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This is an extended abstract based on the preprint [[15]. We propose four information-theoretic axioms
for the foundations of statistical mechanics in general physical theories. The axioms—Causality, Pu-
rity Preservation, Pure Sharpness, and Purification—identify purity as a fundamental ingredient for
every sensible theory of thermodynamics. Indeed, in physical theories satisfying these axioms, called
sharp theories with purification, every mixed state can be modelled as the marginal of a pure entan-
gled state, and every unsharp measurement can be modelled as a sharp measurement on a composite
system. We show that these theories support a well-behaved notion of entropy and of Gibbs states,
by which one can derive Landauer’s principle. We show that in sharp theories with purification
some bipartite states can have negative conditional entropy, and we construct an operational protocol
exploiting this feature to overcome Landauer’s principle.

Thermodynamics is one of the most successful paradigms of physics, as the scope of its fundamental
principles ranges across different fields of science, from theoretical physics to nanotechnology, chem-
istry, and computation [34} [7, [21} 144]]. Since thermodynamic laws do not make any explicit reference
to the underlying physical theory, a natural question is whether they have an inherently fundamental
character, or they can be derived from more primitive notions. The development of statistical mechanics
[36, 137,19, [19] led to a reduction of the laws of thermodynamics to the laws of an underlying dynamic
of particles. However, new questions arose from the resulting tension between the statistical descrip-
tion, associated with the incomplete knowledge of an agent, or to fictitious ensembles, and the picture
provided by classical mechanics, where there is no place for ignorance at the fundamental level. Many
proposals have been put forward [8, 38} 29,33} 27, 28], yet this tension has not been eased completely.

In this scenario, quantum theory offers a totally new opportunity, as a system and its environment
can be jointly in a pure state, whilst the system is individually in a mixed state. Here the mixed state is
not associated with an ensemble of identical systems, but rather represents the state of a single quantum
system. Based on this idea, some authors [39} 20] have proposed that entanglement could be the starting
point for a new foundation of statistical mechanics. The idea is that, when the environment is large
enough, the system is approximately in the equilibrium state, for the typical joint pure states of the
system and the environment.

In this work we want to push this approach even further, and turn entanglement into an axiomatic
ingredient for the foundations of statistical mechanics in general physical theories. Specifically, we
explore the hypothesis that the physical systems admitting a well-behaved statistical mechanics are
exactly those where, at least in principle, mixed states can be modelled as the local states of larger
systems, globally in a pure state. We adopt the framework of general probabilistic theories (GPTs)
(23116 2L (18} 111 12} 15, 24) 25 10}, [17]], which allows one to treat quantum theory, classical theory, and
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a variety of hypothetical post-quantum theories on common grounds. In this framework we demand the
validity of four information-theoretic axioms [14,[15], informally stated as follows:

Causality No signal can be sent from the future to the past.
Purity Preservation The composition of two pure transformations is a pure transformation.
Pure Sharpness Every system has at least one pure sharp observable.

Purification Every state can be modelled as the marginal of a pure state. Such a modelling is unique up
to local reversible transformations.

These principles enforce purity as a fundamental property of all physical systems, and pure-state entan-
glement as a feature of the composition of systems. We call the theories satisfying the above axioms
sharp theories with purification. They include quantum theory both with complex and real amplitudes,
as well as a suitable extension of classical probability theory where classical systems can be entangled
with other, non-classical, systems [15]. In general, it can be shown that the systems of these theories
correspond to Euclidean Jordan algebras [4].

These theories support sensible definitions of the resource theories of purity [26} 22} 13| [16], which
is the simplest thermodynamic resource theory in the presence of a trivial Hamiltonian. Moreover, every
state can be diagonalised, i.e. decomposed into a random mixture of perfectly distinguishable pure states
[14]], with unique coefficients [15]], called the eigenvalues of the state. The eigenvalues encode the
information about the purity of a state; indeed, if a state p is purer than o, the spectrum of p majorises
the spectrum of ¢ [16]. The converse implication is instead slightly subtler [16].

Given the characterisation of the purity preorder in terms of majorisation, one can define a special
class of mixedness monotones on the state space from Schur-concave functions of the eigenvalues of
states 35, [15]] (see also Refs. [31}11,132]] for a related approach based on different axioms). Among them
a special place is occupied by Rényi entropies

Sa(p) :=He (p), (D

where p is the spectrum of p, and Hy, is the a-Rényi entropy (a € [0, +c0]). We show [15] that in sharp
theories with purification, Rényi entropies defined in Eq. (1)) coincide, for every ¢, with their definition
in terms of measurement entropies 3,143} 30]]

Sa " (p) :=infHe (q),

where the infimum is over all pure measurements, and q is the vector of the probabilities arising from
such measurements; and preparation entropies 3,43}, [30]

SHP(p) :=infHy (X)),

where the infimum is over all convex decompositions of p into pure states, with coefficients A. In short,
Se (p) = Smeas (p) = SEP (p). This result has been linked to the absence of higher-order interference in
certain theories [32].

Shannon-von Neumann entropy is probably the best known among Rényi entropies. In sharp theo-
ries with purification it satisfies some of the properties of its quantum version [15], following from an
operational version of the Klein’s inequality for relative entropy [42, 15 132]]. For instance, for a bipartite
state one has [[15]]

S(pa) =S (ps)| < S(pas) < S(pa)+S(Ps)-
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On a more physical level, we prove that the joint reversible evolution of a system S and its environment
E leads to the inequality [15}40]

S (ps) +S (pe) = S(ps) +S(pe)., 2)

where the primes denote the state after the reversible evolution.

This inequality is the starting point for an operational reconstruction of Landauer’s principle [34]
along the lines of Ref. [40]. Clearly, first we must define the thermal state operationally. To do that, we
resort to the maximum entropy principle [27, 28]]: once we fix the expectation value of some “energy
observable” [15]], we show that the state that maximises the Shannon-von Neumann entropy is precisely
of the Gibbs form [[15]. Then to derive Landauer’s principle, we consider again a system S, with the
environment initially in a thermal state at temperature 7. Some manipulations of Eq. (2) lead finally to
Landauer’s bound [15}40]

(Hg) — (Hg) > ksT [S(ps) — S (ps)] , 3)

where (Hg) denotes the expectation value of the energy observable H on the (initial) state of the envi-
ronment. A decrease in the entropy of the system must be accompanied by an increase in the expected
energy of the environment, which manifests itself as heat.

One may wonder if sharp theories with purification, allowing pure-state entanglement [11]], allow
also for the thermodynamic advantages of non-classical correlations, usually captured by the nega-
tivity of the conditional entropy [41]. Indeed, sharp theories with purifications admit bipartite states
with negative conditional entropy. Given the bipartite state psp, define the conditional entropy as
S(A[B),,, == S(paB) —S(ps) [15]. If pap is a pure entangled state, it is easy to show that the con-
ditional entropy is negative [13, [15]. We provide an operational protocol for overcoming Landauer’s
bound (3), based on the negativity of conditional entropy [41]]. This shows that the power of entan-
glement in thermodynamics goes even beyond the realm of quantum theory, and has a nice operational
characterisation in terms of information-theoretic principles. However, this part has yet to appear in the
preprint [1 5ﬂ so further mathematical details are provided in appendix |A|for the interested reader.
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Consider again a system S initially uncorrelated with its environment E, which is again initially

in a thermal state. However, now there is an additional system M, the memory, which contains some
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information about the system S encoded in correlations between S and M. Now consider the case where
the joint system S®E® M is in the state psm ® ¥ g, With Y5 a Gibbs state. We also assume that the joint
reversible evolution does not increase the entropy of the memory, viz. S(py;) < S(pm) [41]. It is easy to
show that

S (Psm) =S (psm) +8 (pe) —S(pe) =1(SM:E) ;. @
where the mutual information of a bipartite system A ® B is defined as / (A: B), . :=S(pa) +S(ps) —
S (pas) [13]. Repeating the calculations for the derivation of Landauer’s principle [15}140]], and recalling
Eq. (), one founds that, under the hypotheses explained above

!
Psu

(HE) = (Hg) = ksT [S(SIM),,, — S (SIM) , +

+ S (pw) =S (k) +1(SM:E)y 4D (b || 7ep) |

where D (pf. || 1) is the relative entropy, defined in [15]], and such that D (p || ¢) > 0. Since we also
have I (SM : E) oty = 0150, and S (Py) < S(pm) by hypothesis, Landauer’s bound lb becomes

(HE) — (Hg) = ksT (S (SIM) p,, — S(SIM) ) 5)

Comparing this with Eq. (3)), we notice the presence of conditional entropies which may be negative. In
the particular case of S® M in a pure state, S (S|M) ., = —S(ps). Then Eq. (5) reads

(Hg) — (Hg) > kT (S (ps) = S(ps)) , 6)

where the roles of the initial and final states are swapped with respect to Eq. (3). Now we will show
that this feature allows us to perform the erasure of a mixed state of S to a fixed pure state of S, at no
thermodynamic cost, thus overcoming Landauer’s bound.

Suppose S ® M is initially in a pure entangled state V'; in this case pg is mixed [[13]], and we have
S(pm) =S (ps) > 0 [L5]]. Suppose we want to erase ps to a fixed pure state Yy of S. Now, let us consider
the joint reversible evolution of S®@ M ®E to be Zsm ® F5, where s is the reversible channel mapping
Y to yo ® @p, where ¢ is some pure state of the memory M. Clearly this reversible evolution respects
the hypotheses explained above because 0 = S(pg;) < S(pm), so it performs the erasure of ps to .
Let us evaluate its thermodynamic cost (Hf,) — (Hg). Since initially the environment is uncorrelated in
the state YeB> and the evolution is Zsym ® g, we have p]’z = Y&, whence the erasure occurs at zero
thermodynamic cost. Note that Eq. (6) is satisfied, indeed its LSH vanishes, while its RSH is negative
and equal to —kgT'S(ps).

Again, non-classical correlations, captured by the negativity of the conditional entropy, allow us to
overcome Landauer’s principle and perform erasure at no thermodynamic cost, similarly to what happens
in quantum theory [41]].
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