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On Lagrange’s four squares theorem with
almost prime variables

By Kai-Man Tsang at Hong Kong and Lilu Zhao at Hefei

Abstract. In 1994, Briidern and Fouvry [1] initiated the investigation of Lagrange’s
four squares theorem with almost prime variables. In this paper, we prove that every suffi-
ciently large integer, congruent to 4 modulo 24, can be represented as a sum of four squares of
integers, each of which has at most four prime factors. Instead of the four-dimensional vector
sieve developed by Briidern and Fouvry [1], we establish this result by combining the three-
dimensional sieve and the switching principle.

1. Introduction

We consider the equation of Lagrange
(1.1) P42 x5+ xi=N

with multiplicative restrictions. It is expected that sufficiently large integers under certain nec-
essary congruence condition can be written as sums of four squares of primes. This problem
has not been solved so far. However Hua [10] proved that all large integers congruent to 5
modulo 24 are sums of five squares of primes by using Vinogradov’s method for the ternary
Goldbach problem.

Kloosterman [11] developed the circle method to study the asymptotic formula for the
number of integer solutions of the following positive definite quadratic forms

2 2 2 2
aixy +axx; +azxy +asx; = N.

Estermann [5] investigated the indefinite quadratic forms via the circle method and the
Kloosterman refinement. The classical circle method with mean value theorems (see [16] for
the exposition) provides an asymptotic formula for quadratic forms with five or more variables
only.
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the National Natural Science Foundation of China (Grant No. 11401154).
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130 Tsang and Zhao, Lagrange’s equation with almost prime variables

Greaves [6] considered the solutions of (1.1) with two prime and two integral variables.
Plaksin [12] and Shields [14] obtained an asymptotic formula for the number of solutions.
Podsypanin [13] derived an asymptotic formula for the number of solutions of (1.1) in which
X1, X2, X3, X4 are square-free.

In 1994, Briidern and Fouvry [1] established that every sufficiently large integer, congru-
ent to 4 modulo 24, can be written as the sum of four squares of integers, each of which has at
most 34 prime factors.

In 2003, Heath-Brown and Tolev [9] managed to solve the equation

(1.2) PPHxI+x3+x3=N
with multiplicative restrictions, where p denotes a prime number. Precisely, they established
the solvability of (1.2) with each of x; having at most 101 prime divisors. This was improved

by Tolev [15] who showed that 101 can be replaced by 80, and then improved by Cai [3] who
showed that 42 is acceptable. Our first result is as follows.

Theorem 1.1. Every sufficiently large integer N, congruent to 4 modulo 24, can be
represented in the form of

(1.3) N = p? 4+ x? + x2 +x3,

where p is a prime and each of x1, X2, x3 has at most five prime factors.

As in [9], the proof of the above theorem will be finished in two steps. In the first step,
we combine the circle method with Kloosterman refinement and the square sieve to control the
reminder term uniformly for certain level D. In the second step, we use the sieve method to pro-
duce the almost primes. For the uniform estimate, we shall develop the strategy of Heath-Brown
and Tolev, and push their method further.

Comparing to the proof in [9], two things are different. We start from applying Cauchy’s
inequality for summation over k only rather than summations over k and d (see (5.2) in Sec-
tion 5). This subtle difference contributes to a better result because it can be proved that the
error term is dominated by diagonal contributions up to P? (see Lemma 12 below). To this
end, we have to introduce the condition (2.8) at the beginning, and then we remove it before
we close the proof. This obstacle is one of the reasons that force Briiddern and Fouvry to develop
the vector sieve (cf. the discussion in [1, Section III]). Finally instead of the vector sieve which
was used by Briidern and Fouvry, and by Heath-Brown and Tolev, we appeal to the switching
principle of Chen [4] to reduce the number of prime factors for each variable.

The square sieve of Heath-Brown [8] plays an important role in the proof. However we
will choose the parameter R to be of type P#. Therefore, the square sieve is really responsible
for the success of the proof, while it does not determine the quality of the level D.

Concerning the Lagrange equation with four almost prime variables, the value 34 due to
Briidern and Fouvry was sharpened by Heath-Brown and Tolev [9] to 25, by Tolev [15] to 20,
and by Cai [3] to 13. We shall prove the following result.

Theorem 1.2. Every sufficiently large integer N, congruent to 4 modulo 24, can be
represented in the form of

(1.4) N = x{ + x5 + x5 + x3,

where each of x1, X2, X3, X4 has at most four prime factors.
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Tsang and Zhao, Lagrange’s equation with almost prime variables 131

In prior works [1,9], in order to obtain a sharp result involving four almost prime vari-
ables, people considered the equation

N = dix? +d3x3 +dix3 +dix;.
Our approach to Theorem 1.2 is different. We consider the equation
N = q* +d?x? + d3x3 + d3x3,

where ¢ is an almost prime. Therefore, instead of the vector sieve developed by Briidern and
Fouvry [1], we shall combine the three-dimensional sieve and the switching principle to estab-
lish Theorem 1.2.

As usual, we write e(z) for 27/, We use ¢ to denote a sufficiently small positive num-
ber, and the letter A denotes a sufficiently large constant. We use < to denote Vinogradov’s
well-know notation, while implicit constants may depend on € and A.

2. A crucial proposition

Before giving the main propositions, we introduce some notations. Let N be a sufficiently
large integer satisfying N = 4 (mod 24). Set P = N 1/2 The letter p is reserved for prime
numbers. As usual, ;1 (n), ¢(n) and t(n) denote the Mobius function, Euler’s totient function,
and the divisor function respectively. For the natural number ¢ and real number «, we write
eq(a) = e(a/q). We use Zx(q) and Zx(q)* to denote sums with x running over a complete
system, respectively reduced system of residues modulo ¢g. The Gauss sums S(g,m,n) and
T(q, a) are defined by

(2.1) S(g,m,n) = Z eq(mx2 +nx), S(g,m)= S(g,m,0),
x(q)
T(g.a) = ) eqlax?),
x(g)*

and

3
Sa(q.m.n) = [ [ S(q.md?.nj).  Sa(q.m) = Sa(q,m.0),
Jj=1

where we use the bold style letter d to indicate the three-dimensional vectors (d1, da, d3). Now
we define the singular series

(2.2) So(d,N) =) halq) = [ (1 + ha(p)),
qg=1

p>2

where
ha(q) = qp(@)™" Y Salq.a)T(g.a)eq(—aN).
a(g)*

Let
expl ) if 2 <r< UL
a)()(t) — 0 (20t—10)2—1

otherwise,
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132 Tsang and Zhao, Lagrange’s equation with almost prime variables

and denote 5
w(x) = wo(xP7Y), wkx) = 1_[ w(x;).
j=1
We define
+o00
1(B,u) =/_ wo(x)e(Bx> +ux)dx, 1(B) =1(B.0),
and X
la(B.w) =[] 1(B.u;d™).
j=1
Let
+o00
23) HO = [ P@epp.

For any j < 15, let A; denote the set consisting of integers ¢ < P satisfying two restrictions:

(i) the number of prime factors of ¢ counting multiplicity is exactly j,

(ii) all prime factors of ¢ are greater than P 1/16.

In order to apply the sieve method, we study
(2.4) £a(N) == £L(N) = > (@) (x).

@>+x3+x3+x3=N
qeA;,di|x; (1<i<3)

Here we also attach the smooth weight w(g) for the use of switching principle. The correspond-
ing singular integral is defined by

2.5) No(N) := NJ(N) =P /

P H(l ﬁ) w(x)Cj(x)dx
0

- p2 log x
where C1(x) = 1 and for j > 2,

log x
Ci(x) = '
J Z (logx—10g(p1"'Pj—1))P1"‘Pj—l

P1/16<p15...§pj71 S(xpl_l ...pj—_lz)l/z

The expected main term for £4(N) is No(N)Zo(d, N)(d 1d2d3)_1. ( Here and after, we shall
often suppress the dependence on j when the meaning is clear from the context.) We plan to
investigate

o)=Y p@ (sed(N) -

d19d29d3
[dy1,d>,d3]<D

Mo(N)Zo(d, N)
didrd3 '
where B(d) = B(dy, d», d3) is a real function satisfying
(2.6) 1B(@)] < t%(d1)T*(d2)T>(d3),
and B(d) = 0 unless

2.7 wQd1)p2d)(2ds) # 0.
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Tsang and Zhao, Lagrange’s equation with almost prime variables 133

Let

FoD)= Y B@ (xd(m -
di,dz,d3<D
Heath-Brown and Tolev established the following result.

No(N)Zo(d, N))
dydrd3 '

Proposition 1 ([9]). IfD = P 2/69=¢ then one has
Ho(D) < P2(log P)~4.

Define )
B(dy,d>. d3,ds, N) = 3 o)
xlz—l—x%—l—x%—}-xf:N i=1
x;=0 (mod d;)
and
o0 4
Bi(dr . ds.da. N) = 3 a7 ) eq-aN) [] S(q.ad?).
q=1 a(g)* i=1
Let
Y1(d1,da,d3,ds, N
HpDy= Y| B ds.dsda N) — N 22 0 G D)
di.d>,d3,ds<D 1d2d3dy

where the constant k; is given by

o = /_ 14(B)e(—B)dp.

It was proved by Heath-Brown and Tolev that:

Proposition 2 ([9]). IfD < P 1 8¢ then one has
Hy (D) < P>

Proposition 2 improves upon the result of Briidern and Fouvry [1] who essentially
showed H§ (D) < P?7¢ provided that D < pl/il—e
Concerning J (D), we prove the following result.

Proposition 3. Suppose that D < PY27¢_Then we have
H(D) <« P%(log P)~4.

Remark. (i) The function 8(d) may depend on N, but in view of (2.6), the absolute
value of B(d) is bounded from above by ]_[13-:1 t2(d;) which is independent of N .

(i1) With the application to Lagrange’s four squares theorem with almost prime variables
in mind, Proposition 3 improves upon both Proposition 1 and Proposition 2.

In order to prove Proposition 1, Heath-Brown and Tolev investigated the following object:

Qa(n) = > .
x2+x3+x3=n
dj|x; (1<j<3)
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134 Tsang and Zhao, Lagrange’s equation with almost prime variables

The application of circle method suggests that the sum 24(7) may be approximated by

1
Ma o(n) = LHONT )Z 23 ey(—an)Saq. a).

a(g)*

Consider

EMD.Q)= Y tld)t(d)r(ds) Y |Qa(N —k?) — Mg, o(N —k?)].

dy,d>,d3<D k<P

Heath-Brown and Tolev established
€(D.Q) < P>®

provided that Q = P20/23 gnd D = p2/69=10e Qyy purpose is to establish the following
result.

Proposition 4. Let

§(n;0,D1,D2,D3) = Y P(di,dz,d3)(Qa(n) — Ma, 0(n)),
di<D; (1=i<3)

where B(d1, d, d3) satisfies (2.6), (2.7) and
(2.8) (di.dj) < P® forl <i<j<3.
Suppose that D1 D, D3 < PY276¢ and P1=4¢ < Q < P12 Then we have

> 19(N —k?:0. D1, Dy, D3)| < P27°.
k<P

Proposition 4 will be proved in Sections 3—6. As an application of Proposition 4, we shall
prove Proposition 3 in Section 7.

3. Basic assumptions
We first quote some lemmas which are well known.

Lemma 1. The Gauss sum defined by (2.1) satisfies:
() If(q1,92) = 1, then
S(q192.a1q2 + axq1.n) = S(q1.a1q3,n)S(q2. azqi, n).

(ii) Suppose that (q,m) = k. Then we have

S(g,m,n) =
(4 ) otherwise.

{kS(q/k,m/k,n/k) ifk|n,
0
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Tsang and Zhao, Lagrange’s equation with almost prime variables 135
(iii) If (g,2m) = 1, then

S(g.m,n) = eq(—@nz)(g)S(CI, 1),

where X denotes the inverse of x modulo q.
(iv) If q is odd, then
S(g. 1) = q'? ifg =1 (mod4),
e ig'? ifqg =3 (mod 4).
) If 2,a) = 1, then
12!, a,n)| < 21+H/2,
(vi) For any odd integer q, we have |y(q)| < q*/2, where

Y@=y (g)eqm.

x(q)*

Throughout, by (é) we denote the Jacobi symbol.

Lemma 2. Denote the Kloosterman sum by

p—1
K(p,m,n) = Z ep(mx + nXx).

x=1

If p { (m,n), then
|K(p,m,n)| <2p'/2.

Lemma 3. Let cy(n) be the Ramanujan sum given by

cq(n) = Z eqg(xn).

x(q)*

Then we have
|Cq(n)| S (Q»n)

Lemma 4. The following statements hold.

(1) Suppose that u = max{|ui|,..., |ug|} > 0. Then we have

+o0
/ |[I(B.uy)---I(B.ug)|dB < min{l,u=2T¢},
—00
(ii) Suppose that By > 0. Then we have

[RGRIRY
[B1=Bo
Lemma 4 is a consequence of [9, Lemma 9 and Lemma 10]. Let

3
fa@) = > oWelx?). fa@ =[] fi@.
=0 o ) =l
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136 Tsang and Zhao, Lagrange’s equation with almost prime variables

and let
Wa,0(@) = ) Ma,0(m)e(n).

nez

The following two lemmas provide useful approximations to fz () and Wy, o (@) respectively.

Lemma 5 ([9, Lemma 12]). Letq,d,b,h e N, let B e R, g < P with |B| < (gP)~!
and d,b < P2. Then we have

h P Pn
— = — S(b,hd?,n)I BN, —— | + O(P™4
fd(b+ﬂ) Ty s (ﬁ, bd)+ (P4),
In|<bdgq~!P¢
where the implicit constant depends on A and e.

Lemma 6 ([9, Lemma 16]). Suppose that Q < P'7¢, |B| < (¢P)~! and (a.q) = 1.
Then we have

W of6) = @Sd(q,a)ﬂ(ﬂzv) FO(PTh fl12q=0Q,
0P~ fQ<q=P.

where the implicit constants depend on A and e.

Set oo
oo — [ 15(B)|dB.

—0o0

Lemma 7. Let

B(x) = Z HZ(%)e(noz),

nez

where H(t) is given in (2.3). We have

ooP2+ O(P~™) ifaeZ,

Bl = {0<P—A> if el = Pe2,

where the implicit constants may depend on A and e.

Lemma 7 is [9, formula (115)].

4. Some preparations

Let
@1 6@ d tnLv,bib) = ) eq(abiv)Sa(g, ab3,n)Si(q, —ab}, ),
a(g)*
and let
v > on? 2
— 1212 J j
4.2) n=n(dt,n v, by, by)=bib; (—4E + Z d.zb% — Z @) x lem,
j=1 "J i=1 1
n;#0 1; #0

Brought to you by | University of Notre Dame
Authenticated
Download Date | 8/2/18 2:22 PM



Tsang and Zhao, Lagrange’s equation with almost prime variables 137

where we use lcm to denote the least common multiple of d; (j € J) and #; (i € I') with the
indexsets J = {1 <j <3:n; #0}and I ={1 <i <3:[; #0}. Forn=1=0 € Z3, we
assume lcm = 1. For simplicity, in this section we always assume that d satisfies (2.7), (2.8)
and d; < D; for 1 <i < 3, and we also have analogous assumptions with t in place of d. We
use the notations (¢,k) = (¢,k1)(¢. k2)(q. k3) and (q,k?) = (q,k%)(q,k%)(q,k%) fork =d
and t.

Lemma 8. Ler 0(q) := 0(q;d,t,n, 1, v,by,by) be defined in formula (4.1). Suppose
that (2,r) = 1 and (b1b3,2r) = 1. Then we have

24U F6,3(r 1) (r, d)(r, t) ifn # 0and (n,1) # 0 € Z°,
24’”'6r4(r,dz)l/z(r,tz)l/2 otherwise,

10(2"r)] < {
where n = n(d, t,n, 1, v, by, by) is given by (4.2).

Proof. As a function of ¢, 8(q) = 6(¢;d,t,n,1,v, by, by) is multiplicative. So it suf-
fices to prove

(4.3) 0(2")] < 2%,
and
30 o o o :
@ i s se
for odd prime p. Plainly, (4.3) follows from Lemma 1 (v). By Lemma 1 (ii) and (iii),
e(FA)S(p.a)  if pim,
e(_ﬁz)pzS(p“_z,a) if p|m= ps, p? |n = p’tand o > 2,
S(p®.am®.n) = {0 ifp|m=ps, p?tnanda > 2,
p if plm,p|nanda =1,
0 if plm,ptnanda =1,

where p || m means p | m but p? } m. Then for @ > 2, we have
B+3a abyv e e 2
, )4 Z e e e —4ap—a if (p*,d;) |nj and
4.5 0(r") = a(p)* P (1<) <3),

0 otherwise,

where pﬂ || didydstitats and

3 2 2
LZ( nj _L‘)
21.2 21,2
c i a’jb2 tjbl

with (h,c¢) = 1. This proves (4.4) in the case o > 2 by using Lemma 3. Hence we turn to the
case v = 1.
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138 Tsang and Zhao, Lagrange’s equation with almost prime variables

If p t dy1dadst;tats, then formula (4.5) still holds for « = 1. We therefore confine to the
case p | dydydstytats. Note that

1S(p,am?,n)| < p'/2(p,m)1/?

by Lemma 1 (ii), (iii) and (iv). The second estimate of (4.4) follows easily. Now we assume
that n £ 0 and (n,1) # 0.If p || d1d2d3t1t2t3, then 8(p) is in the form

o) =5 0° X (4)e( %),

a(p)* 9

where (b, p) = 1. The summation over « is either 0 or a Gauss sum. So, by Lemma 1 (vi), we
have

0(p)| < P> TV2(p, )V2(p. 02 = p3(p.d)(p.1).

If p? | did>dstit2t3, then we apply the trivial bound for summation over a to get

0(p)| < p*(p, )V2(p, V2 < p3(p,d)(p. ).

The proof is completed. m)

From now on, we assume that p, p” are two different primes satisfying R < p, p’ < 2R
and (pp’, d\dydstit2tsN) = 1. For A | (pp’)?, we have the unique decomposition A = §§’,
where (p,d8’) = (p’,8) = 1. We use 7 and 7’ to denote a power of p, and respectively a power
of p’ (note that r and 7’ may be equal to 1).

Let us define

S .
WA.gdtnlp )= Y (ﬁ)epp/(—szv) S e

s(pp)* a(@)*
(app’+sq.qpp’)=A

x Sa(qgpp' A™Y, (app’ + sq) A7 n)Se(q, —a, 1)

and

RE, p,m;d,t,n,l,my,my,n) = Z (E)ep(—cn) Z ex(bmyv)
c(p)* b(m)*
(bp+cm,mp)=4

b
X Sda (j:s—p %m% n) St (o, —bm%, ).

Lemma9. Suppose that g = wn'r with (pp’,r) = 1. Then one has

/
W(A,q;d, t,nl, p, p' v) = (ﬁl) (p—)e(r;d,t, nLv,ax’, nx' pp’ A7Y)
p p

!/
X R(S, p.m;d ol ra’, rpg,n ,p'N)

x {R(S’, plad tnl rm, ran, PN)-
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Tsang and Zhao, Lagrange’s equation with almost prime variables 139

Proof. Let
a=ann +brx'r +bnr

with («,r) = (b, p) = (b', p’) = 1 and
s=cp' +c'p
with (¢, p) = (¢/, p’) = 1. Note that
(app’ +sq.qpp’) = A < (bp +cm,pr)=38and (b'p' + 'n’, p'n’) =§'.

Obviously
app’ + sq pr p'n’  bp+cmp'a b'p' +c'n pm
— YV =0 + r+ —r.
A 5 o ) 8 ¢’ )
With the help of Lemma 1 (i), the desired result can be obtained by changing variables. ]

Lemma 10. We have
!/

rp'mw
8/
< min{AT?R*4r7')°(1 + AR, 20R*(m ") *y.

J?(S,p,n;d,t,n,l,rn', ,p’N)ﬁ(S/,p/,n’;d,t,n,l,rn, ran,pN)‘

Proof. We can assume that § | pr and § | p’nr’. Otherwise, the desired estimate holds
trivially. We write

8/
Obviously (1 +§R™1)71(1 +§R~1)~! < (1 + AR™?)~!. Thus it is enough to prove
IR, p. )| <min{§ 2R>(2n)>(1 + §R™H)™1, 8R>x%}.

)
R@, p. ) = ‘R(Svp,n;d,t,n,l,rn/, r ’plN)'

Setmy = rn’ and my = rp’n’ /8 . 1t is clear that p } myms.
When § = 1, (bp + cm, wp) = § is equivalent to 7 = 1. So one has

R(1pm) = 3 (& )eptoerN)Satp.cmdm)

c(p)*

3
S(p.1)? Z ep(—cp'N)ep (—4cm§ Z njz-djz).
c(p)* J=1

Then by Lemma 1 (iv) and Lemma 2, we get

|R(1, p,7)| < 2p°.
When 6 = p, we have (bp + cm,wp) = § if and only if p|m and (b +c%,p) = 1.

Hence
3(87 P, JT) = Z (E)ep(_cp/N) Z en(%v)

c(p)* b(m)*
(b+cnp~lm)=1

X Sd(n, (b + Cz)m%, H)St(ﬂ’ —bm%, —).
p

Using the trivial bound for summations over ¢ and b, we get

|R@, p.7)| < pr*.
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140 Tsang and Zhao, Lagrange’s equation with almost prime variables

When § = p?, we have (bp +cm, mp) = §ifandonlyif 7 = pand b+ ¢ = 0 (mod p).
Therefore, one has

RG.pm = 2 (S)erar) X epBmiosip-bn -

c(p)* b(p)*
b+c¢=0 (mod p)

= Z (%)ep (—cp'N)ep(=cmiv)Se(p, cm%, -1

c(p)*
c(p)* i=1
Then we get
|R(S. p.m)| <2p>.
This completes the proof. .

In view of Lemma &, we define

(r,n)(r,d)(r,t) if n # 0 and (n,1) # 0,
r(r,d®)Y2(r,t2)1/2  otherwise.

S(ﬁﬂ,d»t) = {
We summarize from Lemmas 8—10 that

Lemma 11. Suppose that ¢ = 2%mn'r with 2pp’,r) = 1. Then we have

[W(A,q:d, t,n,1, p, p',v)|
< 24”+6r3§(r, n.d,t) min{A_2R4(4JUT,)5(1 + AR_Z)_l, 26R4(7T71’)4}-

The following estimate is a key ingredient in our proof.

Lemma 12. Letr H > 0. Define

1 njl 17
U = max{ —%-, .
IEELTDIPIDD (e
lv|<P a t (n,])#0€Z°
|njl<d; HP®,|l;|<t; P¢
n(d,t,n,1,v,b1,b2)=0

Suppose that (b1by,2d drd3tt2t3) = 1. Then we have
U < PE(D1D2D3)*(1 + H).

Remark. Recalling (4.2), when by = b, = 1 and v = 0, one has the diagonal contri-
butions from d = t and n = 1. Therefore in the case b1 = b, = 1 and H = 1, we have the
lower bound U > (D1 D> D3)? which coincides with the upper bound (up to P?).

Proof. 'We decompose U to get

U < P* sup U(Nl,NQ,N:;,Ll,Lz,Lg,),
N,<D; HP®
L;<D;P°®
lv|<P
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Tsang and Zhao, Lagrange’s equation with almost prime variables 141

where
U(N1. N2 N3, L1. Lo L3) = > > ) ma) 17! ,M —1.
d t nl de t;
Nj=Inj|<2Nj, L;i<|l;|<2L;
(n,])#0€Z°

n:=n(dstanalavabl ab2)=0

Without loss of generality, we assume either L; # 0 or Ny # 0.
We first consider the case L1 # 0. Let

e = l_[ p-

plti
ptdidadstitatst!

Since el.2 is a divisor of n — b%b%liz/(tizb%) Icm and (bfb%ti_z Icm, el.z) = 1, we have el.2 | li2
and then ¢; | /;. Hence for fixed d and t, there are at most 2L1e7 (1 4+ 2Lse5 ) (1 + 2Lze3 )
possible choices for 1. Clearly

njl 1 o
ax , — <nlLi .
{de ti =

Now fix d, t and 1, we claim there are at most O(P?® + H P?) possible choices for n;. Suppose
that (n1,n2,n3) and (n/, n}, n%) are two solutions for n(d, t,n,1, v, by, b) = 0. Then

3 2 2
n< —n':
d?
j=1 J
We write it in the form
[d1, d2, d3)? [dy, d2, d3)? [dy1, d2, d3)?
— (n% — n/lz) = B (n% — n/zz) S R (n% — n’32).
1 2 3
Let
k= 1_[ p.
pld:
ptdad;

We see that n2 = n’? (mod k?). So we can find K | k2 with K > k such that either K |ny + 1/,
or K |ny —ny. We deal with K | ny — n'}, and the other case can be handled similarly. Suppose
that nq — n/1 = Km for some m with 0 < |m| < diHP¢K~1. Note that K > dq P~¢ due to
K > k and the condition (2.8). Then the number of possible choices for m is O((1 + H) P¥?).
The number of K satisfying K | k? is at most O(P?). Thus there are at most O((1 + H)P¥?)
choices for 1. Then n,, n3 can be determined (up to at most P¢ choices) by d, t, 1,71 due to
the equation n = 0. Hence

L L L3\t
d t €1 €2 es 1

3
<Y > T1 2—2(1 + H)P®.
d

t i=1
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142 Tsang and Zhao, Lagrange’s equation with almost prime variables

Note that
3

3
i <ei | |(dj, i)t 2)(11,13) (12, 13) K e; H(dj»ti)Pe,
j=1 Jj=1

S0

3 3
U(N1, N2, N3, Ly, Lo, L3) K ZZ l_[ l_[(dj,ti)(l + H)P*?
d t i=1j=1
&« (D1D2D3)*(1 + H) Pé.
Now we assume N; # Oand 1 = 0. Let

h= 1_[ p.

pld:
p tdadstitats

The similar argument as before implies / | 1. So there are at most 4N1h~! choices for n;.
Then n,, n3 will be determined. We arrive at

U(N1. N2. N3, L1, Lp. L3) < Y Y (Nih™Hdi HN{!

d t
<Y > T]@r.t)HPe
d t i

&« (D1D,D3)*HP®.

The proof is completed. O
To handle the contribution from 1 # 0, we need the following.

Lemma 13. Let

-y 1 1 w22y
T e T ; 2 Gy max] 2
lv|<P d,t r<P (n,l);éOGZ6 : l

|njl<d; HP®,|l;|<t; P®
(df,r)lnj,(tiz,r)lli
n:=n(d7t7nylav7blyb2)#0
with H > 0. One has
V &« P5(D1D,D3)*(1 + H)3.

Proof. By changing variables, we get

2 2y -1
1 n;y [ r,
VE Z 1+| |Z Z h1h2h3k1k2k3 Z max{dz—;_lz,iz} Z ( 77)
lv|l<P v dt h;ld; (n,])#£0€Z° J fi r<p d
kit |n;|<d; HP¢
[lj|<t; P®
hjl|nj, kill;
n#0
n? j2y-1
< Z Z Z hihahskikoks Z maX{dz—;—Iz, ILZ} Pe.
dt hy|d; ki |t (n])£0Z6 J !
Injl<d; HP®
l;|<t; P®
hjln;, kill;
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Without loss of generality, we assume

2 2 2
d?H?"t?]  d?H?
i 1

First we handle the case that (n,,n3,11,l2,13) € Z° is non-zero. We have

Y t=t+(mldi ' H YdjHhy' for2<j <3

hjln;
and
Yo 1= t+(mldi " H Ykt for1 <i <3.

kill;
Since (n3,n3,11,12,13) € 77 is non-zero, at least one of the five inequalities above holds with 1
omitted. Hence

d2H2P8 d d
VLY > Y hihohskikaks ) 1_2((1+ |,Zii|hzz)(1+ lichh:)

n
dt hjld; kit hy|n 1
0<|ni|<d\HP?®

|ni|t1 Iniltz NE
1 1 1 —1].
X( +d1Hk1 +d1Hk2 +d1Hk3

A simple calculation reveals that

V &« P5(D1D,D3)*(1 + H)3.

Now we turn to the case n, = n3 = [y = I, = I3 = 0. Note that 7 is independent of d5, d3
and t in this case. Switching the summations, we arrive at

1 1 d?H?(r,n)(r,dy)
1% - 1 e r,da)(r,d3)(r,t
D I TP I ILIDY D M HATRATRS
[v|<P diy r<P 0<|ni|<d|HP® 1 d,d3.t
(rd1) | n
n#0
1 1 2772 -1 2 pe
D D DD S LRI RS
lv|<P dy r<P 0<|n|<d|HP?®
n#0
Hence we easily obtain V < DfD%D%H 2 P¢. The proof is thus completed. ]

For H > 0, we define
Nag(H) = {n € Z%: In;| < di HP®, n; = 0 (mod (¢, d?)), i = 1,2,3},
and write Ng,g = MNgq(1). Let

=Y Y Y Y

lv|<P d,t A|(pp)2q=<P

x > IW(A,q:d, t,n.1, p, p'.v)|[€(q.d, t,n,1, pp’ A™1),

neN, a(pp’'/A)
lEe/Vq,t
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144 Tsang and Zhao, Lagrange’s equation with almost prime variables

where
i if (n,1 0,
(4.6) €(g.d,t,n 1, H) = o 1 (n.h 7
g>’P~2 if(n,1) =0,
and 1 1
2 (3 n2 2N\ 3 ) . -
in = mind ik a sl Vil
mm—rnm{P2 (2(d.2H2 + t.z)) ' p (2(‘11_1_] + ” .
Jj=1""J L J=1
Let

Yo=Y . lv ZZZ% > 16(g:d.t.nLv. 1, 1)
o=p LTIV q

t g<P (n,))£0€Z°

nGeN.q.d
leeA/},.,
2 (S 2\ g (Sl )
i (X)) s () T
J=1 J 1 J=1

With the help of Lemmas 8—13, we establish the following result.

Lemma 14. Let Y1 and Y, be defined as above. Then one has
Y1 < (D1D2D3)* P 'R® + (D1 D2 D3)* P72+ RO,
Y, < (D1D2D3)?> P~ 1€ 4 (D1 D, D3)* P28,

Proof. The proofs for ¥; and ¥, are similar. Indeed, the argument for ¥, is easier,
because there is no R involved. We only work out the details for Y.

We write ¥; = y§1)+y§2)+y§3), where y§1) is the contribution from (n,I) = 0, y?) is
the contribution from those terms with (n,1) # Obut n := n(d, t,n, L, v, zn’, 77’ pp’/A) = 0,
and Zy?) is the contribution from the remaining terms. By Lemma 11, when (n,1) = 0orn = 0,

(4'7) W(A’ q;d9 t7 n9 l’ pv p,7 v)
< 24ur4(r’ d2)1/2(r’ tz)l/zA_2R4(7T7T/)5(1 + AR_Z)_I,

where we have used the decomposition ¢ = 2¥m z’r with (2pp’, r) = 1. On applying the esti-
mate (4.7), we get

Amr'(r.d?)V/2(r,12)1/2

_ 1
V< PR T 2 2 I+ ARZ

lv|<P dt Af(pp)?2¥mr'r<P

Recalling the condition (2.8), we obtain

1/2 1/2
> ez (Y ed) (L ee)
Pt rS it r <t
1/2 1/2
< Ps( ) (r,dlzdgdg)) ( ) (r,zfzgzg))
r < r <
P1+8
< LT & 4
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Then one can get
Z nn/(r,d2)l/2(r,t2)l/2 < P1+8.
QUrn’'r<P
It is easy to see
> L R
1+ AR2 ’
Al (pp))?
We can now conclude that
YV « (D1 D2D3)?P*' RS,
Combining (4.7) and
/ —1
pp q Injl 1]
'€ 7d3t7n3l9_ — ma —_—, — S
(q A ) <P X{djpp’/A ti
one can deduce that

. 1 A
P < PTIRY Y D IIDIEEDY 2 iy AR

|v|<P At A|(pp)22Ymna’'r<P  (n))#£0€Z°
Injl<d; P*pp’'/A

|l;|<t; P®
n=0
« (r.d2) 2 (r, )12 max{ nj| M}_l
’ ’ dipp' /At )
Note that |
Yo o d) ()2 < PR
2y
QUrn’'r<P
we have A .
y(z) p-lte g4
< 2 1+AR_2ZI+|U|
Al(pp’)? lv|<P

il 1L
X — .
I e
dt  (nD)A0€Z°
In;jl<d; P°pp’/A
;|<t; P®
n=0

Then one can conclude, by appealing to Lemma 12, that

() -1 4 A 2 pr’
Yi¥ < PTITERY Y W(DIDZDQ (1 + T)
Al (pp’)?

< (D1D2D3)*PF RS,
For y?) we shall apply
W(A,g:d. t,n 1, p, p'.v) < 273 (r,n)(r.d)(r, ) R* (w)*
by Lemma 11. Note that Ny a(pp’'/A) = Nra(pp'/A) for g = 2" 7’r, and

2 2y —1
ppr’ 9’ n; I
€(q’d,t’n,l, ) < _maX{z—,Lz .
A p? dZ(pp'/ D)2 ]
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146 Tsang and Zhao, Lagrange’s equation with almost prime variables

Thus, one has

(3) —2 p4 1 1
Y7 <PPRY Y AN 1+|v|2un§;<P;

Al(pp)? |vl=P

nz 12\ 1
x Z Z (r,m)(r,d)(r, t) max{W7 ZLZ} '
dt  (n))#0€Z° i \pp ;
neN;a(A/(pp"))
1eN; ¢

n#0

By Lemma 13, we have

pr

3
n ) & (D1DyD3)*PE72 R0,

Y <« PR Y A(D1D2D3)4(1+
Al(pp)?

The assertion is established. D

Lemma 15. Let

S

/
0<|l|<R2Q2pPs—2 pp

—3( 9192 _ In
X E (9192) 3( ,)epp’(—flﬂ]le)e(—,)
= PP 4192pp
(q192,pp")=1

[1l(pp) "1 P26 <q142

X Z Sa(q1,—a1)Si(g2. —az).

ai(q1)*,a2(q2)*
pp'(a192+azq1)=I (mod q14q2)

Then we have
? << P—4+EQ3R2 + P_4+8Q14/5R24/5.

Proof. We modify the argument of Heath-Brown and Tolev [9]. Let
qj = gibj. 1= =2,

where
g1 = [ ] pFoand 2= J] -
PXla ¥ a2
pt2d1d2d3(q1,92) pt2t1t2t3(q1,92)
Then

(g1, 82) = (8182, b1b2) = (g1.2d1d2d3) = (g2, 2111213) = 1.
Leta; = ajb; + Bjg; for j = 1,2. Then
pp'(a1q2 + a>q1) = [ (mod q1¢2)
is equivalent to the three conditions
pp'arbibaga =1 (mod g1),
pp'azbibagy =1 (mod g3),
pp'g182(B1b2 + B2b1) =1 (mod b1by).
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Hence by Lemma 1 (i), the inner multiple sum over ay, a, in ¥ is equal to

(—Pplblbzgzl) (—pp’blbzgll
81 82

)53(g1, 1)S3(g2, 1E,
where

= E(pp'g182) = > Sa(b1, =P1)St(b2, —f2).

B1(b1)*, B2(b2)*
pp’'g182(B1b2+pB2b1)=I (mod b1b2)

Letb; = BjAfor j = 1,2 with A = (b1,b3). Then E = 0if A 4/, and for / = Av we have
E(pp'g182) = > Sa(B1A, B1)St(B2A, B2).

B1(B1A)*, Ba(B2A)*
pr'g182(B1B2+p2B1)=v (mod By B2A)

In order to change variables, we introduce the conditions
(g1,82) = (8182, B1B2A) = (B, Bz) = 1,
(81.2dvd2d3) = (g2,2111213) = 1,
pa(B1A) = pa(Ad), p(B2A) = pi(A),
(B1B2Ag1g2, pp') = 1, [v|(pp") "' P?7° < Bi1B2Ag1£2,
where for k = (k1, k2, k3) we use the notation

pmy= T[] »p

plm
D 12ki1kak3

(4.8)

By changing variables we arrive at

N

v,A By,B> PP’
0<|vA|<R%2Q2pe—2

— 5 vn
x (8182)" 3( )e (- g1ng1BzAvN)e( )
g12,g:z pp’ )" g182B1B2App’
“8)
—pp'BiB2gaAv) (—pp'BiBagi Av -
- ( g1 2> $3(g1.1)S%(g2. DE(pp'g182)-

Let

£(g1.82) = e( vn )(glgz)(—PP/gz)(—Pp/gl) S3(g1,1)S3(g2, 1)
’ g182B1B2App"J\ pp’ g1 g2 8185

Note that E(A) depends on A (mod B B> A) only. Hence

n (g 3, ()

v,A A (mod 8B1B>A)

(wA,pp')=1
0<|vA|<R2Q2pe—2
- v v
x Z epp’(—glngleAvN)(—) (—)é(gl,gﬂ-
81,82 &1 &2
(4.8)

pp’'g182=A (mod 8B B>A)
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148 Tsang and Zhao, Lagrange’s equation with almost prime variables

Moreover, in view of (4.8) and the condition
pp'g182 = A (mod 8B1 B2 A),

the summation » _; (04 8B, B,A) €0 be replaced by D " (104 8B, B,A)*
From Lemma 1 (ii), (ii1), (iv), and (2.8),

E(L) < A*(B1B2)¥*(AB1,d%)/2(AB,, t)? « A°(B1 By)? P°.

By the dyadic argument, we have

(4.9) F <log?P sup F(Gi1,G»),
G1=G|<2G
G2<GL=<2G>
where
F(G1,Gy) = Z Z (B1By)~'a™! Z
v,A B1,B> A (mod 8 B] B A)*
(wA,pp')=1
0<|vA|<R2Q2pe—2
- v v
x ) epp (iAoM) () (2 Jeer o).
G1=g1=G|,G2<g2=<G), &1 &2
(4.8)

pp'g182=A (mod 8B1B>A)

Without loss of generality, we assume G; < G3. In view of (4.8), the multiple summations
over B1, B, are naturally restricted by

pd(B1A) = pa(A),  pi(B2A) = p(A),
(4.10) (B1B>, pp) =1,
|v|R™2P27¢ < 16B1B2AG1G>.

In view of the congruence condition pp’g1g2> = A (mod 8 B1 B, A), for fixed p, p’, A and g1,

we have
vn —3/2 —3/2
5(8‘1,82):6( )g g, '€,
g182B1BaApp' )7t 22
where |¢| = 1 and € is independent of g,. Partial summation gives
F(G1.Gy) < sup  Gy'*Gy%pe 3 AT ST (BB
G2=G,G'<G) v,A B1,B>
G1<g1=G] (vA,pp)=1 (4.10)
0<|vA|<R2Q2 P2
S — v
< ¥ > epcamBmnm (L)
2

A (mod 8 B; B A)* G<gr<G’

@.11)
pp'g182=A (mod 8B B2A)
where the condition (4.11) comprises
(g1, 82) = (82, B1B2A) =1,
4.11) (g2.2111213) = 1,

(g2.pP") =1, l(pp)) ' P?7F < BiBrAg18>.
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Tsang and Zhao, Lagrange’s equation with almost prime variables 149

As in [9], we use two different estimates according to G, > H or otherwise, where H will be
chosen later. The summation over g is of the type

v
(4.12) M = Z epp (gmimz) (—)»
K<g=<K’ g
(g.u)=1
g=A’ (mod 8B1B>A)

where G < K, K’ < G' and (m1m3, pp’) = 2B1B>A,1") = 1. We shall prove

(4.13) M < P2Go(B1BaApp’)~! + |v|R? PE.
With (4.13), we can get
F(G1,G2) < Gy '*Gy % pe 3 Y (Ga(B1B2App') ™ + [v|R?)
v,A B1,B>
0<|vA|<R2Q2 P2 (4.10)
<G 26 pe Y (WT'PT2GiGE +IRY) Y L.
v,A By,B>
0<|vA|<R2Q2pe—2 (4.10)
Note that
SEEEEDY > i«
(4.14) B1.B, Bi<P By<P
(4.10) pl|By=p|2di1d2d3A p| By =p|2t1t2t3A

We now conclude
.(fT(Gl, G2) < P—4+8R2Q2G%/2G;/2 + G1_1/2G2_3/2R6 Q4P—4+8
<< P—4+8R2Q3 _|_ R6 Q4P_4+8H_3/2.
To prove (4.13), we first remove the restriction (g, u) = 1, getting

w=ypw(2) X (%)

wlu Kwl<g<K'w™!
gw=A" (mod 8B|B>A)

We divide the inner summation into O(Gow ™' (8 By By App’|v])~!) complete sums and at most
one incomplete sum

(4.15) ML Z(sz_l(331BzAPP/|v|)_l|=M0| + O(|v|R?)),

w|u

Mo = Z epp (Wmimz) (g)

g (mod 8B1 B2App’|v])
gw=A" (mod 8B1B>A)

where

and the error O(|v|R?) is the contribution from the incomplete sum. Recalling the condition
(B1B2Av, pp’) = 1, we change variables, by g = s8 B1 B, A|v| + kpp’, to deduce that

v
Moy = Z ( ) Z epp (s8B1 By Alv|wmimy).

kpp'
k (mod 8B1 B> Alv|) pp s (mod pp’)*
kpp’w=A" (mod 8B1 B>A)

The inner sum is a Ramanujan sum, so Mo < |v|. Now (4.13) follows from (4.15).
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150 Tsang and Zhao, Lagrange’s equation with almost prime variables

When G, < H, we apply the trivial bound to get

F(G1.Ga) < sup Gy /2G5 3/? 3 Al
G,G’ v.A
0<|vA|<R2Q2pe—2

x Y (W|[R2P**(AG1G2) ™)' G.

By,B>
(4.10)
Recalling (4.14), we arrive at
(4.16) F(G1.Ga) < P4 R*0%G1?GY* « P~*+*R*Q%H.
We choose
H = R4/5 Q4/57

by equating RCQ*P~*H3/2 = P~#R*Q2H, to conclude finally
(417) ?(GI,GQ’) < P—4+8Q3R2 T P_4+EQ14/5R24/5.

The proof is completed by putting (4.17) into (4.9). O

5. Invoking the square sieve

By the dyadic argument, our task is to prove

GH Y > B(d)(Qa(N —k?) — Mg, o(N —k?))| < P>75.
k<P'D/<d;<2D} (1<i<3)

Suppose that « € (0,1/2). Set m = 4[k 17, and denote by R; the interval [2/=1pK 2/ pX)
forl < j <m.Letn(R) = Hpe:R p. We have the partitions

[Dj.2D))= || D

where Dy = {D} < d; <2Dj: (d;,n(R;)) # 1 <= j € J}. Hence (5.1) can be deduced

from
>

k<P

Y B@(Qa(N —k?) — Ma, o(N —k?))| < PZ*.

diei)Ji (1<i<3)

By Cauchy’s inequality, it suffices to prove

(5.2) Z

k<P

2
Yo B@(Qa(N —k?) — Mg, o(N —k?)| < P>,

d[EéDJl. (1<i<3)

Note that D] < D; < PY2 < P.Soif Dy is non-empty, then |J | < m /4. Therefore for
any triple Dy, , Dy,, Dy, satisfying Dy, # O (1 <i < 3), there exists 1 < j < m such that
J & J1 U J2 U Js. In other words, we have (p,d;) = 1forall p € R; and d; € Dy,.
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In view of the square sieve of Heath-Brown [8] and the above preparations, Proposition 4

can be reduced to the estimate
2 2
log R N —n
5.3 &y =
63 6= ¥ = = (5)
PN

1<n<N
R<p<2R
<< P4+8R—1 Q—l _|_ (D1D2D3)2P2+8R3 + P8Q14/5R29/5,

> B@)(Qa(n) — Mq, 0 (1))

d

where 8(d) is supported on d; € D; C [D;,2D;), 1 <i < 3, satisfying (2.6), (2.7), (2.8), and
(didyds, p) =1 foralld; € D, R < p < 2R,
and R is restricted by
(5.4) P1TeQ~l <« R < P2EQ72.

Although our choices will be of type Q=% and R = P?, there is really some space for the
parameters Q and R so that & < P3¢ and (5.4) hold simultaneously.

6. Proof of Proposition 4

We start to estimate &g which is bounded by

10g2R log R
(6.1) o K —— &1+ ——&.
where )
N —n
=Y (50 2 p@(utm - Maown)
R pp 1<n<N' d
and

2

&= Y

1<n<N

> B (szd(m — My, Q<n))

d

Throughout, we use ) _ & to indicate that the summation is taken over prime numbers p, p’
with R < p # p’ <2Rand (pp’,N) = 1.
We expand the square to obtain

(6.2) & =6 26 + ¥,
where
(6.3) e =33 p@pwJ
d t

with

1
10 = [ o) e

0
@_ [
Iy :/0 Ja(@) Wy, o (—a)da,
®_ [
J, :/0 Wa, 0 (o) Wy, 0 (—a)da.
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152 Tsang and Zhao, Lagrange’s equation with almost prime variables

Let
P P
T2(g.d.tnl) = ) / Sd(q,a,n)St(q,—a,—l)Id(,BN,——n)It(—,BN, —1)01/3,
« J B(q,a) q q
a(q)
where
B(q.a) = [— : : }
’ q(q+q) q(q+4q")

with ¢’ and ¢” satisfying
P<qgq+q.q+q¢"<q+P, aq'=1(modq), aq” =-1 (modq).

Set
T2(q.d,t) = T2(q.d, t,0,0).

By Lemma 6, we have

Do T vl al 50

q<P a(q)*

> quz(q,d t) + 0P~

So
(6.4) &5 = €5(0) + 0(P™4),
where
(6.5) &5(K) = P6ZZ P@OLM > infz(q,d,t).

didrdstitrt3 s=x

According to Lemma 5, one has

(6.6) 7 = _re Z > 3 Bt + 0P,

d1d2d311t2t3 nENg g 1€M 4

Combining Lemma 5 and Lemma 6, we derive

2 _ pe B
(6.7) J. — 72(g,d,t:n,0) + O(P).
2 d1d2d3l11213 <ZQ q ne;dq

We exchange the summation over a and the integration by the standard technique to get

(6.8) Ta(g.d.t.n.l) —/ Y o:iB.q) ) eq@v)Salg.a,mSi(g,—a, 1)

<ar lvl=P a(q)*

X Id(ﬂN, —En)lt(—ﬁN, £l)d,3,
q q

where the function o satisfies o (v; 8,q) < 1/(1 + |v]). For this technique, one may refer to
[9, (98) and (99)], for example. One can also refer to Estermann [5, proof of Lemma 13].
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Recalling (4.1), we have

(6.9) T2(g.d.tnl) < Y 10(¢;d,t,n,Lv,1,1)]
lv|<P 1+ |v| |5|Sﬁo
P P
x |Ia (,BN, ——n) I (—ﬂN, —1) ‘dﬁ
q
< ;d,t,n, L v, 1,1)|42(q, d, t,n, 1),
|v|<P
where

o0

Jr(q.d tn, 1) = /

Ia (ﬂN, —gn) It( BN, —1) 'dﬂ

—00
- B@B)
P6
Z 1+ |l)| Z d1drdst1tat3
lv|<P
x Z Z 16(g:d,t,n, L v, 1,1)|d2(q.d, t,n,1).
q<P neNg ¢, 1€M. ¢
(n,])£0€Z°

By (6.3), (6.5), (6.6) and (6.9), we get

(6.10) eV = €5(P) + 0(X2) + O(P~H).
Similarly from (6.3), (6.5), (6.7) and (6.9) we deduce that

(6.11) e? = €5(0) + 0(X2) + O(P~4).

One has, by Lemma 1,

2. / Sa(q.a)Si(q. —a)|[I(BN)|°dB < P2q*(g.d*)'?(q.%)"/>.
a(g)* BeB(q,a)
This yields
IB(d)B(t)] 1 2N1/2,, 201/2
(6.12) &4(P)—&,(Q) « P* —_— —(q,d%) """ (q,t)
2 2 ; ; didrd3ty 1213 Q§5P q?
< Q7 lpte,

We conclude from (6.2), (6.4), (6.10), (6.11) and (6.12) that
& < 07 tPte L X,

From Lemma 4 (1),

2 (3 il Y g (Il Y
J2(g.d.t.n,1) < P2+ min{ 2 L VIR IS Loipn il .
2(q nl) < mln{P2 (;(dj + . P ; 4 + s

Applying Lemma 14, we see that
X2 < P*T4(D1D2D3) %Y, « P3¢ 4 (D1 D2 D3)? PHE,
Hence our final estimate for &, is

(6.13) & « P¥¢Q~1 4 (D1 DyD3)P?>Te.
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154 Tsang and Zhao, Lagrange’s equation with almost prime variables

Now we consider &;. Following the argument in [9, Section 3.4.1], we arrive at

(6.14) g =6M _26@ 4 e,
where
615 &0 = Zm’p )ZZﬂ(d)ﬁ(t) > (o Jemm s
s(pp’)* pp’
with

1 S
Jl(l) — / fd(a =+ —/)ﬁ(—a)da,
0 pp
1 S
O Z / fa (a + —,) W0 (—a)da,
0 pp
J1(3) = Z Ma,0 (1) My, 0 (n)eppr (sn).

nez
We decompose the integral

W= 5 [l i)

g<P a(q)*
(app/+sq)A‘1) (_ B ‘—l)d
q;ozA: an:* /za(q,a) fd(ﬁ Fga )P

(app’+sq.qpp")=A
Note that (app’ + sq.qpp’) | (pp’)?, we deduce by Lemma 5

6 A3
W= > 46
didrdsti1rt3(pp’)3
AlGay2a=p 1702 3110213(pp’)

qpp’ app’ + sq
x 2 2 Z /:Bw,a) Sd( AT A ’n)

neNg 4 (pp'/A) 1€M 4
(app’+sq.9pp")=A

x S(q.—a,—1)Iq (,BN, - /n) It(—ﬁN, Sl)dﬁ + 0P,

Let
a + s
Tig.dtnlpp.A)= Y ( )epp( sN)Z/ Sd(‘”’”, ””A g )
s(pp')* pp’ a(q)* ’ 8@:a)
PA P
X St(q’ —a, _l)Id(,BN’ _—/n)lt(—ﬂN, —l)dﬂ,
qpp q
and let

Ti(g.d.t,p,p',A) = Ti(q,d,t,0,0, p, p'. A).

From above we obtain

M _ pex— Y(@p) B(d)B(t)
(616) &7 =F Z (pp")* Z didardsttrt3

Z Z Z Z ’J‘](q,d,t,n,l,p,p/,A).

Al (pp))? q<P neNg. q(pp’/A) 1€M 4
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By interchanging the summation over a and the integration, we see that 71 (¢, d, t,n,1, p, p’, A)
is equal to

/m Y oowap) Y eq(av)sd(qip,“”p A“q,n)st(q,—a,—l)

ar lv|<P a(g)*
(app’+sq,qpp")=A

X Id (,BN, —P—A/n) It (—,BN, £l)dﬂ
qpp q

Recalling the definition of W(A, ¢;d, t,n,1, p, p’, v), we have

6.17)  Ti(g.d.t.n,1, p, p', A)

<y

lv|<P

WA, g:d.tn.L p. p. v)wl(q, pf)

P

Id(,BN, ——n)]t( BN, —l) ‘dﬁ
qH

To discuss the contribution from (n,1) = 0 € Z°, we define

oy

s(pp)*

xzf

aq)* " 1P1=2qp 27

1+ |v]

where
(o, ]

Ji1(q.d, t,n,1, H) 2/

—0o0

7/(q,d.t,p, p’'. A)

sa( 222 2222 Y s~ 1ip)l“ap

— W(A.q:d.1.0.0.p. . 0>/ 1(B)[d.

We deduce from Lemma 4 (ii) that

(6.18) T/(qg.d.t.p,p'.A) — Ti(q.d.t, p, p'. A)
&« P42 W(A,q:d,t,0,0, v
q Z 1+ v || (A.q p, p )|
v|<P

and

(6.19) T/(q.d.t. p. p'. A) — 0o P 2W(A,q:d,1.0,0, p. p'.0)

& P74q%W(A,q:d,1,0,0, p, p’,0)|.
Let
y(pp") B(d)B(t) A3 /
gi(K)=UoP4Z /42 Z Z—6W(A,q;d,t,0,0,p,p,()),
7 (PP didadsnity | O

and define

_ 7 |B(d)B(D)] A3
= PR Z Z 1_|_|v| Z0'16126173l1l213 Z Z

R |v|<P Al(pp)? g=p 1

pr’
WA’ ;d?ti ’l’ ’ ,’ 8 ad’ta ’l’_ .
x Y > IW(A.g:d.t.n L p. p'.v)| (q n A)

neNaq(pp'/A) €N 4
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156 Tsang and Zhao, Lagrange’s equation with almost prime variables

Here the function €(g,d, t,n,1, pp’/A) is defined in (4.6). By Lemma 4 (i), if (n,1) # 0 € Z°,
then

(6.20) Jl(q,d t.n,l, %) < P—2+8€(q,d t.nl, %)
We conclude from (6.16), (6.17), (6.18), (6.19) and (6.20) that

(6.21) e = €/(P)+ 0(X1) + 0(P~H).
Similarly we can also obtain

(6.22) @ = €/(0) + 0(X1) + 0(P~4).
We shall prove

(6.23) €™ = €, + 0(PFQ>R%) + 0(P* Q¥ R?/5),
where

d)B(t)
& = oo P v(pp") A(
70 Z (pp"* Z dydadsty 1213
1
dYooa? > —W(A.q:d.t.0,0, p. p'.0).

Al(pp)?  gq=min{Q,0A(pp)~'}
Note that min{Q, QA(pp’)~ '} < O < P, we introduce

-7 |B@)B(1)]
P R ZZ didadztitat3

A3
x Yy > —|W(A.q:d.£.0.0, p. p. 0)].
Al(pp")? min{Q,0A(pp’)~1}<q<P
Thus by (6.14), (6.21), (6.22) and (6.23) we arrive at
€1 < O(X1) + O(X3) + O(PFQ*R®) + O(P* QP R¥/3),
By Lemma 14, we have
X1 < P*R77(D1DyD3) 2 ¥ & PPTER + (D1 D2D3)* PPH R,
R
From Lemma 11,
(6.24) W(A,q:d,t,0,0, p, p’,v)
< 2874, d) 2 (r )2PAT2 R} ()2 (1 + ARTH L
Substituting (6.24) into the definition of X3, we can deduce that
_ |B(@)B(1)]
X3 < P*R73
3K Z Z di1drdst1tat3
Z Z A(’.’ d2)1/2(’.’ t2)1/2
X
22u/r2(1 + AR72)

Al (pp’)? min{Q,0A(pp’)~"}<2¥mn'r
K P¥ERTYC N Amin{Q. QA(pp) M1+ AR
R A|(pp')?
& P4TERQTL
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Thus for &; we finally obtain
(625) 81 < P4+BRQ—1 + (D1D2D3)2P2+8R5 + P8Q14/5R29/5.

Combining (6.13), (6.25) and the lines around (5.3) and (6.1), we established Proposition 4.
We are left to establish (6.23). Recalling the definition of J 1(3), one has

2
»__F
A _— S, ,—a1)S¢(q2, —
= didadsniiohs > (q192) ) Salgr.—a1)Si(ga.—az)
q1.92=Q ai(qi)*
as(g2)*

MG )
nez N a1 92 pp

(6.26) e —¢/+E+ o),

By Lemma 7, we get

where
4 )/(PP ) p(d)B(t) s
oo P Z Z Z d1drdst1tat (Z)* (W)e”p/(_m)
Z (q192)~> > Sa(q1. —a1)St(g2. —a2)

q1,92<0Q ai(q1)*,a2(q2)*
Rt el

and

V(pp’) P2B(d)B(t)
Z Zd1d2d3tltzt3z ( ) Z (PP )epp( sN) Z

s(pp)* 91,420
as s
X Z Sa(qu. _al)St(QZ,—az)e(n( + = 4 _/))
01(611)*,02(112)* 1 92 pp
0<| g+ +“2+pp, |<Pe—2

Notice that

/
ai | dapp'tsqa _ar a2 s,

q1 q2pp’ @ q2  pp’
is equivalent to
g1 =q2pp’ A7 and  —ay = (a2pp’ +5g2) A" (mod q1),
where A = (azpp’ + sq2,q2pp’). Hence
(6.27) =&l

Now we handle £. By Lemma 1 (vi),

(6.28) E <« P*R sup
n!p’p

’

Iﬂ(d)ﬁ(t)l
2 Gidadsnians

1d2d311t2f3
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158 Tsang and Zhao, Lagrange’s equation with almost prime variables

where
S —
Fi= ), (—,)epp/(—SN) > (@127
s(pp)* 91.42<0Q
ai as s
x Z Sd(611,—al)St(Ch,—az)e(n(—+—+ /))
ai(q1)*,a2(q2)* 91 492 pp
0<lgh+Z +55lI<Pe2
Note that

ar + az + s pp'(a1q2 + a2q1) + sq1q92
91 492 pp’ q192pp’
We divide the summations according to pp’(a1q2 + a»2q1) + sq1q2 (mod g192 pp’),

7 — Z Z (ﬁ)epp/(—sN) Z (q192)~°

0<|I|<R2Q2Pc=2 s(pp’)* q1,92<Q
[11(pp) "' P26 <q1q2
x > Sa(q1.—a1)Se(q2. —az)

ai(q)*,a2(q2)*
pp'(a1q92+a2q1)+sqi1q2=I (mod q192pp’)

al an S
i)
q1 492  pp

Here the restriction 0 < |/| < R2Q?P® 2 and |I|(pp’) "' P?~¢ < q1g> come from

a a S
0<|—=+2+—

<P8_2.
91 q pp|—

The congruence pp’(ai1q2 + a2q1) + sq1q2 = I (mod q1q2 pp’) implies

ay Az s In
elnl—+—=+—))=¢e——
q1 42 pp q192pp
Thus

7 = Z Z (%)epp/(—SN) Z (q192)~°

0<|I|<R2Q2P¢~2 s(pp')* q1,92<Q
[1l(pp) "' P?~¢<q1q>
In )
xel —— Sa(q1,—a1)Si(g2, —az).
(611Q2PP’ Z

ai(q1)*,a2(q2)*
pp’(a192+azxq1)+sqi1q2=l (mod 142 pp’)

Recall the assumption (5.4), we easily know (I, pp’) = 1. This implies (¢1¢42, pp’) = 1. So
pp'(a192 + a2q1) + sq192 = I (mod 142 pp”)

is equivalent to
ppr'(a1q2 +azq1) =1 (mod q192) and  sqig2 =1 (mod pp’).
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Thus
- 3 q192] _
F = > > (9192) 3(—,)81711/(_‘]1‘]211\’)
0<|l|<R2Q2pPe—2 q1,92=0 pp
11|(pp) "' P>~ ¢ <q192
In )
xXe|l —— Sa(q1,—ar)St(q2, —az).
(611612PP' Z

ai(q1)*,a2(q2)*
pp’(a1g2+a2q1)=I (mod q142)

Now (6.23) follows from Lemma 15, (6.26), (6.27) and (6.28). The proof of Proposition 4 is
complete.

7. Proof of Proposition 3

Let us define

T (Dy. Dy, D3) = > p@(tan -
di<D; (1<i<3)
(d;,d;j)<P® (1<i<j<3)

where B(d) = f(d1, d», d3) is a real function satisfying (2.6) and (2.7). We have the following
result.

No(N)Zo(d. N)
didads ’

Proposition 5. Suppose that D1 D, D3 < PY/?7%. We have
H (D1, D4, D3) < P%(log P)~™.

We first explain that Proposition 3 can be deduced from Proposition 5. In order to prove
H(D) < P2(log P)™ for D < P/?7%¢,

we divide the underlying summation into two parts. Note that

D)= 3 pa(gan) - D)

dy.da.d3 ddads
[d1.d2,d3]1<D
No(N)XZo(d, N)
= > + > B La(N) -
didads
dy,d>,d3 dy,d>,d3
max; < j(d;,d;)<P® maxij<;(di,dj)>P*®
[dy,d>,d3]1<D [d1.d>,d3]<D

=: Jt,(D) + H2(D).

Since max; <;(d;,d;) < P® and [dy, d>, d3] < D together imply dd>d3 < pl/2—2e by the
dyadic argument and Proposition 5, we can conclude

J1(D) < P%(log P)~4.
Now we consider #, (D) which is bounded by #’ P¢/?, where

90— ) ‘:ﬁd(N)— M (N)Zo(d, N)

didrd
d;j<D (1<j<3) 15243
max; < (d;,d;)>P*?
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160 Tsang and Zhao, Lagrange’s equation with almost prime variables

It suffices to verify ' « p2e/5, By symmetry, the assertion is a consequence of

(7.1) o=y No(N)Zo(d, N)

4<p (ejeyl  Drd2ds
(d1,d2)>P*

<< P2—€/5

and

(7.2) H) = Yo Za(N) < PTES
d;<D (1<j<3)
(d1,d2)= P*

It has been pointed out in [9] that

P2
Yo(d,N) < rz(dlz)rz(dzz)tz(d%) loglog P and Np(N) = og P
Hence
£ £ 1
(7.3) g < P2rio N < PMs N .
. didads dyd>
d;j<D (1<j<3) d1<D,d»<D
(d1,d2)=P* (d1,d2)=P*
Note that w(x) < 1, we have
me Y Y Y
di<P,d><P X1.X2 q,x3,d3
(d1.d2)=P® d1|x1,d2|x2 @?+x3+x3+x3=N
ds|x3
For fixed x1, x3, the inner sum is bounded by P ¢/10 Hence
/10 /10 p?
7.4 H, < P° 1 « P¢ .
a8 mert Y Y aepm y I
di<P,d><P X1,%2 di<P,d><P
(d1,d2)>P¢ d1lx1,d2|x2 (d1,d2)>P®

As an exercise, we have

1 1 1 9
< &« pe/1o — & PTT0°,
DD DD Dt > 5
di<P,d><P §>P¢d{<D/s §>P¢
(d1,d2)=P? d,<D/§

Now the estimates (7.1) and (7.2) follow from (7.3) and (7.4), respectively.
The remaining of this section is to show Proposition 5 by invoking Proposition 4. The
proof follows the argument of Heath-Brown and Tolev closely. Let

I, = 3 B(d)La(N).
di<D; (1<i<3)
(d;,d;)<P® (1<i<j<3)

By applying Proposition 4, we see that
Jr=Y k) > B@)Qa(N — k%) = Jp + O(P>™),

keh; d;<D; (1<i<3)
(di,d;)<P*® (1=i<j<3)
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where

I =" k) > B(d)Ma, o (N —k?).
keA; d;<D; (1<i<3)
(d; dj)<P® (1<i<j<3)

Recalling the definition of Mg, ¢ (1), we know

Hr=P Y p a7 ) Salg.a)

di<D; (1<i<3) d1dzds q<0Q a(g)*

x 3 w(k)H(l —E)e(g(kZ—N))
N q '

kGeAj

where E(d) is B(d) if (d;,d;) < P® (1 <i < j < 3), and zero otherwise. Now partial sum-
mation gives

d x?
(7.5) Hy = —P i)’(x)(aw(x)H(l — W))dx,

where

Bx)= Y pa Y a7 ) Salg.a)Z(x)

did
di<D; (1<i<3) 192 3q<Q a(q)*

Z =Y e(‘ql(k2 — N)).

k<x
kGAJ‘

Zo)= Y e(f(kz—N)).
k<x q

keA;
(k.q)=1

and

Let us write

Then we have

Z(x) = Zo(x) + Y e(g(kz—N)),

k<x
keA;
(k,q)>1
and thereby
B(x) = Bo(x) + E(x),
where ~
_ A(d) -3
Bo)= Y, o) 4D Sal@.9)Zo(x)
d;=<D; (1=i<3) ' g<0  al@)*
and

(d) -
R P ITAD IR ol CTE )
d;<D; (1<i<3) dads q=<Q a(q)* k=x
keA;
(k.q)>1
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162 Tsang and Zhao, Lagrange’s equation with almost prime variables

If (k,q) > 1and k € A;, then (k,q) > P'/1®. So we have

E(x) — Z Z B(d) Z Z g3

123

h>P1/16 d;<D; (1<i<3) q<Q/h k<x/h
the/’oj

(k,q)=1

x Y Sd(hq,a)e( (k2h? — N)).

a(hg)*

For the inner sum above, we have the bound

a
Z Sd(Q»a)e(—gn) < (”’6])((1,dlz)l/z(q,dzz)l/z(q,d32)1/2q2.

a(q)*
Then we get
Ex) < P* > > ¢ 'hTt YT (N —k*h? qh).
h>P1/16g<Q/h k<x/h
We finally find that

E(X) < P1_1/16+8.
For (m, q) = 1, we introduce the notation

1
Aj(xigm)y= Y 1——=A;(xiq),
Fad $(q)
kEAj
k=m (modq)

where

Ajxigy= Y 1.
k<x
kEeAj
(k.q)=1

Then we have

1 _
200 =S¢ (

N 2_N
)T(q,a)Aj(x;q) + Z e(%)@(x;q,m).

m(q)*
Therefore
Bo(x) = Bo(x) + € (),
where
Boy= Y df(j) S ha@)A; (x:)
d;<D; (1<i<3) q<0
and
cw= 3 ﬂ(dzl 6y Saga) Y (“(’" N))Aj(x;q,m
4=, Geizy N0B 50 m(g)*
Define

L=Y ¥ Awqm?

q<0 m(q)*
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and
M = Z Z I‘(q,m)z,
q<Q m(q)*
where
_ B()
Lg.my=q—> Y > Salg.a)e Lm>—Ny).
4i<p; Greizy BB 9

It has been proved in [9] that M < (log P)C for some absolute constant C > 0 (see [9, (274)]).
The Generalized Barban—Davenport—Halberstam Theorem states that

L <« P%(log P)~4.
Observing that

€)= > > Aj(xig.m)I'(g.m),
g=0 m(q)*
one can conclude by Cauchy’s inequality

€(x) < P(log P)~4.

Ax) = Y L

k<x
keA;

Note that A (x:¢q) = A(x) + O(P1~1/16+¢) and

Z lha(q)] < ©*(d1)7*(d2)7*(d3) loglog P.
q=<0

Let

Then we have _
Bo(x) = BoA(x) + O(P'71/16%e),

-y 9 P

di<D; (1<i<3)

where

It is not hard to see that
Bo = By + O(P~1/?*9),

where ~ 0o
A(d)
B1 = > ha(q).
4;=D; (1=i<3) 19283 1
Therefore
(7.6) B(x) = B1A(x) + O(P(log P)~4).

By the Prime Number Theorem, we have
Y Cj(t
A(x) =[ G 4y 1 o(piog PY ).
> logt
Now combining (7.5) and (7.6), we arrive at
gy = P:BI/w(x)H(l N) lf(x)d + O(P2(log P)™4).

The proof of Proposition 5 is completed and therefore Proposition 3 is also established.
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164 Tsang and Zhao, Lagrange’s equation with almost prime variables

8. The review of the three-dimensional sieve

In this section, we recall the Diamond-Halberstam—Richert sieves. One may refer to [7]
for the details. We shall focus on the case that the sieve dimension x = 3. Let o, be the con-
tinuous solution of the differential delay problem

ko (u) = ek + 1)L, 0<u <2,
Wrocw)) = —ku*loc(u—2), u>2,
where y is Euler’s constant and I is Euler’s gamma function.

Let Fi(u) and fi (1) be the continuous solutions of the simultaneous differential delay
system

FK(”): O<u§ak"

1
GK(M)’
Jie(w) =0, 0<u =B

(8.1)
W Fe)) = ku* " feu—1), u> a,

(quK(”))/ = KMK_IFK(” =1, u> B,

where o and B, are real numbers such that
3< B+ 1 <a.
We note that
(i) Fy(u) decreases monotonically toward 1 as u — oo,
(i1) fi(u) increases monotonically toward 1 as u — oo.
Suppose that {a, } is a (finite) sequence of non-negative real numbers. Then we introduce

Ald)= > an.

n=0 (mod d)

It is expected that @X is a good approximation to «+(¢), where (¢) is a multiplicative
function satisfying

(8.2) 0 < Q(p) <min{p,c}
for some constant ¢, and

Q(p)\' (1 >
(8.3) T (1-22) (2 )y ) oy <w
)4 log wy log wy

wi=p<w

for some constant ¢ > 0. Suppose that there exists a constant ¢, > 2 such that

(84) D OO AW) — @X <

t<D
Let I1(z) = [[,<, p and define

Vi) =] (1 — %p)).

P=X

(log X)*
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Tsang and Zhao, Lagrange’s equation with almost prime variables 165

Then one has

(log log X)z))
85 n =XV Fe(s) + o ——="—"_
o (n,H%)ﬂa (Z)( © ( (log X)1/8
and
(8.6 > anz XV(@) (f/c(s) + o(w))’
(n.T1(z))=1 (log X)1/8

where s = log D/log z.
By (8.1), for s > B, we have

s¥ fie(s) = /S ku* L Fe(u — 1)du > Fe(s) f; kuVdu = Fe(s)(s* — BX).

K

Therefore one has

Jie(s) B “
(8.7) Fo(s) >1— (T) .

9. Applications of the switching principle

Let
At) = A, N) = AD (@, N) = > w(@)o(x).
> +x3+x3+x3=N
qu“sj
tlx1x2x3

Note that the function
gy =p@®) Y pd)pd)u(ds)

d
[dl ’d2’d3]=t
djlx; (1=j<3)

is a multiplicative function of 7. If 7 is square-free and 7 | x1x2x3, then g(r) = 1,and g(¢) = 0
otherwise. Hence for ¢ square-free, we have

A(l) = > o(@Qo@u) > uld)u(d)u(ds).
24 20424 2 d
q +x1+x2—?-x3 N [d1.do.ds]=t
a€A; dj |x; (1<j<3)
t\x1x2x3 7% =J=

By interchanging the summations, we get
.1) A =p@) Y pd)u(d)pu(ds)La(N),
d
[dl ad23d3]=t
where £4(N) is defined in (2.4). The expected main term for (z) is

To(d, N)No(N)
Y wdpda)u(ds) =" i d: :

9.2) M = p(r)

d
[d1.d2,d3]=t
where Xo(d, N) and Ny(N) are given in (2.2) and (2.5) respectively.
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166 Tsang and Zhao, Lagrange’s equation with almost prime variables

Let X = Xo(e, N)No(N) with e = (1,1, 1). We point out that for N = 4 (mod 24)
(cf. [9, B1D)D),
1 < ¥p(e,N) < loglog N.
Therefore we can define

- Zo(d, N)
Q(t) = tu(t) ; “(dl)“(dZ)“(d3)d1d2d320(e, N)’

[d1.d>.d3]=t
Then we see that
(9.3) M = —Qt(t) X.
For p > 2, we define
ho(p) = {p _ _ )
p(p—l)(1 + (TN)) if p + N,
=1(=1) if p| N,
hi(p) ={ prrP7 _ .
() + 56 it
() if p| N,
ha(p) =447, _ .
{pfl((%) + (%)) itptN.
-1 if p| N,
h3(p) = :
{ﬁ(p(%) +1) ifptN.

The function (¢) is multiplicative with

Qp) = 3(L+hi(p)  3(1+ ha(p)) 1 + h3(p)
1+ ho(p)  p(1+ho(p)  p?>(1+ ho(p))

for p > 2 and 2(2) = 0. One can easily show that

0 < Q(p) < min{p, 8}

and |
Q(p)=3+ 0(—).
p

Hence (8.2) and (8.3) are established. Now we turn to (8.4). We have

E(D) := Z w2 ()2 ()| Al) — @X‘
t<D
_ 20,02 _ w
= g,; W ()T (1)E(t, N)(A(t) . X),
where
E(t,N) = |A@) — @XK'A’(Z) - @X)_l if A(r) — @X is non-zero,
, 0 otherwise.
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Tsang and Zhao, Lagrange’s equation with almost prime variables 167

Recalling (9.1), (9.2) and (9.3), we have

(9.4) ED)= 5(d1’d2’d3)($d(N)_ dd»d3

dy,d>,d3
[d1,d>2,d3]1<D

Zo(d, N)No(N))

where

Bdy, da, d3) = p(d)(da)u(d3)u([dr, d2, d3])T*([d1, d2, d3))§([d1, da, d3], N).

Obviously,
3
Bdy.dy.d3) < [ ] v%(d)).
j=1

Invoking Proposition 3, we see that (8.4) holds true with D = P1/27%_ Therefore the inequal-
ities (8.5) and (8.6) hold for the sequence

ap ‘= a}(lj) = Z a)(q)a)(X)
@?+x3+x3+x3=N
quj
X1X2X3=n

Lemma 16. Let c1(t) =1 or ¢1(t) = 0 according tot > 1 or t < 1. We define c;(t)

inductively by 0o
max(j,t . -1
ci(t) = de_
/ 1
J X =

Then for 1 < j < 15, one has

N - N
—— LN (N) € ——

log N log N
and |
N (N) = (cj(16) + 0(@))N01(N).
Proof. In view of [2, (2.16)], we have
1 P
C](X):C](16)+O m f0r5<x<P.
Hence

' 1
Ny (N) —c;j(16) Ny (N) < logZ N

We get the desired results by observing that

N N
—— K NN —_—.
log N LN (N) < log N N

Remark. We record some numerical values:

c2(16) > 2.70805, ¢3(16) > 2.912112, c4(16) > 1.663428, ¢5(16) > 0.563668.
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168 Tsang and Zhao, Lagrange’s equation with almost prime variables

Proof of Theorem 1.1.  Our objective is to prove

R(N) := > w(p)w(x) > 0.
p>+xI+x3+x3=N
x1,x2, x3€U7 = A,

Observe that

2 =X X X

PEA PEA] PEA] PEA PEA]
5 15 15 5 5
x1,x2,x3€Uj =1 A;  x1,x2,x3€U;2 A x1€U; e A x1€Uj=1 A x1,x26Uj—; A
15 15 15
x2,x3€U; 21 Ay x2€U;lg A x3€U;26 A

15
X3€Uj=1 Aj

DD D DD DD
15 15 15
pe‘A’]lS qelU;Z; A; qelU; 2z, A; gelU;Z, A
x1,x2,x3€U; 2 A XIGU/]'5=6fA’j x2€U}5=6«>4:j X3€U}5=6Aj

15 15 15
x2,x3€J; 21 A x1,x3€U;ly Ay x1,x06€U; 2 A

By switching the roles of ¢ and x;, we obtain

R(N) = > o(p)o(x) 3 > o(q)o(x).
p2+x12+x§+x%=N q2+x12+x%+x§=N
x17x27x3€U]1'5:1=A7j qujl'st A

15
x1,x2,x3€U; 2 A,

In view of the three-dimensional sieve, we have

> o(Pox =Y > o(p)o(x)

P2+x%+x%+x§=N (n,I1(2))=1 p2+x%+x§+x§=N
x1.x2,x3€Uj2, A X1X2X3=n

(f3(8 — &) — &) Zole, N)Ng (N)V(2),

A%

where z = P1/16, Similarly,

15
> oo =Y Y > o(q)o(x)

@>+x3+x3+x3=N J=6(n.II(2))=1 g24+x2+x3+x3=N

qGUjl'Szﬁ Aj geA;

15 X1X2X3=h
x1,x2,x3€U; 2
15 _
< (F3(8 &)+ &)Zo(e. N) Y NS (N)V(2).
j=6
By Lemma 16, we obtain
15
Y. o@o® = | F8-8) ) ¢(16) +& | Tole. N)Ng (N)V(2).
> +x3+x3+x3=N Jj=6

15
quj:seAj
15
x1,x2,x3€U; 2, ;)
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Tsang and Zhao, Lagrange’s equation with almost prime variables 169

Therefore
16 16\ .
R = (5(5) = 30(5) L o6 - e ) Zae Ve
Jj=6
8 15
= (3’;3’3((% = ¢j(16) — 8)3F3(8)Eo(e, NYNS(N)V(z)
j=6
= (Co — £)3F3(8)Zo(e. N) Ny (N)V(2),
where
o _ ® _ic.(w)
PTIRE) ZT

By (8.7), we have

FEICI (@)3
F3(8) 8 )’

where 3 < 6.640859. Thus

1 B3\’ >
Co > 5(1 — (§) ) —jgcj(m).

Now numerical computations reveal that Cy > 0.003. Thus Theorem 1.1 is established. |

One can do numerical computations in the following way. We have
1 /3 3 5 15
3 Z Z

Briidern and Kawada pointed out that as a consequence of linear sieve, one has (see [2, (6.35)])

15
> ¢j(16) < 16e77 Fy(16) < 16e77 (1 + 107°).
j=1

Therefore,

Co > l(1 - (@)3) + 25:(,«(16) —16e7(1+ 1079)
073 8 = J :

Then we actually need the numerical values of ¢;(16) for 1 < j < 5.

Proof of Theorem 1.2. The proof is as same as Theorem 1.1 except that we consider

R'(N) := > w(@)w(x).
> +x3+x3+x3=N

4
q,x1,x2,x36Uj = +;
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170 Tsang and Zhao, Lagrange’s equation with almost prime variables

In view of the switching principle and the three-dimensional sieve, the lower bound for R'(N)
is

4 15

R'(N) = | f38) D ¢j(16) =3F3(8) ) _ c;(16) — & | Zo(e, )Ny (N)V(2)
j=1 J=5

Sf3(8)

3F;s (8) Z ¢j(16) — Zc](l6)—g 3F3(8)So(e, N)Ny (N)V(2)

(C — €)3F3(8)Zo (e, N)NJ (N)V(z),

where . s
r f3(8) . _ X
C) = SHE ; ¢ (16) j;c,(w).

Similarly, we have

1
Cy > 5(1 — (@) ) Zc,(m) + Zc,(m) —16e77 (1 + 1077).

Again a numerical computation reveals that C) > 0. We point out that we gain P4 instead of Ps
due to the constant Z};l ¢;(16) in place of 1. This completes the proof of Theorem 1.2. D
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