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Abstract: Dental caries form through a complex interaction over time among dental plaque,
fermentable carbohydrate, and host factors (including teeth and saliva). As a key factor, dental
plaque or biofilm substantially influence the characteristic of the carious lesions. Laboratory microbial
culture models are often used because they provide a controllable and constant environment for
cariology research. Moreover, they do not have ethical problems associated with clinical studies.
The design of the microbial culture model varies from simple to sophisticated according to the purpose
of the investigation. Each model is a compromise between the reality of the oral cavity and the
simplification of the model. Researchers, however, can still obtain meaningful and useful results from
the models they select. Laboratory microbial culture models can be categorized into a closed system
and an open system. Models in the closed system have a finite supply of nutrients, and are also simple
and cost-effective. Models in the open system enabled the supply of a fresh culture medium and the
removal of metabolites and spent culture liquid simultaneously. They provide better regulation of the
biofilm growth rate than the models in the closed system. This review paper gives an overview of the
dental plaque biofilm and laboratory microbial culture models used for cariology research.
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1. Introduction

Dental caries is the localized destruction of dental hard tissues by acidic byproducts from dental
plaque containing acid-producing bacteria. Cariology research allows the investigation of caries’
pathogenicity, testing the effects of new caries-prevention methods (i.e., some devices and drugs)
and developing new caries-preventing products. This review paper gives an overview of the dental
plaque biofilm and in vitro biofilm models used for cariology research. It aims to provide essential
and instructive information for researchers who seek to plan and design cariology research.

2. The Dental Plaque Biofilm

Dental plaque is an oral microbial biofilm that is found on exposed tooth surfaces in the mouth.
It has a large diversity of species and consists of densely packed bacteria embedded in a matrix of
organic polymers of bacterial and salivary origin. Dental plaque is the causal agent of dental caries in
the presence of sugar and time. In the oral cavity, the formation of dental plaque on the tooth surface
follows a similar sequence to that of biofilms in other natural ecosystems. A biofilm is formed by
bacteria sticking to each other and, often, adhering to a surface. The bacteria are embedded within
a self-produced matrix of extracellular polymeric substance. In dental biofilm, streptococcus mutans is
a major bacterium producing the extracellular polysaccharide matrix in dental biofilms. The bacterial
cells growing in a biofilm are physiologically distinct from planktonic cells which float or swim
in a liquid medium. Bacteria in the plaque biofilm can respond to many factors, such as cellular
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recognition of specific or non-specific attachment sites on a surface and nutritional signals. Marsh and
Martin [1] divided the formation and growth of oral biofilm into five stages (Figure 1).
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Oral biofilms can form on almost any surface present in the oral cavity including enamel, dentin,
cementum, gingiva, oral mucosa, carious lesion, restoration, dental implant, and denture. Dental plaque
will colonize rapidly, not only the coronal enamel surface but also the exposed root surface. The growth
of microbiota on the exposed root surface proceeds more rapidly than that on the smooth enamel surface
because of the irregular surface topography of the exposed root dentin surface. The organization and
structure of dental plaque vary considerably according to the sites where plaque forms [1]. The growth
of microorganisms on specific oral niches is affected by various factors such as acidity (pH) of the
environment, availability of nutrients, presence of antimicrobial agents, and host defense.

Surface-bound microorganisms have a survival and/or selective advantage over their planktonic
phases [1]. Bacteria in dental plaque have stronger resistance to antimicrobial agents than planktonic
bacteria. Bacterial extracellular polysaccharides prevent the perfusion of antimicrobial agents to
bacterial targets; this acts as a barrier to protect the plaque bacteria against certain environmental
threats such as antibiotics, antibodies, surfactant, bacteriophage, and white blood cells [3]. Resistance
of biofilm bacteria to antimicrobial agents may also develop. As a result, the minimum inhibitory
concentration of antimicrobial agents against bacteria in biofilm is significantly higher (up to 1000-fold)
than that in liquid [1].

Though there are many bacteria associated with dental caries, a few groups of cariogenic bacteria
such as streptococci, actinomycetes, and lactobacilli are found to be more closely associated than the
others. These groups of bacteria often dominantly proliferate in the dental biofilm collected from the
carious lesions of teeth. Streptococcus is the predominant species in cariogenic microbe. It colonizes
clean tooth surfaces at an early stage, and it also relates to root caries. The predominant coccal
isolated from carious dentin in root caries are S. mutans, S. sanguis, and S. mitis [4]. S. mutans and
S. sobrinus are difficult to distinguish. Hence, these two species are always lumped together and
regarded as mutans streptococci. Mutans streptococci can adapt to acidic environments, which is the
key factor contributing to its cariogenic potential. Actinomycetes is an initial colonizer of human root
surfaces. A. naeslundii and A. viscosus can induce root surface caries [5]. Actinomycetes is often isolated
from subgingival microflora and from plaque associated with root caries [6] (they have long surface
appendages named fibrils, or fimbriae). The fibrils allow actinomycetes to adhere to the surface of tooth
roots. Fibrils also improve the attachment of actinomycetes to other bacteria in dental plaque. Lactobacilli
are aciduric bacteria, including L. acidophilus, L. rhamnosus, L. casei, and L. oris [7]. Patients with caries
have higher counts of lactobacilli than those with no caries. Evaluating the amount of Lactobacilli in
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saliva is used as a caries-activity testing method in clinical assessment [8]. Lactobacilli is difficult to
grow and mature as a mono-species biofilm. However, it can be a predominate species in a substantial
biofilm in the presence of S. mutans [9]. A potential relationship was found among some species of
lactobacilli, streptococci, and actinomycetes in the root caries formation process [10].

3. Laboratory Microbial Culture Models

Laboratory microbial culture models simulate the oral environment for cariology study. Unlike
in vivo studies, they do not have problems relating to the uncontrollable fluctuating locus-specific of
the oral environment [11,12]. Two complementary microbiological approaches can be taken to generate
biofilm in microbial culture models. The first is the evolution of a plaque microcosm from natural
oral microflora. A microcosm is defined as “a laboratory subset of the natural system from which it
originates and from which it also evolves” [13]. Microcosm plaques are similar in composition, growth,
acidity (pH) behavior, biochemical properties, and (probably) in complexity to natural plaque.

The second approach is the construction of defined-species biofilm consortia with major plaque
species, or a mixture of different species of the acquired oral bacteria (such as the American Type
Culture Collection (ACTT) bacteria). Consortia are simpler than plaque microcosms; they have the
advantage of incorporating individual bacterial species. Even in a simple batch culture method, oral
multispecies consortia can develop complex biofilms on enamel and dentin that can induce carious
lesions similar to those in vivo. The designs of laboratory microbial culture models vary according
to the purpose of the laboratory studies. They can be classified as closed system and open system.
Each system is a compromise between the reality of the in vivo ecosystem and the simplification of
the system. However, a well-designed model and study allow researchers to obtain meaningful and
useful results [13].

3.1. The Closed System

Microbial culture models in the closed system have a finite supply of nutrients. The growth
rates of the biofilm are rapid at the beginning of the cultivation when there are ample nutrients.
However, this is uncommon in the natural growth of biofilm [14,15]. The growth conditions will change
considerably with consumption of the nutrients and the accumulation of metabolic products. Hence,
the physiological and biological properties of the biofilm are not comparable with the natural ones.
Researchers used closed system models because of their simplicity, high productivity, repeatability,
controllability of the experimental conditions, less contamination, and cost-effective properties.
The agar plate and microtiter biofilm models are two examples of the common microbial culture
models in closed system.

3.1.1. The Agar Plate

The agar plate is one of the simplest laboratory microbial culture models (Figure 2). The nutrient
supply is not continuous. Bacteria growth on the surface of the agar can only be supported until the
finite nutrient is exhausted. Thus, results of studies using this simplistic model should be interpreted
with caution. This situation is different from bacterial growth on a hard tissue surface, because
the biofilm consumes nutrients from the substrate. It resembles biofilms associated with soft tissue
infections or growing in an extracellular matrix. This model has been used to test the susceptibility of
oral biofilm to various antimicrobials, especially some light active chemicals [16,17]. The disc-diffusion
method is not an ideal way to predict the therapeutic effects of antimicrobial [18]. The effects of the
antibacterial agents can be misinterpreted because the cationic antibacterial agents may combine with
the anionic agar polysaccharide gel [19].
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Figure 2. Agar plate.

3.1.2. The Microtiter Biofilm Model

The microtiter biofilm model is made of a multiple-well microtiter plate. A microtiter plate is
commonly made of polystyrene, but it can be manufactured in a variety of materials. A microtiter plate
is a flat plate with multiple “wells” (used as small test tubes). A standard definition of a microtiter
plate was developed by the Society for Laboratory Automation and Screening (SLAS) and published
by the American National Standards Institute (ANSI). Henceforth, the microplate standards are known
as ANSI/SLAS standards. A configuration of a 96-well microtiter is shown in Figure 3. Each well of
a microplate typically holds several milliliters of liquid. The microplate is regarded as a standard tool
in cariology research, allowing the biofilm to grow independently in each well.
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3.2. The Open System

The open system can be described as a continuous culture system. It enables the supply of a fresh
culture medium and the removal of metabolites and spent culture liquid simultaneously. Hence,
the concentration of bacteria and metabolic products remains constant [20]. Moreover, the biofilms
can stay in a stable state or keep in a dynamic balance [21]. Nevertheless, the repeatability of the
experimental result is low because of the heterogeneity of the biofilm in the open system. Besides, the
possibility of contamination can be high due to the complexity of the construction.

The open system simulates the in vivo environment better than the closed system. It also allows
better regulation of the biofilm growth rate and other variables. Common microbial culture models in
the open system include the chemostat model, the flow cell biofilm model, the constant depth film
fermenter model, the drip flow biofilm reactor, the multiple Sorbarod model, and the multiple artificial
mouth model.
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3.2.1. Chemostat

Chemostat is preferred for biofilm experiments because the continuous culture of chemostat
can provide homogeneity and a steady environment (Figure 4). The experimental parameters can be
investigated independently in the highly-controlled conditions [22]. Oral bacteria grow planktonically
in a conventional chemostat. A fresh cultural medium is provided at the same rate as the culture waste
liquid removal rate. Planktonic bacteria have the tendency to form biofilm at a solid-liquid interface in
a chemostat. A substrate such as a tooth slice can be suspended in the chemostat to provide a surface
for bacterial colonization and biofilm or dental plaque formation. Chemostat is generally expensive
and space-consuming in laboratory. Precaution is needed to prevent excessive bacteria growth in
chemostat, which can block the tubing [23].
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3.2.2. The Flow Cell Biofilm Model

The flow cell biofilm model is used as perfusion chambers to observe the initial growth and
physiology of stationary bacterial cells [24]. The culture fluid passes through a tube and biofilms are
cultured in a flow reactor where the substratum is placed. Biofilms can grow on the surface of tooth
blocks [25], microscopy glass slides, or glass rods [26]. The flow cell biofilm model is shown in Figure 5.
Bacteria suspension stored in a chemostat (A) and bacteria-free medium (B) are stirred or pumped (D)
to a mixed chamber (C) and go through the flow reactor (E) to create a flow. Therefore, the shear force
will work on the microbe when the culture fluid passes through the surface of the biofilm. The outside
chemostat in the flow cell biofilm model allows external biofilm growth, which means the growth
condition can be controlled and the biofilm can grow for an extended period. Other advantages are
flexibility of sample configuration, presence of fluid dynamics, plaque monitoring. and the possibility
of extra experimental treatments.

The flow cell biofilm model simulates the in situ situation of undisturbed biofilm communities.
The constant environment is provided with laminar flow [24]. The model has been adopted frequently
in the evaluation of the effects of antimicrobial agents because it is convenient to make comparisons
of viability of microbes among different experimental groups [27]. In addition, the continuous flow
system simulates the clearance of antimicrobial agents in the mouth. A limitation of this device is that
the laminar fluid flows through the biofilm instead of across its surface. It mimics the flow of saliva
on the surface of mucosal, but the pathways of saliva flowing on hard-surface biofilms are different.
Flow cell biofilm models are also expensive and space consuming.
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Figure 5. Configuration of the flow cell biofilm model (adapted from Herles et al., 1994 [28],
with permission from © 1994 International & American Associations for Dental Research. License
number: 4131180504654).

3.2.3. The Constant Depth Film Fermenter Model

The major components of the constant depth film fermenter (CDFF) model are plugs, a rotating
stainless steel disk, and static scarper blades [23]. The plugs allow the growth of biofilm. The rotating
stainless steel disk holds the samples. The static scarper blades control the depth of the biofilm.
These components are put into a glass container where a fresh cultural medium is provided and culture
waste liquid is removed. The configuration of CDFF is shown in Figure 6.

The thickness of biofilms is controlled to a predetermined depth by mechanically removing the
excess biofilm. This simulates the tongue movement over the teeth. The thickness of biofilms can be
200 µm [29,30] to mimic dental plaques. The properties of biofilms that are developed are relatively
constant over time. The CDFF model supports restrained growth and produces a number of replicate
biofilms. Since the thickness of the biofilms is predetermined, subsampling and effluent analysis are
limited to some extent [31]. The model was used to study etiology of caries [32], to assess antimicrobial
effect on biofilm [33], and to investigate the structure of biofilm [34].
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on the surface of the substrata might not be always consistent, aerial heterogeneity over the surface 
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to test disinfection efficacy [37], to investigate the effect of powered tooth brushing on removal of 
biofilm [38], and to compare the antibacterial effects of anti-caries agents [36].  
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with permission from © 2007 Wiley Online Library. License number: 4131200175687).

3.2.4. The Drip Flow Biofilm Reactor

The drip flow biofilm model is often used to grow and establish solid-liquid or solid-air interface
biofilms. The model usually contains four chambers in an adjustable inclined fermenter. The schematic
diagram of drip-flow biofilm model is shown in Figure 7.
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Figure 7. Schematic diagram of a drip flow biofilm reactor (adapted from McBain et al., 2009 [15], with
permission from © 2009 Elsevier. License number: 4130791265178).

The biofilms grow on angled tooth surfaces, which are continuously irrigated with small volumes
of fresh medium from the inlet. The incline of the fermenter enables the medium to flow over the tooth
surface with biofilm, providing a low-shear environment for the biofilm.

The model allows plaque to grow on the tooth surface and to stabilize for longer periods, which
enables relatively stable development of microbial communities [36]. However, as the medium
flow on the surface of the substrata might not be always consistent, aerial heterogeneity over the
surface of substratum may exist [15]. This model is commercially available (Biosurfaces Technologies
Corporation, Bozeman, MT, USA), and thus is commonly used by researchers. This model was used
to test disinfection efficacy [37], to investigate the effect of powered tooth brushing on removal of
biofilm [38], and to compare the antibacterial effects of anti-caries agents [36].
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3.2.5. The Multiple Sorbarod Model

The multiple Sorbarod model uses a permeable Sorbarod membrane as the substratum. The fresh
medium is supplied by continuous perfusion through the membrane. The exfoliated bacterial cells and
metabolic wastes will be removed with spent culture medium. The schematic diagram of the multiple
Sorbarod model is shown in Figure 8.

In this model, the flow rate of the medium can be controlled. Therefore, the growth rate of the
biofilm is controllable [15]. The multiple Sorbarod model was used to investigate the effect of oral
hygiene activities on anaerobic oral biofilms [39] and to assess the plaque-control effects of some specific
enzymes [40]. An advantage of this model is that the growth rate of the biofilm can be controlled.
Another advantage is that the detached bacterial cells in the spent culture medium can be studied to
evaluate the biological effect of experimental treatment [36]. Since the model develops heterogeneous
biofilm, it cannot be used in study design where homogeneity of the biofilm is important [15].
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3.2.6. The Multiple Artificial Mouth

The multiple artificial mouth (MAM) is a computer-controlled, multiple-station model. It has
a more complicated construction than the models discussed above.

A MAM can accurately simulate an in vivo environment using computer-controlled facilities [42].
It has several microstations, which are relatively independent to one other (Figure 9). Different
experimental conditions can be applied simultaneously in different microstations.

Environmental variables can be easily controlled in the MAM. This allows analysis of the biofilm
during its development, without contaminating other samples. Acidity can be monitored using a
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pH electrode and a micro-reference electrode [12]. These well-controlled conditions improve the
standardization and flexibility of the MAM, and therefore enhance its ability to culture biofilms similar
to natural oral flora. Sissons et al. found that biofilms developed in this system exhibited metabolic
and pH behavior that resembled typical natural plaques [42]. The MAM has been adopted in different
studies, such as biodiversity of plaques [43], fluoride and phosphate assay [44], plaque calcium level
measurement [45], and the generation of consortia using major plaque species [46]. The biofilm
samples in this model were exposed to the same temperature and gas-phase fluctuation. The MAM
aims to mimic the oral environment. Therefore, saliva substitutes play an important role in the model.
Approximate laminar flows are applied to simulate the situations in the oral cavity, instead of turbulent
flow in chemostat.

 
Figure 9. Schematic diagram of a multiple artificial mouth (adapted from Sissons et al., 2000 [47], with
permission from © 2000 Springer. License number: 4130800878870).

4. Summary

Dental biofilm is an essential factor in the etiology of dental caries. Cariogenic bacteria streptococci,
actinomycetes, and lactobacilli are found to be more closely associated with dental caries. Laboratory
microbial culture models can provide a steady and controllable environment for cariology research.
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The models play an important role in cariology research in investigating caries pathogenicity, testing
effects of new caries prevention methods, and developing new caries-preventing products. Each model
has its advantages and disadvantages from both experimental design and experiment cost. Table 1
shows a comparison of the discussed in vitro biofilm systems.

Table 1. Characteristics of common microbial culture models for cariology research.

Parameter Agar
Plate Microtiter Chemostat Flow Cell CDFF Drip

Flow MSD MAM

Duration Hours to
days

Hours to
days

Hours to
days

Hours to
days

Days to
weeks

Days to
weeks

Days to
weeks

Days to
weeks

Planktonic
phase Controlled Controlled Controlled Controlled None None None None

Growth
control by

media
None Via plank-

tonic phase Yes Yes Yes Yes Yes Yes

Fluid flow No No Turbulent Laminar Laminar Drop Laminar Drop

Shear force No No Yes Yes Yes No Yes No

Defined
thickness No No Achievable Achievable Yes No No No

Timed
reagents No Manually Yes Pulse Yes Yes Yes Computer

control

Alternative
substrate No Yes Yes Yes Yes Yes No Yes

Different
conditions No No No No No Yes No Yes

Subsampling
during growth Yes Yes Yes Yes Yes Yes Yes Yes

CDFF = Constant depth film fermenter; MSD = Multiple Sorbarod device; MAM = Multiple artificial mouth.

The designs of the biofilm models that are included vary from simple to sophisticated according
to the purposes of investigation. Agar plate and microtiter are microbial culture models in the closed
system that are low-cost and simple to manage. Microbial culture models in the open system are more
complex and the biofilms generated are closer to natural dental plaque. Selection of the type of model
used for a biofilm study depends on the growth conditions, requirements for the specific biofilm, and
purposes of the study.
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