
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=goms20

Optimization Methods and Software

ISSN: 1055-6788 (Print) 1029-4937 (Online) Journal homepage: https://www.tandfonline.com/loi/goms20

Semi-stochastic coordinate descent

Jakub Konečný, Zheng Qu & Peter Richtárik

To cite this article: Jakub Konečný, Zheng Qu & Peter Richtárik (2017) Semi-stochastic
coordinate descent, Optimization Methods and Software, 32:5, 993-1005, DOI:
10.1080/10556788.2017.1298596

To link to this article: https://doi.org/10.1080/10556788.2017.1298596

© 2017 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 13 Mar 2017.

Submit your article to this journal

Article views: 861

View Crossmark data

Citing articles: 1 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=goms20
https://www.tandfonline.com/loi/goms20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10556788.2017.1298596
https://doi.org/10.1080/10556788.2017.1298596
https://www.tandfonline.com/action/authorSubmission?journalCode=goms20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=goms20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2017.1298596&domain=pdf&date_stamp=2017-03-13
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2017.1298596&domain=pdf&date_stamp=2017-03-13
https://www.tandfonline.com/doi/citedby/10.1080/10556788.2017.1298596#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/10556788.2017.1298596#tabModule

Optimization Methods & Software, 2017
Vol. 32, No. 5, 993–1005, https://doi.org/10.1080/10556788.2017.1298596

Semi-stochastic coordinate descent

Jakub Konečnýa∗, Zheng Qub† and Peter Richtárika

aSchool of Mathematics, The University of Edinburgh, Edinburgh, UK; bDepartment of Mathematics, The
University of Hong Kong, Hong Kong

(Received 23 December 2015; accepted 18 February 2017)

We propose a novel stochastic gradient method—semi-stochastic coordinate descent—for the problem of
minimizing a strongly convex function represented as the average of a large number of smooth convex
functions: f (x) = (1/n)

∑
i fi(x). Our method first performs a deterministic step (computation of the gra-

dient of f at the starting point), followed by a large number of stochastic steps. The process is repeated
a few times, with the last stochastic iterate becoming the new starting point where the deterministic step
is taken. The novelty of our method is in how the stochastic steps are performed. In each such step, we
pick a random function fi and a random coordinate j—both using non-uniform distributions—and update
a single coordinate of the decision vector only, based on the computation of the jth partial derivative of fi
at two different points. Each random step of the method constitutes an unbiased estimate of the gradient
of f and moreover, the squared norm of the steps goes to zero in expectation, meaning that the stochas-
tic estimate of the gradient progressively improves. The computational complexity of the method is the
sum of two terms: O(n log(1/ε)) evaluations of gradients ∇fi and O(κ̂ log(1/ε)) evaluations of partial
derivatives ∇jfi, where κ̂ is a novel condition number.

Keywords: Stochastic gradient; coordinate descent; empirical risk minimization

AMS Subject Classification: 90C06; 90C15

1. Introduction

In this paper we study the problem of unconstrained minimization of a strongly convex function
represented as the average of a large number of smooth convex functions:

min
x∈Rd

f (x) ≡ 1

n

n∑
i=1

fi(x). (1)

Many computational problems in various disciplines are of this form. In machine learning,
fi(x) represents the loss/risk of classifier x ∈ R

d on data sample i, f represents the empirical risk
(= average loss), and the goal is to find a predictor minimizing f. An L2-regularizer of the form
μ‖x‖2, for μ > 0, could be added to the loss, making it strongly convex and hence easier to
minimize.

*Corresponding author. Email: j.konecny@sms.ed.ac.uk
†The paper was written while Zheng Qu held position at University of Edinburgh.

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2017.1298596&domain=pdf
mailto:j.konecny@sms.ed.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

994 J. Konečný et al.

Assumptions. We assume that the functions fi : R
d → R are differentiable and convex

function, with Lipschitz continuous partial derivatives. Formally, we assume that for each
i ∈ [n] := {1, 2, . . . , n} and j ∈ [d] := {1, 2, . . . , d} there exists Lij ≥ 0 such that for all x ∈ R

d

and h ∈ R,

fi(x+ hej) ≤ fi(x)+ 〈∇fi(x), hej〉 + Lij

2
h2, (2)

where ej is the jth standard basis vector in R
d , ∇f (x) ∈ R

d is the gradient of f at point x and 〈·, ·〉
is the standard inner product. This assumption was recently used in the analysis of the accelerated
coordinate descent method APPROX [2]. We further assume that f is μ-strongly convex. That
is, we assume that there exists μ > 0 such that for all x, y ∈ R

d ,

f (y) ≥ f (x)+ 〈∇f (x), y− x〉 + μ

2
‖y− x‖2. (3)

Context. Batch methods such as gradient descent (GD) enjoy a fast (linear) convergence rate:
to achieve ε-accuracy, GD needs O(κ log(1/ε)) iterations, where κ is a condition number. The
drawback of GD is that in each iteration one needs to compute the gradient of f, which requires
a pass through the entire data set. This is prohibitive to do many times if n is very large.

Stochastic gradient descent (SGD) in each iteration computes the gradient of a single randomly
chosen function fi only—this constitutes an unbiased (but noisy) estimate of the gradient of
f —and makes a step in that direction [8,16,20,23]. The rate of convergence of SGD is slower,
O(1/ε), but the cost of each iteration is independent of n. Variants with non-uniform selection
probabilities were considered in [24], a mini-batch variant (for Support Vector Machines with
hinge loss) was analysed in [21].

Recently, there has been progress in designing algorithms that achieve the fast O(log(1/ε))

rate without the need to scan the entire data set in each iteration. The first class of methods to
have achieved this are stochastic/randomized coordinate descent methods.

When applied to (1), coordinate descent methods (CD) [10,15] can, like SGD, be seen as an
attempt to keep the benefits of GD (fast linear convergence) while reducing the complexity of
each iteration. A CD method only computes a single partial derivative∇jf (x) at each iteration and
updates a single coordinate of vector x only. When chosen uniformly at random, partial derivative
is also an unbiased estimate of the gradient. However, unlike the SGD estimate, its variance
decrease to zero as one approaches the optimum. While CD methods are able to obtain linear
convergence, they typically need O((d/μ) log(1/ε)) iterations when applied to (1) directly.1 CD
method typically significantly outperform GD, especially on sparse problems with a very large
number of variables/coordinates [10,15].

An alternative to applying CD to (1) is to apply it to the dual problem. This is possible under
certain additional structural assumptions on the functions fi. This is the strategy employed by
stochastic dual coordinate ascent (SDCA) [11,19], whose rate is

O((n+ κ) log(1/ε)).

The condition number κ here is the same as the condition number appearing in the rate of GD.
Despite this, this is a vast improvement on the computational complexity achieved by GD which
has an iteration cost n times larger than SDCA. Also, the linear convergence rate is superior to the
sublinear rate O(1/ε) achieved by SGD, and the method indeed typically performs much better
in practice. Accelerated [18] and mini-batch [21] variants of SDCA have also been proposed. We
refer the reader to QUARTZ [11] for a general analysis involving the update of a random subset
of dual coordinates, following an arbitrary distribution.

Recently, there has been progress in designing primal methods which match the fast rate of
SDCA. Stochastic average gradient (SAG) [17], and more recently SAGA [1], move in a direc-
tion composed of old stochastic gradients. The semi-stochastic gradient descent (S2GD) [6,7]

Optimization Methods & Software 995

Table 1. Runtime complexity of various algorithms.

Method Runtime Paper

CD O(nκCgrad log(1/ε)) e.g. [9]
SGD O(Cgrad/ε) [20,23]
CD O(nκCpd log(1/ε)) [10,15]
SDCA O((n+ κ)Cgrad log(1/ε)) [11,19,25]
SVRG/S2GD O((nCgrad + κCgrad) log(1/ε)) [5,6,22]
S2CD O((nCgrad + κ̂Cpd) log(1/ε)) This paper

Notes: We use Cgrad to denote the the evaluation cost of the gradient of one single
function ∇fi and use Cpd to denote the evaluation cost of a partial derivative ∇j fi.

and stochastic variance reduced gradient (SVRG) [5,22] methods employ a different strategy:
one first computes the gradient of f, followed by O(κ) steps where only stochastic gradients are
computed. These are used to estimate the change of the gradient, and it is this direction which
combines the old gradient and the new stochastic gradient information which is used in the
update.

Main result. In this work we develop a new method—semi-stochastic coordinate descent
(S2CD)—for solving (1), enjoying a fast rate similar to methods such as SDCA, SAG, S2GD,
SVRG, SAGA, mS2GD and QUARTZ. S2CD can be seen as a hybrid between S2GD and CD.
In particular, the complexity of our method is the sum of two terms:

O(n log(1/ε))

evaluations ∇fi (that is, log(1/ε) evaluations of the gradient of f) and

O(κ̂ log(1/ε))

evaluations of 〈ej,∇fi〉 for randomly chosen functions fi and randomly chosen coordinates j,
where κ̂ is a new condition number which is defined in (13) and larger than κ . We summarize in
Table 1 the runtime complexity of the various algorithms. Note that κ̂ enters the complexity only
in the term involving the evaluation cost of a partial derivative ∇jfi, which can be substantially
smaller than the evaluation cost of ∇fi. Hence, our complexity result can be both better or worse
than previous results, depending on whether the increase of the condition number can or can-
not be compensated by the lower cost of the stochastic steps based on the evaluation of partial
derivatives.

Outline. The paper is organized as follows. In Section 2 we describe the S2CD algorithm and
in Section 3 we state a key lemma and our main complexity result. The proof of the lemma is
provided in Section 4 and the proof of the main result in Section 5.

2. S2CD algorithm

In this section we describe the semi-stochastic coordinate descent method (Algorithm 1).
The discussion on the choice of m and h in Algorithm 1 is deferred to Section 3. As we will

see, the parameters m and h depends on the target accuracy and the number of iterations. We next
provide a more detailed description of the algorithm.

The method has an outer loop (an ‘epoch’), indexed by counter k, and an inner loop, indexed
by t. At the beginning of epoch k, we compute and store the gradient of f at xk . Subsequently,
S2CD enters the inner loop in which a sequence of vectors yk,t for t = 0, 1 . . . , tk is computed in

996 J. Konečný et al.

Algorithm 1 Semi-stochastic coordinate descent (S2CD)

parameters: m (max # of stochastic steps per epoch); h > 0 (stepsize parameter); x0 ∈ R
d

(starting point)
for k = 0, 1, 2, . . . do

Compute and store ∇f (xk) = 1
n

∑
i ∇fi(xk)

Initialize the inner loop: yk,0 ← xk

Let tk = T ∈ {1, 2, . . . , m} with probability (1− μh)m−T /β

for t = 0 to tk − 1 do
Pick coordinate j ∈ {1, 2, . . . , d} with probability pj

Pick function index i from the set {i : Lij > 0} with probability qij

Update jth coordinate: yk,t+1 ← yk,t − hp−1
j

(∇jf (xk)+ 1
nqij

(∇jfi(yk,t)−∇jfi(xk)
))

ej

end for
Reset the starting point: xk+1 ← yk,tk

end for

a stochastic way, starting from yk,0 = xk . The number tk of stochastic steps in the inner loop is
random, following a geometric law:

P(tk = T) = (1− μh)m−T

β
, T ∈ {1, . . . , m},

where

β :=
m∑

t=1

(1− μh)m−t. (4)

In each step of the inner loop, we seek to compute yk,t+1, given yk,t. In order to do so, we
sample coordinate j with probability pj and subsequently2 sample i with probability qij, where
the probabilities are given by

ωi := |{j : Lij
= 0}|, vj :=
n∑

i=1

ωiLij, pj := vj/

d∑
j=1

vj, qij := ωiLij

vj
, pij := pjqij. (5)

Note that Lij = 0 means that function fi does not depend on the jth coordinate of x. Hence,
ωi the number of coordinates function fi depends on—a measure of sparsity of the data.3 It can
be shown that f has a 1-Lipschitz gradient with respect to the weighted Euclidean norm with
weights {vj} [2, Theorem 1]. Hence, we sample coordinate j proportionally to this weight vj.
Note that pij is the joint probability of choosing the pair (i, j).

Having sampled coordinate j and function index i, we compute two partial derivatives:∇jfi(xk)

and ∇jfi(yk,t) (we compressed the notation here by writing ∇jfi(x) instead of 〈∇fi(x), ej〉), and
combine these with the pre-computed value ∇jf (xk) to form an update of the form

yk,t+1 ← yk,t − hp−1
j Gij

ktej = yk,t − hgij
kt, (6)

where

gij
kt := p−1

j Gij
ktej (7)

and

Gij
kt := ∇jf (xk)+ 1

nqij
(∇jfi(yk,t)−∇jfi(xk)). (8)

Note that only a single coordinate of yk,t is updated at each iteration.

Optimization Methods & Software 997

In the entire text (with the exception of the statement of Theorem 3.2 and a part of Section 5.3,
where E denotes the total expectation) we will assume that all expectations are conditional on the
entire history of the random variables generated up to the point when yk,t was computed. With
this convention, it is possible to think that there are only two random variables: j and i. By E we
then mean the expectation with respect to both of these random variables, and by Ei we mean
expectation with respect to i (that is, conditional on j). With this convention, we can write

Ei[G
ij
kt] =

n∑
i=1

qijG
ij
kt

(8)= ∇jf (xk)+ 1

n

n∑
i=1

(∇jfi(yk,t)− ∇jfi(xk))
(1)= ∇jf (yk,t), (9)

which means that conditioned on j, Gij
kt is an unbiased estimate of the jth partial derivative of f at

yk,t. An equally easy calculation reveals that the random vector gij
kl is an unbiased estimate of the

gradient of f at yk,t:

E[gij
kl]

(7)= E[p−1
j Gij

ktej] = E[Ei[p
−1
j Gij

ktej]]

= E[p−1
j ejEi[G

ij
kt]]

(9)= E[p−1
j ej∇jf (yk,t)] = ∇f (yk,t).

Hence, the update step performed by S2CD is a stochastic gradient step of fixed stepsize h.
Before we describe our main complexity result in the next section, let us briefly comment on

a few special cases of S2CD:

• If n=1 (this can be always achieved simply by grouping all functions in the average into a
single function), S2CD reduces to a stochastic CD algorithm with importance sampling 4, as
studied in [10,11,15], but written with many redundant computations. Indeed, the method in
this case does not require the xk iterates, nor does it need to compute the gradient of f, and
instead takes on the form:

y0,t+1 ← y0,t − hp−1
j ∇jf (y0,t)ej,

where pj = L1j/
∑

j L1j.
• It is possible to extend the S2CD algorithm and results to the case when coordinates are

replaced by (non-overlapping) blocks of coordinates, as in [15]—we did not do it here for
the sake of keeping the notation simple. In such a setting, we would obtain semi-stochastic
block coordinate descent. In the special case with all variables forming a single block, the
algorithm reduces to the S2GD method described in [6], but with non-uniform probabilities
for the choice of i—proportional to the Lipschitz constants of the gradient of the functions fi
(this is also studied in [22]). As in [22], the complexity result then depends on the average of
the Lipschitz constants.

Note that the algorithm, as presented, assumes knowledge of the strong convexity parameter μ.
We have done this for simplicity of exposition: the method works also if μ is not explicitly
known—in that case, we can simply replace μ by 0 and the method will still depend on the true
strong convexity parameter. The change to the complexity results will be only minor in constants
and all our conclusions hold. Likewise, it is possible to give an O(1/ε) complexity result in the
non-strongly convex case f using standard regularization arguments (e.g. see [6]).

998 J. Konečný et al.

3. Complexity result

In this section, we state and describe our complexity result; the proof is provided in Section 5.
An important step in our analysis is proving a good upper bound on the variance of the (unbi-

ased) estimator gij
kt = p−1

j Gij
ktej of ∇f (yk,t), one that we can ‘believe’ would diminish to zero as

the algorithm progresses. This is important for several reasons. First, as the method approaches
the optimum, we wish gij

kt to be progressively closer to the true gradient, which in turn will be
close to zero. Indeed, if this was the case, then S2CD behaves like GD with fixed stepsize h close
to optimum. In particular, this would indicate that using fixed stepsizes makes sense.

In light of the above discussion, the following lemma plays a key role in our analysis:

Lemma 3.1 The iterates of the S2CD algorithm satisfy

E[‖gij
kt‖2] ≤ 4L̂(f (yk,t)− f (x∗))+ 4L̂(f (xk)− f (x∗)), (10)

where

L̂ := 1

n

d∑
j=1

vj
(5)= 1

n

d∑
j=1

n∑
i=1

ωiLij. (11)

The proof of this lemma can be found in Section 4.
Note that as yk,t → x∗ and xk → x∗, the bound (10) decreases to zero. This is the main feature

of modern fast stochastic gradient methods: the squared norm of the stochastic gradient estimate
progressively diminishes to zero, as the method progresses, in expectation. Therefore it is possi-
ble to use constant step-size in this type of algorithms. Note that the standard SGD method does
not have this property: indeed, there is no reason for Ei‖∇fi(x)‖2 to be small even if x = x∗.

We are now ready to state the main result of this paper.

Theorem 3.2 (Complexity of S2CD) If 0 < h < 1/(2L̂), then for all k ≥ 0 we have:5

E[f (xk+1)− f (x∗)] ≤
(

(1− μh)m

(1− (1− μh)m)(1− 2L̂h)
+ 2L̂h

1− 2L̂h

)
E[f (xk)− f (x∗)]. (12)

By analysing the above result (one can follow the steps in [6, Theorem 6]), we get the
following useful corollary:

Corollary 3.3 Fix the number of epochs k ≥ 1, error tolerance ε ∈ (0, 1) and let � := ε1/k

and

κ̂ := L̂/μ
(11)= 1

μn

d∑
j=1

n∑
i=1

ωiLij. (13)

If we run Algorithm 1 with stepsize h and m set as

h = �

(4+ 2�)L̂
, m ≥

(
4

�
+ 2

)
log

(
2

�
+ 2

)
κ̂ , (14)

then E[f (xk)− f (x∗)] ≤ ε(f (x0)− f (x∗)). In particular, for k = �log(1/ε)� we have (1/�) ≤
exp(1), and we can pick

k = �log(1/ε)�, h = �

(4+ 2�)L̂
≈ 1

(4 exp(1)+ 2)L̂
≈ 1

12.87L̂
, m ≥ 26κ̂ . (15)

Optimization Methods & Software 999

Remark 3.1 Note that in order to define h and m as in (14), we need to fix the target accuracy ε

and the number of iterations k beforehand.

If we run S2CD with the parameters set as in (15), then in each epoch the gradient of f is
evaluated once (this is equivalent to n evaluations of ∇fi), and the partial derivative of some
function fi is evaluated 2m ≈ 52κ̂ = O(κ̂) times. If we let Cgrad be the average cost of evaluating
the gradient ∇fi and Cpd be the average cost of evaluating the partial derivative ∇jfi, then the total
work of S2CD can be written as

(nCgrad + mCpd)k
(15)= O

(
(nCgrad + κ̂Cpd) log

(
1

ε

))
, (16)

The complexity results of methods such as S2GD/SVRG [5,6,22] and SAG/SAGA [1,17]—in
a similar but not identical setup to ours (these papers assume fi to be Li-smooth)—can be written
in a similar form:

O
(

(nCgrad + κCgrad) log

(
1

ε

))
, (17)

where κ = Lavg/μ with Lavg := (1/n)
∑

i Li [22] (or slightly weaker where κ = Lmax/μ with
Lmax := maxi Li [1,5,6,17]). The difference between our result (16) and existing results (17) is in
the term κ̂Cpd—previous results have κCgrad in that place. This difference constitutes a trade-off:
while κ̂ ≥ κ (we comment on this below), we clearly have Cpd ≤ Cgrad. The comparison of the
quantities κCgrad and κ̂Cpd is in general not straightforward and problem dependent.

Let us now compare the condition numbers κ̂ and κ = Lavg/μ. It can be shown that (see [15])

Li ≤
d∑

j=1

Lij

and, moreover, this inequality can be tight. Since ωi ≥ 1 for all i, we have

κ̂ = L̂

μ

(11)= 1

μn

d∑
j=1

n∑
i=1

ωiLij ≥ 1

μn

n∑
i=1

d∑
j=1

Lij ≥ 1

μn

n∑
i=1

Li = Lavg

μ
= κ .

Let us denote

ω = min
i

ωi, ω̄ = max
i

ωi.

That is, ω and ω̄ are, respectively, the smallest and largest number of coordinates that a
subfunction depends on. In the case when

Li =
d∑

j=1

Lij, (18)

it is easy to see that

ωκ ≤ κ̂ ≤ ω̄κ .

In addition, when (18) holds, κ̂ is smaller than κmax := Lmax/μ if

ω̄

n∑
i=1

Li ≤ n max
i

Li.

1000 J. Konečný et al.

4. Proof of Lemma 3.1

We will prove the following stronger inequality:

E[‖gij
kt‖2] ≤ 4L̂(f (yk,t)− f (x∗))+ 4

(
L̂− μ

maxs ps

)
(f (xk)− f (x∗)). (19)

Lemma 3.1 follows by dropping the negative term.
STEP 1. We first break down the left-hand side of (19) into d terms each of which we will

bound separately. By first taking expectation conditioned on j and then taking the full expectation,
we can write:

E[‖gij
kt‖2]

(7)= E[Ei[‖p−1
j Gij

ktej‖2]]

= E[p−2
j Ei[(G

ij
kt)

2]] =
d∑

s=1

p−1
s Ei[(G

is
kt)

2]. (20)

STEP 2. We now further break each of these d terms into three pieces. That is, for each j =
1, . . . , d we have:

Ei[(G
i,j
k,t)

2]
(8)= Ei

[(
∇jf (xk)+ ∇jfi(yk,t)−∇jfi(xk)

nqij
+ ∇jfi(x∗)−∇jfi(x∗)

nqij

)2
]

= Ei

[(∇jfi(yk,t)−∇jfi(x∗)
nqij

+ ∇jf (xk)− ∇jfi(xk)− ∇jfi(x∗)
nqij

)2
]

≤ 2Ei

[(∇jfi(yk,t)− ∇jfi(x∗)
nqij

)2
]
+ 2Ei

[(
∇jf (xk)− ∇jfi(xk)− ∇jfi(x∗)

nqij

)2
]

= 2Ei

[(∇jfi(yk,t)− ∇jfi(x∗)
nqij

)2
]

+ 2Ei

[(∇jfi(xk)− ∇jfi(x∗)
nqij

− (∇jf (xk)− ∇jf (x∗))
)2
]

= 2Ei

[(∇jfi(yk,t)− ∇jfi(x∗)
nqij

)2
]
+ 2Ei

[(∇jfi(xk)−∇jfi(x∗)
nqij

)2
]

− 2(∇jf (xk)− ∇jf (x∗))2, (21)

where the last equality follows from the fact that

Ei

[∇jfi(xk)−∇jfi(x∗)
nqij

]
=

n∑
i=1

qij
∇jfi(xk)−∇jfi(x∗)

nqij
= ∇jf (xk)−∇jf (x∗).

STEP 3. In this step we bound the first two terms in the right-hand side of inequality (21). It
will now be useful to introduce the following notation:

Qj := {i : Lij
= 0}, j = 1, . . . , d, (22)

and

1ij :=
{

1 if Lij
= 0

0 otherwise
, i = 1, . . . , n, j = 1, . . . , d.

Optimization Methods & Software 1001

Let us fist examine the first term in the right-hand side of (21). Using the coordinate co-
coercivity lemma (Lemma 5.1) with y = x∗, we obtain the inequality

(∇jfi(x)−∇jfi(x∗))2 ≤ 2Lij(fi(x)− fi(x∗)− 〈∇fi(x∗), x− x∗〉), (23)

using which we get the bound:

2
d∑

s=1

p−1
s Ei

[(
1

nqi,s
(∇sfi(yk,t)− ∇sfi(x∗))

)2
]

= 2
d∑

s=1

p−1
s

∑
i∈Qs

1

n2qi,s
(∇sfi(yk,t)−∇sfi(x∗))2

(23)≤ 4
d∑

s=1

p−1
s

∑
i∈Qs

Lis

n2qi,s
(fi(yk,t)− fi(x∗)− 〈∇fi(x∗), yk,t − x∗〉)

(22)= 4
n∑

i=1

d∑
s=1

p−1
s 1is

vs

n2ωi
(fi(yk,t)− fi(x∗)− 〈∇fi(x∗), yk,t − x∗〉). (24)

Note that by (5) and (11), we have that for all s = 1, 2, . . . , d,

p−1
s vs = nL̂.

Continuing from (24), we can therefore further write

2
d∑

s=1

p−1
s Ei

[(
1

nqij
(∇jfi(yk,t)− ∇jfi(x∗))

)2
]

≤ 4
n∑

i=1

d∑
s=1

1is
L̂

nωi
(fi(yk,t)− fi(x∗)− 〈∇fi(x∗), yk,t − x∗〉)

= 4L̂

n

n∑
i=1

(fi(yk,t)− fi(x∗)− 〈∇fi(x∗), yk,t − x∗〉)

= 4L̂(f (yk,t)− f (x∗)). (25)

The same reasoning applies to the second term on the right-hand side of the inequality (21)
and we have:

2
d∑

s=1

p−1
s Ei

[(
1

nqij
(∇jfi(xk)−∇jfi(x∗))

)2
]
≤ 4L̂(f (xk)− f (x∗)). (26)

STEP 4. Next we bound the third term on the right-hand side of the inequality (21). First note
that since f is μ-strongly convex (see (3)), for all x ∈ R

d we have:

〈∇f (x), x− x∗〉 ≥ f (x)− f (x∗)+ μ

2
‖x− x∗‖2. (27)

1002 J. Konečný et al.

We can now write:

2
d∑

s=1

p−1
s (∇sf (xk)−∇sf (x∗))2 ≥ 2

maxs ps

d∑
j=1

(∇jf (xk)−∇jf (x∗))2

(27)≥ 4μ

maxs ps
(f (xk)− f (x∗)). (28)

STEP 5. We conclude by combining (20), (21), (25), (26) and (28).

5. Proof of the main result

In this section we provide the proof of our main result. In order to present the proof in an organize
fashion, we first establish two technical lemmas.

5.1 Coordinate co-coercivity

It is a well known and widely used fact (see, e.g. [9]) that for a continuously differentiable
function φ : R

d → R and constant Lφ > 0, the following two conditions are equivalent:

φ(x) ≤ φ(y)+ 〈∇φ(y), x− y〉 + Lφ

2
‖x− y‖2, ∀x, y ∈ R

d

and

‖∇φ(x)−∇φ(y)‖2 ≤ 2Lφ(φ(x)− φ(y)− 〈∇φ(y), x− y〉), ∀x, y ∈ R
d .

The second condition is often referred to by the name co-coercivity. Note that our assump-
tion (2) on fi is similar to the first inequality. In our first lemma we establish a coordinate-based
co-coercivity result which applies to functions fi satisfying (2).

Lemma 5.1 (Coordinate co-coercivity) For all x, y ∈ R
d and i = 1, . . . , n, j = 1, . . . , d, we

have:

(∇jfi(x)− ∇jfi(y))
2 ≤ 2Lij(fi(x)− fi(y)− 〈∇fi(y), x− y〉). (29)

Proof Fix any i,j and y ∈ R
d . Consider the function gi : R

d → R defined by:

gi(x) := fi(x)− fi(y)− 〈∇fi(y), x− y〉. (30)

Then since fi is convex, we know that gi(x) ≥ 0 for all x, with gi(y) = 0. Hence, y minimizes
gi. We also know that for any x ∈ R

d :

∇jgi(x) = ∇jfi(x)−∇jfi(y). (31)

Since fi satisfies (2), so does gi, and hence for all x ∈ R
d and h ∈ R, we have

gi(x+ hej) ≤ gi(x)+ 〈∇gi(x), hej〉 + Lij

2
h2.

Minimizing both sides in h, we obtain

gi(y) ≤ min
h

gi(x+ hej) ≤ gi(x)− 1

2Lij
(∇jgi(x))

2,

which together with (30) yields the result. �

Optimization Methods & Software 1003

5.2 Recursion

We now proceed to the final lemma, establishing a key recursion which ultimately yields the
proof of the main theorem, which we present in Section 5.3.

Lemma 5.2 (Recursion) The iterates of S2CD satisfy the following recursion:

1
2 E[‖yk,t+1 − x∗‖2]+ h(1− 2hL̂)(f (yk,t)− f (x∗))

≤ (1− hμ) 1
2‖yk,t − x∗‖2 + 2h2L̂(f (xk)− f (x∗)). (32)

Proof

1

2
E[‖yk,t+1 − x∗‖2]

(6)= 1

2
E[‖yk,t − hp−1

j Gij
ktej − x∗‖2]

= 1

2
‖yk,t − x∗‖2 − E[〈hp−1

j Gij
ktej, yk,t − x∗ >]+ 1

2
E[‖hp−1

j Gij
ktej‖2]

(9)= 1

2
‖yk,t − x∗‖2 − h〈∇f (yk,t), yk,t − x∗〉 + h2

2
E[‖gij

kt‖2]

(27)≤ 1

2
‖yk,t − x∗‖2 − h

(
f (yk,t)− f (x∗)+ μ

2
‖yk,t − x∗‖2

)
+ h2

2
E[‖gij

kt‖2]

(10)≤ 1

2
‖yk,t − x∗‖2 − h

(
f (yk,t)− f (x∗)+ μ

2
‖yk,t − x∗‖2

)
+ 2h2L̂(f (yk,t)− f (x∗))+ 2h2L̂(f (xk)− f (x∗))

= (1− μh)
1

2
‖yk,t − x∗‖2 − h(1− 2hL̂)(f (yk,t)− f (x∗))

+ 2 h2L̂(f (xk)− f (x∗)).

�

5.3 Proof of Theorem 3.2

For simplicity, let us denote:

ηk,t := 1
2 E[‖yk,t − x∗‖2], ξk,t := E[f (yk,t)− f (x∗)],

where the expectation now is with respect to the entire history. Notice that

yk+1,0 = yk,tk ,

where tk = T ∈ {1, . . . , m} with probability (1− μh)m−T/β with β defined in (4). Conditioning
on tk we obtain that

ξk+1,0 = 1

β

m−1∑
t=0

(1− μh)tξk,m−1−t. (33)

1004 J. Konečný et al.

See also [6, Lemma 3] for a proof. By Lemma 5.2 we have the following m inequalities:

ηk,m + h(1− 2hL̂)ξk,m−1 ≤ (1− μh)ηk,m−1 + 2h2L̂ξk,0,

(1− μh)ηk,m−1 + h(1− 2hL̂)(1− μh)ξk,m−2 ≤ (1− μh)2ηk,m−2 + 2h2L̂(1− μh)ξk,0,

...

(1− μh)tηk,m−t + h(1− 2hL̂)(1− μh)tξk,m−t−1 ≤ (1− μh)t+1ηk,m−t−1 + 2h2L̂(1− μh)tξk,0,

...

(1− μh)m−1ηk,1 + γ (1− 2hL̂)(1− μh)m−1ξk,0 ≤ (1− μh)mηk,0 + 2h2L̂(1− μh)m−1ξk,0.

By summing up the above m inequalities, we get:

ηk,m + γ (1− 2hL̂)

m−1∑
t=0

(1− μh)tξk,m−1−t ≤ (1− μh)mηk,0 + 2h2L̂βξk,0.

It follows from the strong convexity assumption (3) that f (xk)− f (x∗) ≥ (μ/2)‖xk − x∗‖2,
that is, ξk,0 ≥ μηk,0. Therefore, together with (33) we get:

h(1− 2hL̂)ξk+1,0 ≤
(

(1− μh)m

βμ
+ 2h2L̂

)
ξk,0.

Hence if 0 < 2hL̂ < 1, then we obtain:

ξk+1,0 ≤
(

(1− μh)m

(1− (1− μh)m)(1− 2hL̂)
+ 2hL̂

1− 2hL̂

)
ξk,0,

which finishes the proof.

6. Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by Engineering and Physical Sciences Research Council [grant number EP/K02325X/1].

Notes

1. The complexity can be improved to O((dα/τμ) log(1/ε)) in the case when τ coordinates are updated in each
iteration, where α ∈ [1, τ] is a problem-dependent constant [12]. This has been further studied for non-smooth
problems via smoothing [3], for arbitrary non-uniform distributions governing the selection of coordinates [11,14]
and in the distributed setting [4,11,13]. Also, efficient accelerated variants with O(1/

√
ε) rate were developed [2,4],

capable of solving problems with 50 billion variables.
2. In S2CD, as presented, coordinates j is selected first, and then function i is selected, according to a distribution

conditioned on the choice of j. However, one could equivalently sample (i, j) with joint probability pij. We opted
for the sequential sampling for clarity of presentation purposes.

3. The quantity ω := maxi ωi (degree of partial separability of f) was used in the analysis of a large class of random-
ized parallel coordinate descent methods in [12]. The more informative quantities {ωi} appear in the analysis of
parallel/distributed/mini-batch coordinate descent methods [2,4,13].

Optimization Methods & Software 1005

4. A parallel CD method in which every subset of coordinates can be assigned a different probability of being
chosen/updated was analysed in [14].

5. It is possible to modify the argument slightly and replace the term L̂ appearing in the numerator by L̂− μ/maxs ps.
However, as this does not bring any significant improvements, we decided to present the result in this simplified
form.

References

[1] A. Defazio, F. Bach, and S. Lacoste-Julien, SAGA: A fast incremental gradient method with support for non-strongly
convex composite objectives, preprint (2014). Available at arXiv:1407.0202.

[2] O. Fercoq and P. Richtárik, Accelerated, parallel and proximal coordinate descent, preprint (2013). Available at
arXiv:1312.5799.

[3] O. Fercoq and P. Richtárik, Smooth minimization of nonsmooth functions with parallel coordinate descent methods,
preprint (2013). Available at arXiv:1309.5885.

[4] O. Fercoq, Z. Qu, P. Richtárik, and M. Takáč, Fast distributed coordinate descent for non-strongly convex losses,
IEEE Workshop on Machine Learning for Signal Processing, Reims, 2014.

[5] R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive variance reduction, Advances
in Neural Information Processing Systems, Lake Tahoe, 2013, pp. 315–323.

[6] J. Konečný and P. Richtárik, Semi-stochastic gradient descent methods, preprint (2013). Available at
arXiv:1312.1666.

[7] J. Konečný Liu, P. Richtárik, and M. Takávc, mS2GD: Minibatch semi-stochastic gradient descent in the proximal
setup, NIPS Optimization in Machine Learning workshop, Montreal, 2014.

[8] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochastic approximation approach to stochastic
programming, SIAM J. Optim. 19 (2009), pp. 1574–1609.

[9] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Vol. 87, Springer, Berlin, 2004.
[10] Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM J. Optim.

22 (2012), pp. 341–362.
[11] Z. Qu, P. Richtárik, and T. Zhang, Randomized dual coordinate ascent with arbitrary sampling, preprint (2014).

Available at arXiv:1411.5873.
[12] P. Richtárik and M. Takáč, Parallel coordinate descent methods for big data optimization, preprint (2012). Available

at arXiv:1212.0873.
[13] P. Richtárik and M. Takáč, Distributed coordinate descent for learning with big data, preprint (2013). Available at

arXiv:1310.2059.
[14] P. Richtárik and M. Takáč, On optimal probabilities in stochastic coordinate descent methods, preprint (2013).

Available at arXiv:1310.3438.
[15] P. Richtárik and M. Takáč, Iteration complexity of randomized block-coordinate descent methods for minimizing a

composite function, Math. Program. 144 (2014), pp. 1–38.
[16] H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Stat. 22 (1951), pp. 400–407.
[17] M. Schmidt, N.L. Roux, and F. Bach, Minimizing finite sums with the stochastic average gradient, preprint (2013).

Available at arXiv:1309.2388.
[18] S. Shalev-Shwartz and T. Zhang, Accelerated proximal stochastic dual coordinate ascent for regularized loss

minimization, preprint (2013). Available at arXiv:1309.2375.
[19] S. Shalev-Shwartz and T. Zhang, Stochastic dual coordinate ascent methods for regularized loss minimization,

J. Mach. Learn. Res. 14 (2013), pp. 567–599.
[20] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, Pegasos: Primal estimated sub-gradient solver for SVM,

Math. Program. 127 (2010), pp. 3–30. Available at http://dx.doi.org/10.1007/s10107-010-0420-4.
[21] M. Takáč, A. Bijral, P. Richtárik, and N. Srebro, Minibatch primal and dual methods for support vector machines,

Proceedings of the 30th International Conference on Machine Learning, Atlanta, 2013.
[22] L. Xiao and T. Zhang, A proximal stochastic gradient method with progressive variance reduction, preprint (2014).

Available at arXiv:1403.4699.
[23] T. Zhang, Solving large scale linear prediction problems using stochastic gradient descent algorithms, Proceedings

of the 21st International Conference on Machine Learning, Banff, 2004, p. 116.
[24] P. Zhao and T. Zhang, Stochastic optimization with importance sampling, preprint (2014). Available at

arXiv:1401.2753v1.
[25] P. Zhao and T. Zhang, Stochastic optimization with importance sampling, Proceedings of the 32nd International

Conference on Machine Learning, Lille, 2015.

http://dx.doi.org/10.1007/s10107-010-0420-4

	1. Introduction
	2. S2CD algorithm
	3. Complexity result
	4. Proof of Lemma 3.1
	5. Proof of the main result
	5.1. Coordinate co-coercivity
	5.2. Recursion
	5.3. Proof of Theorem 3.2

	6. Disclosure statement
	Funding
	Notes

