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On Lagrange’s four squares theorem with
almost prime variables

By Kai-Man Tsang at Hong Kong and Lilu Zhao at Hefei

Abstract. In 1994, Brüdern and Fouvry [1] initiated the investigation of Lagrange’s
four squares theorem with almost prime variables. In this paper, we prove that every suffi-
ciently large integer, congruent to 4 modulo 24, can be represented as a sum of four squares of
integers, each of which has at most four prime factors. Instead of the four-dimensional vector
sieve developed by Brüdern and Fouvry [1], we establish this result by combining the three-
dimensional sieve and the switching principle.

1. Introduction

We consider the equation of Lagrange

(1.1) x21 C x
2
2 C x

2
3 C x

2
4 D N

with multiplicative restrictions. It is expected that sufficiently large integers under certain nec-
essary congruence condition can be written as sums of four squares of primes. This problem
has not been solved so far. However Hua [10] proved that all large integers congruent to 5
modulo 24 are sums of five squares of primes by using Vinogradov’s method for the ternary
Goldbach problem.

Kloosterman [11] developed the circle method to study the asymptotic formula for the
number of integer solutions of the following positive definite quadratic forms

a1x
2
1 C a2x

2
2 C a3x

2
3 C a4x

2
4 D N:

Estermann [5] investigated the indefinite quadratic forms via the circle method and the
Kloosterman refinement. The classical circle method with mean value theorems (see [16] for
the exposition) provides an asymptotic formula for quadratic forms with five or more variables
only.
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130 Tsang and Zhao, Lagrange’s equation with almost prime variables

Greaves [6] considered the solutions of (1.1) with two prime and two integral variables.
Plaksin [12] and Shields [14] obtained an asymptotic formula for the number of solutions.
Podsypanin [13] derived an asymptotic formula for the number of solutions of (1.1) in which
x1; x2; x3; x4 are square-free.

In 1994, Brüdern and Fouvry [1] established that every sufficiently large integer, congru-
ent to 4 modulo 24, can be written as the sum of four squares of integers, each of which has at
most 34 prime factors.

In 2003, Heath-Brown and Tolev [9] managed to solve the equation

(1.2) p2 C x21 C x
2
2 C x

2
3 D N

with multiplicative restrictions, where p denotes a prime number. Precisely, they established
the solvability of (1.2) with each of xi having at most 101 prime divisors. This was improved
by Tolev [15] who showed that 101 can be replaced by 80, and then improved by Cai [3] who
showed that 42 is acceptable. Our first result is as follows.

Theorem 1.1. Every sufficiently large integer N , congruent to 4 modulo 24, can be
represented in the form of

(1.3) N D p2 C x21 C x
2
2 C x

2
3 ;

where p is a prime and each of x1; x2; x3 has at most five prime factors.

As in [9], the proof of the above theorem will be finished in two steps. In the first step,
we combine the circle method with Kloosterman refinement and the square sieve to control the
reminder term uniformly for certain levelD. In the second step, we use the sieve method to pro-
duce the almost primes. For the uniform estimate, we shall develop the strategy of Heath-Brown
and Tolev, and push their method further.

Comparing to the proof in [9], two things are different. We start from applying Cauchy’s
inequality for summation over k only rather than summations over k and d (see (5.2) in Sec-
tion 5). This subtle difference contributes to a better result because it can be proved that the
error term is dominated by diagonal contributions up to P " (see Lemma 12 below). To this
end, we have to introduce the condition (2.8) at the beginning, and then we remove it before
we close the proof. This obstacle is one of the reasons that force Brüdern and Fouvry to develop
the vector sieve (cf. the discussion in [1, Section III]). Finally instead of the vector sieve which
was used by Brüdern and Fouvry, and by Heath-Brown and Tolev, we appeal to the switching
principle of Chen [4] to reduce the number of prime factors for each variable.

The square sieve of Heath-Brown [8] plays an important role in the proof. However we
will choose the parameter R to be of type P ". Therefore, the square sieve is really responsible
for the success of the proof, while it does not determine the quality of the level D.

Concerning the Lagrange equation with four almost prime variables, the value 34 due to
Brüdern and Fouvry was sharpened by Heath-Brown and Tolev [9] to 25, by Tolev [15] to 20,
and by Cai [3] to 13. We shall prove the following result.

Theorem 1.2. Every sufficiently large integer N , congruent to 4 modulo 24, can be
represented in the form of

(1.4) N D x21 C x
2
2 C x

2
3 C x

2
4 ;

where each of x1; x2; x3; x4 has at most four prime factors.
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Tsang and Zhao, Lagrange’s equation with almost prime variables 131

In prior works [1, 9], in order to obtain a sharp result involving four almost prime vari-
ables, people considered the equation

N D d21 x
2
1 C d

2
2 x

2
2 C d

2
3 x

2
3 C d

2
4 x

2
4 :

Our approach to Theorem 1.2 is different. We consider the equation

N D q2 C d21 x
2
1 C d

2
2 x

2
2 C d

2
3 x

2
3 ;

where q is an almost prime. Therefore, instead of the vector sieve developed by Brüdern and
Fouvry [1], we shall combine the three-dimensional sieve and the switching principle to estab-
lish Theorem 1.2.

As usual, we write e.z/ for e2�iz . We use " to denote a sufficiently small positive num-
ber, and the letter A denotes a sufficiently large constant. We use � to denote Vinogradov’s
well-know notation, while implicit constants may depend on " and A.

2. A crucial proposition

Before giving the main propositions, we introduce some notations. LetN be a sufficiently
large integer satisfying N � 4 .mod 24/. Set P D N 1=2. The letter p is reserved for prime
numbers. As usual, �.n/, �.n/ and �.n/ denote the Möbius function, Euler’s totient function,
and the divisor function respectively. For the natural number q and real number ˛, we write
eq.˛/ D e.˛=q/. We use

P
x.q/ and

P
x.q/� to denote sums with x running over a complete

system, respectively reduced system of residues modulo q. The Gauss sums S.q;m; n/ and
T .q; a/ are defined by

S.q;m; n/ D
X
x.q/

eq.mx
2
C nx/; S.q;m/ D S.q;m; 0/;(2.1)

T .q; a/ D
X
x.q/�

eq.ax
2/;

and

Sd.q;m;n/ D
3Y

jD1

S.q;md2j ; nj /; Sd.q;m/ D Sd.q;m; 0/;

where we use the bold style letter d to indicate the three-dimensional vectors .d1; d2; d3/. Now
we define the singular series

(2.2) †0.d; N / D
1X
qD1

hd.q/ D
Y
p>2

.1C hd.p//;

where
hd.q/ D q

�3�.q/�1
X
a.q/�

Sd.q; a/T .q; a/eq.�aN/:

Let

!0.t/ D

´
exp. 1

.20t�10/2�1
/ if 9

20
< t < 11

20
;

0 otherwise;
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132 Tsang and Zhao, Lagrange’s equation with almost prime variables

and denote

!.x/ D !0.xP
�1/; !.x/ D

3Y
jD1

!.xj /:

We define

I.ˇ; u/ D

Z C1
�1

!0.x/e.ˇx
2
C ux/dx; I.ˇ/ D I.ˇ; 0/;

and

Id.ˇ;u/ D
3Y

jD1

I.ˇ; ujd
�1
j /:

Let

(2.3) H.t/ D

Z C1
�1

I 3.ˇ/e.�tˇ/dˇ:

For any j � 15, let Aj denote the set consisting of integers q � P satisfying two restrictions:

(i) the number of prime factors of q counting multiplicity is exactly j ,

(ii) all prime factors of q are greater than P 1=16.

In order to apply the sieve method, we study

(2.4) Ld.N / WD L
j
d .N / D

X
q2Cx21Cx

2
2Cx

2
3DN

q2Aj ; di jxi .1�i�3/

!.q/!.x/:

Here we also attach the smooth weight !.q/ for the use of switching principle. The correspond-
ing singular integral is defined by

(2.5) N0.N / WD N
j
0 .N / D P

Z P

0

H

�
1 �

x2

P 2

�
!.x/Cj .x/dx

log x
;

where C1.x/ D 1 and for j � 2,

Cj .x/ D
X

P 1=16<p1�����pj�1�.xp
�1
1 ���p

�1
j�2

/1=2

log x
.log x � log.p1 � � �pj�1//p1 � � �pj�1

:

The expected main term for Ld.N / is N0.N /†0.d; N /.d1d2d3/�1. ( Here and after, we shall
often suppress the dependence on j when the meaning is clear from the context.) We plan to
investigate

H .D/ D
X

d1;d2;d3
Œd1;d2;d3��D

ˇ.d/
�

Ld.N / �
N0.N /†0.d; N /

d1d2d3

�
;

where ˇ.d/ D ˇ.d1; d2; d3/ is a real function satisfying

(2.6) jˇ.d/j � �2.d1/�2.d2/�2.d3/;

and ˇ.d/ D 0 unless

(2.7) �.2d1/�.2d2/�.2d3/ 6D 0:
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Tsang and Zhao, Lagrange’s equation with almost prime variables 133

Let

H0.D/ D
X

d1;d2;d3�D

ˇ.d/
�

Ld.N / �
N0.N /†0.d; N /

d1d2d3

�
:

Heath-Brown and Tolev established the following result.

Proposition 1 ([9]). If D D P 2=69�", then one has

H0.D/� P 2.logP /�A:

Define

B.d1; d2; d3; d4; N / D
X

x21Cx
2
2Cx

2
3Cx

2
4DN

xi�0 .mod di /

4Y
iD1

!.xi /

and

†1.d1; d2; d3; d4; N / D

1X
qD1

q�4
X
a.q/�

eq.�aN/

4Y
iD1

S.q; ad2i /:

Let

H�0 .D/ D
X

d1;d2;d3;d4�D

ˇ̌̌̌
B.d1; d2; d3; d4; N / � �1N

†1.d1; d2; d3; d4; N /

d1d2d3d4

ˇ̌̌̌
;

where the constant �1 is given by

�1 D

Z 1
�1

I 4.ˇ/e.�ˇ/dˇ:

It was proved by Heath-Brown and Tolev that:

Proposition 2 ([9]). If D � P 1=8�", then one has

H�0 .D/� P 2�":

Proposition 2 improves upon the result of Brüdern and Fouvry [1] who essentially
showed H�0 .D/� P 2�" provided that D � P 1=11�".

Concerning H .D/, we prove the following result.

Proposition 3. Suppose that D < P 1=2�". Then we have

H .D/� P 2.logP /�A:

Remark. (i) The function ˇ.d/ may depend on N , but in view of (2.6), the absolute
value of ˇ.d/ is bounded from above by

Q3
jD1 �

2.dj / which is independent of N .
(ii) With the application to Lagrange’s four squares theorem with almost prime variables

in mind, Proposition 3 improves upon both Proposition 1 and Proposition 2.

In order to prove Proposition 1, Heath-Brown and Tolev investigated the following object:

�d.n/ D
X

x21Cx
2
2Cx

2
3Dn

dj jxj .1�j�3/

!.x/:
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134 Tsang and Zhao, Lagrange’s equation with almost prime variables

The application of circle method suggests that the sum �d.n/ may be approximated by

Md;Q.n/ D
PH.nN�1/

d1d2d3

X
q�Q

q�3
X
a.q/�

eq.�an/Sd.q; a/:

Consider

eE.D;Q/ D X
d1;d2;d3�D

�.d1/�.d2/�.d3/
X
k�P

j�d.N � k
2/ �Md;Q.N � k

2/j:

Heath-Brown and Tolev established

eE.D;Q/� P 2�"

provided that Q D P 20=23 and D D P 2=69�10". Our purpose is to establish the following
result.

Proposition 4. Let

G .nIQ;D1;D2;D3/ D
X

di�Di .1�i�3/

ˇ.d1; d2; d3/.�d.n/ �Md;Q.n//;

where ˇ.d1; d2; d3/ satisfies (2.6), (2.7) and

(2.8) .di ; dj / � P
" for 1 � i < j � 3:

Suppose that D1D2D3 < P 1=2�6" and P 1�4" < Q < P 1�2". Then we haveX
k�P

jG .N � k2IQ;D1;D2;D3/j � P 2�":

Proposition 4 will be proved in Sections 3–6. As an application of Proposition 4, we shall
prove Proposition 3 in Section 7.

3. Basic assumptions

We first quote some lemmas which are well known.

Lemma 1. The Gauss sum defined by (2.1) satisfies:

(i) If .q1; q2/ D 1, then

S.q1q2; a1q2 C a2q1; n/ D S.q1; a1q
2
2 ; n/S.q2; a2q

2
1 ; n/:

(ii) Suppose that .q;m/ D k. Then we have

S.q;m; n/ D

´
kS.q=k;m=k; n=k/ if k jn;

0 otherwise:
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Tsang and Zhao, Lagrange’s equation with almost prime variables 135

(iii) If .q; 2m/ D 1, then

S.q;m; n/ D eq.�4mn
2/

�
m

q

�
S.q; 1/;

where x denotes the inverse of x modulo q.

(iv) If q is odd, then

S.q; 1/ D

´
q1=2 if q � 1 .mod 4/;

iq1=2 if q � 3 .mod 4/:

(v) If .2; a/ D 1, then
jS.2l ; a; n/j � 21Cl=2:

(vi) For any odd integer q, we have j.q/j � q1=2, where

.q/ D
X
x.q/�

�
x

q

�
eq.x/:

Throughout, by . l
q
/ we denote the Jacobi symbol.

Lemma 2. Denote the Kloosterman sum by

K.p;m; n/ D

p�1X
xD1

ep.mx C nx/:

If p − .m; n/, then
jK.p;m; n/j � 2p1=2:

Lemma 3. Let cq.n/ be the Ramanujan sum given by

cq.n/ D
X
x.q/�

eq.xn/:

Then we have
jcq.n/j � .q; n/:

Lemma 4. The following statements hold.

(i) Suppose that u D max¹ju1j; : : : ; ju6jº > 0. Then we haveZ C1
�1

jI.ˇ; u1/ � � � I.ˇ; u6/jdˇ � min¹1; u�2C"º:

(ii) Suppose that ˇ0 > 0. Then we haveZ
jˇ j�ˇ0

jI.ˇ/j6dˇ � ˇ�20 :

Lemma 4 is a consequence of [9, Lemma 9 and Lemma 10]. Let

fd .˛/ D
X
x2Z

x�0 .mod d/

!.x/e.˛x2/; fd.˛/ D

3Y
iD1

fdi .˛/;
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136 Tsang and Zhao, Lagrange’s equation with almost prime variables

and let
Wd;Q.˛/ D

X
n2Z

Md;Q.n/e.˛n/:

The following two lemmas provide useful approximations to fd .˛/ and Wd;Q.˛/ respectively.

Lemma 5 ([9, Lemma 12]). Let q; d; b; h 2 N, let ˇ 2 R, q � P with jˇj � .qP /�1

and d; b � P 2. Then we have

fd

�
h

b
C ˇ

�
D

P

bd

X
jnj�bdq�1P "

S.b; hd2; n/I

�
ˇN;�

Pn

bd

�
CO.P�A/;

where the implicit constant depends on A and ".

Lemma 6 ([9, Lemma 16]). Suppose that Q � P 1�", jˇj � .qP /�1 and .a; q/ D 1.
Then we have

Wd;Q.˛/ D

´
P 3

q3d1d2d3
Sd.q; a/I

3.ˇN /CO.P�A/ if 1 � q � Q;

O.P�A/ if Q < q � P;

where the implicit constants depend on A and ".

Set

�0 D

Z C1
�1

jI 6.ˇ/jdˇ:

Lemma 7. Let

B.˛/ D
X
n2Z

H 2

�
n

N

�
e.n˛/;

where H.t/ is given in (2.3). We have

B.˛/ D

´
�0P

2 CO.P�A/ if ˛ 2 Z;

O.P�A/ if k˛k � P "�2;

where the implicit constants may depend on A and ".

Lemma 7 is [9, formula (115)].

4. Some preparations

Let

(4.1) �.qId; t;n; l; v; b1; b2/ D
X
a.q/�

eq.ab1v/Sd.q; ab
2
2 ;n/St.q;�ab

2
1 ;�l/;

and let

(4.2) � D �.d; t;n; l; v; b1; b2/ D b21b
2
2

 
�4

v

b1
C

3X
jD1
nj 6D0

n2j

d2j b
2
2

�

3X
iD1
li 6D0

l2i

t2i b
2
1

!
� lcm;
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Tsang and Zhao, Lagrange’s equation with almost prime variables 137

where we use lcm to denote the least common multiple of dj (j 2 J ) and ti (i 2 I ) with the
index sets J D ¹1 � j � 3 W nj 6D 0º and I D ¹1 � i � 3 W li 6D 0º. For n D l D 0 2 Z3, we
assume lcm D 1. For simplicity, in this section we always assume that d satisfies (2.7), (2.8)
and di � Di for 1 � i � 3, and we also have analogous assumptions with t in place of d. We
use the notations .q;k/ D .q; k1/.q; k2/.q; k3/ and .q;k2/ D .q; k21/.q; k

2
2/.q; k

2
3/ for k D d

and t.

Lemma 8. Let �.q/ WD �.qId; t;n; l; v; b1; b2/ be defined in formula (4.1). Suppose
that .2; r/ D 1 and .b1b2; 2r/ D 1. Then we have

j�.2ur/j �

´
24uC6r3.r; �/.r;d/.r; t/ if � 6D 0 and .n; l/ 6D 0 2 Z6;

24uC6r4.r;d2/1=2.r; t2/1=2 otherwise;

where � D �.d; t;n; l; v; b1; b2/ is given by (4.2).

Proof. As a function of q, �.q/ D �.qId; t;n; l; v; b1; b2/ is multiplicative. So it suf-
fices to prove

(4.3) j�.2u/j � 24uC6;

and

(4.4) j�.p˛/j �

´
p3˛.p˛; �/.p˛;d/.p˛; t/ if � 6D 0 and .n; l/ 6D 0;
p4˛.p˛;d2/1=2.p˛; t2/1=2 otherwise;

for odd prime p. Plainly, (4.3) follows from Lemma 1 (v). By Lemma 1 (ii) and (iii),

S.p˛; am2; n/ D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

e.�4m
2an2

p˛
/S.p˛; a/ if p −m;

e.�4s
2at2

p˛�2
/p2S.p˛�2; a/ if p k m D ps; p2 jn D p2t and ˛ � 2;

0 if p k m D ps; p2 −n and ˛ � 2;

p if p jm;p jn and ˛ D 1;

0 if p jm;p −n and ˛ D 1;

where p k m means p jm but p2 −m. Then for ˛ � 2, we have

�.p˛/ D

8̂̂<̂
:̂
pˇC3˛

X
a.p˛/�

e

�
ab1v

p˛

�
e

�
�4a

hc

p˛

�
if .p˛; d2j / jnj and

.p˛; t2j / j lj .1 � j � 3/;

0 otherwise;

(4.5)

where pˇ k d1d2d3t1t2t3 and

h

c
D

3X
jD1

�
n2j

d2j b
2
2

�
l2j

t2j b
2
1

�
with .h; c/ D 1. This proves (4.4) in the case ˛ � 2 by using Lemma 3. Hence we turn to the
case ˛ D 1.
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138 Tsang and Zhao, Lagrange’s equation with almost prime variables

If p − d1d2d3t1t2t3, then formula (4.5) still holds for ˛ D 1. We therefore confine to the
case p j d1d2d3t1t2t3. Note that

jS.p; am2; n/j � p1=2.p;m/1=2

by Lemma 1 (ii), (iii) and (iv). The second estimate of (4.4) follows easily. Now we assume
that � 6D 0 and .n; l/ 6D 0. If p k d1d2d3t1t2t3, then �.p/ is in the form

�.p/ D pS.p; 1/5
X
a.p/�

�
a

p

�
e

�
abc

q

�
;

where .b; p/ D 1. The summation over a is either 0 or a Gauss sum. So, by Lemma 1 (vi), we
have

j�.p/j � p3C1=2.p;d/1=2.p; t/1=2 D p3.p;d/.p; t/:

If p2 j d1d2d3t1t2t3, then we apply the trivial bound for summation over a to get

j�.p/j � p4.p;d/1=2.p; t/1=2 � p3.p;d/.p; t/:

The proof is completed.

From now on, we assume that p; p0 are two different primes satisfying R � p; p0 < 2R
and .pp0; d1d2d3t1t2t3N/ D 1. For � j .pp0/2, we have the unique decomposition � D ıı0,
where .p; ı0/ D .p0; ı/ D 1. We use � and � 0 to denote a power of p, and respectively a power
of p0 (note that � and � 0 may be equal to 1).

Let us define

W.�; qId; t;n; l; p; p0; v/ D
X

s.pp0/�

�
s

pp0

�
epp0.�sN /

X
a.q/�

.app0Csq;qpp0/D�

eq.av/

� Sd.qpp
0��1; .app0 C sq/��1;n/St.q;�a;�l/

and

R.ı; p; � Id; t;n; l; m1; m2; n/ D
X
c.p/�

�
c

p

�
ep.�cn/

X
b.�/�

.bpCc�;�p/Dı

e�.bm1v/

� Sd

�
�p

ı
;
bp C c�

ı
m22;n

�
St.�;�bm

2
1;�l/:

Lemma 9. Suppose that q D �� 0r with .pp0; r/ D 1. Then one has

W.�; qId; t;n; l; p; p0; v/ D
�
p

p0

��
p0

p

�
�.r Id; t;n; l; v; �� 0; �� 0pp0��1/

�R

�
ı; p; � Id; t;n; l; r� 0;

rp0� 0

ı0
; p0N

�
�R

�
ı0; p0; � 0Id; t;n; l; r�;

rp�

ı
; pN

�
:
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Proof. Let
a D ˛�� 0 C b� 0r C b0�r

with .˛; r/ D .b; p/ D .b0; p0/ D 1 and

s D cp0 C c0p

with .c; p/ D .c0; p0/ D 1. Note that

.app0 C sq; qpp0/ D � ” .bp C c�; p�/ D ı and .b0p0 C c0� 0; p0� 0/ D ı0:

Obviously

app0 C sq

�
D ˛

p�

ı

p0� 0

ı0
C
bp C c�

ı

p0� 0

ı0
r C

b0p0 C c0� 0

ı0
p�

ı
r:

With the help of Lemma 1 (i), the desired result can be obtained by changing variables.

Lemma 10. We haveˇ̌̌̌
R

�
ı; p; � Id; t;n; l; r� 0;

rp0� 0

ı0
; p0N

�
R

�
ı0; p0; � 0Id; t;n; l; r�;

rp�

ı
; pN

�ˇ̌̌̌
� min¹��2R4.4�� 0/5.1C�R�2/�1; 26R4.�� 0/4º:

Proof. We can assume that ı jp� and ı jp0� 0. Otherwise, the desired estimate holds
trivially. We write

R.ı; p; �/ WD R

�
ı; p; � Id; t;n; l; r� 0;

rp0� 0

ı0
; p0N

�
:

Obviously .1C ıR�1/�1.1C ı0R�1/�1 � .1C�R�2/�1. Thus it is enough to prove

jR.ı; p; �/j � min¹ı�2R2.2�/5.1C ıR�1/�1; 8R2�4º:

Set m1 D r� 0 and m2 D rp0� 0=ı0. It is clear that p −m1m2.
When ı D 1, .bp C c�; �p/ D ı is equivalent to � D 1. So one has

R.1; p; �/ D
X
c.p/�

�
c

p

�
ep.�cp

0N/Sd.p; cm
2
2;n/

D S.p; 1/3
X
c.p/�

ep.�cp
0N/ep

 
�4cm22

3X
jD1

n2j d
2
j

!
:

Then by Lemma 1 (iv) and Lemma 2, we get

jR.1; p; �/j � 2p2:

When ı D p, we have .bp C c�; �p/ D ı if and only if p j� and .b C c �
p
; p/ D 1.

Hence

R.ı; p; �/ D
X
c.p/�

�
c

p

�
ep.�cp

0N/
X
b.�/�

.bCc�p�1;�/D1

e�.bm1v/

� Sd

�
�;

�
b C c

�

p

�
m22;n

�
St.�;�bm

2
1;�l/:

Using the trivial bound for summations over c and b, we get

jR.ı; p; �/j � p�4:
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140 Tsang and Zhao, Lagrange’s equation with almost prime variables

When ı D p2, we have .bpCc�; �p/ D ı if and only if � D p and bCc � 0 .mod p/.
Therefore, one has

R.ı; p; �/ D
X
c.p/�

�
c

p

�
ep.�cp

0N/
X
b.p/�

bCc�0 .mod p/

ep.bm1v/St.p;�bm
2
1;�l/

D

X
c.p/�

�
c

p

�
ep.�cp

0N/ep.�cm1v/St.p; cm
2
1;�l/

D S3.p; 1/
X
c.p/�

ep.�cp
0N/ep.�cm1v/ep

 
�4cm21

3X
jD1

l2j t
2
j

!
:

Then we get
jR.ı; p; �/j � 2p2:

This completes the proof.

In view of Lemma 8, we define

�.r; �;d; t/ D

´
.r; �/.r;d/.r; t/ if � 6D 0 and .n; l/ 6D 0;
r.r;d2/1=2.r; t2/1=2 otherwise:

We summarize from Lemmas 8–10 that

Lemma 11. Suppose that q D 2u�� 0r with .2pp0; r/ D 1. Then we have

jW.�; qId; t;n; l; p; p0; v/j

� 24uC6r3�.r; �;d; t/min¹��2R4.4�� 0/5.1C�R�2/�1; 26R4.�� 0/4º:

The following estimate is a key ingredient in our proof.

Lemma 12. Let H > 0. Define

U D
X
jvj�P

1

1C jvj

X
d

X
t

X
.n;l/ 6D02Z6

jnj j�djHP
"; jli j�tiP

"

�.d;t;n;l;v;b1;b2/D0

max
²
jnj j

djH
;
jli j

ti

³�1
:

Suppose that .b1b2; 2d1d2d3t1t2t3/ D 1. Then we have

U� P ".D1D2D3/
2.1CH/:

Remark. Recalling (4.2), when b1 D b2 D 1 and v D 0, one has the diagonal contri-
butions from d D t and n D l. Therefore in the case b1 D b2 D 1 and H D 1, we have the
lower bound U� .D1D2D3/

2 which coincides with the upper bound (up to P ").

Proof. We decompose U to get

U� P " sup
Nj�DjHP

"

Li�DiP
"

jvj�P

U.N1; N2; N3; L1; L2; L3/;
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where

U.N1; N2; N3; L1; L2; L3/ D
X

d

X
t

X
n;l

Nj�jnj j�2Nj ;Li�jli j�2Li
.n;l/ 6D02Z6

�WD�.d;t;n;l;v;b1;b2/D0

max
²
jnj j

djH
;
jli j

ti

³�1
:

Without loss of generality, we assume either L1 6D 0 or N1 6D 0.
We first consider the case L1 6D 0. Let

ei D
Y
p j ti

p −d1d2d3t1t2t3t
�1
i

p:

Since e2i is a divisor of � � b21b
2
2l
2
i =.t

2
i b
2
1/ lcm and .b21b

2
2 t
�2
i lcm; e2i / D 1, we have e2i j l

2
i

and then ei j li . Hence for fixed d and t, there are at most 2L1e�11 .1C 2L2e
�1
2 /.1C 2L3e

�1
3 /

possible choices for l. Clearly

max
²
jnj j

djH
;
jli j

ti

³�1
� t1L

�1
1 :

Now fix d, t and l, we claim there are at mostO.P " CHP "/ possible choices for n1. Suppose
that .n1; n2; n3/ and .n01; n

0
2; n
0
3/ are two solutions for �.d; t;n; l; v; b1; b2/ D 0. Then

3X
jD1

n2j � n
02
j

d2j
D 0:

We write it in the form

Œd1; d2; d3�
2

d21
.n21 � n

02
1 / D �

Œd1; d2; d3�
2

d22
.n22 � n

02
2 / �

Œd1; d2; d3�
2

d23
.n23 � n

02
3 /:

Let
k D

Y
p jd1
p −d2d3

p:

We see that n21 � n
02
1 .mod k2/: So we can findK j k2 withK � k such that eitherK jn1 C n01

orK jn1 � n01. We deal withK jn1 � n01, and the other case can be handled similarly. Suppose
that n1 � n01 D Km for some m with 0 � jmj � d1HP "K�1. Note that K � d1P�" due to
K � k and the condition (2.8). Then the number of possible choices for m is O..1CH/P "/.
The number of K satisfying K j k2 is at most O.P "/. Thus there are at most O..1CH/P "/
choices for n1. Then n2; n3 can be determined (up to at most P " choices) by d; t; l; n1 due to
the equation � D 0. Hence

U.N1; N2; N3; L1; L2; L3/�
X

d

X
t

L1

e1

�
1C

L2

e2

��
1C

L3

e3

�
t1

L1
.1CH/P "

�

X
d

X
t

3Y
iD1

ti

ei
.1CH/P ":
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142 Tsang and Zhao, Lagrange’s equation with almost prime variables

Note that

ti � ei

3Y
jD1

.dj ; ti /.t1; t2/.t1; t3/.t2; t3/� ei

3Y
jD1

.dj ; ti /P
";

so

U.N1; N2; N3; L1; L2; L3/�
X

d

X
t

3Y
iD1

3Y
jD1

.dj ; ti /.1CH/P
"

� .D1D2D3/
2.1CH/P ":

Now we assume N1 6D 0 and l D 0. Let

h D
Y
p jd1

p −d2d3t1t2t3

p:

The similar argument as before implies h jn1. So there are at most 4N1h�1 choices for n1.
Then n2; n3 will be determined. We arrive at

U.N1; N2; N3; L1; L2; L3/�
X

d

X
t

.N1h
�1/d1HN

�1
1

�

X
d

X
t

Y
i

.d1; ti /HP
"

� .D1D2D3/
2HP ":

The proof is completed.

To handle the contribution from � 6D 0, we need the following.

Lemma 13. Let

V D
X
jvj�P

1

1C jvj

X
d;t

X
r�P

1

r

X
.n;l/ 6D02Z6

jnj j�djHP
"; jli j�tiP

"

.d2
j
;r/ jnj ; .t

2
i
;r/ j li

�WD�.d;t;n;l;v;b1;b2/ 6D0

.r; �/.r;d/.r; t/max
²

n2j

d2j H
2
;
l2i

t2i

³�1

with H > 0. One has
V � P ".D1D2D3/

4.1CH/3:

Proof. By changing variables, we get

V �
X
jvj�P

1

1C jvj

X
d;t

X
hj jdj
ki j ti

h1h2h3k1k2k3
X

.n;l/ 6D02Z6

jnj j�djHP
"

jli j�tiP
"

hj jnj ; ki j li
� 6D0

max
²

n2j

d2j H
2
;
l2i

t2i

³�1 X
r�P

.r; �/

r

�

X
d;t

X
hj jdj

X
ki j ti

h1h2h3k1k2k3
X

.n;l/6D02Z6

jnj j�djHP
"

jli j�tiP
"

hj jnj ; ki j li

max
²

n2j

d2j H
2
;
l2i

t2i

³�1
P ":
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Without loss of generality, we assume

max
²

n2j

d2j H
2
;
l2i

t2i

³
D

n21

d21H
2
:

First we handle the case that .n2; n3; l1; l2; l3/ 2 Z5 is non-zero. We haveX
hj jnj

1 � 1C .jn1jd
�1
1 H�1/djHh

�1
j for 2 � j � 3

and X
ki j li

1 � 1C .jn1jd
�1
1 H�1/tik

�1
i for 1 � i � 3.

Since .n2; n3; l1; l2; l3/ 2 Z5 is non-zero, at least one of the five inequalities above holds with 1
omitted. Hence

V �
X
d;t

X
hj jdj

X
ki j ti

h1h2h3k1k2k3
X
h1 jn1

0<jn1j�d1HP
"

d21H
2P "

n21

 �
1C
jn1jd2

d1h2

��
1C
jn1jd3

d1h3

�

�

�
1C

jn1jt1

d1Hk1

��
1C

jn1jt2

d1Hk2

��
1C

jn1jt3

d1Hk3

�
� 1

!
:

A simple calculation reveals that

V � P ".D1D2D3/
4.1CH/3:

Now we turn to the case n2 D n3 D l1 D l2 D l3 D 0. Note that � is independent of d2; d3
and t in this case. Switching the summations, we arrive at

V �
X
jvj�P

1

1C jvj

X
d1

X
r�P

1

r

X
0<jn1j�d1HP

"

.r;d1/ jn1
� 6D0

d21H
2.r; �/.r; d1/

n21

X
d2;d3;t

.r; d2/.r; d3/.r; t/

�

X
jvj�P

1

1C jvj

X
d1

X
r�P

1

r

X
0<jn1j�d1HP

"

� 6D0

d21H
2.r; �/n�11 D1.D2D3/

2P ":

Hence we easily obtain V � D41D
2
2D

2
3H

2P ". The proof is thus completed.

For H > 0, we define

Nd;q.H/ D ¹n 2 Z3 W jni j � diHP
"; ni � 0 .mod .q; d2i //; i D 1; 2; 3º;

and write Nd;q D Nd;q.1/. Let

Y1 D
X
jvj�P

1

1C jvj

X
d; t

X
� j .pp0/2

X
q�P

�3

q6

�

X
n2Nq;d.pp

0=�/

l2Nq;t

jW.�; qId; t;n; l; p; p0; v/jC.q;d; t;n; l; pp0��1/;
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144 Tsang and Zhao, Lagrange’s equation with almost prime variables

where

(4.6) C.q;d; t;n; l;H/ D

´
min if .n; l/ 6D 0;
q2P�2 if .n; l/ D 0;

and

min D min

´
q2

P 2

 
3X

jD1

�
n2j

d2j H
2
C
l2i

t2i

�!�1
;
q

P

 
3X

jD1

�
jnj j

djH
C
jli j

ti

�!�1µ
:

Let

Y2 D
X
jvj�P

1

1C jvj

X
d

X
t

X
q�P

1

q6

X
.n;l/ 6D02Z6

n2Nq;d
l2Nq;t

j�.qId; t;n; l; v; 1; 1/j

�min

´
q2

P 2

 
3X

jD1

�
n2j

d2j
C
l2i

t2i

�!�1
;
q

P

 
3X

jD1

�
jnj j

dj
C
jli j

ti

�!�1µ
:

With the help of Lemmas 8–13, we establish the following result.

Lemma 14. Let Y1 and Y2 be defined as above. Then one has

Y1 � .D1D2D3/
2P "�1R6 C .D1D2D3/

4P�2C"R10;

Y2 � .D1D2D3/
2P�1C" C .D1D2D3/

4P�2C":

Proof. The proofs for Y1 and Y2 are similar. Indeed, the argument for Y2 is easier,
because there is no R involved. We only work out the details for Y1.

We write Y1 D Y
.1/
1 CY

.2/
1 CY

.3/
1 , where Y

.1/
1 is the contribution from .n; l/ D 0, Y

.2/
1 is

the contribution from those terms with .n; l/ 6D 0 but � WD �.d; t;n; l; v; �� 0; �� 0pp0=�/ D 0,
and Y

.3/
1 is the contribution from the remaining terms. By Lemma 11, when .n; l/ D 0 or � D 0,

W.�; qId; t;n; l; p; p0; v/(4.7)

� 24ur4.r;d2/1=2.r; t2/1=2��2R4.�� 0/5.1C�R�2/�1;

where we have used the decomposition q D 2u�� 0r with .2pp0; r/ D 1. On applying the esti-
mate (4.7), we get

Y
.1/
1 � P�2R4

X
jvj�P

1

1C jvj

X
d;t

X
� j .pp0/2

X
2u�� 0r�P

��� 0.r;d2/1=2.r; t2/1=2

1C�R�2
:

Recalling the condition (2.8), we obtainX
r� P

2u��0

.r;d2/1=2.r; t2/1=2 �
� X
r� P

2u��0

.r;d2/
�1=2� X

r� P
2u��0

.r; t2/
�1=2

� P "
� X
r� P

2u��0

.r; d21 d
2
2 d

2
3 /

�1=2� X
r� P

2u��0

.r; t21 t
2
2 t
2
3 /

�1=2

�
P 1C"

2u�� 0
:
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Then one can get X
2u�� 0r�P

�� 0.r;d2/1=2.r; t2/1=2 � P 1C":

It is easy to see X
� j .pp0/2

�

1C�R�2
� R2:

We can now conclude that
Y
.1/
1 � .D1D2D3/

2P "�1R6:

Combining (4.7) and

C

�
q;d; t;n; l;

pp0

�

�
�

q

P
max

²
jnj j

djpp0=�
;
jli j

ti

³�1
;

one can deduce that

Y
.2/
1 � P�1R4

X
jvj�P

1

1C jvj

X
d;t

X
� j .pp0/2

X
2u�� 0r�P

X
.n;l/ 6D02Z6

jnj j�djP
"pp0=�

jli j�tiP
"

�D0

�

2ur.1C�R�2/

� .r;d2/1=2.r; t2/1=2 max
²
jnj j

djpp0=�
;
jli j

ti

³�1
:

Note that X
2u�� 0r�P

1

2ur
.r;d2/1=2.r; t2/1=2 � P ";

we have
Y
.2/
1 � P�1C"R4

X
� j .pp0/2

�

1C�R�2

X
jvj�P

1

1C jvj

�

X
d;t

X
.n;l/ 6D02Z6

jnj j�djP
"pp0=�

jli j�tiP
"

�D0

max
²
jnj j

djpp0=�
;
jli j

ti

³�1
:

Then one can conclude, by appealing to Lemma 12, that

Y
.2/
1 � P�1C"R4

X
� j .pp0/2

�

1C�R�2
.D1D2D3/

2

�
1C

pp0

�

�
� .D1D2D3/

2P "�1R6:

For Y
.3/
1 we shall apply

W.�; qId; t;n; l; p; p0; v/� 24ur3.r; �/.r;d/.r; t/R4.�� 0/4

by Lemma 11. Note that Nq;d.pp
0=�/ D Nr;d.pp

0=�/ for q D 2u�� 0r , and

C

�
q;d; t;n; l;

pp0

�

�
�

q2

P 2
max

²
n2j

d2j .pp
0=�/2

;
l2i

t2i

³�1
:
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146 Tsang and Zhao, Lagrange’s equation with almost prime variables

Thus, one has

Y
.3/
1 � P�2R4

X
� j .pp0/2

�
X
jvj�P

1

1C jvj

X
2u�� 0r�P

1

r

�

X
d;t

X
.n;l/6D02Z6

n2Nr;d.�=.pp
0//

l2Nr;t
� 6D0

.r; �/.r;d/.r; t/max
²

n2j

d2j .pp
0=�/2

;
l2i

t2i

³�1
:

By Lemma 13, we have

Y
.3/
1 � P�2C"R4

X
� j .pp0/2

�.D1D2D3/
4

�
1C

pp0

�

�3
� .D1D2D3/

4P "�2R10:

The assertion is established.

Lemma 15. Let

F D
X

0<jlj�R2Q2P "�2

�
l

pp0

�

�

X
q1;q2

.q1q2;pp
0/D1

jlj.pp0/�1P 2�"<q1q2

.q1q2/
�3

�
q1q2

pp0

�
epp0.�q1q2lN /e

�
ln

q1q2pp0

�

�

X
a1.q1/

�; a2.q2/
�

pp0.a1q2Ca2q1/�l .mod q1q2/

Sd.q1;�a1/St.q2;�a2/:

Then we have
F � P�4C"Q3R2 C P�4C"Q14=5R24=5:

Proof. We modify the argument of Heath-Brown and Tolev [9]. Let

qj D gj bj ; 1 � j � 2;

where
g1 D

Y
pk kq1

p −2d1d2d3.q1;q2/

pk and g2 D
Y

pk kq2
p −2t1t2t3.q1;q2/

pk :

Then
.g1; g2/ D .g1g2; b1b2/ D .g1; 2d1d2d3/ D .g2; 2t1t2t3/ D 1:

Let aj D j̨ bj C ǰgj for j D 1; 2. Then

pp0.a1q2 C a2q1/ � l .mod q1q2/

is equivalent to the three conditions

pp0˛1b1b2g2 � l .mod g1/;

pp0˛2b1b2g1 � l .mod g2/;

pp0g1g2.ˇ1b2 C ˇ2b1/ � l .mod b1b2/:
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Hence by Lemma 1 (i), the inner multiple sum over a1; a2 in F is equal to�
�pp0b1b2g2l

g1

��
�pp0b1b2g1l

g2

�
S3.g1; 1/S

3.g2; 1/„;

where

„ D „.pp0g1g2/ D
X

ˇ1.b1/
�; ˇ2.b2/

�

pp0g1g2.ˇ1b2Cˇ2b1/�l .mod b1b2/

Sd.b1;�ˇ1/St.b2;�ˇ2/:

Let bj D Bj� for j D 1; 2 with � D .b1; b2/. Then „ D 0 if � − l , and for l D �v we have

„.pp0g1g2/ D
X

ˇ1.B1�/
�; ˇ2.B2�/

�

pp0g1g2.ˇ1B2Cˇ2B1/�v .mod B1B2�/

Sd.B1�;ˇ1/St.B2�;ˇ2/:

In order to change variables, we introduce the conditions

(4.8)

8̂̂̂̂
<̂
ˆ̂̂:

.g1; g2/ D .g1g2; B1B2�/ D .B1; B2/ D 1;

.g1; 2d1d2d3/ D .g2; 2t1t2t3/ D 1;

�d.B1�/ D �d.�/; �t.B2�/ D �t.�/;

.B1B2�g1g2; pp
0/ D 1; jvj.pp0/�1P 2�" < B1B2�g1g2;

where for k D .k1; k2; k3/ we use the notation

�k.m/ D
Y
p jm

p −2k1k2k3

p:

By changing variables we arrive at

F D
X
v;�

0<jv�j�R2Q2P "�2

�
v�

pp0

� X
B1;B2

.B1B2/
�3��6

�
B1B2

pp0

�

�

X
g1;g2
(4.8)

.g1g2/
�3

�
g1g2

pp0

�
epp0.�g1g2B1B2�vN/e

�
vn

g1g2B1B2�pp0

�

�

�
�pp0B1B2g2�v

g1

��
�pp0B1B2g1�v

g2

�
S3.g1; 1/S

3.g2; 1/„.pp
0g1g2/:

Let

�.g1; g2/ D e

�
vn

g1g2B1B2�pp0

��
g1g2

pp0

��
�pp0g2

g1

��
�pp0g1

g2

�
S3.g1; 1/S

3.g2; 1/

g31g
3
2

:

Note that „.�/ depends on � .mod B1B2�/ only. Hence

F D
X
v;�

.v�;pp0/D1

0<jv�j�R2Q2P "�2

�
v

pp0

� X
B1;B2

.B1B2/
�3��6

X
� .mod 8B1B2�/

„.�/

�
B1B2�

�

�

�

X
g1;g2
(4.8)

pp0g1g2�� .mod 8B1B2�/

epp0.�g1g2B1B2�vN/

�
v

g1

��
v

g2

�
�.g1; g2/:
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148 Tsang and Zhao, Lagrange’s equation with almost prime variables

Moreover, in view of (4.8) and the condition

pp0g1g2 � � .mod 8B1B2�/;

the summation
P
� .mod 8B1B2�/ can be replaced by

P
� .mod 8B1B2�/� .

From Lemma 1 (ii), (iii), (iv), and (2.8),

„.�/� �4.B1B2/
3=2.�B1;d2/1=2.�B2; t2/1=2 � �5.B1B2/

2P ":

By the dyadic argument, we have

(4.9) F � log2 P sup
G1�G

0
1�2G1

G2�G
0
2�2G2

F .G1; G2/;

where

F .G1; G2/ D
X
v;�

.v�;pp0/D1

0<jv�j�R2Q2P "�2

X
B1;B2

.B1B2/
�1��1

X
� .mod 8B1B2�/�

�

ˇ̌̌̌ X
G1�g1�G

0
1;G2�g2�G

0
2

(4.8)
pp0g1g2�� .mod 8B1B2�/

epp0.�g1g2B1B2�vN/

�
v

g1

��
v

g2

�
�.g1; g2/

ˇ̌̌̌
:

Without loss of generality, we assume G1 � G2. In view of (4.8), the multiple summations
over B1; B2 are naturally restricted by

(4.10)

8̂<̂
:

�d.B1�/ D �d.�/; �t.B2�/ D �t.�/;

.B1B2; pp
0/ D 1;

jvjR�2P 2�" � 16B1B2�G1G2:

In view of the congruence condition pp0g1g2 � � .mod 8B1B2�/, for fixed p, p0, � and g1,
we have

�.g1; g2/ D e

�
vn

g1g2B1B2�pp0

�
g
�3=2
1 g

�3=2
2 �;

where j�j D 1 and � is independent of g2. Partial summation gives

F .G1; G2/� sup
G2�G;G

0�G02
G1�g1�G

0
1

G
�1=2
1 G

�3=2
2 P "

X
v;�

.v�;pp0/D1

0<jv�j�R2Q2P "�2

��1
X
B1;B2
(4.10)

.B1B2/
�1

�

X
� .mod 8B1B2�/�

ˇ̌̌̌ X
G�g2�G

0

(4.11)
pp0g1g2�� .mod8B1B2�/

epp0.�g1g2B1B2�vN/

�
v

g2

�ˇ̌̌̌
;

where the condition (4.11) comprises

(4.11)

8̂<̂
:

.g1; g2/ D .g2; B1B2�/ D 1;

.g2; 2t1t2t3/ D 1;

.g2; pp
0/ D 1; jvj.pp0/�1P 2�" < B1B2�g1g2:
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Tsang and Zhao, Lagrange’s equation with almost prime variables 149

As in [9], we use two different estimates according to G2 � H or otherwise, where H will be
chosen later. The summation over g2 is of the type

(4.12) M D
X

K�g�K0

.g;u/D1

g��0 .mod 8B1B2�/

epp0.gm1m2/

�
v

g

�
;

where G � K;K 0 � G0 and .m1m2; pp0/ D .2B1B2�;�0/ D 1. We shall prove

(4.13) M� P "G2.B1B2�pp
0/�1 C jvjR2P ":

With (4.13), we can get

F .G1; G2/� G
�1=2
1 G

�3=2
2 P "

X
v;�

0<jv�j�R2Q2P "�2

X
B1;B2
(4.10)

.G2.B1B2�pp
0/�1 C jvjR2/

� G
�1=2
1 G

�3=2
2 P "

X
v;�

0<jv�j�R2Q2P "�2

.jvj�1P�2G1G
2
2 C jvjR

2/
X
B1;B2
(4.10)

1:

Note that

(4.14)

X
B1;B2
(4.10)

1 �
X
B1�P

p jB1)p j2d1d2d3�

X
B2�P

p jB2)p j2t1t2t3�

1� P ":

We now conclude

F .G1; G2/� P�4C"R2Q2G
1=2
1 G

1=2
2 CG

�1=2
1 G

�3=2
2 R6Q4P�4C"

� P�4C"R2Q3 CR6Q4P�4C"H�3=2:

To prove (4.13), we first remove the restriction .g; u/ D 1, getting

M D
X
wju

�.w/

�
v

w

� X
Kw�1�g�K0w�1

gw��0 .mod 8B1B2�/

epp0.gwm1m2/

�
v

g

�
:

We divide the inner summation intoO.G2w�1.8B1B2�pp0jvj/�1/ complete sums and at most
one incomplete sum

(4.15) M�
X
w ju

.G2w
�1.8B1B2�pp

0
jvj/�1jM0j CO.jvjR

2//;

where

M0 D

X
g .mod 8B1B2�pp0jvj/
gw��0 .mod 8B1B2�/

epp0.gwm1m2/

�
v

g

�

and the error O.jvjR2/ is the contribution from the incomplete sum. Recalling the condition
.B1B2�v; pp

0/ D 1, we change variables, by g D s8B1B2�jvj C kpp0, to deduce that

M0 D

X
k .mod 8B1B2�jvj/

kpp0w��0 .mod 8B1B2�/

�
v

kpp0

� X
s .mod pp0/�

epp0.s8B1B2�jvjwm1m2/:

The inner sum is a Ramanujan sum, so M0 � jvj. Now (4.13) follows from (4.15).
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150 Tsang and Zhao, Lagrange’s equation with almost prime variables

When G2 < H , we apply the trivial bound to get

F .G1; G2/� sup
G;G0

G
�1=2
1 G

�3=2
2

X
v;�

0<jv�j�R2Q2P "�2

��1

�

X
B1;B2
(4.10)

.jvjR�2P 2�".�G1G2/
�1/�1G2:

Recalling (4.14), we arrive at

(4.16) F .G1; G2/� P�4C"R4Q2G
1=2
1 G

1=2
2 � P�4C"R4Q2H:

We choose
H D R4=5Q4=5;

by equating R6Q4P�4H�3=2 D P�4R4Q2H , to conclude finally

(4.17) F .G1; G2/� P�4C"Q3R2 C P�4C"Q14=5R24=5:

The proof is completed by putting (4.17) into (4.9).

5. Invoking the square sieve

By the dyadic argument, our task is to prove

(5.1)
X
k�P

ˇ̌̌̌ X
D0
i
�di<2D

0
i
.1�i�3/

ˇ.d/.�d.N � k
2/ �Md;Q.N � k

2//

ˇ̌̌̌
� P 2�":

Suppose that � 2 .0; 1=2/. Set m D 4d��1e, and denote by Rj the interval Œ2j�1P � ; 2jP �/
for 1 � j � m. Let �.R/ D

Q
p2R p. We have the partitions

ŒD0i ; 2D
0
i / D

G
J�¹1;:::;mº

DJ ;

where DJ D ¹D
0
i � di < 2D

0
i W .di ; �.Rj // 6D 1” j 2 J º. Hence (5.1) can be deduced

from X
k�P

ˇ̌̌̌ X
di2DJi

.1�i�3/

ˇ.d/.�d.N � k
2/ �Md;Q.N � k

2//

ˇ̌̌̌
� P 2�":

By Cauchy’s inequality, it suffices to prove

(5.2)
X
k�P

ˇ̌̌̌ X
di2DJi

.1�i�3/

ˇ.d/.�d.N � k
2/ �Md;Q.N � k

2//

ˇ̌̌̌2
� P 3�":

Note thatD0i � Di � P
1=2 < P . So if DJ is non-empty, then jJ j � m=4. Therefore for

any triple DJ1 ;DJ2 ;DJ3 satisfying DJi 6D ; (1 � i � 3), there exists 1 � j � m such that
j 62 J1 [ J2 [ J3. In other words, we have .p; di / D 1 for all p 2 Rj and di 2 DJi .
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In view of the square sieve of Heath-Brown [8] and the above preparations, Proposition 4
can be reduced to the estimate

E0 D
X

1�n<N

ˇ̌̌̌X
d

ˇ.d/.�d.n/ �Md;Q.n//

ˇ̌̌̌2� logR
R

X
p −N

R�p<2R

�
N � n

p

��2
(5.3)

� P 4C"R�1Q�1 C .D1D2D3/
2P 2C"R3 C P "Q14=5R29=5;

where ˇ.d/ is supported on di 2 Di � ŒDi ; 2Di /, 1 � i � 3, satisfying (2.6), (2.7), (2.8), and

.d1d2d3; p/ D 1 for all di 2 Di ; R � p < 2R;

and R is restricted by

(5.4) P 1C"Q�1 < R < P 2�"Q�2:

Although our choices will be of type Q1�" and R D P ", there is really some space for the
parameters Q and R so that E0 � P 3�" and (5.4) hold simultaneously.

6. Proof of Proposition 4

We start to estimate E0 which is bounded by

(6.1) E0 �
log2R
R2
jE1j C

logR
R

E2;

where

E1 D
X
R

�
N � n

pp0

� X
1�n<N

ˇ̌̌̌X
d

ˇ.d/
�
�d.n/ �Md;Q.n/

�ˇ̌̌̌2
and

E2 D
X

1�n<N

ˇ̌̌̌X
d

ˇ.d/
�
�d.n/ �Md;Q.n/

�ˇ̌̌̌2
:

Throughout, we use
P

R to indicate that the summation is taken over prime numbers p; p0

with R � p 6D p0 < 2R and .pp0; N / D 1.
We expand the square to obtain

(6.2) E2 D E
.1/
2 � 2E

.2/
2 C E

.3/
2 ;

where

(6.3) E
.i/
2 D

X
d

X
t

ˇ.d/ˇ.t/J .i/2

with

J
.1/
2 D

Z 1

0

fd.˛/ft.�˛/d˛;

J
.2/
2 D

Z 1

0

fd.˛/Wt;Q.�˛/d˛;

J
.3/
2 D

Z 1

0

Wd;Q.˛/Wt;Q.�˛/d˛:
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152 Tsang and Zhao, Lagrange’s equation with almost prime variables

Let

T2.q;d; t;n; l/ D
X
a.q/�

Z
B.q;a/

Sd.q; a;n/St.q;�a;�l/Id

�
ˇN;�

P

q
n
�
It

�
�ˇN;

P

q
l
�
dˇ;

where

B.q; a/ D

�
�

1

q.q C q0/
;

1

q.q C q00/

�
with q0 and q00 satisfying

P < q C q0; q C q00 � q C P; aq0 � 1 .mod q/; aq00 � �1 .mod q/:

Set
T2.q;d; t/ D T2.q;d; t; 0; 0/:

By Lemma 6, we have

J
.3/
2 D

X
q�P

X
a.q/�

Z
ˇ2B.q;a/

Wd;Q

�
a

q
C ˇ

�
Wt;Q

�
�
a

q
� ˇ

�
dˇ

D
P 6

d1d2d3t1t2t3

X
q�Q

1

q6
T2.q;d; t/CO.P�A/:

So

(6.4) E
.3/
2 D E 02.Q/CO.P

�A/;

where

(6.5) E 02.K/ D P
6
X

d

X
t

ˇ.d/ˇ.t/
d1d2d3t1t2t3

X
q�K

1

q6
T2.q;d; t/:

According to Lemma 5, one has

(6.6) J
.1/
2 D

P 6

d1d2d3t1t2t3

X
q�P

1

q6

X
n2Nd;q

X
l2Nt;q

T2.q;d; t;n; l/CO.P�A/:

Combining Lemma 5 and Lemma 6, we derive

(6.7) J
.2/
2 D

P 6

d1d2d3t1t2t3

X
q�Q

1

q6

X
n2Nd;q

T2.q;d; t;n; 0/CO.P�A/:

We exchange the summation over a and the integration by the standard technique to get

T2.q;d; t;n; l/ D
Z
jˇ j� 1

qP

X
jvj�P

�.vIˇ; q/
X
a.q/�

eq.av/Sd.q; a;n/St.q;�a;�l/(6.8)

� Id

�
ˇN;�

P

q
n
�
It

�
�ˇN;

P

q
l
�
dˇ;

where the function � satisfies �.vIˇ; q/� 1=.1C jvj/. For this technique, one may refer to
[9, (98) and (99)], for example. One can also refer to Estermann [5, proof of Lemma 13].
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Recalling (4.1), we have

T2.q;d; t;n; l/�
X
jvj�P

1

1C jvj

Z
jˇ j� 1

qP

j�.qId; t;n; l; v; 1; 1/j(6.9)

�

ˇ̌̌̌
Id

�
ˇN;�

P

q
n
�
It

�
�ˇN;

P

q
l
�ˇ̌̌̌
dˇ

�

X
jvj�P

1

1C jvj
j�.qId; t;n; l; v; 1; 1/jI2.q;d; t;n; l/;

where

I2.q;d; t;n; l/ D
Z 1
�1

ˇ̌̌̌
Id

�
ˇN;�

P

q
n
�
It

�
�ˇN;

P

q
l
�ˇ̌̌̌
dˇ:

Let

X2 D P
6
X
jvj�P

1

1C jvj

X
d;t

jˇ.d/ˇ.t/j
d1d2d3t1t2t3

�

X
q�P

1

q6

X
n2Nd;q ;l2Nt;q
.n;l/ 6D02Z6

j�.qId; t;n; l; v; 1; 1/jI2.q;d; t;n; l/:

By (6.3), (6.5), (6.6) and (6.9), we get

(6.10) E
.1/
2 D E 02.P /CO.X2/CO.P

�A/:

Similarly from (6.3), (6.5), (6.7) and (6.9) we deduce that

(6.11) E
.2/
2 D E 02.Q/CO.X2/CO.P

�A/:

One has, by Lemma 1,X
a.q/�

Z
ˇ2B.q;a/

Sd.q; a/St.q;�a/jI.ˇN/j
6dˇ � P�2q4.q;d2/1=2.q; t2/1=2:

This yields

E 02.P / � E 02.Q/� P 4
X

d

X
t

jˇ.d/ˇ.t/j
d1d2d3t1t2t3

X
Q<q�P

1

q2
.q;d2/1=2.q; t2/1=2(6.12)

� Q�1P 4C":

We conclude from (6.2), (6.4), (6.10), (6.11) and (6.12) that

E2 � Q�1P 4C" CX2:

From Lemma 4 (i),

I2.q;d; t;n; l/� P�2C" min

´
q2

P 2

 
3X

jD1

�
jnj j

dj
C
jli j

ti

�!�2
;
q

P

 
3X

jD1

�
jnj j

dj
C
jli j

ti

�!�1µ
:

Applying Lemma 14, we see that

X2 � P 4C".D1D2D3/
�2Y2 � P 3C" C .D1D2D3/

2P 2C":

Hence our final estimate for E2 is

(6.13) E2 � P 4C"Q�1 C .D1D2D3/P
2C":
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154 Tsang and Zhao, Lagrange’s equation with almost prime variables

Now we consider E1. Following the argument in [9, Section 3.4.1], we arrive at

(6.14) E1 D E
.1/
1 � 2E

.2/
1 C E

.3/
1 ;

where

(6.15) E
.i/
1 D

X
R

.pp0/

pp0

X
d

X
t

ˇ.d/ˇ.t/
X

s.pp0/�

�
s

pp0

�
epp0.�sN /J

.i/
1

with

J
.1/
1 D

Z 1

0

fd

�
˛ C

s

pp0

�
ft.�˛/d˛;

J
.2/
1 D

Z 1

0

fd

�
˛ C

s

pp0

�
Wt;Q.�˛/d˛;

J
.3/
1 D

X
n2Z

Md;Q.n/Mt;Q.n/epp0.sn/:

We decompose the integral

J
.1/
1 D

X
q�P

X
a.q/�

Z
ˇ2B.q;a/

fd

�
ˇ C

a

q
C

s

pp0

�
ft

�
�ˇ �

a

q

�
dˇ

D

X
q�P

X
�

X
a.q/�

.app0Csq;qpp0/D�

Z
B.q;a/

fd

�
ˇ C

.app0 C sq/��1

qpp0��1

�
ft

�
�ˇ �

a

q

�
dˇ:

Note that .app0 C sq; qpp0/ j .pp0/2, we deduce by Lemma 5

J
.1/
1 D

X
� j .pp0/2

X
q�P

P 6�3

q6d1d2d3t1t2t3.pp0/3

�

X
n2Nd;q.pp0=�/

X
l2Nt;q

X
a.q/�

.app0Csq;qpp0/D�

Z
B.q;a/

Sd

�
qpp0

�
;
app0 C sq

�
;n
�

� St.q;�a;�l/Id

�
ˇN;�

P�

qpp0
n
�
It

�
�ˇN;

P

q
l
�
dˇ CO.P�A/:

Let

T1.q;d; t;n; l; p; p0; �/ D
X

s.pp0/�

�
s

pp0

�
epp0.�sN /

X
a.q/�

Z
B.q;a/

Sd

�
qpp0

�
;
app0 C sq

�
;n
�

� St.q;�a;�l/Id

�
ˇN;�

P�

qpp0
n
�
It

�
�ˇN;

P

q
l
�
dˇ;

and let
T1.q;d; t; p; p0; �/ D T1.q;d; t; 0; 0; p; p0; �/:

From above we obtain

E
.1/
1 D P

6
X
R

.pp0/

.pp0/4

X
d;t

ˇ.d/ˇ.t/
d1d2d3t1t2t3

(6.16)

�

X
� j .pp0/2

X
q�P

�3

q6

X
n2Nd;q.pp0=�/

X
l2Nt;q

T1.q;d; t;n; l; p; p0; �/:
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By interchanging the summation over a and the integration, we see that T1.q;d; t;n; l; p; p0; �/
is equal toZ

jˇ j� 1
qP

X
jvj�P

�.vI q; ˇ/
X
a.q/�

.app0Csq;qpp0/D�

eq.av/Sd

�
qpp0

�
;
app0 C sq

�
;n
�
St.q;�a;�l/

� Id

�
ˇN;�

P�

qpp0
n
�
It

�
�ˇN;

P

q
l
�
dˇ:

Recalling the definition of W.�; qId; t;n; l; p; p0; v/, we have

T1.q;d; t;n; l; p; p0; �/(6.17)

�

X
jvj�P

1

1C jvj
jW.�; qId; t;n; l; p; p0; v/jI1

�
q;d; t;n; l;

pp0

�

�
;

where

I1.q;d; t;n; l;H/ D
Z 1
�1

ˇ̌̌̌
Id

�
ˇN;�

P

qH
n
�
It

�
�ˇN;

P

q
l
�ˇ̌̌̌
dˇ:

To discuss the contribution from .n; l/ D 0 2 Z6, we define

T 01 .q;d; t; p; p
0; �/ D

X
s.pp0/�

�
s

pp0

�
epp0.�sN /

�

X
a.q/�

Z
jˇ j� 1

2qP

Sd

�
qpp0

�
;
app0 C sq

�

�
St.q;�a/jI.ˇ/j

6dˇ

D W.�; qId; t; 0; 0; p; p0; 0/
Z
jˇ j� 1

2qP

jI.ˇ/j6dˇ:

We deduce from Lemma 4 (ii) that

T 01 .q;d; t; p; p
0; �/ � T1.q;d; t; p; p0; �/(6.18)

� P�4q2
X
jvj�P

1

1C jvj
jW.�; qId; t; 0; 0; p; p0; v/j

and

T 01 .q;d; t; p; p
0; �/ � �0P

�2W.�; qId; t; 0; 0; p; p0; 0/(6.19)

� P�4q2jW.�; qId; t; 0; 0; p; p0; 0/j:

Let

E 01.K/ D �0P
4
X
R

.pp0/

.pp0/4

X
d;t

ˇ.d/ˇ.t/
d1d2d3t1t2t3

X
� j .pp0/2

X
q�K

�3

q6
W.�; qId; t; 0; 0; p; p0; 0/;

and define

X1 D P
4R�7

X
R

X
jvj�P

1

1C jvj

X
d;t

jˇ.d/ˇ.t/j
d1d2d3t1t2t3

X
� j .pp0/2

X
q�P

�3

q6

�

X
n2Nd;q.pp0=�/

X
l2Nt;q

jW.�; qId; t;n; l; p; p0; v/jC
�
q;d; t;n; l;

pp0

�

�
:
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Here the function C.q;d; t;n; l; pp0=�/ is defined in (4.6). By Lemma 4 (i), if .n; l/ 6D 0 2 Z6,
then

(6.20) I1

�
q;d; t;n; l;

pp0

�

�
� P�2C"C

�
q;d; t;n; l;

pp0

�

�
:

We conclude from (6.16), (6.17), (6.18), (6.19) and (6.20) that

(6.21) E
.1/
1 D E 01.P /CO.X1/CO.P

�A/:

Similarly we can also obtain

(6.22) E
.2/
1 D E 01.Q/CO.X1/CO.P

�A/:

We shall prove

(6.23) E
.3/
1 D E 01 CO.P

"Q3R3/CO.P "Q14=5R29=5/;

where

E 01 D �0P
4
X
R

.pp0/

.pp0/4

X
d;t

ˇ.d/ˇ.t/
d1d2d3t1t2t3

�

X
� j .pp0/2

�3
X

q�min¹Q;Q�.pp0/�1º

1

q6
W.�; qId; t; 0; 0; p; p0; 0/:

Note that min¹Q;Q�.pp0/�1º � Q < P , we introduce

X3 D P
4R�7

X
R

X
d;t

jˇ.d/ˇ.t/j
d1d2d3t1t2t3

�

X
� j .pp0/2

X
min¹Q;Q�.pp0/�1º�q�P

�3

q6
jW.�; qId; t; 0; 0; p; p0; 0/j:

Thus by (6.14), (6.21), (6.22) and (6.23) we arrive at

E1 � O.X1/CO.X3/CO.P
"Q3R3/CO.P "Q14=5R29=5/:

By Lemma 14, we have

X1 � P 4C"R�7.D1D2D3/
�2
X
R

Y1 � P 3C"RC .D1D2D3/
2P 2C"R5:

From Lemma 11,

W.�; qId; t; 0; 0; p; p0; v/(6.24)

� 24ur4.r;d2/1=2.r; t2/1=2��2R4.�� 0/5.1C�R�2/�1:

Substituting (6.24) into the definition of X3, we can deduce that

X3 � P 4R�3
X
R

X
d;t

jˇ.d/ˇ.t/j
d1d2d3t1t2t3

�

X
� j .pp0/2

X
min¹Q;Q�.pp0/�1º�2u�� 0r

�.r;d2/1=2.r; t2/1=2

22u�� 0r2.1C�R�2/

� P 4C"R�3
X
R

X
� j .pp0/2

�min¹Q;Q�.pp0/�1º�1.1C�R�2/�1

� P 4C"RQ�1:
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Thus for E1 we finally obtain

(6.25) E1 � P 4C"RQ�1 C .D1D2D3/
2P 2C"R5 C P "Q14=5R29=5:

Combining (6.13), (6.25) and the lines around (5.3) and (6.1), we established Proposition 4.
We are left to establish (6.23). Recalling the definition of J .3/1 , one has

J
.3/
1 D

P 2

d1d2d3t1t2t3

X
q1;q2�Q

.q1q2/
�3

X
a1.q1/

�

a2.q2/
�

Sd.q1;�a1/St.q2;�a2/

�

X
n2Z

H 2

�
n

N

�
e

�
n

�
a1

q1
C
a2

q2
C

s

pp0

��
:

By Lemma 7, we get

(6.26) E
.3/
1 D E 001 CE CO.P

�A/;

where

E 001 D �0P
4
X
R

.pp0/

pp0

X
d

X
t

ˇ.d/ˇ.t/
d1d2d3t1t2t3

X
s.pp0/�

�
s

pp0

�
epp0.�sN /

�

X
q1;q2�Q

.q1q2/
�3

X
a1.q1/

�;a2.q2/
�

a1
q1
C
a2
q2
C s
pp0
2Z

Sd.q1;�a1/St.q2;�a2/

and

E D
X
R

.pp0/

pp0

X
d;t

P 2ˇ.d/ˇ.t/
d1d2d3t1t2t3

X
n2Z

H 2

�
n

N

� X
s.pp0/�

�
s

pp0

�
epp0.�sN /

X
q1;q2�Q

1

q31q
3
2

�

X
a1.q1/

�;a2.q2/
�

0<k
a1
q1
C
a2
q2
C s
pp0
k�P "�2

Sd.q1;�a1/St.q2;�a2/e

�
n

�
a1

q1
C
a2

q2
C

s

pp0

��
:

Notice that
a1

q1
C
a2pp

0 C sq2

q2pp0
D
a1

q1
C
a2

q2
C

s

pp0
2 Z

is equivalent to

q1 D q2pp
0��1 and � a1 � .a2pp

0
C sq2/�

�1 .mod q1/;

where � D .a2pp0 C sq2; q2pp0/. Hence

(6.27) E 001 D E 01:

Now we handle E. By Lemma 1 (vi),

(6.28) E � P 4R sup
n;p;p0

X
d

X
t

jˇ.d/ˇ.t/j
d1d2d3t1t2t3

jF j;
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where

F WD
X

s.pp0/�

�
s

pp0

�
epp0.�sN /

X
q1;q2�Q

.q1q2/
�3

�

X
a1.q1/

�;a2.q2/
�

0<k
a1
q1
C
a2
q2
C s
pp0
k�P "�2

Sd.q1;�a1/St.q2;�a2/e

�
n

�
a1

q1
C
a2

q2
C

s

pp0

��
:

Note that
a1

q1
C
a2

q2
C

s

pp0
D
pp0.a1q2 C a2q1/C sq1q2

q1q2pp0
:

We divide the summations according to pp0.a1q2 C a2q1/C sq1q2 .mod q1q2pp0/,

F D
X

0<jlj�R2Q2P "�2

X
s.pp0/�

�
s

pp0

�
epp0.�sN /

X
q1;q2�Q

jlj.pp0/�1P 2�"<q1q2

.q1q2/
�3

�

X
a1.q1/

�; a2.q2/
�

pp0.a1q2Ca2q1/Csq1q2�l .mod q1q2pp0/

Sd.q1;�a1/St.q2;�a2/

� e

�
n

�
a1

q1
C
a2

q2
C

s

pp0

��
:

Here the restriction 0 < jl j � R2Q2P "�2 and jl j.pp0/�1P 2�" < q1q2 come from

0 <

a1q1 C a2

q2
C

s

pp0

 � P "�2:
The congruence pp0.a1q2 C a2q1/C sq1q2 � l .mod q1q2pp0/ implies

e

�
n

�
a1

q1
C
a2

q2
C

s

pp0

��
D e

�
ln

q1q2pp0

�
:

Thus

F D
X

0<jlj�R2Q2P "�2

X
s.pp0/�

�
s

pp0

�
epp0.�sN /

X
q1;q2�Q

jlj.pp0/�1P 2�"<q1q2

.q1q2/
�3

� e

�
ln

q1q2pp0

� X
a1.q1/

�; a2.q2/
�

pp0.a1q2Ca2q1/Csq1q2�l .mod q1q2pp0/

Sd.q1;�a1/St.q2;�a2/:

Recall the assumption (5.4), we easily know .l; pp0/ D 1. This implies .q1q2; pp0/ D 1. So

pp0.a1q2 C a2q1/C sq1q2 � l .mod q1q2pp0/

is equivalent to

pp0.a1q2 C a2q1/ � l .mod q1q2/ and sq1q2 � l .mod pp0/:
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Thus

F D
X

0<jlj�R2Q2P "�2

X
q1;q2�Q

jlj.pp0/�1P 2�"<q1q2

.q1q2/
�3

�
q1q2l

pp0

�
epp0.�q1q2lN /

� e

�
ln

q1q2pp0

� X
a1.q1/

�; a2.q2/
�

pp0.a1q2Ca2q1/�l .mod q1q2/

Sd.q1;�a1/St.q2;�a2/:

Now (6.23) follows from Lemma 15, (6.26), (6.27) and (6.28). The proof of Proposition 4 is
complete.

7. Proof of Proposition 3

Let us defineeH .D1;D2;D3/ D
X

di�Di .1�i�3/

.di ;dj /�P
" .1�i<j�3/

ˇ.d/
�

Ld.N / �
N0.N /†0.d; N /

d1d2d3

�
;

where ˇ.d/ D ˇ.d1; d2; d3/ is a real function satisfying (2.6) and (2.7). We have the following
result.

Proposition 5. Suppose that D1D2D3 < P 1=2�". We haveeH .D1;D2;D3/� P 2.logP /�A:

We first explain that Proposition 3 can be deduced from Proposition 5. In order to prove

H .D/� P 2.logP /�A for D � P 1=2�5",

we divide the underlying summation into two parts. Note that

H .D/ D
X

d1;d2;d3
Œd1;d2;d3��D

ˇ.d/
�

Ld.N / �
N0.N /†0.d; N /

d1d2d3

�

D

� X
d1;d2;d3

maxi<j .di ;dj /�P "

Œd1;d2;d3��D

C

X
d1;d2;d3

maxi<j .di ;dj />P "

Œd1;d2;d3��D

�
ˇ.d/

�
Ld.N / �

N0.N /†0.d; N /
d1d2d3

�

DW H1.D/CH2.D/:

Since maxi<j .di ; dj / � P " and Œd1; d2; d3� � D together imply d1d2d3 � P 1=2�2", by the
dyadic argument and Proposition 5, we can conclude

H1.D/� P 2.logP /�A:

Now we consider H2.D/ which is bounded by H 0P "=9, where

H 0 D
X

dj�D .1�j�3/

maxi<j .di ;dj /�P "

ˇ̌̌̌
Ld.N / �

N0.N /†0.d; N /
d1d2d3

ˇ̌̌̌
:
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160 Tsang and Zhao, Lagrange’s equation with almost prime variables

It suffices to verify H 0 � P 2�"=5. By symmetry, the assertion is a consequence of

(7.1) H 01 WD
X

dj�D .1�j�3/

.d1;d2/�P
"

ˇ̌̌̌
N0.N /†0.d; N /

d1d2d3

ˇ̌̌̌
� P 2�"=5

and

(7.2) H 02 WD
X

dj�D .1�j�3/

.d1;d2/�P
"

Ld.N /� P 2�"=5:

It has been pointed out in [9] that

†0.d; N /� �2.d21 /�
2.d22 /�

2.d23 / log logP and N0.N / �
P 2

logP
:

Hence

(7.3) H 01 � P 2C
"
10

X
dj�D .1�j�3/

.d1;d2/�P
"

1

d1d2d3
� P 2C

"
5

X
d1�D;d2�D

.d1;d2/�P
"

1

d1d2
:

Note that !.x/� 1, we have

H 02 �
X

d1�P;d2�P

.d1;d2/�P
"

X
x1;x2

d1 jx1; d2 jx2

X
q;x3;d3

q2Cx21Cx
2
2Cx

2
3DN

d3 jx3

1:

For fixed x1; x2, the inner sum is bounded by P "=10. Hence

(7.4) H 02 � P "=10
X

d1�P;d2�P

.d1;d2/�P
"

X
x1;x2

d1 jx1; d2 jx2

1� P "=10
X

d1�P;d2�P

.d1;d2/�P
"

P 2

d1d2
:

As an exercise, we haveX
d1�P;d2�P

.d1;d2/�P
"

1

d1d2
�

X
ı�P "

X
d 01�D=ı

d 02�D=ı

1

d 01d
0
2ı
2
� P "=10

X
ı�P "

1

ı2
� P�

9
10
":

Now the estimates (7.1) and (7.2) follow from (7.3) and (7.4), respectively.
The remaining of this section is to show Proposition 5 by invoking Proposition 4. The

proof follows the argument of Heath-Brown and Tolev closely. Let

H1 D

X
di�Di .1�i�3/

.di ;dj /�P
" .1�i<j�3/

ˇ.d/Ld.N /:

By applying Proposition 4, we see that

H1 D

X
k2Aj

!.k/
X

di�Di .1�i�3/

.di ;dj /�P
" .1�i<j�3/

ˇ.d/�d.N � k
2/ D H2 CO.P

2�"/;
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where
H2 D

X
k2Aj

!.k/
X

di�Di .1�i�3/

.di ;dj /�P
" .1�i<j�3/

ˇ.d/Md;Q.N � k
2/:

Recalling the definition of Md;Q.n/, we know

H2 D P
X

di�Di .1�i�3/

ě.d/
d1d2d3

X
q�Q

q�3
X
a.q/�

Sd.q; a/

�

X
k2Aj

!.k/H

�
1 �

k2

N

�
e

�
a

q
.k2 �N/

�
;

where ě.d/ is ˇ.d/ if .di ; dj / � P " (1 � i < j � 3), and zero otherwise. Now partial sum-
mation gives

(7.5) H2 D �P

Z
B.x/

�
d

dx
!.x/H

�
1 �

x2

N

��
dx;

where

B.x/ D
X

di�Di .1�i�3/

ě.d/
d1d2d3

X
q�Q

q�3
X
a.q/�

Sd.q; a/Z.x/

and

Z.x/ D
X
k�x

k2Aj

e

�
a

q
.k2 �N/

�
:

Let us write

Z0.x/ D
X
k�x

k2Aj

.k;q/D1

e

�
a

q
.k2 �N/

�
:

Then we have

Z.x/ D Z0.x/C
X
k�x

k2Aj

.k;q/>1

e

�
a

q
.k2 �N/

�
;

and thereby
B.x/ D B0.x/C E.x/;

where

B0.x/ D
X

di�Di .1�i�3/

ě.d/
d1d2d3

X
q�Q

q�3
X
a.q/�

Sd.q; a/Z0.x/

and

E.x/ D
X

di�Di .1�i�3/

ě.d/
d1d2d3

X
q�Q

q�3
X
a.q/�

Sd.q; a/
X
k�x

k2Aj

.k;q/>1

e

�
a

q
.k2 �N/

�
:
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162 Tsang and Zhao, Lagrange’s equation with almost prime variables

If .k; q/ > 1 and k 2 Aj , then .k; q/ � P 1=16. So we have

E.x/ D
X

h�P 1=16

X
di�Di .1�i�3/

ě.d/
d1d2d3

X
q�Q=h

X
k�x=h

kh2Aj

.k;q/D1

q�3h�3

�

X
a.hq/�

Sd.hq; a/e

�
a

hq
.k2h2 �N/

�
:

For the inner sum above, we have the boundX
a.q/�

Sd.q; a/e

�
�
a

q
n

�
� .n; q/.q; d21 /

1=2.q; d22 /
1=2.q; d23 /

1=2q2:

Then we get

E.x/� P "
X

h�P 1=16

X
q�Q=h

q�1h�1
X
k�x=h

.N � k2h2; qh/:

We finally find that
E.x/� P 1�1=16C":

For .m; q/ D 1, we introduce the notation

�j .xI q;m/ D
X
k�x

k2Aj

k�m .modq/

1 �
1

�.q/
ƒj .xI q/;

where
ƒj .xI q/ D

X
k�x

k2Aj

.k;q/D1

1:

Then we have

Z0.x/ D
1

�.q/
e

�
�aN

q

�
T .q; a/ƒj .xI q/C

X
m.q/�

e

�
a.m2 �N/

q

�
�j .xI q;m/:

Therefore
B0.x/ D eB0.x/C C.x/;

where eB0.x/ D
X

di�Di .1�i�3/

ě.d/
d1d2d3

X
q�Q

hd.q/ƒj .xI q/

and

C.x/ D
X

di�Di .1�i�3/

ě.d/
d1d2d3

X
q�Q

q�3
X
a.q/�

Sd.q; a/
X
m.q/�

e

�
a.m2 �N/

q

�
�j .xI q;m/:

Define
L D

X
q�Q

X
m.q/�

�j .xI q;m/
2
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and
M D

X
q�Q

X
m.q/�

�.q;m/2;

where

�.q;m/ D q�3
X

di�Di .1�i�3/

ě.d/
d1d2d3

X
a.q/�

Sd.q; a/e

�
a

q
.m2 �N/

�
:

It has been proved in [9] thatM � .logP /C for some absolute constantC > 0 (see [9, (274)]).
The Generalized Barban–Davenport–Halberstam Theorem states that

L� P 2.logP /�A:

Observing that
C.x/ D

X
q�Q

X
m.q/�

�j .xI q;m/�.q;m/;

one can conclude by Cauchy’s inequality

C.x/� P.logP /�A:

Let
A.x/ D

X
k�x

k2Aj

1:

Note that ƒj .xI q/ D A.x/CO.P 1�1=16C"/ andX
q�Q

jhd.q/j � �2.d1/�
2.d2/�

2.d3/ log logP:

Then we have eB0.x/ D B0A.x/CO.P
1�1=16C"/;

where

B0 D

X
di�Di .1�i�3/

ě.d/
d1d2d3

X
q�Q

hd.q/:

It is not hard to see that
B0 D B1 CO.P

�1=2C"/;

where

B1 D

X
di�Di .1�i�3/

ě.d/
d1d2d3

1X
qD1

hd.q/:

Therefore

(7.6) B.x/ D B1A.x/CO.P.logP /�A/:

By the Prime Number Theorem, we have

A.x/ D

Z x

2

Cj .t/

log t
dt CO.P.logP /�A/:

Now combining (7.5) and (7.6), we arrive at

H2 D PB1

Z
!.x/H

�
1 �

x2

N

�
Cj .x/

log x
dx CO.P 2.logP /�A/:

The proof of Proposition 5 is completed and therefore Proposition 3 is also established.
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164 Tsang and Zhao, Lagrange’s equation with almost prime variables

8. The review of the three-dimensional sieve

In this section, we recall the Diamond–Halberstam–Richert sieves. One may refer to [7]
for the details. We shall focus on the case that the sieve dimension � D 3. Let �� be the con-
tinuous solution of the differential delay problem

u���.u/ D .2e
 /�.�.� C 1//�1; 0 < u � 2;

.u���.u//
0
D ��u���1��.u � 2/; u > 2;

where  is Euler’s constant and � is Euler’s gamma function.
Let F�.u/ and f�.u/ be the continuous solutions of the simultaneous differential delay

system

(8.1)

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

F�.u/ D
1

��.u/
; 0 < u � ˛� ;

f�.u/ D 0; 0 � u � ˇ� ;

.u�F�.u//
0
D �u��1f�.u � 1/; u > ˛� ;

.u�f�.u//
0
D �u��1F�.u � 1/; u > ˇ� ;

where ˛� and ˇ� are real numbers such that

3 < ˇ� C 1 < ˛� :

We note that

(i) F�.u/ decreases monotonically toward 1 as u!1,

(ii) f�.u/ increases monotonically toward 1 as u!1.

Suppose that ¹anº is a (finite) sequence of non-negative real numbers. Then we introduce

A.d/ D
X

n�0 .mod d/

an:

It is expected that �.t/
t
X is a good approximation to A.t/, where �.t/ is a multiplicative

function satisfying

(8.2) 0 � �.p/ < min¹p; cº

for some constant c, and

(8.3)
Y

w1�p<w

�
1 �

�.p/

p

��1
�

�
logw
logw1

�3�
1C

c1

logw1

�
; 2 � w1 < w;

for some constant c1 > 0. Suppose that there exists a constant c2 � 2 such that

(8.4)
X
t�D

�2.t/�2.t/

ˇ̌̌̌
A.t/ �

�.t/

t
X

ˇ̌̌̌
� c2

X

.logX/4
:

Let ….z/ D
Q
p�z p and define

V.x/ D
Y
p�x

�
1 �

�.p/

p

�
:
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Tsang and Zhao, Lagrange’s equation with almost prime variables 165

Then one has

(8.5)
X

.n;….z//D1

an � XV.z/

�
F�.s/CO

�
.log logX/2

.logX/1=8

��
and

(8.6)
X

.n;….z//D1

an � XV.z/

�
f�.s/CO

�
.log logX/2

.logX/1=8

��
;

where s D logD=log z.
By (8.1), for s > ˇ� we have

s�f�.s/ D

Z s

ˇ�

�u��1F�.u � 1/du > F�.s/

Z s

ˇ�

�u��1du D F�.s/.s
�
� ˇ�� /:

Therefore one has

(8.7)
f�.s/

F�.s/
> 1 �

�
ˇ�

s

��
:

9. Applications of the switching principle

Let
A.t/ D A.t; N / WD A.j /.t; N / D

X
q2Cx21Cx

2
2Cx

2
3DN

q2Aj

t jx1x2x3

!.q/!.x/:

Note that the function

g.t/ D �.t/
X

d
Œd1;d2;d3�Dt

dj jxj .1�j�3/

�.d1/�.d2/�.d3/

is a multiplicative function of t . If t is square-free and t j x1x2x3, then g.t/ D 1, and g.t/ D 0
otherwise. Hence for t square-free, we have

A.t/ D
X

q2Cx21Cx
2
2Cx

2
3DN

q2Aj

t jx1x2x3

!.q/!.x/�.t/
X

d
Œd1;d2;d3�Dt

dj jxj .1�j�3/

�.d1/�.d2/�.d3/:

By interchanging the summations, we get

(9.1) A.t/ D �.t/
X

d
Œd1;d2;d3�Dt

�.d1/�.d2/�.d3/Ld.N /;

where Ld.N / is defined in (2.4). The expected main term for A.t/ is

(9.2) Mt D �.t/
X

d
Œd1;d2;d3�Dt

�.d1/�.d2/�.d3/
†0.d; N /N0.N /

d1d2d3
;

where †0.d; N / and N0.N / are given in (2.2) and (2.5) respectively.
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166 Tsang and Zhao, Lagrange’s equation with almost prime variables

Let X D †0.e; N /N0.N / with e D .1; 1; 1/. We point out that for N � 4 .mod 24/
(cf. [9, (311)]),

1� †0.e; N /� log logN:

Therefore we can define

�.t/ D t�.t/
X

d
Œd1;d2;d3�Dt

�.d1/�.d2/�.d3/
†0.d; N /

d1d2d3†0.e; N /
:

Then we see that

(9.3) Mt D
�.t/

t
X:

For p > 2, we define

h0.p/ D

´
1
p

if p jN;
�1

p.p�1/

�
1C

�
�N
p

��
if p −N;

h1.p/ D

´
�1
p

�
�1
p

�
if p jN;

1
p�1

��
�N
p

�
C

1
p

�
�1
p

��
if p −N;

h2.p/ D

´�
�1
p

�
if p jN;

�1
p�1

��
�1
p

�
C
�
N
p

��
if p −N;

h3.p/ D

´
�1 if p jN;
1
p�1

�
p
�
N
p

�
C 1

�
if p −N:

The function �.t/ is multiplicative with

�.p/ D
3.1C h1.p//

1C h0.p/
�
3.1C h2.p//

p.1C h0.p//
C

1C h3.p/

p2.1C h0.p//

for p > 2 and �.2/ D 0. One can easily show that

0 � �.p/ < min¹p; 8º

and

�.p/ D 3CO

�
1

p

�
:

Hence (8.2) and (8.3) are established. Now we turn to (8.4). We have

E.D/ WD
X
t�D

�2.t/�2.t/

ˇ̌̌̌
A.t/ �

�.t/

t
X

ˇ̌̌̌

D

X
t�D

�2.t/�2.t/�.t; N /

�
A.t/ �

�.t/

t
X

�
;

where

�.t; N / D

´
jA.t/ � �.t/

t
X j.A.t/ � �.t/

t
X/�1 if A.t/ � �.t/

t
X is non-zero,

0 otherwise.
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Recalling (9.1), (9.2) and (9.3), we have

(9.4) E.D/ D
X

d1;d2;d3
Œd1;d2;d3��D

ˇ.d1; d2; d3/

�
Ld.N / �

†0.d; N /N0.N /

d1d2d3

�
;

where

ˇ.d1; d2; d3/ D �.d1/�.d2/�.d3/�.Œd1; d2; d3�/�
2.Œd1; d2; d3�/�.Œd1; d2; d3�; N /:

Obviously,

ˇ.d1; d2; d3/�

3Y
jD1

�2.dj /:

Invoking Proposition 3, we see that (8.4) holds true with D D P 1=2�". Therefore the inequal-
ities (8.5) and (8.6) hold for the sequence

an WD a
.j /
n D

X
q2Cx21Cx

2
2Cx

2
3DN

q2Aj
x1x2x3Dn

!.q/!.x/:

Lemma 16. Let c1.t/ D 1 or c1.t/ D 0 according to t � 1 or t < 1. We define cj .t/
inductively by

cj .t/ D

Z max.j;t/

j

cj�1.x � 1/

x � 1
dx:

Then for 1 � j � 15, one has

N

logN
� N

j
0 .N /�

N

logN

and

N
j
0 .N / D

�
cj .16/CO

�
1

logN

��
N 1
0 .N /:

Proof. In view of [2, (2.16)], we have

Cj .x/ D cj .16/CO

�
1

logN

�
for

P

2
< x < P:

Hence
N
j
0 .N / � cj .16/N

1
0 .N /�

N

log2N
:

We get the desired results by observing that

N

logN
� N 1

0 .N /�
N

logN
:

Remark. We record some numerical values:

c2.16/ > 2:70805; c3.16/ > 2:912112; c4.16/ > 1:663428; c5.16/ > 0:563668:
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168 Tsang and Zhao, Lagrange’s equation with almost prime variables

Proof of Theorem 1.1. Our objective is to prove

R.N/ WD
X

p2Cx21Cx
2
2Cx

2
3DN

x1; x2; x32
S5
jD1Aj

!.p/!.x/ > 0:

Observe thatX
p2A1

x1; x2; x32
S5
jD1Aj

D

X
p2A1

x1; x2; x32
S15
jD1Aj

�

X
p2A1

x12
S15
jD6Aj

x2; x32
S15
jD1Aj

�

X
p2A1

x12
S5
jD1Aj

x22
S15
jD6Aj

x32
S15
jD1Aj

�

X
p2A1

x1; x22
S5
jD1Aj

x32
S15
jD6Aj

�

X
p2A1

x1; x2; x32
S15
jD1Aj

�

X
q2
S15
jD1Aj

x12
S15
jD6Aj

x2; x32
S15
jD1Aj

�

X
q2
S15
jD1Aj

x22
S15
jD6Aj

x1; x32
S15
jD1Aj

�

X
q2
S15
jD1Aj

x32
S15
jD6Aj

x1; x22
S15
jD1Aj

:

By switching the roles of q and xj , we obtain

R.N/ �
X

p2Cx21Cx
2
2Cx

2
3DN

x1; x2; x32
S15
jD1Aj

!.p/!.x/ � 3
X

q2Cx21Cx
2
2Cx

2
3DN

q2
S15
jD6Aj

x1; x2; x32
S15
jD1Aj

!.q/!.x/:

In view of the three-dimensional sieve, we haveX
p2Cx21Cx

2
2Cx

2
3DN

x1; x2; x32
S15
jD1Aj

!.p/!.x/ D
X

.n;….z//D1

X
p2Cx21Cx

2
2Cx

2
3DN

x1x2x3Dn

!.p/!.x/

� .f3.8 � "/ � "/†0.e; N /N 1
0 .N /V.z/;

where z D P 1=16. Similarly,

X
q2Cx21Cx

2
2Cx

2
3DN

q2
S15
jD6Aj

x1; x2; x32
S15
jD1Aj

!.q/!.x/ D
15X
jD6

X
.n;….z//D1

X
q2Cx21Cx

2
2Cx

2
3DN

q2Aj
x1x2x3Dn

!.q/!.x/

� .F3.8 � "/C "/†0.e; N /
15X
jD6

N
j
0 .N /V.z/:

By Lemma 16, we obtain

X
q2Cx21Cx

2
2Cx

2
3DN

q2
S15
jD6Aj

x1; x2; x32
S15
jD1Aj

!.q/!.x/ �

 
F3.8 � "/

15X
jD6

cj .16/C "

!
†0.e; N /N 1

0 .N /V.z/:
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Tsang and Zhao, Lagrange’s equation with almost prime variables 169

Therefore

R.N/ �

�
f3

�
16

2

�
� 3F3

�
16

2

� 15X
jD6

cj .16/ � "

!
†0.e; N /N 1

0 .N /V.z/

D

 
f3.8/

3F3.8/
�

15X
jD6

cj .16/ � "

!
3F3.8/†0.e; N /N 1

0 .N /V.z/

D .C0 � "/3F3.8/†0.e; N /N 1
0 .N /V.z/;

where

C0 D
f3.8/

3F3.8/
�

15X
jD6

cj .16/:

By (8.7), we have

f3.8/

F3.8/
> 1 �

�
ˇ3

8

�3
;

where ˇ3 � 6:640859. Thus

C0 >
1

3

�
1 �

�
ˇ3

8

�3�
�

15X
jD6

cj .16/:

Now numerical computations reveal that C0 > 0:003. Thus Theorem 1.1 is established.

One can do numerical computations in the following way. We have

C0 >
1

3

�
1 �

�
ˇ3

8

�3�
C

5X
jD1

cj .16/ �

15X
jD1

cj .16/:

Brüdern and Kawada pointed out that as a consequence of linear sieve, one has (see [2, (6.35)])

15X
jD1

cj .16/ � 16e
�F1.16/ � 16e

� .1C 10�9/:

Therefore,

C0 >
1

3

�
1 �

�
ˇ3

8

�3�
C

5X
jD1

cj .16/ � 16e
� .1C 10�9/:

Then we actually need the numerical values of cj .16/ for 1 � j � 5.

Proof of Theorem 1.2. The proof is as same as Theorem 1.1 except that we consider

R0.N / WD
X

q2Cx21Cx
2
2Cx

2
3DN

q;x1; x2; x32
S4
jD1Aj

!.q/!.x/:
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170 Tsang and Zhao, Lagrange’s equation with almost prime variables

In view of the switching principle and the three-dimensional sieve, the lower bound for R0.N /
is

R0.N / �

 
f3.8/

4X
jD1

cj .16/ � 3F3.8/

15X
jD5

cj .16/ � "

!
†0.e; N /N 1

0 .N /V.z/

D

 
f3.8/

3F3.8/

4X
jD1

cj .16/ �

15X
jD5

cj .16/ � "

!
3F3.8/†0.e; N /N 1

0 .N /V.z/

D .C 00 � "/3F3.8/†0.e; N /N
1
0 .N /V.z/;

where

C 00 D
f3.8/

3F3.8/

4X
jD1

cj .16/ �

15X
jD5

cj .16/:

Similarly, we have

C 00 >
1

3

�
1 �

�
ˇ3

8

�3� 4X
jD1

cj .16/C

4X
jD1

cj .16/ � 16e
� .1C 10�9/:

Again a numerical computation reveals that C 00 > 0. We point out that we gain P4 instead of P5
due to the constant

P4
jD1 cj .16/ in place of 1. This completes the proof of Theorem 1.2.
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