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Abstract A version of the multiple unicast conjecture, proposed by M. Lang-
berg and M. Médard [4], says that, there exists an undirected fractional multi-
commodity flow, or simply, multi-flow, with rate (1, 1, · · · , 1) for strongly reach-
able networks. In this paper, we propose a new type of matrix optimization
problem to attack this conjecture: By giving upper and lower bounds on its so-
lution, we prove that there exists a multi-flow with rate ( 8

9 ,
8
9 , · · · ,

8
9 ) for such

networks; on the other hand though, we show that the rate of any multi-flow
constructed using this framework cannot exceed (1, 1, · · · , 1).

1 Introduction

Let N = (V,A, S,R) be a directed network with underlying digraph D =
(V,A), senders S = {s1, s2, . . . , sk} ⊆ V and receivers R = {r1, r2, . . . , rk} ⊆
V . N is said to be fully reachable if there exists an si-rj directed path Psi,rj
for each i, j = 1, 2, · · · , k, and strongly reachable if, further, for each j =
1, 2, · · · , k, the paths Ps1,rj , Ps2,rj , · · · , Psk,rj are edge-disjoint. Let N denote
the underlying undirected network ofN , where the orientation in N is ignored.
Throughout this paper, we assume that each edge in N is of unit capacity.

The multiple unicast conjecture [1] [2], which turned out to be one of the
hardest problems in the theory of network coding [3], has been open for more
than one decade. A weaker version of this conjecture, proposed by M. Langberg
and M. Médard [4], can be stated in the graph-theoretic language as follows.
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Conjecture 1 IfN is strongly reachable, then there exists a feasible (s1, s2, . . . , sk)-
(r1, r2, . . . , rk) multi-flow with rate (1, 1, · · · , 1) in N .

If this conjecture is true, then it gives a new type of sufficient conditions on
the existence of multi-flows, which is almost invariably characterized by the cut
condition in the existing literature [5]. By using a flow construction method,
the authors of [4] obtained a feasible multi-flow with rate ( 1

3 ,
1
3 , · · · ,

1
3 ). In this

paper, we extend their method to construct a feasible multi-flow with rate
( 8
9 ,

8
9 , · · · ,

8
9 ); furthermore, we prove that the rate of any feasible multi-flow

constructed using our framework cannot exceed (1, 1, · · · , 1). Our results is
obtained by analysing the upper and lower bounds of a matrix optimization
problem, which may be of independent interest in its own right.

The rest of the paper is organized as follows. In Section II, we introduce
the flow construction method. A matrix optimization problem is proposed in
section III. Finally, the lower and upper bounds on the proposed problem are
investigated in Sections IV and V, respectively.

2 The Flow Construction Method

In this section, we first introduce some terminologies and results in the theory
of multi-flows. Then, in the second subsection, we introduce the flow con-
struction method. In the third subsection, we discuss the feasibility for the
constructed multi-flows.

2.1 Multi-Flow Basics

Consider a directed network N = (V,A, S,R) and its undirected version N .
For an arc a = (u, v) ∈ A, we call u the tail of a, denoted by tail(a), and v
the head of a, denoted by head(a). For any v0, vn ∈ V , a v0-vn directed path
in N is a sequence (v0, a1, v1, a2, . . . , an, vn), such that all vi are distinct, and
tail(ai) = vi−1 and head(ai) = vi for all i. Slightly abusing the notation, for
an arc a and a directed path P in N , we use a ∈ P to mean that a occurs on
P .

For any s, r ∈ V , an s-r flow is a function f : A→ R satisfying the following
flow conservation law:

excessf (v) = 0, ∀v /∈ {s, r}, (1)

where

excessf (v) :=
∑

a∈A: head(a)=v

f(a)−
∑

a∈A: tail(a)=v

f(a). (2)

It is easy to see that |excessf (s)| = |excessf (r)|, which is called the value
(or rate) of f .

Note that the above definitions naturally give rise to a undirected flow,
i.e., a fractional flow of N , and it is not needed to differentiate an s-r flow
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from an r-s flow. This is different from Schrijver [5], where a flow must be a
non-negative function.

There are two kinds of operations on the flows defined as above. Firstly, the
set of all s-r flows naturally forms a linear space over R; particularly, for any
two s-r flows f1, f2 and scalars k1, k2 ∈ R, and the function f = k1f1 +k2f2 is
again an s-r flow. Secondly, let f be an s-t flow and g be a t-r flow such that

excessf (t) = −excessg(t).

Then by definition, f + g is an s-r flow, which is called the concatenation of
f and g. Adopting the notational convention in defining the concatenation of
paths in [5], the concatenation of f and g will be denoted by fg.

An (s1, s2, . . . , sk)-(r1, r2, . . . , rk) multi-flow refers to a set of k flows F =
{fi : i = 1, 2, . . . , k}, where each fi is an si-ri flow. We say F has rate
(d1, d2, . . . , dk), where di := |excessfi(si)|; and, for any given a ∈ A, we define
|F|(a) as

|F|(a) :=
∑

1≤i≤k

|fi(a)|. (3)

The multi-flow F = {fi : i = 1, 2, . . . , k} is said to be feasible with respect to
capacity function c if |F|(a) ≤ c(a) for all a ∈ A. Note that when k = 1, the
multi-commodity flow is a flow f , and we call f feasible if |f(a)| ≤ c(a) for all
a ∈ A. Recall that c(a) ≡ 1 in this paper.

2.2 Flow Constructed from the Elementary Flows

Let N be a fully reachable network and P = {Psi,rj}ki,j=1 be a set of si-rj
directed paths of N . For each Psi,rj ∈ P, define an si-rj flow as follows:

fi,j(a) =

{
1, a ∈ Psi,rj ,
0, otherwise.

Let
F = {fi,j |1 ≤ i, j ≤ k}.

In this paper, P and F will be referred to as a set of elementary paths and
elementary flows of N , respectively.

Before proceeding further, we clarify that by “the flow constructed from
the elementary flows F”, we mean the flow is obtained by a sequence of “op-
erations,” i.e., linear combinations and concatenations on the flows within F.
For example, 1

3 [(f1,2−f3,2)f3,1] is an s1-r1 flow constructed from F with value
1
3 . Note that to construct a new si-rj flow from F, we only need to ensure that
the flow conservation law is satisfied by all the senders except si and all the
receivers except rj .

Now, we arrange the elementary flows into a matrix F , say,

F =


f1,1 f1,2 · · · f1,k
f2,1 f2,2 · · · f1,k

...
...

...
...

fk,1 fk,2 · · · fk,k

 .
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Let

C =


c1,1 c1,2 · · · c1,k
c2,1 c2,2 · · · c1,k

...
...

...
...

ck,1 ck,2 · · · ck,k


be an arbitrary k × k matrix with ci,j ∈ R and let

f = C ◦ F =

k∑
i,j=1

ci,jfi,j ,

where C ◦F denotes the formal Hadmard product of C and F . Then, we have:

Theorem 1 f is an si0-rj0 flow constructed from F with rate d if and only if
the following conditions are satisfied:

1.
∑k
`=1 ci,` = 0, for all 1 ≤ i ≤ k, i 6= i0;

2.
∑k
`=1 c`,j = 0, for all 1 ≤ j ≤ k, j 6= j0;

3.
∑k
i=1

∑k
j=1 ci,j = d.

Proof Note that excessf (si) =
∑k
`=1 ci,` and excessf (rj) =

∑k
`=1 c`,j . Condi-

tion 1) implies that the conservation law is satisfied by all the senders except
si0 ; Condition 2) implies that it is satisfied by all the receivers except rj0 ;
Condition 3) implies that the value of f is d.

Note that under Conditions 1) and 2), Condition 3) of Theorem 1 is equiv-
alent to

3′)
∑k
`=1 ci0,` = d, or

3′′)
∑k
`=1 c`,j0 = d, or

3′′′)
∑k
`=1 ci0,` =

∑k
`=1 c`,j0 = d.

Let f = C ◦ F be a flow constructed from F, we call C the coefficient
matrix of f . By Theorem 1, there is a one-to-one correspondence from the
flows constructed from F with rate d to the matrices satisfying Conditions
1), 2) and 3). This correspondence can be directly applied to the multi-flow:
Let F = {f1, f2, · · · , fk} be an (s1, s2, · · · , sk)-(r1, r2, · · · , rk) multi-flow con-
structed from F with rates (d, d, · · · , d), then there exist a tuple of matrices
(C1, C2, · · · , Ck) such that 1) the sum of elements in j-th column and the sum
of elements in j-th column of Ci are all equal 0 when j 6= i; 2) the sum of
all elements in Ci are all equal d, for i = 1, 2, · · · , k. Note that we sometimes
identify (C1, C2, · · · , Ck) with the corresponding multi-flow.

From now on, we always suppose F = {f1, f2, · · · , fk} is a multi-flow con-
structed from the elementary flows F such that the coefficient matrix of f` is

(c
(`)
i,j ) ∈ Rk×k for ` = 1, 2, · · · , k.

Definition 1 (Symmetric Multi-Flow) For each ` = 1, 2, · · · , k, if (c
(`)
i,j ) =

E1,`(c
(1)
i,j )E1,`, then F is called a symmetric multi-flow, where Ei,j is the ele-

mentary matrix formed by swapping the i-th row and j-th row of the k × k
identity matrix.
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Definition 2 (Homogeneous Multi-Flow) Let F be a symmetric flow. If
there exist a, b ∈ R, such that

c
(1)
i,j =


a, i = j = 1;
b, i = 1, j 6= 1 or j = 1, i 6= 1;
− b
k−1 , otherwise.

Then, F is called a homogeneous multi-flow.

Obviously, a homogeneous multi-flow has rate (d, d, · · · , d) with d = a +
(k − 1)b.

Example 1 ([4]) The mulit-flow F constructed in [4] is a homogeneous multi-
flow with

a =
2k − 3

k(3k − 4)
, b =

k − 1

k(3k − 4)

and rate (d, d, · · · , d) with

d =
2k − 3

k(3k − 4)
+

(k − 1)2

k(3k − 4)
=

k2 − 2

3k2 − 4k
>

1

3
.

2.3 Feasibility of the Flow Constructed from F

In this section and thereinafter, we always assume that N = (V,A, S,R) is a
strongly reachable network and P = {Psi,rj}ki,j=1 is a set of elementary paths
such that Ps1,rj , Ps2,rj , · · · , Psk,rj are edge-disjoint for each j = 1, 2, · · · , k. For
any a ∈ A, denote by P(a) the elementary paths passing through a. Suppose
there are totally α(a) paths in P(a) and let

P(a) := {Psi1 ,rj1 , Psi2 ,rj2 , · · · , Psiα(a)
,rjα(a)

}.

Lemma 1 j1, j2, · · · , jα(a) are distinct.

Proof Note that, for a strongly reachable network, in the set P of elementary
paths, the paths Ps1,rj , Ps2,rj , · · · , Psk,rj are edge-disjoint for any 1 ≤ j ≤ k,
which immediately implies the lemma.

We shall call the set of integers {j1, j2, · · · , jα(a)} the support of a, denoted
by Support(a). Now, we define the coordinate of an arc a as follows.

Definition 3 (Coordinate) Suppose P(a) := {Psi1 ,rj1 , Psi2 ,rj2 , · · · , Psiα(a)
,rjα(a)

}.
Then, the coordinate of a is a vector x = (x1, x2, · · · , xk) such that for
` = 1, 2, · · · , k,

x` =

{
im, if ` = jm ∈ Support(a),
0, ` /∈ Support(a).

We also use Support(x) or Support(x1, x2, · · · , xk) to denote Support(a) for
an arc a with coordinate x = (x1, x2, · · · , xk).
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Example 2 Let k = 6. If P(a) = {Ps1,r1 , Ps2,r3 , Ps2,r5}, then the coordinate of
a is (1, 0, 2, 0, 2, 0) and Support(a) = {1, 3, 5}.

Let F be a multi-flow with coefficient matrices (c
(`)
i,j ) ∈ Rk×k for ` =

1, 2, · · · , k. Let a be an arc with coordinate x = (x1, x2, · · · , xk). Then, by
definition,

f`(a) =

k∑
i,j=1

c
(`)
i,j fi,j(a)

=

k∑
j∈Support(x)

c
(`)
xj ,j

=

k∑
j=1

c
(`)
xj ,j

.

(4)

Note that in the above derivation and thereinafter, we assume c
(`)
0,j ≡ 0 for all

1 ≤ `, j ≤ k.
Since f`(a) only depends on the coordinate of a, we also use f`(x) or

f`(x1, x2, · · · , xk) to denote f`(a) for ` = 1, 2, · · · k for an arc with coordinate
x = (x1, x2, · · · , xk). Similarly, we use |F|(x) or |F|(x1, x2, · · · , xk) to denote
|F|(a). Denote by

X = {(x1, x2, · · · , xk); 0 ≤ xi ≤ k, i = 1, 2, · · · , k}

the set of all (k + 1)k coordinates. We have:

Theorem 2 If |F|(x) < 1 for all x ∈ X, then F is feasible.

Example 3 The homogeneous multi-commodity flow F constructed in [4] is
feasible. Note that the coefficient matrices of F satisfy

c
(`)
i,j =


2k−3

k(3k−4) , if i = j = `,
k−1

k(3k−4) , if i = `; j 6= ` or j = `; i 6= `,
−1

k(3k−4) , i 6= ` and j 6= `,

for ` = 1, 2, · · · , k. Then for any (x1, x2, · · · , xk) ∈ X, if xj = j,

k∑
`=1

|c(`)xj ,j | = |c
(j)
j,j |+

k∑
` 6=j

|c(`)j,j |

=
2k − 3

k(3k − 4)
+

k − 1

k(3k − 4)

=
1

k
;

(5)
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and if xj 6= 0, j,

k∑
`=1

|c(`)xj ,j | = |c
(j)
xj ,j
|+ |c(xj)xj ,j

|+
k∑
6̀=j,xj

|c(`)xj ,j |

=
2(k − 1)

k(3k − 4)
+

k − 2

k(3k − 4)

=
1

k
.

(6)

Hence,

|F|(x1, x2, · · · , xk) =

k∑
`=1

|
k∑
j=1

c
(`)
xj ,j
|

≤
k∑
j=1

k∑
`=1

|c(`)xj ,j |

=
∑

j∈Support(x)

(

k∑
`=1

|c(`)xj ,j |)

≤ k
k∑
`=1

|c(`)xj ,j |

= 1.

(7)

By Theorem 2, F is feasible.

3 The Optimization Problem

In this section, we are interested in the maximum d for which there ex-
ists a feasible multi-flows constructed from the elementary flows F with rate
(d, d, · · · , d), which naturally leads to the following optimization problem:

maximize
C1,C2,··· ,Ck

d

subject to

k∑
`=1

|
k∑
j=1

c
(`)
xj ,j
| ≤ 1, 0 ≤ xj ≤ k,

(8)

where C1 = (c
(1)
i,j ), C2 = (c

(2)
i,j ), · · · , Ck = (c

(k)
i,j ) are k × k matrices such that

1)
∑k
j=1 c

(`)
i,j = 0, for all 1 ≤ i ≤ k, i 6= `; 2)

∑k
i=1 c

(`)
i,j = 0, for all 1 ≤ j ≤ k,

j 6= `; 3)
∑k
i=1

∑k
j=1 c

(`)
i,j ≡ d for ` = 1, 2, · · · , k. Recall that we assume c

(`)
0,j ≡ 0

for 1 ≤ `, j ≤ k in the above. It is equivalent to the following optimization
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problem:
minimize
C1,C2,··· ,Ck

c

subject to

k∑
i=1

k∑
j=1

c
(`)
i,j ≡ 1, ` = 1, 2, · · · , k,

(9)

where c = max
0≤xj≤k

{
∑k
`=1 |

∑k
j=1 c

(`)
xj ,j
|} and C1 = (c

(1)
i,j ), C2 = (c

(2)
i,j ), · · · , Ck =

(c
(k)
i,j ) are k × k matrices such that 1)

∑k
j=1 c

(`)
i,j = 0, for all 1 ≤ i ≤ k, i 6= `;

2)
∑k
i=1 c

(`)
i,j = 0, for all 1 ≤ j ≤ k, j 6= `.

The equivalence of the optimization problems (8) and (9) can be seen

as follows. If d0 is the solution of (8) achieved by {C` = (c
(`)
i,j )}k`=1, then

letting C̃` = (c̃
(`)
i,j ) = 1

d0
C`, we will have

∑k
i=1

∑k
j=1 c̃

(`)
i,j ≡ 1. Note that 1

d0

is the solution of the optimization problem (9) achieved by matrices C̃`, ` =
1, 2, · · · , k. On the other hand, if c0 is the solution of (9) achieved by {C` =

(c
(`)
i,j )}k`=1, then letting C̃` = (c̃

(`)
i,j ) = 1

c0
C`, we will have

∑k
`=1 |

∑k
j=1 c

(`)
xj ,j
| ≤

1. Note that 1
c0

is the solution of the optimization problem (8) achieved by

matrices C̃`, ` = 1, 2, · · · , k.
Let us consider the case of k = 2. By the above-mentioned equivalence, we

only need to consider the optimization problem (9). Note that for this case,

C1 =

(
p 1− p

1− p p− 1

)
, C2 =

(
q − 1 1− q
1− q q

)
,

where p, q ∈ R. And there are in total 32 = 9 coordinates:

X = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.

By definition, |F|(x1, x2) =
∑k
`=1 |

∑k
j=1 c

(`)
xj ,j
| and we have |F|(0, 0) = 0,

|F|(0, 1) = |F|(2, 0) = |1 − p| + |1 − q|, |F|(0, 2) = |1 − p| + |q|, |F|(1, 0) =
|p|+ |1− q|, |F|(1, 2) = 2|p+ q− 1|, |F|(2, 1) = 2(|1− p|+ |1− q|), |F|(1, 1) =
|F|(2, 2) = 1.

Let

c(p, q) = max{|F|(x);x ∈ X}
= max{2(|1− p|+ |1− q|), |p|+ |1− q|, |1− p|+ |q|, 2|p+ q − 1|, 1}

(10)

In the following, we will prove

min
p,q∈R

c(p, q) = 1.

First, it is easy to verify that c( 3
4 ,

3
4 ) = 1. Second, consider the following four

cases:

1. If p > 3
4 , q ≥ 3

4 , then c(p, q) ≥ 2|p+ q − 1| > 1;

2. If p ≤ 3
4 , q > 3

4 , then c(p, q) ≥ |1− p|+ |q| > 1;
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3. If p < 3
4 , q ≤ 3

4 , then c(p, q) ≥ 2(|1− p|+ |1− q|) > 1;

4. If p ≥ 3
4 , q < 3

4 , then c(p, q) ≥ |p|+ |1− q| > 1.

Hence, we have

Theorem 3 If k = 2, then the optimization problem (8) has solution 1.

Clearly, if the optimization problems (8) has solution d0 ≥ 1, then there ex-
ists a “constructed multi-flow” which can settle the M. Langberg and M. Médard’s
conjecture. However, when k ≥ 3, this is not the case, as shown below.

Theorem 4 Let k ≥ 3 and d0 be the solution of the optimization problem (8).
Then, 8

9 ≤ d0 < 1.

In the following two sections, we will prove Theorem 4.

4 The Lower Bound

In this section, we prove the lower bound part of Theorem 4.
We first introduce some notations. Let x = (x1, x2, · · · , xk) ∈ X be a

coordinate (recall that a coordinate satisfies 0 ≤ x` ≤ k, for ` = 1, 2, · · · , k).
And define

α(x) := |{x`;x` 6= 0, ` = 1, 2, · · · , k}|;
in other words, α(x) is the size of the support of x. Let j1, j2, · · · , jα(a) be the
support of x. Then, we define

Indx := {xj1 , j1, xj2 , j2, · · · , xjα(a)
, jα(a)}.

Note that Indx is a multiset (an element in a multiset can occur more than
once) and we call it the index of x. For any ` = 1, 2, · · · , k, denote by mIndx(`)
the multiplicity of ` in Indx (if ` /∈ Indx, then mIndx(`) = 0). And we further
define

β(x) := |{`;mInda(`) 6= 0}|.
For example, if x = (1, 0, 2, 0, 3), then α(x) = 3, Inda = {1, 1, 2, 3, 3, 5},

mIndx(1) = mIndx(3) = 2, mIndx(2) = mIndx(5) = 1, mIndx(4) = 0, and
β(x) = 4.

Now, we give the main result of this section.

Theorem 5 Let k ≥ 3 and d0 be the solution of the optimization problem (8).
Then

d0 ≥
8

9
.

Proof To this end, we consider the optimization problem (9) and prove its
optimal solution c0 ≤ 9

8 .

Let matrices C∗` = (c
(`)
i,j ) be such that

c
(`)
i,j =


2
k −

1
k2 , if i = j = `,

1
k −

1
k2 , if i = `; j 6= ` or j = `; i 6= `,

− 1
k2 , i 6= ` and j 6= `,

(11)
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for ` = 1, 2, · · · , k. It is easy to verify that
∑k
i=1

∑k
j=1 c

(`)
i,j ≡ 1 for ` =

1, 2, · · · , k. Recall that for x = (x1, x2, · · · , xk) ∈ X,

f`(x) =

k∑
j=1

c
(`)
xj ,j

and

|F|(x) =

k∑
`=1

|f`(x)| =
k∑
`=1

|
k∑
j=1

c
(`)
xj ,j
|.

We calculate maxx∈X{|F|(x)}. If x = (0, 0, · · · , 0), then by definition, |F|(x) =
0. So, in the following, we suppose x 6= (0, 0, · · · , 0). Firstly, we calculate f`(x)
for some fixed ` ∈ {1, 2, · · · , k}. It not hard to check the following two cases:

1. mIndx(`) = 0. In this case, by the definition of C∗` , we have

f`(x) =
−α(x)

k2
.

2. mIndx(`) 6= 0. In this case, by the definition of C∗` , we have

f`(x) =
kmIndx(`)− α(x)

k2
. (12)

Secondly, we calculate |F|(x). Noticing that
∑k
`=1mIndx(`) = 2α(x), we have

|F|(x) =
∑

1≤`≤k

|f`(x)|

=
∑

mIndx (`)=0

−f`(x) +
∑

mIndx (`) 6=0

f`(x)

=
(k − β(x))α(x)

k2
+

2kα(x)− β(x)α(x)

k2

=
3kα(x)− 2β(x)α(x)

k2
.

(13)

Note that α(x) ≤ β(x), we have

|F|(x) ≤ 3kα(x)− 2α2(x)

k2
. (14)

Consider the following quadratic function on α

h(α) :=
α(3k − 2α)

k2
, (15)

and it is easy to see that it takes the maximum of 9/8 when α = 3k/4. Hence,
we have

max
0≤xj≤k

{
k∑
`=1

|
k∑
j=1

c
(`)
xj ,j
|} ≤ 9

8
,

as desired.



On the Langberg-Médard Multiple Unicast Conjecture 11

Remark 1 Since α(x) is an integer, the bound of Theorem 5 can be slightly
improved to d0 >

8
9 for 4 - k.

Example 4 Consider the case k = 3, and let

C∗1 =

 5
9

2
9

2
9

2
9 −

1
9 −

1
9

2
9 −

1
9 −

1
9

 ;C∗2 =

− 1
9

2
9 −

1
9

2
9

5
9

2
9

− 1
9

2
9 −

1
9

 ;C∗3 =

− 1
9 −

1
9

2
9

− 1
9 −

1
9

2
9

2
9

2
9

5
9

 .

By Equation (13), we can see that |F|(x) takes its maximum value when
α(x) = β(x) = 2. For example, when x = (1, 2, 0), we have α(x) = β(x) = 2
and further

|F|(1, 2, 0) = |f1(1, 2, 0)|+ |f2(1, 2, 0)|+ |f3(1, 2, 0)|

= |5
9

+
2

9
|+ | − 1

9
+

2

9
|+ | − 1

9
− 1

9
|

=
10

9
<

9

8
.

Hence, for k = 3, d0 ≥ 9
10 >

8
9 .

The proof of Theorem 5 implies the following corollary.

Corollary 1 Let N be a strongly reachable network. If the coordinate x of
any arc a satisfies one of the following conditions:

1. α(x) ≤ 8
9β(x);

2. α(x) = k;
3. α(x) ≤ k/2,

then N has a feasible multi-flow with rate (1, 1, · · · , 1).

Proof Given Condition 1), one can have |F|(x) ≤ 1 from (13) via straight-
forward computations. Simple inspections on Equation (15) will reveal that
Condition 2) or 3) will imply h(α) ≤ 1 and thus |F|(x) ≤ 1.

To complete this section, we conjecture that the solution of the optimiza-
tion problem (9) is achieved by C∗1 , C

∗
2 , · · · , C∗k constructed in the proof of

Theorem 5.

5 The Upper Bound

In this section, we prove the upper bound part of Theorem 4.

To this end, we consider the optimization problem (9). Let C1 = (c
(1)
i,j ), C2 =

(c
(2)
i,j ), · · · , Ck = (c

(k)
i,j ) be k × k matrices such that (1)

∑k
j=1 c

(`)
i,j = 0, for all

1 ≤ i ≤ k, i 6= `; (2)
∑k
i=1 c

(`)
i,j = 0, for all 1 ≤ j ≤ k, j 6= ` and (3)
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i=1

∑k
j=1 c

(`)
i,j ≡ 1, ` = 1, 2, · · · , k. Let X = {(x1, x2, · · · , xk); 0 ≤ xi ≤

k, i = 1, 2, · · · , k} be the set of coordinates. Recall that

c = max
x∈X

{
|F|(x) =

k∑
`=1

|fi(x)|

}
= max

0≤xj≤k


k∑
`=1

|
k∑
j=1

c
(`)
xj ,j
|


In the following, we use c0 to denote the solution of (9) and prove c0 > 1.

Note that if c0 ≤ 1, then the solution of (8) d0 ≥ 1.
We first give a simple but useful result.

Lemma 2 If c0 ≤ 1, then for all `, i, j = 1, 2, · · · , k, |c(`)i,j | ≤ 1.

Proof Suppose, by way of contradiction, that there exist 1 ≤ `, i, j ≤ k, such

that |c(`)i,j | > 1. Then, consider the coordinate x = (x1, x2, · · · , xj , · · · , xk) such
that

xr =

{
0, r 6= j;
i, r = j.

Note that

|F|(x) =

k∑
r=1

|fr(x)| ≥ |f`(x)| = |c(`)i,j | > 1, (16)

which is however contradictory to the fact that c0 ≤ 1.

Lemma 3 If c0 ≤ 1, then for all `, j = 1, 2, · · · , k, we have c
(`)
`,j ≥ c

(`)
i,j , if

i 6= `.

Proof Suppose, on the contrary, that there exist 1 ≤ ` ≤ k and 1 ≤ j ≤ k,

such that c
(`)
i,j > c

(`)
`,j for some i 6= `. Then, consider the coordinate x =

(x1, x2, · · · , xj , · · · , xk) such that

xr =

{
`, r 6= j;
i, r = j.

As before, we have

|F|(x) =

k∑
r=1

|fr(x)|

≥|f`(x)|

=|c(`)`,1 + c
(`)
`,2 + · · ·+ c

(`)
`,j−1 + c

(`)
i,j + c

(`)
`,j+1 + · · · c(`)`,k|

≥c(`)`,1 + c
(`)
`,2 + · · ·+ c

(`)
`,j−1 + c

(`)
i,j + c

(`)
`,j+1 + · · · c(`)`,k

>c
(`)
`,1 + c

(`)
`,2 + · · ·+ c

(`)
`,j−1 + c

(`)
`,j + c

(`)
`,j+1 + · · · c(`)`,k

=1,

(17)

which is however contradictory to the fact that c0 ≤ 1.
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Corollary 2 If c0 ≤ 1, then for all ` = 1, 2, · · · , k and j = 1, 2, · · · , k, c
(`)
`,j ≥

0.

Proof Since otherwise
∑k
i=1 c

(`)
i,j ≤ kc

(`)
`,j < 0, which contradicts Theorem 1

Corollary 3 If c0 ≤ 1, then for all ` = 1, 2, · · · , k, c
(`)
`,` ≥

1
k .

Proof Since otherwise
∑k
j=1 c

(`)
i,j ≤ kc

(`)
`,j < 1, which contradicts Theorem 1

The following theorem says that if c0 ≤ 1, then c
(i)
i,j and c

(j)
i,j have the same

absolute value and furthermore, except the `-th row, the `-th column and the
diagonal, all the other positions of C(`) must be zero.

Theorem 6 If c0 ≤ 1, then for all i 6= j, c
(i)
i,j = |c(j)i,j | and c

(`)
i,j = 0, for all

` 6= i, j.

Proof (1) We first prove for all ` = 1, 2, · · · , k, and j = 1, 2, · · · , k, c
(`)
`,j ≥∑

i 6=` |c
(i)
`,j |.

Taking the coordinate (0, 1, 1, · · · , 1), we have, by Theorem 1, that

|F|(0, 1, 1, · · · , 1) =

k∑
r=1

|fr(0, 1, 1, · · · , 1)|

=

k∑
r=1

|c(r)1,2 + c
(r)
1,3 + · · ·+ c

(r)
1,k|

= 1− c(1)1,1 + |c(2)1,1|+ · · ·+ |c
(k)
1,1|.

Since c0 ≤ 1, we have |F|(0, 1, 1, · · · , 1) ≤ 1. Hence, the above equation implies

c
(1)
1,1 ≥ |c

(2)
1,1|+ |c

(3)
1,1|+ · · ·+ |c

(k)
1,1|. (18)

By taking the coordinate (1, 0, 1, · · · , 1), we have

|F|(1, 0, 1, · · · , 1) =

k∑
r=1

|fr(1, 0, 1, · · · , 1)| = 1− c(1)1,2 + |c(2)1,2|+ · · ·+ |c
(k)
1,2|.

Hence,

c
(1)
1,2 ≥ |c

(2)
1,2|+ |c

(3)
1,2|+ · · ·+ |c

(k)
1,2| (19)

More generally, by taking coordinates (1, 1, 0, 1 · · · , 1), (1, 1, 1, 0, 1 · · · , 1), · · · ,
and (1, 1, · · · , 1, 0), we have: for all j = 1, 2, · · · , k,

c
(1)
1,j ≥ |c

(2)
1,j |+ |c

(3)
1,j |+ · · ·+ |c

(k)
1,j |. (20)

Now consider the coordinates (0, 2, 2, · · · , 2), (2, 0, 2, · · · , 2),· · · and (2, 2, · · · , 2, 0).
Similarly, we can have: for all j = 1, 2, · · · , k,

c
(2)
2,j ≥ |c

(1)
2,j |+ |c

(3)
2,j |+ · · ·+ |c

(k)
2,j |. (21)
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And more generally, by taking the coordinates (0, `, `, · · · , `), (`, 0, `, · · · , `),· · ·
and (`, `, · · · , `, 0), we have: for all ` = 1, 2, · · · , k, and j = 1, 2, · · · , k,

c
(`)
`,j ≥ |c

(1)
`,j |+ · · ·+ |c

(`−1)
`,j |+ |c(`+1)

`,j |+ · · ·+ |c(k)`,j | =
∑
i6=`

|c(i)`,j |. (22)

(2) We prove that for all i 6= j c
(i)
i,j ≥ |c

(j)
i,j |, and “=” holds if and only for

all ` ∈ {1, 2, · · · , k} \ {i, j}, c(`)i,j = 0.

By Equation (19), we have c
(1)
1,2 ≥ |c

(2)
1,2|, and “=” holds if and only if

|c(3)1,2| = |c
(4)
1,2| = · · · = |c

(k)
1,2| = 0,

which means that for all ` ∈ {1, 2, · · · , k} \ {1, 2}, c(`)1,2 = 0.
Similarly, by Equation (20), we have

c
(1)
1,2 ≥ |c

(2)
1,2|, c

(1)
1,3 ≥ |c

(3)
1,3|, . . . , c

(1)
1,k ≥ |c

(k)
1,k|,

where in the (j − 1)-th inequality, the “=” holds if and only if for all ` ∈
{1, 2, · · · , k} \ {1, j}, c(`)1,j = 0.

In the same way, by Equation (21), we have: for j = 1, 3, · · · , k, c
(2)
2,j ≥ |c

(j)
2,j |

and the “=” holds if and only if for all ` ∈ {1, 2, · · · , k} \ {2, j}, c(`)2,j = 0. And,
by Equation (22) we have: for all i 6= j,

c
(i)
i,j ≥ |c

(j)
i,j |, (23)

where “=” holds if and only for all ` ∈ {1, 2, · · · , k} \ {i, j}, c(`)i,j = 0.

(3) We prove that for all i 6= j, c
(i)
i,j = |c(j)i,j | and hence for all ` ∈ {1, 2, · · · , k}\

{i, j}, c(`)i,j = 0.

Adding all inequalities of (23) together and then adding
∑k
`=1 c

(`)
`,` to both

sides, we have
k∑
i=1

c
(i)
i,i +

∑
i 6=j

c
(i)
i,j ≥

k∑
j=1

c
(j)
j,j +

∑
i 6=j

|c(j)i,j |. (24)

By Theorem 1, we have

k∑
i=1

c
(i)
i,i +

∑
i 6=j

c
(i)
i,j =

k∑
i=1

(

k∑
j=1

c
(i)
i,j) = k,

and
k∑
j=1

c
(j)
j,j +

∑
i 6=j

|c(j)i,j | ≥
k∑
j=1

c
(j)
j,j +

∑
i 6=j

c
(j)
i,j =

k∑
j=1

(

k∑
i=1

c
(j)
i,j ) = k.

Hence, ∑
i 6=j

c
(i)
i,j ≤

∑
i 6=j

|c(j)i,j |. (25)

By the result of step (2), the equality of (25) holds and hence for all ` ∈
{1, 2, · · · , k} \ {i, j}, c(`)i,j = 0. The proof is then complete.
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Corollary 4 For i = 1, 2, · · · , k and for all ` 6= i,

c
(`)
i,` = c

(`)
`,i = −c(`)i,i .

Proof By Theorem 1, we have

c
(`)
i,1 + c

(`)
i,2 + · · ·+ c

(`)
i,k = 0.

And, by Theorem 6, c
(`)
i,j 6= 0 if and only if j = i or j = `. Thus we have

c
(`)
i,i + c

(`)
i,` = 0. Similarly, since

c
(`)
1,i + c

(`)
2,i + · · ·+ c

(`)
k,i = 0,

by Theorem 6, we have c
(`)
i,i + c

(`)
`,i = 0.

The above two cases complete the proof.

Remark 2 Combining with Corollary 2, we have that for i = 1, 2, · · · , k and

for all ` 6= i, c
(`)
i,` ≥ 0, c

(`)
`,i ≥ 0 and c

(`)
i,i ≤ 0.

The following result further strengthens Corollary 3.

Lemma 4 If c0 ≤ 1, then for all ` = 1, 2, · · · , k,

c
(`)
`,` ≥

1

2
.

Proof By Equation (22) in the proof of Theorem 6, we have

c
(`)
`,` ≥

∑
j 6=`

|c(j)`,` |. (26)

By Corollary 4, for j 6= `, |c(j)`,` | = |c
(j)
`,j |. Plugging in the above inequality and

using Theorem 6, we have

c
(`)
`,` ≥

∑
j 6=`

|c(j)`,j | =
∑
j 6=`

c
(`)
`,j . (27)

On the other hand, By Theorem 1, we have

c
(`)
`,` +

∑
j 6=`

c
(`)
`,j =

k∑
j=1

c
(`)
`,j = 1 (28)

Combining Equations (27) and (28) together, we have c
(`)
`,` ≥

1
2 , which

completes the proof.

We are now ready to prove the following theorem.

Theorem 7 If c0 ≤ 1, then for all ` = 1, 2, · · · , k,

c
(`)
`,` =

1

2
.
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Proof Let x1, x2, · · · , xk be coordinates such that xi = (xi1, x
i
2, · · · , xik), where

xij =

{
j, j 6= i;
0, i = j.

That is to say, x1 = (0, 2, 3, · · · , k), x2 = (1, 0, 3, · · · , k), · · · , xk = (1, 2, · · · , k−
1, 0).

By definition, for all `, i = 1, 2, · · · , k,

f`(x
i) =

∑
j 6=i

c
(`)
j,j ,

hence we have

k∑
i=1

|F|(xi) =

k∑
i=1

k∑
`=1

|f`(xi)| =
k∑
`=1

(

k∑
i=1

|f`(xi)|) =

k∑
`=1

(

k∑
i=1

|
∑
j 6=i

c
(`)
j,j |). (29)

By Inequality (26), we can drop the absolute value operation and have that
for all ` = 1, 2, · · · , k,

k∑
i=1

|
∑
j 6=i

c
(`)
j,j | =

∑
i 6=`

∑
j 6=i

c
(`)
j,j −

∑
j 6=`

c
(`)
j,j

= (k − 1)c
(`)
`,` + (k − 2)

∑
j 6=`

c
(`)
j,j −

∑
j 6=`

c
(`)
j,j

= (k − 1)c
(`)
`,` + (k − 3)

∑
j 6=`

c
(`)
j,j

= (k − 1)c
(`)
`,` − (k − 3)(1− c(`)`,`)

= (2k − 4)c
(`)
`,` − (k − 3),

(30)

where the 4-th equality is obtained by Remark 2.
Notice that c0 ≤ 1, we have

k∑
i=1

|F|(xi) =

k∑
`=1

[(2k−4)c
(`)
`,`−(k−3)] = (2k−4)

k∑
`=1

c
(`)
`,`−k(k−3) ≤ k, (31)

which implies
k∑
`=1

c
(`)
`,` ≤

k

2
.

By Lemma 4, we have that for ` = 1, 2, · · · , k, c
(`)
`,` = 1

2 , which completes
the proof.

Corollary 5 If c0 ≤ 1, then for ` = 1, 2, · · · , k,

k∑
j=1

c
(`)
j,j = 0.
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Proof By Corollary 4, we have

k∑
j=1

c
(`)
j,j = c

(`)
`,` −

∑
j 6=`

c
(`)
`,j = c

(`)
`,` − (1− c(`)`,`) = 0.

The corollary then immediately follows from Theorem 7.

Now, we can prove the main result in this section.

Theorem 8 Let k ≥ 3 and d0 be the solution of the optimization problem (8).
Then

d0 < 1.

Proof It is sufficient to prove c0 > 1. To this end, we suppose c0 ≤ 1, which
will lead to a contradiction.

Let X = (xi,j)(k−1)×k be a matrix such that for j = 1, 2, · · · , k, the j-th

column of X is a permutation of integers {1, 2, · · · , k}\{j}. By this definition,

we see that xi,j 6= j for all i = 1, 2, · · · , k− 1. Hence, by Remark 2, c
(`)
xi,j ,j

≥ 0

for all ` = 1, 2, · · · , k.
Let xi = (xi,1, xi,2, · · · , xi,k) be the i-th row of X. By the above discussion,

for each ` = 1, 2, · · · , k, we have

|f`(xi)| =|f`(xi,1, xi,2, · · · , xi,k)|

=|c(`)xi,1,1 + c
(`)
xi,2,2

+ · · ·+ c
(`)
xi,k,k

|

=c
(`)
xi,1,1

+ c
(`)
xi,2,2

+ · · ·+ c
(`)
xi,k,k

=f`(xi).

Note that for all j = 1, 2, · · · , k, the j-th column of X is a permutation of
{1, 2, · · · , k} \ {j}. Hence,

k−1∑
i=1

|f`(xi)| =
k−1∑
i=1

f`(xi) =
∑

r,s:r 6=s

c(`)r,s.

By Corollary 5, we have

k−1∑
i=1

|F|(xi) =

k−1∑
i=1

k∑
`=1

|f`(xi)|

=

k∑
`=1

(

k−1∑
i=1

|f`(xi)|)

=

k∑
`=1

([
∑

r,s:r 6=s

c(`)r,s +

k∑
s=1

c(`)s,s]−
k∑
s=1

c(`)s,s)

=

k∑
`=1

(

k∑
r,s=1

c(`)r,s).

Note that if c0 ≤ 1, then
∑k−1
i=1 |F|(xi) ≤ k − 1, which is contradictory to

the assumption that
∑k
`=1(

∑k
r,s=1 c

(`)
r,s) = k. The proof is then complete.
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