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We study how queue configuration affects human servers’ service time by comparing dedicated with shared 

queues using field data from a natural experiment in a supermarket. We hypothesize that queue configuration 

may affect servers’ service rate through several mechanisms: pooling may affects service rate directly  due 

to social loafing effect and competition effect, and indirectly  via its impact on queue length. To investigate 

these impacts, we take advantage of the supermarket’s checkout layout, and use a data set containing both 

checkout transaction details and queue information collected from video recordings in the supermarket. After 

we control for the queue length, we find that servers in dedicated queues are about 10.7% faster than those 

in shared queues, mainly due to the social loafing effect. We also demonstrate that  pooling has an indirect 

negative effect on service time through its impact on queue length. In addition,  the queue configuration’s 

direct effect and its indirect  queue length effect function independently to each other. In aggregation, the 

social loafing effect dominates, and servers slow down (a 6.86% increase in service time) in shared queues. 
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1.    Introduction 

 

In most developed countries, the service sector accounts for more than 70% of the GDP 
(The World Bank 2016). As direct labor costs can reach 60% to 70% of a service firm’s 
total operating costs (Tan and Netessine 2014), managing an appropriate level of staffing 
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becomes a paramount issue. High staffing levels are costly, but low staffing levels can lead

to long waiting times, low customer satisfaction, and even lost sales. Having servers use

a shared queue to serve all the customers has been considered as one way to reduce the

average waiting time without increasing staffing levels, due to its pooling benefit. However,

as we shall show, this result critically depends on how queue configuration affects servers’

service rate. If servers work much more slowly in shared queues than in dedicated queues,

then shared queues could lead to longer average waiting time with the same staffing level.

As a result, it is important to understand servers’ behavior when deciding the queue

configuration.

In addition, most widely used queueing models in both academic literature and practice

build upon the assumption of exogenous service rate (Brockmeyer et al. 1948) which,

while plausible for non-human servers, is problematic for human servers. According to

recent research, human service rate can be affected by operational environment factors,

such as queue configuration (e.g., Song et al. 2015, Shunko et al. 2014), workload (e.g.,

Kc and Terwiesch 2009, Jaeker et al. 2012), and deadline (e.g., Deo et al. 2014). For a

broader perspective on behavioral issues in operations management, please see Bendoly

et al. (2010).

In this paper, we examine the effect of queue configuration on human servers’ service

time. Two common queue configurations exist: in the first, one dedicated queue leads to

each server; in the second, queues are pooled, and each shared queue leads to multiple

servers. All else being equal, the pooling of queues is long considered a sure way to reduce

labor costs without sacrificing waiting time (Kleinrock 1976), but Song et al. (2015) and

Shunko et al. (2014) suggest that all else may not be equal. Rothkopf and Rech (1987)

conjecture that pooling may lead to longer service times. In this paper, we investigate

this conjecture by testing effects that are related to queue configuration, as summarized

in Figure 1.

Queue configuration could impact a human server’s service time in two ways. First, the

impact can be direct: on the one hand, the server may slow down when serving a shared

queue to reduce her share of the work and the effort required to perform this work. This

is known as the the social loafing effect. On the other hand, when the server receives
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Figure 1 Summary of Hypotheses

a throughput-based bonus, she may speed up in a shared queue in order to get more

work and, consequently, more pay. This is known as the competition effect. We call the

sum of these two effects the direct effect of queue configuration on service time. Because

social loafing and competition affect service time in opposite directions, the direction of

their aggregate impact on service time (i.e., the direct effect) is unclear. Second, queue

configuration can also indirectly impact a human server’s service time by affecting queue

length that the server faces. Pooling may affect the queue length, and human servers’

response to increased workload could vary (Delasay et al. 2016), depending on the nature

of the service and the particular industry.

In our paper, we examine both direct and indirect effects. We empirically test different

mechanisms through which queue configuration can affect servers’ service time, and study

the resulting implications on the design of queueing systems.

In the empirical analysis, we use a data set from a supermarket in Shanghai, China.

We collect detailed transaction records from the supermarket’s IT system, and extract

timing information from video recordings that cover the checkout area. In addition, the

supermarket places both dedicated queues and shared queues next to each other, in an

alternating pattern, which allows us to identify the impact of queue configuration.
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Using this data set, we find that the pooling of queues has significant direct and indirect

effects on servers’ service time. Indirectly, shared queues are longer, which causes servers

to speed up. Directly, the social loafing effect is stronger than the competition effect when

we control for the queue length, which leads to a total direct effect of a 10.7% increase in

service time for shared queues. After aggregating both direct and indirect effects, we find

that pooling still leads to 6.86% longer service times in our focal supermarket. Finally, the

direct effect and the indirect queue length effect function independently to each other.

Our research helps address how – and how much – queue configuration can affect human

servers’ service time in a supermarket setting, and makes three primary contributions to

the literature.

First, our detailed data enables us to disentangle the direct effect from the indirect

queue length effect. As a result, we are able to identify the significance and magnitude of

both effects. Moreover, our investigation of the interaction between them reveals that they

function relatively independently. There is a rich literature on the queue length effect, but

none of these studies has explored how this effect may interact with queue configuration.

Our study fills this gap.

Second, we find that the aggregation of both the direct and indirect effects of pooling

on service times is positive. This provides empirical support for the claim that pooling

queues can lead to longer service times (Rothkopf and Rech 1987). Considering that the

checkout service is very simple and standard, the 10.7% difference in service time can

be quite economically significant. Our research, based on supermarket data and studying

richer mechanisms, complements that by Shunko et al. (2014), which is based on laboratory

experiments. Our results also complement those obtained by Song et al. (2015) in that our

human servers (i.e. cashiers) deal with non-discretionary tasks, do not have the flexibility

to change the work process, and change their behavior based on different mechanisms.

Third, our study of the indirect queue length effect also confirms past research that

concludes queue length impacts service time. Furthermore, we show that servers’ service

time is convex decreasing in the queue length in a supermarket, a non-discretionary work

environment. This finding confirms the results by Lu et al. (2014).
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Finally, our research also has important managerial implications. Without considering

the indirect queue length effect on human servers, managers are likely to overstaff their

systems. In addition, without considering the direct queue configuration effect on human

servers, managers are likely to understaff their systems when pooling dedicated queues.

Therefore, when considering pooling, managers must consider both the conventional oper-

ational benefits of pooling and, as our study suggests, service slowdown due to servers’

behavioral changes. Our theoretical analysis in Section 6 incorporates both direct and

indirect effects, and shows that if the social loafing effect is strong, pooling can hurt the

system performance, particularly when the system load is either very high or very low.

2. Literature Review

Our research is related to studies of queueing system configurations. Conventional wisdom

suggests that the pooling of queues usually leads to a reduction of the average waiting time

(see, e.g., Eppen 1979; Kleinrock 1976; and Mandelbaum and Reiman 1998). That said,

pooling may not be beneficial when the arrival streams being pooled have very different

service time distributions and/or service level requirements (e.g., Whitt 1999). Rothkopf

and Rech (1987) also conjecture that combining queues may lead to longer service times.

One reason for such slowdown is the social loafing, or free riding, effect in shared queue

– servers slow down to avoid being assigned more shared workload (Karau and Williams

1993; Krumm 2001). Considering a coordinating agency compensating two self-interested

service providers to achieve a given expected waiting time, Gilbert and Weng (1998) show

that a coordinating agency may prefer a separate queue configuration to a pooled one.

Also, in their analysis of different dispatching policies in M/M/2 queues, Doroudi et al.

(2011) highlight the importance of incorporating strategic server behavior in managing

queueing systems. Do et al. (2015) use a theoretical model to study the impact of server

behaviors, social loafing, and workload dependent speedup on the performance of dedicated

queues and shared queues. They show that pooling may or may not lead to performance

improvement.

There has been few empirical studies to verify the assumptions and results of these theo-

retical models, however. Studying case processing time in courts, Luskin and Luskin (1986)
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argue that separating virtual queues of cases increases judges’ individual accountability,

reduces social loafing, and eventually leads to shorter case processing times; however, the

estimated effect lacks statistical significance. Song et al. (2015) use an emergency depart-

ment’s patient-level data to show that a dedicated queueing system results in shorter

throughput time and length of stay for patients when compared with a pooled queueing

system. Their result cannot be explained by social loafing, however, because the hospital

uses a so-called round robin routing policy, and the work allocated to a doctor does not

dependent on her work speed. Rather, the more plausible explanation is that doctors have

more ownership of patients in a dedicated queueing system and, thus, more actively man-

age the patient flow. In contrast, we study a supermarket setting, in which servers have no

authority in managing the customer flow. Hence, any speedup effect in a dedicated queue

can be attributed to the social loafing effect, instead of better management of the flow.

Thus, our results in the simple, non-discretionary setting complement those in professional

discretionary services, and help to establish the generality of the result that pooling leads

to service slowdown. Shunko et al. (2014) show the slowdown effect of pooling queues in

controlled lab experiments, but our results are derived from data that we collect from

a supermarket, as we take advantage of the supermarket’s unique design of a queueing

system. In addition, none of the existing research, to the best of our knowledge, considers

both a queue configuration’s direct effect and its indirect queue length effect on service

time; thus, the existing research fails to disentangle the two effects. Our research fills this

gap by studying both effects, their interaction, and their aggregation.

Our research builds on and also complements the literature on queue length dependent

service rate. On the theoretical side, Jackson (1963) is one of the early works that general-

izes the exogeneity assumption and allows the service rate to depend on the queue length.

Stidham Jr. and Weber (1989) and George and Harrison (2001) show that the optimal ser-

vice rate should be nondecreasing in the queue length. Dong et al. (2013) study a queueing

model that assumes a negative correlation between service rate and the congestion level

of a queueing system. Also, Chan et al. (2014) allow for state-dependent service rates and

analyze when speedup should be used, as well as this speedup’s associated impacts. Finally,
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Delasay et al. (2015) demonstrate that using models overlooking the state-dependent ser-

vice rate may lead to wrong predictions of system performance and suboptimal staffing

decisions.

In the supermarket environment that we study, customers waiting in queues clearly rep-

resent workload for servers, but this workload is virtual in the sense that these customers

are waiting to be processed, but not actually being processed yet. In other service environ-

ments such as healthcare, servers simultaneously serve jobs in the system, so the workload

is real. Accordingly, we will make a distinction in our study and use “queue” for the former

and “workload” for the latter.

There is a recent stream of empirical research that investigates the impact of workload

on server performance in various service environments. Both positive and negative corre-

lations between workload and service time have been reported. Studying workload in a

healthcare system, Kc and Terwiesch (2009) find that workers decrease their service time

when there is a short-term workload increase, but a long-lasting high workload tends to

increase service time. Kc and Terwiesch (2012) find a negative correlation between the

workload and patients’ length of stay in a cardiac intensive care unit. Also, Jaeker et al.

(2012) find a positive correlation between real workload and patients’ length of stay in

a hospital. They further show that the anticipated high workload can be associated with

either a longer or shorter length of stay, depending on the type of incoming workload. Using

hourly sales as a performance measure instead of time, Tan and Netessine (2014) find that

the correlation between service time and workload is positive when the overall workload

is small, but negative when the overall workload is large. Armony et al. (2014), mean-

while, report a negative correlation between service rate and workload when an emergency

department is crowded.

Our work is also closely related to empirical and experimental research on the impact

of queue length on service time. For example, Edie (1954) documents that toll booth

service time at the Lincoln Tunnel and the George Washington Bridge decreases with the

traffic volume, because the server speeds up due to backed-up traffic, and drivers have

more time to prepare payments before reaching the toll station. Studying a production

system via a lab experiment, Schultz et al. (1998) show that workers speed up when they
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are causing lines to be idle, and that the service time distribution depends on factors

such as buffer size, co-workers’ speed, and the amount of inventory in the system. Schultz

et al. (1999) show that low-inventory systems improve productivity because of better

feedback, group cohesiveness, and stronger task norms. Also, using data from a health care

system, Batt and Terwiesch (2012) show that a patient queue affects service time through

several mechanisms, including task reduction and load-induced slowdown; the net effect

is an increase in service time when the system is crowded. Lu et al. (2014) study factors

affecting workers’ productivity in an IT service delivery system, and they find that workers’

productivity is concave increasing with respect to the amount of waiting workload. Delasay

et al. (2016) summarize mechanisms through which queue affects service time and their

empirical evidence.

Recently, researchers have started to use video data to answer related questions. Using

periodical queue information collected from video clips, Lu et al. (2013) empirically study

how waiting in line affects customers’ purchasing behavior. They find that waiting has a

nonlinear impact on purchases, and customers focus mostly on the queue length, without

fully adjusting for the speed that the line is moving. Jain et al. (2014) use video data

and POS data to study how customers’ in-store search and sales persons’ assistance affect

sales. In this paper, we also use video data, and combine it with the corresponding POS

data. However, the research questions we study are different. In contrast to the focus on

customer behavior in the two aforementioned papers, we focus on server behavior and

study how queue configuration affects servers’ service time.

3. Hypotheses Development

In this section, we develop testable predictions from theories about both the direct and

indirect effects of queue configuration on service time, as well as their aggregation and pos-

sible interaction. We analyze the indirect effect of queue configuration on service time (via

queue length) in §3.1, consider the direct effect of queue configuration in §3.2, and discuss

the interaction and aggregation of the two effects in §3.3. In all, we develop hypotheses to

test the various links depicted in Figure 1. All proofs are provided in the Appendices.
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3.1. The Indirect Queue Length Effect

As clearly indicated in Figure 1, there are two effects that we must test: 1) how queue

configuration affects queue length, and 2) how queue length affects service time. We start

with the former.

Consider an M/M/2 queue with arrival rate 2λ and service rate µ, and an M/M/1 queue

with arrival rate λ and service rate µ. We can show that the pooled M/M/2 queue has a

smaller average queue length (see Proposition 3 in Appendix A). Hence, if everything else

remains the same, the pooling of two identical M/M/1 queues leads to a shorter queue.

Hence, queue configuration clearly has an impact on queue length.

This comparison assumes that different queue configurations do not affect customer

arrivals, and also does not consider customers’ queue joining behavior. However, in the

supermarket where we collected our data, the two types of queues (dedicated queues and

shared queues) are placed alternatively next to each other. Therefore, customers choose

between different types of queues. Some customers are aware of the different queue configu-

rations and their impact on expected waiting time, and incorporate this information when

making queue joining decisions. In equilibrium, customers should be indifferent between

joining the two types of queues. Because a shared queue has more servers and moves faster

than a dedicated queue, we expect these informed customers to prefer a shared queue to a

dedicated queue with the same length. Therefore, in equilibrium, the shared queues should

be longer than the dedicated ones.

These two arguments result in different queue length comparison outcomes between the

shared and dedicated queues. Therefore, we propose two competing hypotheses as follows,

and let the data inform us which queue is shorter in our focal supermarket.

Hypothesis 1. (a) Shared queues are shorter than dedicated queues.

(b) Shared queues are longer than dedicated queues.

In forming this hypothesis, we have made a conjecture about customers’ queue joining

behavior. To directly test such behavior would require additional data about each cus-

tomer’s choice set upon arriving at the checkout area. That focus is beyond the scope of

this paper, but we believe that it deserves future research attention.
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It should be noted that the test of Hypothesis 1 allows us to indirectly check whether cus-

tomer queue joining behavior is present. If Hypothesis 1(a) is rejected and Hypothesis 1(b)

is supported, then customers must be choosing queues strategically in some way.

Next, we study how queue length affects service time. In the literature on queue-

dependent service rate, George and Harrison (2001) show that, if there is a pressure cost

function that’s weakly increasing in the queue length, then it is optimal for the server to

use a state-dependent service rate that is non-decreasing in the queue length. This mono-

tonicity has an intuitive appeal: when a queue is longer, the pressure on a server is higher,

and any speedup effort by that server reduces waiting time for more customers; hence, the

server is willing to work faster when the queue is longer.

There is very little empirical validation of this service rate policy, however, due to two

practical obstacles. First, it is difficult to collect queue length data and match it with the

service time data. Fortunately, the data set we collected contains POS transaction data as

well as a matching set of video clips from which we can extract queue length information

at any time (for details, see the data description in Section 4).

The second difficulty is that the existing research focuses on how service rate should

optimally change with queue length, but service rate is never directly observed in practice.

We can observe only the service time for each customer. Moreover, theoretically, the server

should adjust her service rate whenever there is a new arrival (causing queues to increase).

Hence, during the span of a customer’s service time, the rate could change several times

due to new arrivals. Following the literature and assuming exponential service times, each

customer’s total service time should be the sum of a random number of exponential random

variables with different rates. Fortunately, we can overcome this obstacle in our study

because we are able to develop a set of analytical results that translate the changes in

service rate into the corresponding changes in each customer’s service time (please see

Appendix A for details), which we can then directly test.

Besides its effect on servers’ behavior, a longer queue may also reduce the service time

via its impact on customers. If a queue is long when a customer starts her service, it is

most likely that the queue was already long when the customer joined the queue. As a

result the focal customer then has more time to prepare her payment and to take items
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from the shopping cart, both of which help speed up the service and reduce the service

time.

Both factors imply that service time should be shorter when a queue is longer. Therefore,

we propose the following hypothesis.

Hypothesis 2. The average service time decreases with the length of a queue at the

start of service.

Edie (1954) similarly shows that toll booth service time at a bridge is decreasing with

the traffic volume, and attributes this to both queue pressure and the fact that drivers

have more time to prepare payments. Because we are interested in the total effect of queue

length on service time in this paper, we will not distinguish which of the two factors

contribute more to a decrease in service time.

Although we hypothesize that servers work faster when queues are longer, the service

rate cannot increase to infinity. Thus, we reasonably expect that the rate at which service

rate increases will diminish as queue length continues to increase. In other words, service

rate should be a concave increasing function of queue length. Although this has not been

formally proved, numerical results in George and Harrison (2001) clearly indicate such a

concave relationship. Assuming the service rate is concave in queue length, we can prove

that the average service time should be a convex decreasing function of queue length (for

details see Appendix A), which we can test using our data. We now formulate our next

hypothesis:

Hypothesis 3. The average service time is a convex decreasing function of the queue

length at the start of service.

3.2. Queue Configuration’s Direct Effect

Besides the indirect queue length effect, the queue configuration also directly affects a

server’s incentive and behavior. In the supermarket where we collected our data, servers

are paid a fixed monthly salary, plus a bonus based on the number of transactions they

complete within each month. We focus on the following two competing factors through

which the queue configuration can affect servers’ service rate:
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1. The social loafing effect : A higher service rate requires a higher effort level, which

results in a higher effort cost rate on servers. In addition, in a shared queue, working

faster may also bring more work. Thus, servers working in shared queues have an

incentive to slow down, when compared with those working in dedicated queues; in

turn, this slowdown reduces not only the effort cost rate, but also the number of

transactions allocated to servers.

2. The competition effect : Similarly, in a shared queue, the faster servers work, the more

work they complete. This could have a stimulating effect on servers, however, as they

get monthly bonuses based on the amount of work they complete. Therefore, more

work means higher bonuses, and servers may work faster in shared queues due to

competition for work.

It is worth pointing out that rational servers know that the sooner they finish their

current transactions, the more likely that they are to get the next arrival to the shared

queue. Therefore, social loafing and competition effects exist even when the queue length

is zero.

As we just established, the social loafing effect and the competition effect work in oppo-

site directions: for a faster server, the social loafing effect means more work assigned and a

higher effort cost; conversely, the competition effect means a higher income. The optimal

service rate will balance the trade-off between these two direct effects. If the bonus rate is

low, then the competition effect is not strong enough to offset the social loafing effect, and

servers should work slower in a shared queue than in a dedicated queue. In the extreme

case when servers’ compensation is unrelated to their completed work (e.g., when they

are paid a fixed amount), the social loafing effect should dominate the competition effect.

Conversely, if per transaction bonuses are sufficiently high, then the competition effect

will dominate, and servers will work faster in the shared queue. For example, when servers

share a common queue of potential buyers in a high-commission sales environment, they

have the incentive to speed up a current customer, so they may compete with other servers

to get a new customer.

In many settings, when servers change speed, there is a noticeable effect on the quality

of their work. However, in the supermarket that we study, there are very high transac-

tion accuracy requirements, and the servers almost always meet these standards. Thus,
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there is little evidence of a quality-speed trade-off. Subsequently, we only focus on the

impact of queue configuration on service speed. Because the social loafing and competition

effects oppose each other, their total direct effect is ambiguous. We propose two competing

hypotheses:

Hypothesis 4. (a) Servers work slower when working in shared queues, after we con-

trol for queue length.

(b) Servers work faster when working in shared queues, after we control for queue length.

In order to separate the direct effect from the indirect queue length effect in our empirical

tests, we compare servers’ behavior in a dedicated queue with that in a shared queue, after

we control for queue length.

3.3. The Interaction between and Aggregation of Direct Effect and Indirect
Queue Length Effect

As both the direct effect and indirect queue length effect can exist simultaneously in a

shared queue, we investigate the following questions in this section: What is their total

effect on the service time? Furthermore, do they moderate each other? Does a longer queue

affect the direct effect? If so, does the slowdown become more, or less, pronounced when

the queue is longer?

As discussed in Section §3.2, the social loafing effect may cause servers to slow down

when working in shared queues, because the faster a server works, the more work she will

do. This effect could be stronger with a longer queue. When the queue is long, a server

will clearly be assigned another customer from the queue as soon as she finishes serving

the current customer; in contrast, with a shorter queue, the other server may finish the

remaining work in the queue before the focal server finishes her current job. Based on this

argument, the direct effect should be bigger when the queue is longer.

However, Morgeson and Humphrey (2008) suggest the opposite. They mention that

social loafing is less likely to occur when the workload is higher, because everyone’s contri-

bution is needed and unique in such a case. In our setting, the indirect queue length effect

could come from the pressure of keeping customers waiting. In a pooled queue, when the

queue length is longer, both servers must work faster so as to reduce the queue length and
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alleviate the pressure, which makes social loafing less likely to occur. On the other hand,

when the workload is low, free riding does not affect performance much, and social loafing

is therefore more likely to occur.

Based on these two different arguments, we propose the following competing hypotheses.

Hypothesis 5. (a) The direct effect is bigger when the queue is longer.

(b) The direct effect is smaller when the queue is longer.

In Hypotheses 1-5, we test direct and indirect effects separately, as well as analyze how

they affect each other. In practice, however, managers are most concerned with an overall

aggregate effect on service time. Ultimately, managers want to know whether servers will

slow down or speed up when queues are pooled, and theories alone do not answer this

question definitively. To answer this question empirically, we propose the following two

competing hypotheses.

Hypothesis 6. (a) At the focal supermarket, servers work more slowly when working

in shared queues.

(b) At the focal supermarket, servers work faster when working in shared queues.

4. Data

We used a primary data set that we collected from a supermarket in Shanghai, China

to test our hypotheses. In this section, we explain how the data were collected, and then

present key summary statistics of the final data set.

4.1. Data Collection Process

We obtained video records through closed-circuit television (CCTV) cameras from the

supermarket’s surveillance system covering the checkout area, and we use these records

to observe customer arrivals and departures. The videos were recorded during all business

hours. We also have staff scheduling records as well as Point-of-Sale (POS) transaction

records containing details such as items purchased and their quantities, prices, and the

payment methods. In 2014, we collected the data on two separate days: June 5th and

June 7th. Each open POS terminal has one server to handle customer transactions on a

first-come-first-served basis. When a server is serving an existing customer, newly arrived
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Figure 2 Video Snapshot

customers entering the line need to wait until the departure of customers in front of them.

Figure 2 shows a sample snapshot of the video from channel 3 recorded at 11:03:12 on

June 7th, 2014. As can be seen, there is a queue of four customers, including the one being

served, in front of POS 26.

In theory, customers may renege or jockey queues, but in the supermarket where we

collected our data, queues leading to the POSs are separated by handrails. Thus, it is hard

for a customer to leave or switch to another queue if there are other customers waiting

behind her, particularly if she uses a shopping cart. Moreover, we rarely observe reneging

and jockeying in our video observations. Therefore, we do not model these factors in our

study.

The supermarket has two types of physical queue configurations: dedicated queues and

shared queues. The former is a queue that leads to one POS; the latter has one shared

queue leading to two parallel POSs. It is possible that only one of the two POSs is used in

a shared queue at any time, in which case the shared queue effectively becomes a dedicated

queue; accordingly, we will treat that queue as a dedicated queue in our empirical analysis.

The two types of queues are placed in an alternating fashion, as illustrated in Figure 3.

The management implemented such layouts mainly to better use the space in the checkout

area. Servers are randomly assigned to POS terminals in each shift.
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Figure 3 Layout of the POS

This unique design of the queueing system results in natural experiments ideal for com-

paring service time in the two types of queues and examining the impact of queue configu-

ration on service time. In addition, as shown in Figure 3, POSs in dedicated queues are also

placed in groups of two. If any peer effect (Mas and Moretti 2009) exists, then it should be

present in both queue configurations. Moreover, as servers are randomly assigned in each

shift, any peer effect that exists should be uncorrelated with the queue configuration and

thus should not bias our estimation.

In a dedicated queue, customers wait and proceed to the server when that server becomes

available. In a shared queue, customers wait and proceed to the first available server among

the two. We define the arrival time of a customer as the time when the customer stops

either behind the previous customer or in front of the server when the queue is empty. The

departure time of a customer is defined as the time when the transaction is completed and

the customer departs. If a customer arrives when the server is idle, then the service start

time is the arrival time. If a customer arrives when the server is busy, then her service

starts when the server finishes serving the customer ahead of her, which is the same as the

departure time of the present customer ahead of her. The service time is defined as the
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difference between a customer’s departure time and the service start time. Queue length

is defined as the number of customers in a queue, excluding the customer(s) being served.

Research assistants watched videos to collect raw data of the arrival time and departure

time of each customer, as well as the presence time of each server at the POS. They were

given a timer program in Excel that has buttons corresponding to the data to be collected

for each channel. To minimize errors, each channel was assigned to two research assistants

for data recording, and the two sets of raw data were compared and cross-checked. Any

discrepancy was then inspected by a third assistant, who would watch the related video

to make a final determination. In addition, the POS records have a time stamp for each

transaction. We also compared the times recorded from the video with those from POS

transaction records. Any unusual differences were inspected and reconciled.

The POS transaction records do not contain information about queue length. Fortu-

nately, we can deduce the queue length at any time from all the customers’ arrival and

departure times. The difference between the total number of customer arrivals and the

total number of customer departures by a certain time is the queue length at that time.

For example, at 9:00am, our record shows four customer arrivals since the opening of a

POS, but only two customer departures. Therefore, the other two customers, including

the customer who is being served at that moment, are still in the system. Therefore, our

queue length is 1. Some customers arrive by groups. For example, a couple may go shop-

ping together. Customers within one group typically have similar departure times, which

enables us to identify groups. For our analysis, we define the queue length as the number

of waiting individuals. We have also repeated the empirical analysis by using the number

of waiting groups instead of individuals; when we do so, the directional results remain the

same.

Using the departure times observed from the video and the transaction times from the

POS transaction records, we can match customers observed in the video with transactions

in the POS transaction records. Therefore, for each customer transaction, we have the

corresponding service time, the queue length at the start of the transaction, and purchase

details such as the number and type of items purchased, the total amount purchased, the

server ID, and the payment method. We drop a few outliers that are unusually large.
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Table 1 Summary Statistics of Key Variables

All Dedicated Pooled Difference
Variable Transactions Queue Queue Pooled - Dedicated P-value

Service time 77.32 76.43 80.06 3.63 0.04
Queue length 1.39 1.31 1.62 0.31 0.00
Number of normal items 6.09 6.07 6.15 0.08 0.82
Number of grocery 1.11 1.11 1.10 0.00 0.97
Total value 69.51 70.19 67.41 -2.78 0.23
Total SKU 4.95 5.00 4.80 -0.20 0.19

4.2. Summary Statistics

The resulting data set contains 4,305 transactions. Table 1 presents summary statistics of

some key variables. The second column shows variable means across all transactions. The

average service time for a transaction is about 77.32 seconds. In this table, and throughout

the rest of the paper, “queue length” stands for queue length at the beginning of each

transaction. Its average is 1.39 across all transactions. Products are divided into two groups.

Grocery refers to goods that servers must weigh to determine their amount, whereas normal

items refer to goods that only require bar code scanning. The average number of normal

items in a transaction is about 6.09, and the average number of grocery is about 1.11. The

average total value of each transaction is 69.51 RMB. The number of stock keeping units

(SKUs), which indicates how many distinct items were sold in a transaction, is 4.95 on

average. As mentioned earlier, there are two types of queues in the supermarket: dedicated

queues and shared queues. The third and fourth columns of Table 1 present the mean of key

variables in dedicated queues and shared queues, respectively. The fifth column shows the

mean differences between shared queues and dedicated queues. We also conduct unpaired

T-tests between the two types of queues, and report the P-values in the last column. The

transaction characteristics (numbers of normal items, number of grocery, total value, and

total SKU) are not statistically different between the two types of queues, indicating that

transactions in the two types of queues are similar. However, both the service time and

queue length are significantly longer in shared queues than in dedicated queues.

Table 2 shows the correlation matrix of the key variables. The maximum absolute value

of correlation between the queue length and any other variable is 0.07, which clearly
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indicates that queue length is not correlated with any transaction characteristics variable.

As expected, some transaction characteristics have positive correlations. For example, the

total value and the total SKU have a correlation of 0.76, because the more items customers

buy, the more they spend. The transaction characteristics are control variables in our

empirical study, so correlations among themselves should not have significant effects on

estimating the impacts of our main explanatory variables on service time.

Table 2 Correlations of Key Variables

(1) (2) (3) (4) (5)

(1) Number of normal items 1.00
(2) Number of grocery 0.02 1.00
(3) Total value 0.48 0.25 1.00
(4) Total SKU 0.55 0.44 0.76 1.00
(5) Queue length 0.00 -0.07 -0.05 -0.07 1.00

Figure 4 shows the distribution of service time, which clearly does not follow any expo-

nential distribution. As shown in the histogram of log(service time) in Figure 5, the dis-

tribution of the natural log of the service time is very close to a normal distribution. The

lognormal Q-Q plot of service time, as presented in Figure 6, shows almost a straight line

and further supports that a lognormal distribution is a good representation of service time.

This finding in our supermarket checkout setting confirms and extends the research in call

centers that finds the distribution of call durations to be approximately lognormal (e.g.,

Bolotin 2013; Brown et al. 2005).

In the next section, we use the resulting data set to empirically test Hypotheses 1- 6.

5. Empirical Models and Results

In our data, each observation corresponds to one transaction. As discussed in Section 4.2,

the service time follows approximately a lognormal distribution and has a long right tail;

therefore we follow the literature (e.g., Kc and Terwiesch 2009; Song et al. 2015) and use

natural log of service time as our dependent variable in the empirical models.

To control transactions, servers, location, and time heterogeneities, we include trans-

action characteristics, payment method dummies, server dummies, POS dummies, and
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day-hour dummies as control variables in our empirical models. In creating the day-hour

dummy variables, we treat the same hour on different days as different time periods. We

also include the number of common SKUs in both normal items and grocery items between

the focal transaction and the previous transaction to control for the commonality between

consecutive transactions – and the possible impact of servers’ short-term familiarity with

the items on their service time. In addition, we include the total number of open POS sta-

tions in the whole store, so we may control for the store-wide social loafing effect that exists

among all queues. Table 3 provides a complete list summarizing all the control variables.

Service time can be viewed as the amount of work in a transaction divided by the

server’s speed. Transaction characteristics, including NumberGrocery, NumberItems,
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Table 3 Control Variables

Variables Definition

Transaction characteristics
log(NumberItems) Log of the number of normal items in a transaction
log(NumberGrocery) Log of the number of grocery items in a transaction
log(TotalValue) Log of the total value of a transaction
log(TotalSKU) Log of the number of SKUs in a transaction
Payment method dummies Whether the transaction involved payment

using a particular type of payment method
Server dummies Whether the transaction was completed by a

particular server
POS station dummies Whether the transaction was completed in a

particular POS station
Hour-day dummies Whether the transaction started in a particular

hour on a particular day
Common normal items The number of common normal items (by SKU) between

the previous transaction and the focal transaction
Common grocery items The number of common grocery items (by SKU) between

the previous transaction and the focal transaction
Number of open POS The number of open POS stations in the

store within the hour

TotalV alue, and TotalSKU , directly affect the work amount in a transaction, but not the

server speed. Therefore, the service time should change linearly to these variables. On the

other hand, queue configuration and queue length may affect the server speed; hence, their

impact on service time should be proportional to the work amount of each transaction.

That is, the absolute value of queue configuration effect or queue length effect should be

larger when the transaction amount is higher. Moreover, since we know the transaction

characteristics variables are highly right-skewed, we use their natural logs instead of their

levels as control variables. Because the dependent variable is the log of service time, the

relationship between service time and these transaction characteristics variables is linear.

For robustness checks, we also ran regressions with levels of transaction characteristics

as control variables, and report the results in Appendix C. Estimation results show that

regressions using natural logs of transaction characteristics have higher R2, and thus better

fit, than those using levels of transaction characteristics.
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Considering the supermarket setting where our data were collected, we do not think

endogeneity is a big concern with respect to our empirical estimations. There are two

factors that determine service time: work amount and server speed; the work amount

depends on transaction characteristics such as the basket size. Because dedicated queues

and shared queues are placed in an alternating fashion as demonstrated in Figure 3, we do

not expect that transactions in dedicated queues are systematically different from those

in shared queues. The statistics and T-test results in Table 1 also confirm the similarity of

transactions in both types of queues. The other factor, server speed, is dependent on the

server. In the focal supermarket, servers are randomly allocated to different POSs, and we

also include server and POS dummies as control variables. Therefore, endogeneity due to

omitted server-related or POS-related variables should not be an issue.

When customers reach the checkout area, they naturally select the queue that they

believe will ensure maximum expediency. Thus, one may suspect such queue selection

behavior to cause endogeneity issues. However, although we believe customers’ queue selec-

tion decision may be correlated with queue length or queue configuration, this decision

should be uncorrelated with any customer-specific factor that may affect service time. We

would be concerned if customers with different transactions demonstrated different queue

selection behavior. That said, we would not anticipate such phenomena in our setting,

because all customers make queue selection decisions to minimize their expected waiting,

and should make similar decisions when facing the same choices. Therefore, customers’

queue selection behavior is unlikely to correlate with unobserved factors affecting the ser-

vice time, and should not cause endogeneity issues in our estimations.

The errors within transactions over the same server/time period/POS may be correlated,

which may not be fully controlled for by the fixed effects. Therefore, when we report results,

we use cluster-robust errors, in which transactions conducted by the same server in the

same hour at the same POS station are treated as being in one cluster.

5.1. The Indirect Queue Length Effect

Hypothesis 1 predicts whether shared queues are longer than dedicated queues. To test

this hypothesis, we use the queue length when transaction i starts as the dependent vari-

able, and the dummy variable SingleServerQueuei, which indicates that the transaction
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is completed in a dedicated queue instead of a shared queue, as the main explanatory

variable. We also include the hour-day dummies to control for any time heterogeneities.

The resulting empirical model is

QueueLengthi = β0 +β1SingleServerQueuei +~γ
−−−−−−−−−−−−−−−→
HourDayDummiesi + εi. (1)

The queue length may be autocorrelated across subsequent transactions in the same queue,

which means that the error terms in Equation 1 may be correlated with each other. We

used the generalized least squares (GLS) method to incorporate such autocorrelations. We

specify the data as a panel data with the POS stations as panels, and allow the error terms

to be autocorrelated within each panel. We then use the panel-specific AR1 autocorre-

lation structure to allow different queues to have different autocorrelation patterns. The

estimated coefficient of SingleServerQueuei is -0.216, which is statistically significant at

the 5% significance level, and also economically significant since the overall average queue

length across all transactions is 1.39, as reported in Table 1. This result indicates that

dedicated queues are shorter than shared queues on average and supports Hypothesis 1

(b). For brevity, we do not report the coefficients of the hour-day dummies. This result also

indirectly supports our conjecture that, given a fixed queue length, customers are more

likely to choose a shared queue than a dedicated queue.

Hypothesis 2 states that the average service time is a decreasing function of the queue

length. Our main explanatory variable is the queue length at the time when a transaction

starts. We use transaction characteristics and other control variables as listed in Table 3,

and obtain this resulting model:

log(ServiceT imei) = β0 +β1QueueLengthi +~γ ·
−−−−−−→
Controlsi + εi. (2)

To test Hypothesis 3, which suggests that queue length has a marginally diminish-

ing impact on service time, we allow for a nonlinear relationship between the dependent

variable and the main independent variable by including QueueLength2
i in addition to

QueueLengthi
1:

log(ServiceT imei) = β0 +β1QueueLengthi +β2QueueLength
2
i +~γ ·

−−−−−−→
Controlsi + εi. (3)
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Table 4 Impact of Queue Length

(2) (3)
VARIABLES LogServiceTime LogServiceTime

QueueLength -0.0480** -0.0938**
(0.00643) (0.0132)

QueueLength2 0.00960**
(0.00218)

Log(NumberItems) 0.103** 0.103**
(0.0158) (0.0157)

Log(NumberGrocery) 0.115** 0.112**
(0.0151) (0.0152)

Log(TotalValue) 0.103** 0.102**
(0.0120) (0.0121)

Log(TotalSKU) 0.115** 0.115**
(0.0193) (0.0190)

Control Variables Included Included
Observations 3,245 3,245
R2 0.476 0.479

Robust standard errors in parentheses

** p<0.01, * p<0.05

To isolate the impact of queue length on service time, we used data from only one queue

configuration, and chose to focus on the dedicated queues in this paper2. Table 4 sum-

marizes the results when we estimate the empirical models (2) and (3). For simplicity, we

only report the queue length effect results and the coefficients of transaction character-

istics, and omit coefficients of other control variables. We find that the semi-elasticity of

queue length on service time is -0.048 in Model (2), which is statistically significant at the

1% significance level. This result provides support to our hypothesis that service time is

decreasing in the queue length.

1 We have also tested specifications other than quadratic and found our main results are robust. The
estimation results of other specifications are available from the authors upon request.

2 We have also run regressions using data from shared queues. The results are similar and only reported in
Appendix B for the sake of brevity.
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However, this speedup effect is diminishing as queue length increases, as evidenced by

results in Model (3). Allowing a quadratic relationship between queue length and the

logged service time, the coefficients of QueueLength2
i and QueueLengthi are 0.0096 and

-0.0938, respectively. The estimation results imply that when the queue length increases

from zero to one, the service time decreases by about 0.0938− 0.0096 = 8.42%;3 when the

queue length increases from one to two, the decrease in service time is about 0.0938 ∗ 2−

0.0096∗22−8.42% = 6.5%; when the queue length increases from two to three, the decrease

in service time is only about 0.0938∗3−0.0096∗32− (0.0938∗2−0.0096∗22) = 4.58%; etc.

In addition, adding a quadratic term increases the adjusted R2 from 0.467 to 0.470, which

suggests that Model (3) is a better model; as a result, we include both QueueLengthi and

QueueLength2
i in the related estimation models for the remainder of this paper.

In addition, the coefficients of transaction characteristics, such as the logarithm of num-

ber of items purchased in a transaction, are all positive and statistically significant, con-

firming the intuition that a larger transaction takes more time to serve.

5.2. Queue Configuration’s Direct Effect on Service Time and Its
Interaction with the Indirect Queue Length Effect

We now use the supermarket data to test Hypotheses 4(a)-4(b) regarding the direct impact

of queue configuration on service times, and also to test Hypotheses 5(a)-5(b) regarding

the interaction between the direct and indirect effects.

In discussing the social loafing effect, we assume that a dedicated queue is free of social

loafing effect for the sake of simplicity. In practice, when customers arrive at the checkout

area, they need to decide which queue to join. Exploring how customers select queues

remains an interesting question, but beyond this paper’s focus. With respect to our study,

such queue selection behavior creates a social loafing effect across all servers. Even in

dedicated queues, a slow server will have customers accumulate in the queue, which reduces

the likelihood that a newly arrived customer will choose to join that particular queue.

Therefore, in terms of customer queue selection behavior, the social loafing effect exists

3 We are following the convention of using first-order approximation to calculate the percentage changes
here.
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across all servers, regardless of queue configuration. As stated earlier, we use a variable

Number of open POS (see Table 3) to control for such store-wide social loafing effect.

However, there is an additional incentive for the two servers sharing the same pooled

queue to slow down, and that is what we focus on in this paper. In a dedicated queue, once

a customer enters a server’s queue, the server has to serve this customer. In a shared queue,

however, even after a customer joins the queue, it remains unclear which of the two servers

will serve the customer. The slower a server works, the smaller portion of the shared queue

will come to that server. Therefore, the social loafing effect within each shared queue that

we study is in addition to the aforementioned store-wide social loafing effect.

The portion of a shared queue served by a server clearly depends on that server’s ser-

vice speed. Whether a server prefers to speed up or slow down depends on the level of

transaction-based bonus. If the bonus is small, the social loafing effect should dominate

the competition effect, and the server would prefer to slow down and free ride on the other

server; in that case, Hypothesis 4(a) should hold. When the bonus is sufficiently large,

servers should prefer to get more work, and the competition effect should dominate. There-

fore, servers should speed up, and Hypothesis 4(b) should hold. To test which hypothesis

holds for the focal supermarket, we use SingleServerQueuei as our main explanatory vari-

able.4 This binary variable equals one if the transaction occurs at a POS with a dedicated

queue, instead of a POS sharing a queue with another POS.

To control for the indirect queue length effect, we include QueueLengthi and

QueueLength2
i as control variables, based on the result in Section 5.1 that the queue

length effect on service time is quadratic. In addition, Hypothesis 5(a) predicts that

the direct effect, whether positive or negative, should be amplified as the queue length

increases, whereas Hypothesis 5(b) predicts the opposite. Therefore, besides QueueLengthi

and QueueLength2
i , we also include their interactions with the main explanatory variable

SingleServerQueuei, SingleServerQueuei ∗ QueueLengthi and SingleServerQueuei ∗

4 We have also conducted a robustness check and confirm that our results are still robust even if we allow
for server heterogeneity in the direct effect. Detailed estimation results of this robustness test are available
from the authors upon request.
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QueueLength2
i , in the empirical model. All the control variables in Table 3 are still

included. The resulting empirical model is:

log(ServiceT imei) =β0 +β1SingleServerQueuei +β2QueueLengthi +β3QueueLength
2
i

+β4SingleServerQueuei ∗QueueLengthi

+β5SingleServerQueuei ∗QueueLength2
i +~γ ·

−−−−−−→
Controlsi + εi.

(4)

The estimation results of Model (4) are reported in the second column of Table 5. For

the sake of brevity, we omit the coefficients of the control variables. The coefficient of

SingleServerQueuei is statistically significant and estimated to be -0.107 in Model (4),

which means that, after we control for queue length, the service time is approximately

10.7% shorter if the transaction occurs in a dedicated queue than in a shared queue, which

empirically supports Hypothesis 4(a) and rejects the competing Hypothesis 4(b).

Table 5 The Total Direct Effect, its Interaction and Aggregation with the Queue Length Effect

(4) (5)
VARIABLES LogServiceTime LogServiceTime

SingleServerQueue -0.107** -0.0686*
(0.0327) (0.0269)

QueueLength -0.113**
(0.0185)

QueueLength2 0.00930**
(0.00285)

SingleServerQueue 0.0206
*QueueLength (0.0219)

SingleServerQueue -8.33e-06
*QueueLength2 (0.00344)

Control Variables Included Included
Observations 4,305 4,305
R2 0.474 0.452

Robust standard errors in parentheses

** p<0.01, * p<0.05
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In addition, the coefficients of interaction variables, SingleServerQueue∗QueueLength
and SingleServerQueue∗QueueLength2, are statistically insignificant, which means that

the direct effect is not affected by the queue length, and the server becomes uniformly

slower when working in a pooling queue. In other words, the queue configuration’s direct

effect and indirect queue length effect function independently of each other. Therefore, we

reject both Hypotheses 5(a) and 5(b). This result also suggests that the impact of queue

length on service speed is similar in dedicated queues and shared queues.

5.3. The Aggregate Effect of Pooling

Though the queue configuration’s direct and direct effects function independently, they

are both present simultaneously. In practice, what matters for managerial decision making

is the total queue configuration effect on service time. Because the two effects can work in

opposite directions, it is interesting to know whether the overall service time is longer or

shorter in a shared queue when compared to that in a dedicated queue. The general answer

to this question depends on specific system parameters, such as overall customer traffic,

what other queues are present, and how consumers make their queue-joining decisions. In

what follows, we use our data to compare the service time for servers working in dedicated

queues with those in shared queues, while we control for transaction characteristics and

possible heterogeneities. We intentionally exclude all variables related to queue length, so

we may aggregate both the direct effect and the indirect queue length effect. The resulting

empirical model is as follows:

log(ServiceT imei) = β0 +β1SingleServerQueuei +~γ ·
−−−−−−→
Controlsi + εi. (5)

The estimation results are presented in the third column of Table 5. The coefficient of

SingleServerQueue (-0.0686) is negative and statistically significant, which indicates that

servers are slower when working in shared queues; this finding supports Hypothesis 6(a)

and rejects Hypothesis 6(b). In our setting, even though shared queues are longer and

pressure servers to speed up, the social loafing effect is stronger and dominates. However,

this result depends on how pooling affects the queue length, and should not be generalized

to other service systems without a similar empirical test that accounts for application-

specific factors.
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5.4. Robustness Tests

In this section, we conduct several robustness tests.

5.4.1. Impact of Complexity of Transactions in Queue on Service Time In

the supermarket, besides the queue length, the amount of products to be checked out

in the queue is also partially visible to the server. Therefore, it is possible that a server

also uses such information about the complexity of transactions in the queue to adjust

her service rate. We now consider whether the complexity of transactions in the queue,

besides the queue length, affects servers’ service time. To do so, we add two additional

independent variables, WaitingItemsi and WaitingGroceryi, which record the number of

normal items and grocery items in the queue, to Models (2) and (3). The resulting models

are

log(ServiceT imei) =β0 +β1QueueLengthi +β2WaitingItemsi

+β3WaitingGroceryi +~γ ·
−−−−−−→
Controlsi + εi,

(6)

and

log(ServiceT imei) =β0 +β1QueueLengthi +β2QueueLength
2
i +β3WaitingItemsi

+β4WaitingGroceryi +~γ ·
−−−−−−→
Controlsi + εi.

(7)

The estimation results of Models (6) and (7) are shown in Table 6 (again, we omit coef-

ficients of all control variables). The coefficients of WaitingItemsi and WaitingGroceryi

are statistically insignificant, which means that the complexity of transactions in the queue

does not affect servers’ working speed after we control for queue length; instead, what

matters most is the number of waiting customers.

5.4.2. Impact of Queue Configuration on Customers’ Behavior In supermar-

kets, customers play an important role in checkout service times. Then does the queue

configuration directly affect customers’ behavior? We answer this question by analyzing

whether there is any difference in the customer’s basket, which is under the control of

customers, between the two types of queue configurations.

We use the natural log of variables related to customers’ baskets (log(NumberItems),

log(NumberGrocery), log(TotalValue), log(TotalSKU) ) and the percentage of grocery items,
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Table 6 Impact of Complexity of Transactions in Queue on Service Time

(6) (7)
VARIABLES LogServiceTime LogServiceTime

QueueLength -0.0497** -0.0951**
(0.00673) (0.0135)

QueueLength2 0.00957**
(0.00219)

WaitingItems 8.85e-05 8.14e-05
(0.000116) (0.000119)

WaitingGrocery 0.00213 0.00189
(0.00280) (0.00273)

Control Variables Included Included
Observations 3,245 3,245
R2 0.476 0.479

Robust standard errors in parentheses

** p<0.01, * p<0.05

defined as the number of grocery item divided by the total number of all items, as the

dependent variables respectively, and use the dummy SingleServerQueue as our main

explanatory variable. In order to control for time and location heterogeneities, we include

the day-hour dummies and POS dummies as control variables. The estimation results show

that the coefficient of SingleServerQueue in all five regressions is always statistically

insignificant, which means that transactions in the two types of queues do not exhibit

significant difference in basket size, number of items, type of items, and so forth. Such

results imply that the difference in service time between dedicated queues and shared

queues cannot be explained by changes in customers’ baskets, which is under the control of

customers, and indirectly support that service slowdown in shared queues is mainly driven

by the servers’ behavior.

5.4.3. Subsample Analysis In the supermarket, servers are randomly allocated to

POS stations. Because our data set covers two days, for some servers, we only observe them

working in one type of queueing system. For example, some servers worked in dedicated

queues on both days. Excluding transactions completed by servers who worked in only one

jwwtsou
Typewritten Text

jwwtsou
Typewritten Text
30



Table 7 The Direct Effect, its Interaction and Aggregation with the Queue Length Effect: Subsample

Analysis

(4) (5)
VARIABLES LogServiceTime LogServiceTime

SingleServerQueue -0.108** -0.0726*
(0.0322) (0.0291)

QueueLength -0.109**
(0.0190)

QueueLength2 0.00888**
(0.00288)

SingleServerQueue 0.0304
*QueueLength (0.0223)

SingleServerQueue -0.00184
*QueueLength2 (0.00348)

Control Variables Included Included
Observations 2,780 2,780
R2 0.487 0.463

Robust standard errors in parentheses

** p<0.01, * p<0.05

type of queueing system on the two days, we have a subsample with 2,780 observations.

To further address the server heterogeneity concern, we also estimate Models (4) and (5)

by using the subsample of transactions completed by servers who were observed working

in both types of queue configurations, and we report our estimation results in Table 7. All

our results are robust. For example, the coefficient of SingleServerQueue in Model (4) is

negative, which indicates that the direct effect of pooling results in longer service times

and supports Hypothesis 4(a).

5.4.4. Using Levels of Transaction Characteristics as Control Variables

We have tried using levels of transaction characteristics variables NumberGroceryi,

NumberItemsi, TotalV aluei, and TotalSKUi as control variables for Models (2) to (5),

rather than their natural logs. When we do so, all results still hold. We have also used the

service time itself instead of its log value as the dependent variable, with levels of trans-
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action characteristics as control variables, to estimate Models (2) to (5). Again, all results

remain valid. For brevity’s sake, we report the detailed estimation results in Appendix C.

6. Managerial Implications

In most cases, pooling similar queues helps to reduce waiting. In this paper, we empirically

identified two server behaviors that may change this view. First, the competition and social

loafing effects suggest that servers may work faster or more slowly in a pooled queue,

depending on the incentive. Second, the queue length effect means that pooling can further

change servers’ speed in a pooled queue via its impact on queue length. In this section,

we incorporate both of the servers’ behavioral factors into simple M/M/-type queues to

examine the conditions under which pooling is beneficial. We believe that the results in this

section can be used in more complex queueing systems in which similar server behaviors are

important factors, and the insights generated in this section can help managers compare

different queue configurations.

Consider two identical and independent M/M/1 queues with queue length dependent

service rates. Let λ be the Poisson arrival rate, and let µq, q= 1,2, . . . denote the exponential

service rate when the queue length is q. After we pool the two queues, the arrivals continue

to follow a Poisson process with rate 2λ. We further assume that service rates in the shared

queue still depend on queue length: each server works at an exponential rate µ′q = d · µq
when the queue length is q. We assume d= µ′q/µq for all q, based on our finding that the

direct effect functions independently of queue length.

Further, the parameter d captures the direct effect. When d > 1, the competition effect

dominates, so servers actually work faster when facing a shared queue. When d < 1, the

social loafing effect dominates, and servers work slower when facing a shared queue. The

case d> 1 is quite obvious since the competition effect further enhances the pooling benefit.

For the rest of this section, we will focus on the case of d< 1, which is managerially more

interesting and important.

Our analysis proceeds in two steps. First we assume that there is no queue length effect,

and only focus on the direct effect represented by d. This allows us to isolate the direct

effect and generate appropriate insights. Thereafter, we add the queue length effect to see

the aggregate effect.
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Figure 7 Region where Pooling Decreases Ws

Proposition 1. Assume µq = µ for all q. Let ρ= λ/µ and denote by Ws the average

time in the system. Then there exits d̄(ρ) =
1−ρ+
√

(1−ρ)2+4ρ2

2
such that,

1. When the social loafing effect is mild, i.e., d> d̄(ρ), pooling reduces Ws;

2. When the social loafing effect is strong, i.e., d< d̄(ρ), pooling increases Ws.

For the ease of exposition, we will define “standard pooling benefit” as the reduction in

Ws due to pooling when d= 1 and µq = µ for all q.

Proposition 1 makes intuitive sense. The standard pooling benefit reduces waiting time

in the system, but the social loafing effect slows down service and increases waiting time.

Hence, when the social loafing effect is strong, the service slowdown can more than offset

the standard pooling benefit; in such a case, managers should not pool queues together.

Conversely, when the social loafing effect is weak, the server slowdown does not offset the

standard pooling benefit, so pooling queues remains beneficial.

Clearly from Proposition 1, the threshold on the social loafing factor, d̄(ρ), is a function

of system load, ρ. The next corollary shows how the threshold d̄(ρ) changes with respect

to ρ:

Corollary 1. d̄(ρ) is decreasing in ρ if and only if ρ< 2/5.

Figure 7 shows the region where pooling is beneficial, even after considering the direct

effect. For a fixed direct effect d, pooling is more likely to be beneficial when the load of the

system is intermediate, but more likely to hurt the performance when the load is high or

low. When the load is low, the time in the system is mostly determined by the service time

itself; slowdown due to social loafing, then, can increase Ws because the average service

time is longer after pooling. When the load is high, the waiting time is very sensitive to a
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further increase of the load, then the social loafing effect increases the load and, thus, also

increases Ws. Therefore, in service environments where the social loafing effect is present,

it is unwise to pool queues together when the load is either very low or very high. The

following numerical example, which uses parameters calibrated from our supermarket data,

serves to illustrate this point.

Numerical Example: In the supermarket that we study, the estimated direct effect of

pooling is an increase of service time by about 10.7%, which corresponds to d = 0.893.

Solving d̄(ρ) = 0.893, we have two roots 0.124 and 0.769. Therefore, considering the direct

effect only, using shared queues can reduce the average waiting time when the load factor

(based on service rate in dedicated queues) is between 0.124 and 0.769.

So far, we have focused only on the direct effect’. Next, we incorporate queue length

dependent service rates into the model above. We do so to reflect our empirical finding

that service time is increasing in queue length. We assume that µq is an non-decreasing

function of q. Although our empirical results also reveal that 1/µq decreases in a convex

way, our analysis below is more general and does not assume as much. We allow µq to be

any non-decreasing function of q.

Proposition 2 below extends Proposition 1 by showing that pooling can lead to a larger

Ws if the social loafing effect is strong, even after the indirect queue length effect is incor-

porated:

Proposition 2. Let µq be non-increasing in q. There exists a d̂ such that pooling

increases Ws if and only if d< d̂.

Thus, managers should not pool queues together if the social loafing effect is strong.

7. Concluding Remarks

In this paper, we study the impact of queue configuration on the service time of human

servers in a supermarket checkout setting, by comparing queues dedicated to specific

servers with queues that are shared by two servers. The queue configuration could have

both direct and indirect effects on the service time. Directly, the social loafing theory pre-

dicts that servers slow down when working in shared queues; however, servers working in
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shared queues may also speed up in order to compete for transaction-based bonuses. Indi-

rectly, pooling may affect queue length, for a longer queue puts pressure on servers to work

faster. We investigate these effects and test our associated hypotheses using a data set

collected from a supermarket’s checkout process. We find that the average service time is

convex decreasing in queue length in both dedicated queues and shared queues. Hence, our

other finding – that shared queues are longer than dedicated queues – means that pooling

has an indirect negative effect on service time, through its impact on queue length. We also

find that the social loafing effect dominates the competition effect, and the average service

time in shared queues is approximately 10.7% longer than that in dedicated queues, after

we control for the queue length. In addition, we find that the direct effect and indirect

queue length effect function independently from each other. Finally, the aggregate impact

of pooling, including both direct and indirect effects, is a 6.86% increase in the average

service time. These results are robust to alternative model specifications.

We then incorporate these empirical findings into a standard queueing model to analyze

the impact of human behavioral factors on queueing performance. Our results indicate

that the pooling benefit is not only smaller than that suggested by a model that ignores its

effects on human servers, but can also even be negative in certain cases. When the social

loafing effect is strong, pooling can hurt the system performance, particularly when the

system load is either very high or very low.

Our research certainly has its limitations that future research can address. First, as

behavioral effects are complicated and can be very context specific, repeating our study in

different service settings to observer whether conclusions are similar would prove worth-

while. Second, there are other mechanisms and behavioral effects in queueing systems

that are worth studying, including whether performance is below the subgoal (Deo et al.

2014), deadline effect (Deo et al. 2014), and end of shift effect (Chan et al. 2014). Third,

customers’ queue joining behavior is an interesting topic that deserves further research.

Finally, in service industries with high personal contact, customers’ behaviors also affect

service performance (Feldman et al. 2014), which is also a deserving topic for future study.
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Appendix A: Proofs

Proposition 3 establishes the result leading to Hypothesis 1(a).

Proposition 3. The average queue length is shorter in an M/M/2 queue with arrival rate 2λ

and service rate µ than that in an M/M/1 queue with arrival rate λ and service rate µ.

Proof of Proposition 3. Define ρ= λ/µ, then the average queue length in an M/M/1 queue is

ρ2

1−ρ , and the average queue length in the M/M/2 queue is 2ρ3

1−ρ2 = ρ2

1−ρ ·
2ρ
1+ρ

< ρ2

1−ρ . The proof is

complete. �

Proposition 4 establishes the result leading to Hypothesis 2.

Let the arrivals follow a stationary Poisson process with rate λ. As suggested by the service rate

control literature (e.g. George and Harrison 2001), under some general conditions (e.g., increasing

holding/waiting cost and increasing effort cost), the optimal exponential service rate is an increasing

function of the queue length. Denote the queue-length (n) dependent service rates by µn, n =

0,1,2, ..., then we have µ0 ≤ µ1 ≤ µ2 ≤ µ3....

Furthermore, let tn, n= 0,1,2, ... be a sequence of independent exponential random variables with

rates λ+ µn, and define Tn to be the total random service time of a customer for which n is the

length of the queue at the start of service. Then we have

Tn =


tn w.p. µn

λ+µn

tn + tn+1 w.p. λ
λ+µn

µn+1

λ+µn+1

... ...

Proposition 4. Tn ≥ Tn+1,∀n= 0,1,2... in a stochastic dominance fashion, with the inequality

being strict if µm <µm+1 for some m≥ n.

Proof of Proposition 4. It is clear that µ0 ≤ µ1 ≤ µ2 ≤ µ3... implies t1 ≥ t2 ≥ t3 ≥ ... in a stochas-

tic dominance fashion, for which any strict inequality in the first condition implies the corresponding

inequality in the second condition.

From the definition of Tn we can write:

Tn = tn +
λ

λ+µn
tn+1 +

λ

λ+µn

λ

λ+µn+1

tn+2 +
λ

λ+µn

λ

λ+µn+1

λ

λ+µn+2

tn+3 + ...

Tn+1 = tn+1 +
λ

λ+µn+1

tn+2 +
λ

λ+µn+1

λ

λ+µn+2

tn+3 +
λ

λ+µn+1

λ

λ+µn+2

λ

λ+µn+3

tn+4 + ...

Comparing the two equations, we observe
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1. The first term: tn ≥ tn+1.

2. The second term: tn+1 ≥ tn+2 and λ
λ+µn

≥ λ
λ+µn+1

because µn ≤ µn+1.

3. And so on.

Therefore, Tn ≥ Tn+1, with the inequality being strict if any of the inequalities in the µm,m≥ n
relationship is strict. �

Proposition 5 is our main result that establishes the convexity of average service time.

Proposition 5. E(Tn) is convex decreasing in n.

Proof of Proposition 5. We establish some preliminary results first. Suppose fn ≥ 0 and gn ≥ 0

are both convex decreasing in n.

Lemma 1. fn+1gn+1 + fngn ≥ fn+1gn + fngn+1.

Proof of Lemma 1. fn+1gn+1 + fngn− (fn+1gn + fngn+1) = (fn+1− fn)(gn+1− gn)≥ 0. �

Lemma 2. fngn is convex decreasing in n.

Proof of Lemma 2. It’s easy to show fngn is decreasing in n. To show that it is convex, we

observe the following:

fn+2gn+2 + fn+2gn ≥ 2fn+2gn+1 (convexity)

fn+2gn+1 + fngn+1 ≥ 2fn+1gn+1 (convexity)

fn+2gn+1 + fn+1gn ≥ fn+2gn + fn+1gn+1 (Lemma 1)

fn+1gn+1 + fngn ≥ fn+1gn + fngn+1 (Lemma 1)

Adding all four together we get fn+2gn+2+fngn ≥ fn+1gn+1+fn+1gn+1. Therefore, fngn is convex

in n. �

Lemma 3. 1
λ+µn

is convex decreasing in n.

Proof of Lemma 3. It’s easy to see 1
λ+µn

decreases in n because µn increases in n.

1

λ+µn
+

1

λ+µn+2

− 2

λ+µn+1

=
[(λ+µn+1)(λ+µn+2) + (λ+µn)(λ+µn+1)− 2(λ+µn)(λ+µn+2)]

(λ+µn)(λ+µn+1)(λ+µn+2)

=
[λ(2µn+1−µn+2−µn) +µn+2(µn+1−µn) +µn(µn+1−µn+2)]

(λ+µn)(λ+µn+1)(λ+µn+2)

Since µn is concave increasing, all the terms in the numerator are positive, so 1
λ+µn

is convex in

n. �
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E(Tn) =E(tn) +
λ

λ+µn
E(tn+1) +

λ

λ+µn

λ

λ+µn+1

E(tn+2) +
λ

λ+µn

λ

λ+µn+1

λ

λ+µn+2

E(tn+3) + ...

(8)

Since E(tn) = 1
λ+µn

, by Lemma 3 it is convex decreasing in n. Applying Lemma 3 one more time,

we see all the individual terms in the coefficients of the E(tn) terms in (8) are also convex decreasing

in n. It follows immediately from Lemma 2 that E(Tn) is convex decreasing in n. �

Proof of Proposition 1. The average time in system in an M/M/1 with arrival rate λ and service

rate µ (µ> λ) is

Ws1 =
1

µ−λ
;

In an M/M/2 with arrival rate 2λ and service rate µd (d> λ/µ), the average time in system is

Ws2 =
µd

(µd+λ)(µd−λ)
.

Define ρ= λ/µ, then Ws1 <Ws2 if and only if

f(d)
def
= d2− (1− ρ)d− ρ2 < 0.

Because f(0) =−ρ2 < 0, f(1) = ρ(1− ρ)> 0, we deduce that

d̄(ρ) =
1− ρ+

√
(1− ρ)2 + 4ρ2

2

is the bigger quadratic root of f(d) = 0. Moreover, 0< d̄(ρ)< 1 and f(d)> 0 if and only if d> d̄(ρ).

Therefore, Ws1 <Ws2 if and only if d< d̄(ρ). �

Proof of corollary 1.

d̄′(ρ) =
(5ρ− 1)−

√
5ρ2− 2ρ+ 1

2
√

5ρ2− 2ρ+ 1
.

So d̄′(ρ)> 0 if and only if (5ρ− 1)>
√

5ρ2− 2ρ+ 1, which is equivalent to ρ> 2/5. �

Proof of Proposition 2. In M/M/1, the balance equations are Pi = Pi−1
λ

µi−1
, i ≥ 1. Then,

because
∑∞

i=0Pi = 1, we have

P0 =
1

1 +
∑∞

i=1
λi

µ0...µi−1

.

Therefore, the average time in system in an M/M/1 is

Ws1 =

∑∞
i=1 iPi
λ

=

∑∞
i=1

iλi−1

µ0...µi−1

1 +
∑∞

i=1
λi

µ0...µi−1

.

Similarly, denoting µ′i = dµi, we can derive the average time in system for an M/M/2 as

Ws2 =

∑∞
i=1

iλi−1

µ′0µ
′
0...µ

′
i−2

1 + 2
∑∞

i=1
λi

µ′0µ
′
0...µ

′
i−2

.

We then prove the following lemma.
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Lemma 4.

∑∞
i=1

iλi−1

µ0µ0...µi−2

1+2
∑∞
i=1

λi

µ0µ0...µi−2

is decreasing in µk for all k≥ 0 .

Proof of Lemma 4. Given k ≥ 1, define a =
∑k+1

i=1
iλi−1

µ0µ0...µi−2
, b =

∑∞
i=k+2

iλi−1

µ0µ0...µk−1µk+1...µi−2
,

c= 1 + 2
∑k+1

i=1
λi

µ0µ0...µi−2
, d= 2

∑∞
i=k+2

λi

µ0µ0...µk−1µk+1...µi−2
. Then we have

f(µk) =
a+ b/µk
c+ d/µk

=

∑∞
i=1

iλi−1

µ0µ0...µi−2

1 + 2
∑∞

i=1
λi

µ0µ0...µi−2

.

Then

f ′ (µk) =
ad− cb

(cµk + d)
2 ,

which has the same sign as ad− cb.

ad− cb =

k+1∑
i=1

iλi−1

µ0µ0...µi−2
∗ 2

∞∑
j=k+2

λj

µ0µ0...µk−1µk+1...µj−2

−
∞∑

i=k+2

iλi−1

µ0µ0...µk−1µk+1...µi−2
∗

(
1 + 2

k+1∑
j=1

λj

µ0µ0...µj−2

)

= 2
∞∑

j=k+2

k+1∑
i=1

(
iλi−1

µ0µ0...µi−2

λj

µ0µ0...µk−1µk+1...µj−2
− jλj−1

µ0µ0...µk−1µk+1...µj−2

λi

µ0µ0...µi−2

)

−
∞∑

i=k+2

iλi−1

µ0µ0...µk−1µk+1...µi−2

= 2
∞∑

j=k+2

k+1∑
i=1

λi+j−1 (i− j)
µ0µ0...µi−2µ0µ0...µk−1µk+1...µj−2

−
∞∑

i=k+2

iλi−1

µ0µ0...µk−1µk+1...µi−2
.

Because j ≥ k+ 2> i, we have 2
∑∞

j=k+2

∑k+1
i=1

λi+j−1(i−j)
µ0µ0...µi−2µ0µ0...µk−1µk+1...µj−2

< 0, then

ad− cb <−
∞∑

i=k+2

iλi−1

µ0µ0...µk−1µk+1...µi−2
< 0.

Therefore, f ′ (µk) < 0, which means the

∑∞
i=1

iλi−1

µ0µ0...µi−2

1+2
∑∞
i=1

λi

µ0µ0...µi−2

is decreasing in µk for all k ≥ 1.

Similarly, we can also prove that

∑∞
i=1

iλi−1

µ0µ0...µi−2

1+2
∑∞
i=1

λi

µ0µ0...µi−2

is decreasing in µ0. �

As d increases, all µ′k increases, then

∑∞
i=1

iλi−1

µ′0µ
′
0...µ

′
i−2

1+2
∑∞
i=1

λi

µ′0µ
′
0...µ

′
i−2

decreases. So Ws2 is decreasing in d.

When d→ 0, clearly, the time in system goes to infinity, that is, limd→0Ws2 =∞. Given that Ws2

is decreasing in d, there exists a unique d̂, such that Ws1 <Ws2 if and only if d> d̂. �
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Appendix B: Estimation Results of Queue Length Effect in Shared Queues

Table 8 presents the estimation results of Models (2) and (3) using transactions in shared queues.

We find that the coefficient of queue length on service time is -0.0576 in Model (2), which implies

that as the queue length increases by one, the service time decreases by approximately 5.76% on

average. Also, this coefficient is statistically significant at the 1% significance level. This result

provides support to Hypothesis 2. In Model (3), we allow a quadratic relationship between the

queue length and the logged service time. The coefficients of QueueLength2
i and QueueLengthi

are 0.00888 and -0.109. The estimation results imply that the queue length induced speedup is

diminishing as the queue length increases, which supports Hypothesis 3.

Table 8 Impact of Queue Length: Using Transactions in Pooled Queues

(1) (2)
VARIABLES LogServiceTime LogServiceTime

QueueLength -0.0576** -0.109**
(0.00938) (0.0198)

QueueLength2 0.00888**
(0.00282)

Log(NumberItems) 0.0972** 0.0966**
(0.0231) (0.0229)

Log(NumberGrocery) 0.106** 0.107**
(0.0277) (0.0275)

Log(TotalValue) 0.115** 0.116**
(0.0119) (0.0122)

Log(TotalSKU) 0.107** 0.106**
(0.0296) (0.0290)

Control Variables Included Included
Observations 1,060 1,060
R2 0.464 0.469

Robust standard errors in parentheses

** p<0.01, * p<0.05
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Appendix C: Estimation Results when Using Levels of Transaction
Characteristics as Control Variables

We now examine several variations of the empirical models to test the robustness of our

empirical results. First, we use levels of transaction characteristics variables NumberGroceryi,

NumberItemsi, TotalV aluei, and TotalSKUi instead of their natural logs, as control variables.

The corresponding regression models after such replacements for Models (2) and (3) are denoted

as Models (2.1) and (3.1), whose estimation results are shown in the first two result columns of

Table 9. From Table 9, we can see that the coefficients of QueueLengthi and QueueLength2
i are

negative and positive respectively, and their magnitudes are also similar to those reported in Table

4, which confirms that our results are robust. For example, the coefficient of QueueLengthi in

Model (2.1) is estimated to be -0.0485, which is similar to that in Model (2), -0.048. In addition,

the R2 are smaller in Models (2.1) and (3.1) than those in Models (2) and (3), which suggests that

regressions using natural logs of transaction characteristics have better fit than those using levels of

transaction characteristics. For example, the R2 in Model (2.1), 0.44, is smaller than that in Model

(2), 0.476. Models (2.1) and (2) have the same number of independent variables, and their only

difference is how to use the transaction characteristics as control variables. So a higher R2 implies

a better fit.

Similarly, for the direct effect, we use level values of transaction characteristics to replace their

natural logs in Model (4), and the resulting model is denoted as Model (4.1). The results are reported

in the first column in Table 10. The coefficient of SingleServerQueuei is negative and significant,

and the magnitude is also similar to that in Table 5. For example, the estimated coefficient of

SingleServerQueuei in Model (4.1), -0.0968, is similar to that in Model (4), -0.107. Also, the

interaction terms remain insignificant. In addition, the R2 in Model (4.1), 0.435, is smaller than that

in Model (4), 0.474. The comparison of R2 suggest that regressions using natural logs of transaction

characteristics have better fit.

The corresponding empirical model of Model (5) that uses level values of transaction character-

istics to replace their natural logs is denoted as Model (5.1). The estimation result, as presented in

the second column of Table 10, also confirms that the aggregate queue configuration effect on the

service rate is slowdown.

We next use the service time itself, instead of its log value, as the dependent variable. We also

use levels of transaction characteristics as control variables, as their impact on service time should

be linear.
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Table 9 Impact of Queue Length: Using Levels of Transaction Characteristics as Controls

(2.1) (3.1) (2.2) (3.2)
VARIABLES LogServiceTime LogServiceTime ServiceTime ServiceTime

QueueLength -0.0485** -0.0973** -3.719** -7.896**
(0.00709) (0.0145) (0.551) (1.214)

QueueLength2 0.0102** 0.876**
(0.00240) (0.180)

Transaction characteristics Level value Level value Level value Level value
Observations 3,245 3,245 3,245 3,245
R2 0.440 0.444 0.384 0.388

Robust standard errors in parentheses

** p<0.01, * p<0.05

Table 10 Impact of Queue Configuration: Using Levels of Transaction Characteristics as Controls

(4.1) (5.1) (4.2) (5.2)
VARIABLES LogServiceTime LogServiceTime ServiceTime ServiceTime

SingleServerQueue -0.106** -0.0667* -10.20** -6.076*
(0.0327) (0.0270) (3.268) (2.538)

QueueLength -0.115** -10.19**
(0.0180) (1.530)

QueueLength2 0.00972** 0.913**
(0.00287) (0.213)

SingleServerQueue 0.0234 2.574
*QueueLength (0.0215) (1.879)

SingleServerQueue -0.000508 -0.0627
*QueueLength2 (0.00345) (0.270)

Transaction characteristics Level value Level value Level value Level value
Observations 4,305 4,305 4,305 4,305
R2 0.477 0.456 0.386 0.366

Robust standard errors in parentheses

** p<0.01, * p<0.05
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The corresponding regression models of Models (2.1) and (3.1) after replacing the dependent

variable are denoted as Models (2.2) and (3.2). The estimation results are presented in the last two

columns in Table 9. The coefficient for QueueLengthi is negative and significant, which means that

the service time decreases as the queue length increases, thereby supporting our Hypothesis 2. The

interpretations of coefficients are different from those in Section 5.1 because of the difference in

the dependent variable used. Further, the magnitudes of the estimated coefficients are not directly

comparable with those in Section 5.1. For example, the coefficient of QueueLengthi in Model (2.2),

-3.719, means that as the queue length increases by one, the service time is shortened by 3.719

seconds on average. However, after transforming the impact into percentage change in service time,

it is comparable to results in Section 5.1. The average service time is 77.32 seconds, so a decrease

of 3.719 seconds corresponds to a 3.719/77.32≈ 4.81% decrease in service time, which is similar to

the estimated 4.8% decrease in Model (2). In addition, the estimated coefficient for QueueLength2
i

is positive and significant, which implies that the marginal effect of queue length on service time is

decreasing and thus supports Hypothesis 3.

For the direct effect, replacing the dependent variable in (4.1) with service time itself, we have

model (4.2), whose estimation result is shown in the third column of Table 10. The estimated

coefficient for SingleServerQueuei remains negative and significant, and supports Hypothesis 4(a),

which is consistent with the result in Section 5.2. In addition, even though the values of the estimated

coefficient for SingleServerQueuei in Table 10 are not directly comparable with those in Table 5

because of the different interpretation, the implied percentage changes in service time are similar.

For example, the estimated coefficient of SingleServerQueuei in Model (4.2) is -9.935, which means

that transactions in dedicated queues are about 9.935 seconds faster than those in shared queues.

Given the average service time being 77.32 seconds, a 9.935 seconds difference corresponds to

9.935/77.32≈ 12.85%, which is similar to 10.7%, the result in Model (4). In addition, the interaction

terms remain insignificant.

Replacing the dependent variable in (5.1) with service time itself, we have model (5.2). The

estimation result, as presented in the fourth column of Table 10, also confirms that the aggregate

queue configuration effect on the service rate is slowdown.
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