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Valley light-emitting transistor
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In crystalline solids, it is often the case that the
Fermi surface consists of multiple pockets at well-
separated degenerate band extrema (that is, valleys)
in momentum space. The valley index constitutes a
discrete degree of freedom of carrier, just like spin.
Exploiting valley in addition to spin will make
future electronics more versatile. Two-dimensional
(2D) transition metal dichalcogenides, a new class
of direct-gap semiconductors,"? have provided an
appealing laboratory to explore valley-electronics,
because of the discovery of a valley optical selection
rule that allows optical control and detection of
valley polarization.® Iwasa from University of
Tokyo, and Riken and his team have now
demonstrated in 2D WSe, the first electric
control of valley-dependent optical emission.*

Their device is a forward-biased p—i—n junction
(Figure la), where electrons and holes flow to the
intrinsic region to recombine and emit photons.
This electroluminescence is found to have a circular
polarization, which changes sign when the p—i-n
junction is flipped.* By the valley optical selection
rule (Figure 1b), the observation implies that the
light emission from the two valleys is unbalanced
and determined by the electric control, realizing a
prototype valley light-emitting transistor.

The valence band edge in 2D WSe, has strong
trigonal warping that makes the dispersion asym-
metric and valley-dependent: in valley K left-
moving holes can have larger velocity than right-
moving ones, while valley —K has the opposite
situation. A large electric field can cause a valley-
dependent separation of the electron and hole
pockets and hence different light emission rates
from the two valleys even in the absence of carrier
valley polarization (Figure 1c).* The luminescence
polarization therefore may be locally induced by
the electric field from the built-in potential in the
intrinsic region. Alternatively, a valley transport
effect can lead to the same observation. Also due to
the valley-dependent dispersion, the current driven
by the forward bias can have different magnitude
in the two valleys,® so that carriers injected into the
intrinsic region are valley polarized, leading to
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Figure 1 (a) Circularly polarized electroluminescence from a p-i—n junction electrostatically formed in two-
dimensional WSe, (provided by Iwasa and coworkers?). (b) The momentum-conserving interband
transitions in valley K (—K) couple to right- (left-) handed circularly polarized light only. Valley polarization
of carriers can lead to circularly polarized luminescence. (c) In the absence of valley polarization,
circularly polarized luminescence is possible in a large electric field, where the overlap between the
electron and hole pockets becomes different in the two valleys due to the valley-dependent dispersions.

circularly polarized luminescence. The unique
signature of this valley transport effect is a spatial
pattern of the polarization, depending on the
orientation of the junction with respect to
crystalline axis.> Spatial-resolved and polarization-
resolved luminescence detection will potentially
identify the dominating mechanism in the device.
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