∑

δ

δi,j−aδ
δ(τ − τ ′), Aj,i = −t

∑
δ

δj,i+aδ
δ(τ − τ ′),

Aj,j ′ = (−∂τ + M + μ)δj,j ′δ(τ − τ ′) − t ′δ(τ − τ ′)
∑

δ

[δj,j ′−bδ
e−iφ + δj,j ′+bδ

eiφ],

Bi,i ′ = 
Aiδi,i ′δ(τ − τ ′), Bj,j ′ = 
Bj δj,j ′δ(τ − τ ′),

Di,i ′ = (−∂τ + M − μ)δi,i ′δ(τ − τ ′) + t ′δ(τ − τ ′)
∑

δ

[δi,i ′−bδ
e−iφ + δi,i ′+bδ

eiφ],

Di,j = t
∑

δ

δi,j−aδ
δ(τ − τ ′), Dj,i = t

∑
δ

δi,j+aδ
δ(τ − τ ′),

Dj,j ′ = (−∂τ − M − μ)δj,j ′δ(τ − τ ′) + t ′δ(τ − τ ′)
∑

δ

[δj,j ′−bδ
eiφ + δj,j ′+bδ

e−iφ]. (B5)

The functional integral is quadratic with respect to the ψ fields, and we can integrate them out,

Z =
∫

D 
∗D 
 exp

⎧⎨
⎩−

∫ β

0
dτ
∑
i,j

[ |
Ai(τ )|2
U

+ |
Bj (τ )|2
U

− Tr ln G−1(
Ai(τ ),
Bj (τ ))
]⎫⎬
⎭. (B6)

Assuming 
Ai and 
Bj can be written as 
Ai(τ ) = 
A + ηAi(τ ) and 
Bj (τ ) = 
B + ηBj (τ ), here 
A(B)’s are not dependent
on spatial and time variables. It is convenient to write G−1 in momentum and Matsubara frequency spaces applying a Fourier
transformation ψ(i,τ ) = 1

(2π)2β

∑
n

∫
BZ d2�k eik·ri−iωnτψ(k,iωn) with ωn = (2n + 1)π/β for the Grassman variable, one can get

G−1(k,k′) = G−1
0 (k,k′) + K(k,k′), (B7)

where

G−1
0 (k,k′) =

⎛
⎜⎜⎝

A1,1 A1,2 
A 0
A2,1 A2,2 0 
B


∗
A 0 D1,1 D1,1

0 
∗
B D2,1 D2,2

⎞
⎟⎟⎠δ(k − k′),

and

K(k,k′) =

⎛
⎜⎜⎝

0 0 ηA(k − k′,iωn − iωn′ ) 0
0 0 0 ηB(k − k′,iωn − iωn′ )

η∗
A(k′ − k,iωn′ − iωn) 0 0 0

0 η∗
B(k′ − k,iωn′ − iωn) 0 0

⎞
⎟⎟⎠,
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where we introduce δ(k − k′) ≡ δ2(k − k′)δn,n′ and

A1,1 = iωn − M + μ − 2t2
∑

δ

cos(k · bδ + φ), A1,2 = −t1
∑

δ

eik·aδ , A2,1 = (A1,2)∗,

A2,2 = iωn + M + μ − 2t2
∑

δ

cos(k · bδ − φ), D1,1 = iωn + M − μ + 2t2
∑

δ

cos(k · bδ − φ),

D1,2 = t1
∑

δ

eik·aδ , D2,1 = (D1,2)∗, D2,2 = iωn − M − μ + 2t2
∑

δ

cos(k · bδ + φ). (B8)

If we neglect fluctuation terms ηAi(Bj )(τ ), then we obtain the mean-field equations given in the main text. Expanding action
S
 to the second order of η, one gets the thermodynamic potential,

Z ≈ e−S0

∫
Dη̄qDηqe

−Sη , (B9)

where S0 is the action from the mean-field contribution. The fluctuation’s contribution is

Sη = 1

2

∑
q,n

η̄qMηq, (B10)

where

η̄q = [η∗
A(q,iωn),η∗

B(q,iωn),ηA(−q, − iωn),ηB(−q, − iωn)],

and the fluctuation matrix M is given by

M1m(q,iωn) = 1

β

∑
k,n′

(
G0

13 + G0
23 + G0

33 + G0
43

)
G0′

1m + 1

U
δ1,m,

M2m(q,iωn) = 1

β

∑
k,n′

(
G0

14 + G0
24 + G0

34 + G0
44

)
G0′

2m + 1

U
δ2,m,

M3m(q,iωn) = 1

β

∑
k,n′

(
G0

11 + G0
21 + G0

31 + G0
41

)
G0′

3m + 1

U
δ3,m,

M4m(q,iωn) = 1

β

∑
k,n′

(
G0

12 + G0
22 + G0

32 + G0
42

)
G0′

4m + 1

U
δ4,m,

where the Green’s functions are G0 ≡ (G0(k,iωn′ ))4×4 and G0′ ≡ G0(k + q,iωn′ + iωn), m = 1–4. The collective modes
are given by zeros of determinant Det|M(q,iωn → ω + i0+)| = 0. Introducing amplitudes and phases fields ηA(q,iωn) =
[λA(q,iωn) + iθA(q,iωn)]/

√
2 and ηB(q,iωn) = [λB(q,iωn) + iθB(q,iωn)]/

√
2, total (relative) amplitudes λ1 = [λA(q,iωn) +

λB(q,iωn)]/
√

2(λ2 = [λA(q,iωn) − λB(q,iωn)]/
√

2), and total (relative) phases θ1 = [θA(q,iωn) + θB(q,iωn)]/
√

2(θ2 =
[θA(q,iωn) − θB(q,iωn)]/

√
2), in the basis [λ1,λ2,θ1,θ2], the matrix (M)4×4 becomes M ′ = U+MU , where

U = 1

2

⎛
⎜⎝

1 1 i i

1 −1 i −i

1 1 −i −i

1 −1 −i i

⎞
⎟⎠.

After integrating out amplitudes λ1(q) and λ2(q), one can get effective 2 × 2 fluctuation matrices for phases θ1(2), i.e., M ′′ =
D − CA−1B, where the 2 × 2 submatrices are as follows:

A =
(

M ′
11 M ′

12

M ′
21 M ′

22

)
, B =

(
M ′

13 M ′
14

M ′
23 M ′

24

)
,

C =
(

M ′
31 M ′

32

M ′
41 M ′

42

)
, D =

(
M ′

33 M ′
34

M ′
43 M ′

44

)
. (B11)

The spectral function for the total and relative phases are given by

AT (q,ω) ≡ 1

π
Im〈θ∗

1 θ1〉 = 1

π
Im(M ′′−1)11(q,ω + i0+),

AR(q,ω) ≡ 1

π
Im〈θ∗

2 θ2〉 = 1

π
Im(M ′′−1)22(q,ω + i0+), (B12)

where AT (q,ω) and AR(q,ω) correspond to the total and relative phase fluctuations, respectively [38,39].
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