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Abstract: In the present paper, we establish some new Opial-type integral inequalities in two variables. The
results in special cases yield some of the interrelated results on Godunova-Levin’s and Mitrinovi¢-Pecarié’s
inequalities. These results provide new estimates on inequalities of this type.
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1 Introduction

In 1960, Opial [15] established the following inequality:
Theorem 1.1. Suppose f € C'[0, h] satisfies f(0) = f(h) =0and f(x) > 0 for all x € (0,h). Then

h

j( (o) dx. (L1)

0

S

h
j () f () ldx <
0

The Opial-type inequality was first established by Willett [16]:

Theorem 1.2. Let x(t) be absolutely continuous on [0, a], and x(0) = 0. Then

a

I |« (1) dt. (1.2)

0

[ SRS

J lx(£)x' (£)|dt <
0

A non-trivial generalization of Theorem 1.2 was established by Hua [12]:

Theorem 1.3. Let x(t) be absolutely continuous in [0, a], and x(0) = 0. Further, let | be a positive integer. Then

a l a
j Ix(6)x' (£)]dt < zj_1 J (6] dt. 1.3)
0 0

A sharper inequality was established by Godunova [9]:

Theorem 1.4. Let f(t) be a convex and increasing function on [0, co) with f(0) = 0. Further, let x(t) be absolutely
continuous on [0, 7], and x(«) = 0. Then, the following inequality holds:

T

Jf'(lx(t)l)lx'(t)ldt < f(j |x’<t>|dt>. (1.4)

Opial’s inequality and its generalizations, extensions and discretizations play an important role in establish-
ing the existence and uniqueness of initial and boundary value problems for ordinary and partial differential
equations as well as difference equations, see for example [1, 4-8, 10, 13, 17]. For Opial-type integral inequal-
ities involving high-order partial derivatives, see [3, 18]. For an extensive survey on these inequalities, see [2].
Mitrinovi¢ and Pecari¢ [14] proved some new extensions of Opial-type inequalities. The aim of the present
paper is to establish some Opial-type inequalities, which are some extensions of Godunova-Levin’s and
Mitrnovi¢—Pecari¢ inequalities.
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2 Statement of the results

We shall extend some of the previous results for the functions which have an integral representation. For this,
we say that a function x(s, t) belongs to the class U(y, K) if it can be represented in the form

B B
x(s.0) = | [ Kot nylododn, (s.0) € [, 8] lan ol @.1)
where y(s, t) is a continuous function on [«y, ;] % [&,, B,], and K(s, ¢, 0, 7) is an arbitrary non-negative kernel
function defined on [e,, B 1% [, B, 1x[ay, Bi1x[e,, B,1 such that x(s, t) > 0if y(s,£) > 0, (s,t) € [a, B]1x [y, Bo].
In particular, for A > 0, we let

[(s=a)+(t=pN*"

K(s,t,0,7) = Ky(t,s,0,7) = e
0, s+t<o+T.

, S+t>20+T,

Theorem 2.1. Fori =1,2,3,let x;(s,t) € U(y;, K), where y,(s,t) > 0forall (s,t) € [y, ;] X [y, B,], let p(s,t) > 0
for all (s,t) € [ay, B1] % [a,, B,], and let f(x, y) be convex and increasing on [0, o) X [0, co). Then the following
inequality holds:

By B, By B,
X1 (S> t) X3 (S’ t) "N (S, t) y3(S, t)
U 2(5,1) f( e e |)dsdt SJJ $(s,1) f( pie 11 i |>dsdt, 2.2)
where o
1 P2 ) K ot X
¢UGQ:=yﬂ&t)JJ‘Eglgéagfggljdadr.

Remark 2.2. Let x;(s,t), y,(s,t) and p(s,t) be reduced to x;(t), y;(t), p(t), respectively, where ¢ € («,7) and
i = 1,2, 3, with suitable modifications in Theorem 2.1. Then (2.2) becomes the following inequality established

by Mitrinovi¢ and Pecari¢ [14]:
( x,(0)] |00 (
J pOf ( 0l %0 )dt = J o0 f (

24 [24

)’1(t)
JAGL

ﬁ—g;Ddt, 23)

where

80 = 7,0
y(t) is a continuous function on [«, 7] and K(t, s) is an arbitrary non-negative kernel defined on [«, 7] X [, 7]
such that x(¢) > 0if y(t) > 0, t € [, 7].

p@KmQ%

x5(s)

>

Remark 2.3. Taking K(s,t,0,1) = K,(s,t,0, ) in Theorem 2.1, (2.2) reduces to
B B, BB

x1(8,8)] [%3(5,8) : Y1) [ 5(s:1)
U p(s,1) f( e L )dsdt SJJ é(s,1) f( e e |>dsdt, 2.4)
where
T ls=0)+ t -1 plo,D)
o(s,t) = y,(s, t)JJ o) xz(a’, T)dad‘r, s+E>20+T,

and ¢(s,t) =0if s+t <o + 7.

Let us change K, (s, t, 0, 7) to K, (t, s). Namely, for A > 0,

(tis)/lfl
, S<U,
K,l(t) S) = r(/\)
0, s> t.
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Further, let x;(s, t), ;(s, t), f(s,t) and p(s, t) be reduced to s;(¢), y;(¢), f(¢) and p(¢), respectively, where t € («, 1)
and i = 1,2. Taking K(t, s) = K, (£, s) in (2.4), we reduce (2.4) to the result of Godunova and Levin [11].

Now, let x(s,t) € U(y, K), where K(s,t,0,7) = 0 for 0 + 7 > s + t. We shall say that such functions belong
to the class U, (y, K). It is clear that in this case, (2.1) reduces to

S

t
x(s,t) = J J K(s,t,0,7)y(0, T)dodT. (2.5)

%1

Theorem 2.4. Let the function f(x) be differentiable on [0, co) such that, for v > 1, the function f (x'*) is convex
and £(0) = 0. Let }J +1 =1, and let x(s,t) € U, (y,K), where

st 1/”
(J j(K(S, t, 0, T))”dcrd‘r) < M.
Then
Bi B azf 2 B B, 1o
—v v [ N
Jj|x(s, )21 )@ﬂx(s, Oy (s, 1) dsdt < MZUf(M(J J ly(s, t)| dsdt) ) (2.6)

Remark 2.5. Let x(s,t) and y(s, t) be reduced to x(t), y(t), respectively, where ¢ € («, 7), with suitable modifi-
cations in Theorem 2.4. Then (2.6) becomes the following inequality:

T T

1/v
j O™ £ (XD () dsdt < Ajf(M(j |y<t>|”dt> )

This is just a new result established by Mitrinovi¢ and Pecari¢ [14].

3 Proofs of the results

Proof of Theorem 2.1. From the hypotheses of Theorem 2.1, it turns out that

B B,
x, (s, 1) | | %5(s, t)|)
JJP(S, t)f< x,(s, ) 1 x,(s, 1) dsdt
Bufy Pihe K(s,t,0,7)y,(0, 1) 292 dodr fp' fﬁz K(s,t,0,7)y,(0, 7) 222 dodr
_ J Jp(s t)f o S ¥,(0,7) o Joy ¥,(0,7) dsdt
o A , xz(s’ t) ' xz(s, t)
B B B B, B B,
<ij(s t)f<JJK(S’t’U’T)y2(G’T) NG jJK(s,t,a,T)yz(a,r) ¥3(0,7) dad'r)dsdt
_zx o ’ T xz(S) t) J’z(o'» T) ’ xz(s) t) J’z(o') T) ’
By using Jensen’s integral inequality, we have
B B Bi By Bi By
x1(s,t) | | x5(s,8) K(s,t,0,7)y,(0,7) (| ¥:1(0,7)]| | y3(0, T)
st ( A l)dsdt < “ st <” ( : )dadr dsdt
“Up( Lol 60 ] pls.1) ) 60 \Uneollneo
B B B B,
»(0,7) y3(0,r)> ( J J p(s,)K(s,t,0,7) )
= —_—, o, T ———— "dsdt |dodt
Jif( y,(0, 1) 1 y,(0,7) y(0:7) 2 x,(s, 1)
B B
y1(0,7)| | y3(0,7) )
= 0, T ) dodr,
‘J an 14 )f( y2(0, D) 1 yy(0,7)
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where
e p(s, K (s, t,0,7)
(/)(0', T) = yZ(O', T)JJ stdt.
Hence
T (5,0)| |%3(5:1) T D] 735D
X1 (S, 3\ 1\ 35
JJP(S’t)f< 6ol xz(s,t)Dd sdt <JJ é(s, t)f( ol yz(s,t)Ddet’
where
fule plo, T)K(s,t,0,7)
¢(5, t) = )’2(5’ t)JOJ’ Wdad‘r.
This completes the proof. O

Proof of Theorem 2.4. From the hypotheses of Theorem 2.4 and in view of Holder’s inequality, we obtain

st
IASMSJJK&LmﬂwaWMﬁ
s t

< (I J(K(s, t,o, 'r))"dod‘r)l/ﬂ<JS Jt ly(o, T)lUdO‘dT)

o & o %

1/v

st

< M(I J Iy(o, T)Ivdad‘r>l/v.

% &

Now, let

st
z(s,t) = J J |y(o,7)|"dodt.

Hence
%z(s, t)

3eor = s I’

Moreover, it is easy to see that
lx(s, )] < M(z(s, )"

Therefore
B B>
jjmum“”>fumwmwumHMt
B B>

M) 2(1/v-1) f 1/0, 02(s, 1) 0z(s, t)
sjj (2o, 020 Stz 0019 2D E0 D sy

%) &y

, Bk,
v o' f /v 1/v-
_M_Jjgamh(ﬂ) = (2(s,1)

2 b
= A‘J’ZU J j ?aft(Mz(s, ") d(M(z(s, 1)) d(M(z(s, 1)),

&) &y

=M%ﬂMmmﬁmW
By By

= Mv—;f<M<J j |y(a,1)|”d0dr>1/u>.

&1 %

1 aZ(S, t) M 1/v— laZ(S, t)

R G CL) —5p dsdt

This completes the proof. O
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