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Abstract
This paper considers a two-dimensional time-dependent risk model with stochastic in-

vestment returns. In the model, an insurer operates two lines of insurance business sharing
a common claim number process and can invest its surplus into some risky assets. The
claim number process is assumed to be a renewal counting process and the investmen-
t return is modeled by a geometric Lévy process. Furthermore, claim sizes of the two
insurance businesses and their common inter-arrival times correspondingly follow a three-
dimensional Sarmanov distribution. When claim-size distributions of the two insurance
business are heavy tailed, we establish some uniform asymptotic estimates for the ruin
probability of the model over certain time horizon.

1 Introduction
In this paper, we consider a two-dimensional renewal risk model in which an insurer oper-

ates two lines of insurance businesses sharing a common claim-number process. The common
claim number process {N(t), t ≥ 0} is a renewal counting process defined by

Nt =
∞

∑
i=1

1(τi≤t), t ≥ 0,

where {τi, i ≥ 1} are the claim arrival times and 1E denotes the indicator function of an event
E. Thus, the inter-arrival times, {θi = τi − τi−1, i ≥ 1} are independent, identically distributed,
and nonnegative random variables, with τ0 = 0 by convention.

∗Corresponding Author.
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The two-dimensional surplus process of the insurer is described as

(
U1t
U2t

)
=

(
xeL(t)

yeL(t)

)
+

c1

∫ t

0−
eL(t−s)ds

c2

∫ t

0−
eL(t−s)ds

−


Nt

∑
i=1

XieL(t−τi)

Nt

∑
i=1

YieL(t−τi)

 , t ≥ 0, (1.1)

where (x,y)ᵀ is the initial capital vector with x,y > 0, (c1,c2)
ᵀ is the premium collection rate

vector with c1,c2 ≥ 0, {(Xi,Yi)
ᵀ, i ≥ 1} is the sequence of claim size vectors, and {eL(t), t ≥ 0}

is the return process of the investment of the insurer’s surplus.
In recent years, there are many papers devoted to the ruin problems of risk model (1.1) and

its variants and here we only mentioned some of them closely related to this paper. Chan et
al. (2003), Yuen et al. (2006), Chen et al. (2011), and Chen et al. (2012) investigated the
asymptotic of ruin probabilities of risk model (1.1) without interest force, i.e. L(t) ≡ 0 for
any t ≥ 0. Li et al. (2007) and Zhang and Wang (2012) considered the ruin problems of a risk
model similar to (1.1) but perturbed by a diffusion and without interest force. Chen et al. (2013)
studied the ruin probabilities of risk model (1.1) with a constant interest force, i.e. L(t) = rt for
some r > 0 and any t ≥ 0.

All these papers mentioned above assumed that the claim size sequences {Xi, i ≥ 1} and
{Yi, i ≥ 1} of the two lines of insurance businesses and their inter-arrival times {θi, i ≥ 1} are
mutually independent. Yang and Li (2014) assumed that claim size vectors {(Xi,Yi)

ᵀ, i ≥ 1} are
independent and identically distributed copies of a generic random vector (X ,Y )ᵀ which fol-
lows a bivariate Farlie-Gumbel-Morgenstern (FGM) distribution, and investigated the asymp-
totic of ruin probability of risk model (1.1) with constant interest rate and stochastic premium
process. This study are based on the assumption that claim sizes and their inter-arrival times are
independent. Such independence assumption is proposed mainly for mathematical tractability
and it is unrealistic in reality. In fact, if the deductible retained to insureds is raised, then the
inter-arrival time will increase since small claims will be ruled out, while the likelihood of a
large claim will increase if claim sizes are new-worse-than-used, and will decrease if claim sizes
is new-better-than-used. However, there are few papers devoted to ruin problems of the two-
dimensional risk model in (1.1) with dependence between claim size vectors {(Xi,Yi)

ᵀ, i ≥ 1}
and claim inter-arrival times {θi, i ≥ 1}.

In this paper, we assume that {(Xi,Yi,θi)
ᵀ, i ≥ 1} is a sequence of independent and identi-

cally distributed copies of a generic random vector (X ,Y,θ)ᵀ whose distribution is given by

P(X ∈ dx,Y ∈ dy,θ ∈ dz)
= (1+η1φ1(x)φ2(y)+η2φ1(x)φ3(z)+η3φ2(y)φ3(z))dF(x)dG(y)dH(z), (1.2)

where F , G, H are the corresponding marginal distributions of X , Y , and θ , respectively. The
parameters η1, η2, and η3 are real numbers, and the kernels φ1, φ2 and φ3 are functions satis-
fying

Eφ1(X) = Eφ2(Y ) = Eφ3(θ) = 0, (1.3)

and

1+η1φ1(x)φ2(y)+η2φ1(x)φ3(z)+η3φ2(y)φ3(z)≥ 0 (1.4)

for all x ∈ DX , y ∈ DY and z ∈ Dθ with DX , DY , and Dθ defined as

DX = {x ≥ 0 : P(X ∈ (x−δ ,x+δ ))> 0 for all δ > 0},
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DY = {y ≥ 0 : P(Y ∈ (y−δ ,y+δ ))> 0 for all δ > 0},
Dθ = {z ≥ 0 : P(θ ∈ (z−δ ,z+δ ))> 0 for all δ > 0}.

For more details of multivariate Sarmanov distributions, one can refer to Lee (1996) and Kotz
et al. (2000) among others.

It is worth to point out that all the studies mentioned above only considered the effect
of constant interest rates. However, insurers often invest their surplus into certain portfolios
consisting of some risk-free and risky assets to obtain higher risky returns. Hence, besides
the dependence assumption specified in (1.2) - (1.4), we further assume that the return process
{eL(t), t ≥ 0} of the investment of insurers is a geometric Lévy process, i.e. {L(t), t ≥ 0} is a
standard Lévy process. This investment model is widely used in mathematical finance, see e.g.
Paulsen and Gjessing (1997), Wang and Wu (2001), Heyde and Wang (2009), and Tang, et al.
(2010), among others. For the general theory of Lévy processes, we refer to the monographs
of Sato (1999) and Cont and Tankov (2004).

Define the finite-time ruin probability of risk model (1.1) as

Ψ(x,y; t) = P(Tmax ≤ t | (U10,U20)
ᵀ = (x,y)ᵀ) ,

where

Tmax = inf{t > 0 : max{U1t ,U2t}< 0}

denotes the ruin time with inf /0 = ∞ by convention.
We focus on the risk model in (1.1) with the dependence structure specified in (1.2)-(1.4)

and geometric Lévy investment returns, and aim at some uniform formulas of the finite-time
ruin probability over certain time regions as (x,y)ᵀ tends to (∞,∞)ᵀ.

The rest of the paper consists of three sections. Section 2 introduces some frequently used
notations and states the main result, Section 3 establishes some crucial lemmas, and Section 4
proves the main result of the paper.

2 Notations and Main Results

2.1 Notations
In the sequel, let {(X∗

j ,Y
∗
j ,θ ∗

j )
ᵀ, j ≥ 1} be a sequence of independent and identically dis-

tributed copies of a generic random triplet (X∗,Y ∗,θ ∗)ᵀ whose components X∗, Y ∗ and θ ∗ are
mutually independent with distribution functions denoted by F , G, and H, respectively.

From the definition of the multivariate Sarmanov distribution specified in (1.2)-(1.4), it is
easy to see that the generic claim size vector (X ,Y )ᵀ follows a bivariate Sarmanov distribution.
Hence, by Proposition 1.1 of Yang and Wang (2013), there exist two positive constants b1 and
b2 such that |φ1(x)| ≤ b1 for all x ∈ DX and |φ2(y)| ≤ b2 for all y ∈ DY . When establishing
asymptotic estimate for ruin probability, we need further impose the following assumption on
the two functions φ1(·) and φ2(·).

H1. The two limits limx→∞ φ1(x) = d1 and limy→∞ φ2(y) = d2 exist and the constant 1+η1d1d2
is strictly positive, i.e. 1+η1d1d2 > 0.

This assumption, together with the definition of the multivariate Sarmanov distribution speci-
fied in (1.2)-(1.4), implies that for all s ∈ Dθ ,

φ̂3(s) := 1+η2d1φ3(s)≥ 0, φ̌3(s) := 1+η3d2φ3(s)≥ 0, (2.1)
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φ̈3(s) := 1+
η2d1φ3(s)+η3d2φ3(s)

1+η1d1d2
≥ 0. (2.2)

Recall that by relation (1.3), Eφ3(θ) = 0. Hence, φ̂3(·), φ̌3(·), and φ̈3(·) are three well-defined
probability density functions on Dθ . Define

dĤ(s) = φ̂3(s)dH(s), dȞ(s) = φ̌3(s)dH(s), dḦ(s) = φ̈3(s)dH(s), s ∈ Dθ , (2.3)

and let θ̂ , θ̌ , and θ̈ be three independent random variables with distributions denoted by Ĥ,
Ȟ, and Ḧ, respectively. Furthermore, we assume that θ̂ , θ̌ , and θ̈ are independent of all the
random quantities above.

With θ̂ , θ̌ , θ̈ and {θ ∗
j , j ≥ 1} specified as before, we define the following three delayed

renewal counting processes as

Ňt =
∞

∑
k=1

1(τ̌∗k ≤t) with τ̌∗1 = θ̌ , τ̌∗k = θ̌ +
k

∑
i=2

θ ∗
i , k ≥ 2, (2.4)

N̈t =
∞

∑
k=1

1(τ̈∗k ≤t) with τ̈∗1 = θ̈ , τ̈∗k = θ̈ +
k

∑
i=2

θ ∗
i , k ≥ 2, (2.5)

Nt =
∞

∑
i=1

1(τ∗k≤t) with τ∗1 = θ̂ , τ∗2 = θ̌ , τ∗k = θ̂ + θ̌ +
k

∑
i=3

θ ∗
i , k ≥ 3, (2.6)

Define the renewal functions of the renewal counting processes {Nt , t ≥ 0}, {Ňt , t ≥ 0}, {N̈t , t ≥
0}, and {Nt , t ≥ 0} respectively as

λt = ENt =
∞

∑
k=1

P(τk ≤ t), λ̌t = EŇt =
∞

∑
k=1

P(τ̌∗k ≤ t) , (2.7)

λ̈t = EN̈t =
∞

∑
k=1

P(τ̈∗k ≤ t) , λ t = ENt =
∞

∑
k=1

P(τ∗k ≤ t) , t ≥ 0. (2.8)

When establishing asymptotic estimate of finite-time ruin probability, it is natural to restrict the
region of the variable t to

Λ = {t : 0 < λt ≤ ∞}.

With t = inf{t : λt > 0}= inf{t : P(τ1 ≤ t)> 0}, it is clear that Λ = [t,∞] if P(θ = t)> 0, and
Λ = (t,∞] if P(θ = t) = 0. For ease of notations, write ΛT = Λ∩ [0,T ] for every fixed T ∈ Λ.

Let (γ ,σ2,ν) be the Lévy triplet of {L(t), t ≥ 0}, where γ ∈ (−∞,∞), σ ≥ 0 are two con-
stants and ν is a Lévy measure satisfying ν({0}) = 0 and

∫ ∞
−∞(x

2 ∧ 1)ν(dx) < ∞. Define the
Laplace exponent of the Lévy process {L(t), t ≥ 0} as

ϕ(s) = logE[e−sL(1)], s ∈ (−∞,∞).

If ϕ(s) is finite, then

ϕ(s) =−γs+
σ2

2
s2 +

∫ ∞

−∞

(
e−sx −1+ sx1(|x|≤1)

)
ν(dx),

and

Ee−sL(t) = etϕ(s) < ∞, t ≥ 0;

see, e.g. Theorem 25.17 in Sato (1999). For our purpose, we need to impose the following
boundedness assumption on the Laplace exponent ϕ(·) of the Lévy process {L(t), t ≥ 0}.
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H2. There is some constant η > 0 such that the Laplace exponent ϕ(·) of the Lévy process
{L(t), t ≥ 0} at this point is finite, i.e. ϕ(η) ∈ (−∞,∞).

This assumption is easily satisfied by many return processes of risky investment, see e.g. K-
lüppelberg and Kostadinova (2008), Heyde and Wang (2009), and Guo and Wang (2013).

When investigating the asymptotic of ruin probability, we focus on the case that the marginal
distributions F and G of the generic claim size vector (X ,Y )ᵀ of the two lines of insurance
businesses are heavy-tailed. The involved classes of heavy-tailed distributions are D , L , and
R. By definition, a distribution B concentrated on [0,∞) is said to belong to the class D of
dominatedly-varying-tailed distributions if B(x)> 0 for all x ≥ 0 and the relation

limsup
x→∞

B(xy)
B(x)

< ∞

holds for any 0 < y < 1; and a distribution B concentrated on [0,∞) is said to belong to the class
L of long-tailed distributions if B(x)> 0 for all x ≥ 0 and the relation

lim
x→∞

B(x− l)
B(x)

= 1 (2.9)

holds for any l ̸= 0. The intersection D ∩L is rich enough to contain many useful heavy-tailed
distributions and a famous subclass of the intersection is the class R of regularly-varying-tailed
distributions. By definition, a distribution B concentrated on [0,∞) is said to belong to the class
R−α with tail index −α if B(x) > 0 for all x ≥ 0 and there is some α > 0 such that for any
y > 0,

lim
x→∞

B(xy)
B(x)

= y−α . (2.10)

We signify the regularity property in (2.10) as B ∈ R−α , so that R is the union of all R−α
over the range 0 < α < ∞. For details of heavy-tailed distributions and their applications to
insurance and finance, see, e.g. the monographs of Bingham, et al. (1987) and Embrechts, et
al. (1997).

This work is also closely related to a significant indices of heavy-tailed distributions. For
any distribution B concentrated on (−∞,∞) and any y > 0, define

J+B = inf
{
− logB∗(y)

logy
: y > 1

}
=− lim

y→∞

logB∗(y)
logy

with B∗(y) = liminf
x→∞

B(xy)
B(x)

.

In the terminology of Bingham, et al. (1987), J+B is called the upper Matuszewska index of
the function f (x) = (B(x))−1, x ≥ 0. Without any confusion, we simply call J+B the upper
Matuszewska index of the distribution B. Especially, if B ∈ D , then J+B < ∞; and if B ∈ R−α
with α ≥ 0, then J+B = α .

Hereafter all limit relationships are for (x,y)ᵀ → (∞,∞)ᵀ unless stated otherwise. For two
positive functions a(·, ·, ·) and b(·, ·, ·) satisfying

l1 = liminf
(x,y)ᵀ→(∞,∞)ᵀ

inf
t∈E ̸= /0

a(x,y; t)
b(x,y; t)

≤ liminf
(x,y)ᵀ→(∞,∞)ᵀ

sup
t∈E ̸= /0

a(x,y; t)
b(x,y; t)

= l2,

we say that a(x,y; t)≍ b(x,y; t) holds uniformly for t ∈E if 0< l1 ≤ l2 <∞; a(x,y; t). b(x,y; t)
holds uniformly for t ∈ E if l2 ≤ 1; a(x,y; t)& b(x,y; t) holds uniformly for t ∈ E if l1 ≥ 1; and
a(x,y; t)∼ b(x,y; t) holds uniformly for t ∈ E if l1 = l2 = 1.

To our purpose, we also need the following independence assumption.
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H3. All the random sources {(X j,Yj,θ j)
ᵀ, j ≥ 1}, {(X∗

j ,Y
∗
j ,θ ∗

j )
ᵀ, j ≥ 1}, {L(t), t ≥ 0}, and

(θ̂ , θ̌ , θ̈)ᵀ are mutually independent.

2.2 Main Results
Now we are ready to state the main result of the paper.

Theorem 2.1. Consider the two-dimensional renewal risk model introduced above. If Assump-
tions H1, H2, H3 hold and claim-size distributions F and G of the two lines of insurance busi-
nesses belong to the intersection D ∩L with upper Matuszewska indices J+F and J+G satisfying
J+F +J+G < η , then the relation

Ψ(x,y; t)∼ (1+η1d1d2)
∫ t

0−
Px,y(u,u)dλ̈u +

∫∫
Ω2,t

(Px,y(u,u+ v)+Px,y(u+ v,u))dλvdλ u

+
∫∫

Ω2,t

(Px,y(u,u+ v)+Px,y(u+ v,u))φ̂3(u)(dλ̌v −dλv)dH(u) (2.11)

holds uniformly for all t ∈ ΛT for arbitrarily fixed T ∈ Λ, where λ̈u, λ u, λ̌v are specified in
(2.7)-(2.8), φ̂3(u) is specified in (2.1), Ω2,t = {(u,v)ᵀ : u,v ≥ 0,u+ v ≤ t}, and

Px,y(u,v) = P
(

X∗e−L(u) > x,Y ∗e−L(v) > y
)

for any u,v ≥ 0. (2.12)

Specifically, if F and G belong to the class R−α for some 0 ≤ α ≤ η/2, then it holds uniformly
for all t ∈ ΛT that

Ψ(x,y; t)∼ (1+η1d1d2)F(x)G(y)
∫ t

0−
euϕ(2α)dλ̈u +2F(x)G(y)

∫∫
Ω2,t

euϕ(2α)+vϕ(α)dλvdλ u

+2F(x)G(y)
∫∫

Ω2,t

euϕ(2α)+vϕ(α)φ̂3(u)(dλ̌v −dλv)dH(u). (2.13)

Remark 2.1. The results in this paper successfully captures the impact of the Sarmanov depen-
dence of claim sizes and their common inter-arrival times on ruin asymptotic. This can be seen
from relations (2.11) and (2.13), in which the Sarmanov dependence specified in (1.2)-(1.4)
appears as complicate coefficients in the asymptotic formulas of finite-time ruin probability.

Remark 2.2. The Sarmanov dependence of claim sizes and their common inter-arrival times
of the two lines of insurance businesses specified in (1.2)-(1.4) includes many dependence
structures as its special cases. Among them, one important special case is that claim sizes
of the two lines of insurance business are independent of their inter-arrival times and follows
a bivariate Sarmanov distributions. Precisely, claim size vector (X ,Y )ᵀ is independent of its
common inter-arrival time θ , i.e. η2 = η3 = 0 or φ3 ≡ 0, and follows a bivariate Sarmanov
distribution given by

P(X ∈ dx,Y ∈ dy) = (1+η1φ1(x)φ2(y))dF(x)dG(y). (2.14)

where η1 is a real number, and the kernels φ1 and φ2 are functions satisfying

Eφ1(X) = Eφ2(Y ) = 0, (2.15)

and

1+η1φ1(x)φ2(y)≥ 0 (2.16)
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for all x ∈ DX = {x ≥ 0 : P(X ∈ (x−δ ,x+δ ))> 0 for all δ > 0}. Furthermore, as pointed out
by Tang et al. (2011), if we let φ1(x) = 1−2F(x) and φ2(y) = 1−2G(y) in (2.14)-(2.16), then
(X ,Y )ᵀ follows a bivariate FGM distribution given by

P(X ∈ dx,Y ∈ dy) =
[
1+η1

(
1−2F(x)

)(
1−2G(y)

)]
dF(x)dG(y), η1 ∈ [−1,1]. (2.17)

For the two special cases, the results in Theorem 2.1 can be significantly improved, see Corol-
laries 2.1 and 2.2 below.

Note that if η2 = η3 = 0 or φ3 ≡ 0, and (X ,Y )ᵀ follows a bivariate Sarmanov distribution
specified in (2.14)-(2.16), then from the definitions of Ĥ, Ȟ, and Ḧ in (2.3), we see that Ĥ =
Ȟ = Ḧ = H. It follows from (2.4)-(2.8) that for any t ≥ 0,

λ̌t = λ̈t = λ t = λt .

Hence, by Theorem 2.1, the following corollary holds immediately.

Corollary 2.1. Consider the two-dimensional renewal risk model introduced above with η2 =
η3 = 0 or φ3 ≡ 0 in (1.2)-(1.4). If Assumptions H1, H2, H3 hold and claim-size distributions F
and G of the two lines of insurance businesses belong to the intersection D∩L with J+F +J+G <
η , then the relation

Ψ(x,y; t)

∼ (1+η1d1d2)
∫ t

0−
Px,y(u,u)dλu +

∫∫
Ω2,t

(Px,y(u,u+ v)+Px,y(u+ v,u))dλvdλu (2.18)

holds uniformly for all t ∈ΛT for arbitrarily fixed T ∈Λ with Ω2,t = {(u,v)ᵀ : u,v≥ 0,u+v≤ t}
and Px,y(u,v) specified in (2.12). Specifically, if F and G belong to the class R−α for some
0 ≤ α ≤ η/2, then it holds uniformly for all t ∈ ΛT that

Ψ(x,y; t)

∼ (1+η1d1d2)F(x)G(y)
∫ t

0−
euϕ(2α)dλu +2F(x)G(y)

∫∫
Ω2,t

euϕ(2α)+vϕ(α)dλvdλu. (2.19)

In addition, if (X ,Y )ᵀ follows a bivariate FGM distribution specified in (2.17) and there is
some constant δ > 0 such that L(t) = δ t for any t ≥ 0, then by Corollary 2.1, the following
corollary holds immediately.

Corollary 2.2. Consider the risk model (1.1) in which {(X ,Y )ᵀ,(Xi,Yi)
ᵀ, i≥ 1}, independent of

{θi, i ≥ 1}, is a sequence of independent and identically distributed random vectors following
a common FGM distribution specified in (2.17) with η1 ∈ (−1,1]. If there is some constant
δ > 0 such that L(t) = δ t for any t ≥ 0 and claim size distributions F and G of the two lines of
insurance businesses belong to the intersection D ∩L , then the relation

Ψ(x,y; t)∼ (1+η1)
∫ t

0−
F
(

xeδu
)

G
(

yeδu
)

dλu

+
∫∫

Ω2,t

{
F
(

xeδ (u+v)
)

G
(

yeδu
)
+F

(
xeδu

)
G
(

yeδ (u+v)
)}

dλvdλu (2.20)

holds uniformly for all t ∈ΛT for arbitrarily fixed T ∈Λ with Ω2,t = {(u,v)ᵀ : u,v≥ 0,u+v≤ t}
and Px,y(u,v) specified in (2.12). Specifically, if F and G belong to the class R−α for some
α ≥ 0, then it holds uniformly for all t ∈ ΛT that

Ψ(x,y; t)∼ (1+η1)F(x)G(y)
∫ t

0−
e2δudλu +2F(x)G(y)

∫∫
Ω2,t

eα(2u+v)dλvdλu. (2.21)
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Remark 2.3. Yang and Li (2014) studied a similar problem to that in Corollary 2.2. Hence, our
work extends theirs in the following three directions: (i) they considered the case of constant
interest force while ours considered the case of risky investment; (ii) they used a bivariate FGM
dependence specified in (2.17) to model claim size vector (X ,Y )ᵀ and assumed that (X ,Y )ᵀ

is independent of its inter-arrival times θ , while we used a more general three-dimensional
Sarmanov distribution to model the dependence of the random vector (X ,Y,θ)ᵀ of claim sizes
and their common inter-arrival times of the two lines of insurances businesses; (iii) their results
hold for a fixed time t while ours are equipped with local uniformity in time t, which greatly
enhances the theoretical and applied interests of the results.

3 Lemmas
To prove Theorem 2.1, we need to recall some well-known results in the literature and

establish some crucial lemmas. For any distribution B ∈ D and p > J+B , Proposition 2.2.1 of
Bingham, et al. (1987) shows that there are positive constants Cp and Dp such that

B(y)
B(x)

≤Cp

(
x
y

)p

(3.1)

holds uniformly for all x ≥ y ≥ Dp. Fixing the variable y in (3.1) leads to

x−p = o(B(x)) for any p > J+B . (3.2)

Lemma 3.1. Let Z and W be two independent and nonnegative random variables with Z dis-
tributed by B. If B ∈D , then for arbitrarily fixed δ > 0 and p > J+B , there is a positive constant
C without relation to W and δ such that for all large x,

P(ZW > δx |W )≤CB(x){δ−pW p +1(W<δ )}. (3.3)

Proof. See Lemma 3.2 of Heyde and Wang (2009).

Lemma 3.2. For any distribution B ∈ L , there is a function l(·) : (0,∞) 7→ (0,∞) satisfying
(a) l(x)< x/2 for all x > 0,
(b) l(x)→ ∞ as x → ∞,
(c) l(x) is slowly varying at infinity,

such that, for every c0,c1 ≥ 0, the relation

B(xy± c0l(x)y± c1y)∼ B(xy)

holds uniformly for all y ∈ [a,b] for arbitrarily fixed 0 < a < b < ∞.

Proof. By Lemma 4.1 of Li, et al. (2010), there is a slowly varying function l(·) : (0,∞) 7→
(0,∞) satisfying (a)-(c) such that for every d0,d1 ≥ 0,

B(x±d0l(x)±d1)∼ B(x±d0l(x))∼ B(x),

where at the first step we used the definition of L . Since l(·) is slowly varying at infinity, by
Theorem 1.2.1 of Bingham, et al. (1987), the relation

l(xy)∼ l(x)

holds uniformly for all y ∈ [a,b] for arbitrarily fixed 0 < a ≤ b < ∞. By the two relations, we
can conclude the proof.
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In the following, for notational convenience, for every k ≥ 1 and arbitrarily fixed t ≥ 0,
denote θ⃗k = (θ1, . . . ,θk)

ᵀ and s⃗k = (s1, . . . ,sk)
ᵀ, write tk = ∑k

i=1 si and define

Ωk,t = {⃗sk : s1, . . . ,sk ≥ 0, tk ≤ t}. (3.4)

Let (X̃∗,Ỹ ∗, θ̃ ∗)ᵀ be a random vector consisting independent components and independent of
all the random quantities in Assumption H3. The components X̃∗, Ỹ ∗, and θ̃ ∗ have distributions
F̃ , G̃, and H̃ which are defined as

dF̃ =

(
1− φ1

b1

)
dF, dG̃ =

(
1− φ2

b2

)
dG, dH̃ =

(
1− φ3

b3

)
dH, (3.5)

where φi, i = 1,2,3, are the three functions specified in (1.2). Let {(X̃∗
j ,Ỹ

∗
j , θ̃ ∗

j )
ᵀ, j ≥ 1} be a

sequence of independent and identically distributed copies of the random vector (X̃∗,Ỹ ∗, θ̃ ∗)ᵀ.

Lemma 3.3. Let l(·) be the function specified in Lemma 3.2 and for arbitrarily fixed c̃0, c̃1, c̄0,
c̄1 ≥ 0, write x′ = x− c̃0l(x)− c̃1 and y′ = y− c̄0l(y)− c̄1. Under the conditions of Theorem
2.1, for arbitrarily fixed 1 ≤ i, j ≤ k < ∞ and t ∈ Λ, it holds uniformly for all s⃗k ∈ Ωk,t that

P
(

X∗e−L(ti) > x′,Y ∗e−L(t j) > y′
)
∼ Px,y(ti, t j)≍ F(x)G(y), (3.6)

P
(

X̃∗e−L(ti) > x′,Y ∗e−L(t j) > y′
)
∼
(

1− d1

b1

)
Px,y(ti, t j), (3.7)

P
(

X∗e−L(ti) > x′,Ỹ ∗e−L(t j) > y′
)
∼
(

1− d2

b2

)
Px,y(ti, t j), (3.8)

P
(

X̃∗e−L(ti) > x′,Ỹ ∗e−L(t j) > y′
)
∼
(

1− d1

b1

)(
1− d2

b2

)
Px,y(ti, t j) (3.9)

with Px,y(ti, t j) specified in (2.12). Specifically, if F ∈R−α and G∈R−α for some 0≤α ≤η/2,
then it holds uniformly for all s⃗k ∈ Ωk,t that

Px,y(ti, t j)∼ F(x)G(y)e(ti∧t j)ϕ(2α)e(ti∨t j−ti∧t j)ϕ(α). (3.10)

Proof. We first prove the uniformity of the second relation in (3.6). Clearly, for all s⃗k ∈ Ωk,t ,

0 < wt := e−sup0≤s≤t L(s) ≤ e−L(tn) ≤ e− inf0≤s≤t L(s) := wt , n = i, j. (3.11)

The lemma of Willekens (1987) asserts that for all t > 0 and all u > u0 > 0,

P(− inf0≤s≤t L(s)> u)P
(
−sup0≤s≤t L(s)>−u0

)
≤ P(−L(t)> u−u0) .

This, together with the fact Ee−vL(t) ≤ Ev/ηe−ηL(t) = etvϕ(η)/η < ∞ for any 0 ≤ v ≤ η , implies
that Ewv

t < ∞. Arbitrarily choose p > J+F and q > J+G such that p+q ≤ η . By Lemma 3.1 and
inequality (3.11), we can derive that, for all large x,y and s⃗k ∈ Ωk,t

Px,y(ti, t j)≤ P(X∗wt > x,Y ∗wt > y)
= E{P(X∗wt > x | wt)P(Y ∗wt > y | wt)}
≤CpCqF(x)G(y)E

{(
wp

t +1(wt<1)
)(

wq
t +1(wt<1)

)}
≤CpCqF(x)G(y)

{
Ewp+q

t +Ewp
t +Ewq

t +1
}
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≤CF(x)G(y).

Arbitrarily choose a ∈ (0,1) such that P(wt ≥ a) > 1/2. Hence, by inequality (3.1), we can
derive that, for all large x,y and s⃗k ∈ Ωk,t ,

Px,y(ti, t j)≥ P(X∗wt > x,Y ∗wt > y,wt ≥ a)

≥ F(x/a)G(y/a)P(wt ≥ a)

≥ 2−1C−1
p C−1

q F(x)G(y).

By the two estimates above, we obtain the uniformity of the second relation in (3.6).
Next, we prove the uniformity of the first relation in (3.6). We only prove it for the case

i > j since the proofs of the uniformity of the first relation in (3.6) for the cases i < j and
i = j are similar or simpler. For arbitrarily fixed ε > 0, choose some small a ∈ (0,1) and large
b ∈ (1,∞) such that

E
{(

wp+q
t +wp

t +wq
t +1

)(
1(wt>b)+1(wt<a)

)}
< ε. (3.12)

For the fixed a and b, write

E1 = {e−L(t j) < a}, E2 = {e−L(t j) > b}, E3 = {a ≤ e−L(t j) ≤ b}, (3.13)

and

E∗
1 = {e−[L(ti)−L(t j)] < a}, E∗

2 = {e−[L(ti)−L(t j)] > b}, E∗
3 = {a ≤ e−[L(ti)−L(t j)] ≤ b}. (3.14)

With the notation Em, m = 1,2,3, specified in (3.13), we can derive that

P
(

X∗e−L(ti) > x′,Y ∗e−L(t j) > y′
)
≤

3

∑
m=1

P
(

X∗e−L(ti) > x′,Y ∗e−L(t j) > y′,Em

)
:= I1(x′,y′; s⃗k)+ I2(x′,y′; s⃗k)+ I3(x′,y′; s⃗k). (3.15)

Using the notation E∗
m, m = 1,2,3, in (3.14), we can further split I3(x′,y′; s⃗k) into three parts.

I3(x′,y′; s⃗k)≤
3

∑
m=1

P
(

X∗e−L(ti) > x′,Y ∗e−L(t j) > y′,E3,E∗
m

)
:= I31(x′,y′; s⃗k)+ I32(x′,y′; s⃗k)+ I33(x′,y′; s⃗k). (3.16)

By Lemma 3.1, Lemma 3.2 and (3.12), we have, for all large x,y and s⃗k ∈ Ωk,t ,

I1(x′,y′; s⃗k)+ I31(x′,y′; s⃗k)≤ 2P
(
X∗wt > x′,Y ∗wt > y′,wt < a

)
= 2E

{
1(wt<a)P

(
X∗wt > x′ | wt ,wt

)
P
(
Y ∗wt > y′ | wt ,wt

)}
≤CF(x′)G(y′)E

{(
wp

t +1(wt<1)
)(

wq
t +1(wt<1)

)
1(wt<a)

}
≤CF(x)G(y)E

{(
wp+q

t +wp
t +wq

t +1
)

1(wt<a)

}
≤CεF(x)G(y). (3.17)

Similarly, we have, for all large x,y and s⃗k ∈ Ωk,t ,

I2(x′,y′; s⃗k)+ I32(x′,y′; s⃗k)≤ 2P
(
X∗wt > x′,Y ∗wt > y′,wt > b

)
10



= 2E
{

1(wt>b)P
(
X∗wt > x′ | wt

)
P
(
Y ∗wt > y′ | wt

)}
≤CF(x′)G(y′)E

{(
wp

t +1(wt<1)
)(

wq
t +1(wt<1)

)
1(wt>b)

}
≤CF(x)G(y)E

{(
wp+q

t +wp
t +wq

t +1
)

1(wt>b)

}
≤CεF(x)G(y), (3.18)

For I33(x′,y′; s⃗k), by Lemma 3.2, it holds uniformly for all s⃗k ∈ Ωk,t that

I33(x′,y′; s⃗k) =
∫ b

a

∫ b

a
F
(

x′

uv

)
G
(

y′

u

)
P
(

e−L(t j) ∈ du
)
P
(

e−[L(ti)−L(t j)] ∈ dv
)

∼
∫ b

a

∫ b

a
F
( x

uv

)
G
(y

u

)
P
(

e−L(t j) ∈ du
)
P
(

e−[L(ti)−L(t j)] ∈ dv
)

(3.19)

= P
(

X∗e−L(ti) > x,Y ∗e−L(t j) > y,E3,E∗
3

)
= I33(x,y; s⃗k) (3.20)

≤ P
(

X∗e−L(ti) > x,Y ∗e−L(t j) > y
)
= Px,y(ti, t j). (3.21)

By (3.15)-(3.18), (3.21) and the second relation in (3.6), we obtain the upper-bound version of
the first relation in (3.6).

We turn to prove the lower-bound version of the first relation in (3.6). In fact, with Em, E∗
m,

m = 1, 2, 3, specified in (3.13)-(3.14) and Im(·, ·; s⃗k), I3m(·, ·; s⃗k) defined in (3.15)-(3.16), by
relation (3.20), it holds uniformly for all s⃗k ∈ Ωk,t that

P
(

X∗e−L(ti) > x′,Y ∗e−L(t j) > y′
)
≥ I33(x′,y′; s⃗k)∼ I33(x,y; s⃗k)

= P
(

X∗e−L(ti) > x,Y ∗e−L(t j) > y,E3,E∗
3

)
≥ P

(
X∗e−L(ti) > x,Y ∗e−L(t j) > y

)
−

2

∑
m=1

P
(

X∗e−L(ti) > x,Y ∗e−L(t j) > y,Em

)
−

2

∑
m=1

P
(

X∗e−L(ti) > x,Y ∗e−L(t j) > y,E3,E∗
m

)
= Px,y(ti, t j)−

2

∑
m=1

(Im(x,y; s⃗k)+ I3m(x,y; s⃗k)). (3.22)

Following the derivation of (3.17)-(3.18) with some obvious modifications, we can obtain that,
for all large x,y and all s⃗k ∈ Ωk,t ,

2

∑
m=1

(Im(x,y; s⃗k)+ I3m(x,y; s⃗k))≤CεF(x)G(y). (3.23)

By (3.22)-(3.23) and the uniformity of the second relation in (3.6), we obtain the lower-bound
version of the first relation (3.6).

Next, we prove the uniformity of relations (3.7), (3.8), and (3.9). Recall that X̃∗ and Ỹ ∗ are
independent random variables with distributions F̃ and G̃, respectively. By (3.5), it is easy to
verify that

F̃(x) =
∫ ∞

x

(
1− φ1(u)

b1

)
dF(u)∼

(
1− d1

b1

)
F(x) as x → ∞, (3.24)
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G̃(y) =
∫ ∞

y

(
1− φ2(v)

b2

)
dG(v)∼

(
1− d2

b2

)
G(y) as y → ∞. (3.25)

By going along the same lines as in the proof of the uniformity of the first relation in (3.6)
and using relations (3.24) and (3.25) when necessary, we can obtain the uniformity of relations
(3.7), (3.8), and (3.9).

It remains to prove the uniformity of relation (3.10) when F and G belong to the class R−α
for some 0 ≤ 2α ≤ η . Without loss of generality, we assume i > j. In this case, the uniformity
of relation (3.10) reduces to a concise expression. Namely, uniformly for all s⃗k ∈ Ωk,t ,

Px,y(ti, t j)∼ F(x)G(y)et jϕ(2α)e(ti−t j)ϕ(α). (3.26)

In fact, Theorem 1.5.2 of Bingham, et al. (1987) shows that, for any distribution B ∈R−α with
0 < α < ∞,

lim
x→∞

sup
y∈[a,b]

∣∣∣∣B(xy)
B(x)

− y−α
∣∣∣∣= 0. (3.27)

Now following the derivations in (3.12)-(3.23) and further applying relation (3.27) to (3.19),
we can obtain the uniformity of relation (3.26) and conclude the proof.

Lemma 3.4. Let l(·) be the function specified in Lemma 3.2 and for arbitrarily fixed c̃0, c̃1, c̄0
and c̄1 ≥ 0, write x′ = x− c̃0l(x)− c̃1 and y′ = y− c̄0l(y)− c̄1. Under the conditions of Theorem
2.1, for arbitrarily fixed 1 ≤ i ̸= j ≤ k < ∞ and t ∈ Λ, the relations

P
(

Xie−L(ti) > x′,Yie−L(ti) > y′ | θi = si

)
∼ (1+η1d1d2)φ̈3(si)Px,y(ti, ti), (3.28)

P
(

Xie−L(ti) > x′,Yje−L(t j) > y′ | θi = si,θ j = s j

)
∼ φ̂3(si)φ̌3(s j)Px,y(ti, t j) (3.29)

hold uniformly for all s⃗k ∈ Ωk,t , where φ̂3(·), φ̌3(·), and φ̈3(·) are specified in (2.1)-(2.3), and
Px,y(·, ·) is specified in (2.12).

Proof. First, we prove the uniformity of relation (3.28). Applying the decomposition

1+η1φ1φ2 +η2φ1φ3 +η3φ2φ3

= (1+η1b1b2 +η2b1b3 +η3b2b3)− (η1b1b2 +η2b1b3)

(
1− φ1

b1

)
− (η1b1b2 +η3b2b3)

(
1− φ2

b2

)
− (η2b1b3 +η3b2b3)

(
1− φ3

b3

)
+η1b1b2

(
1− φ1

b1

)(
1− φ2

b2

)
+η2b1b3

(
1− φ1

b1

)(
1− φ3

b3

)
+η3b2b3

(
1− φ2

b2

)(
1− φ3

b3

)
(3.30)

to the probability P(Xie−L(ti) > x′,Yie−L(ti) > y′,θi = si) leads to

P
(

Xie−L(ti) > x′,Yie−L(ti) > y′,θi = si

)
= (1+η1b1b2 +η2b1b3 +η3b2b3)P

(
X∗e−L(ti) > x′,Y ∗e−L(ti) > y′,θ ∗ = si

)
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− (η1b1b2 +η2b1b3)P
(

X̃∗e−L(ti) > x′,Y ∗e−L(ti) > y′,θ ∗ = si

)
− (η1b1b2 +η3b2b3)P

(
X∗e−L(ti) > x′,Ỹ ∗e−L(ti) > y′,θ ∗ = si

)
− (η2b1b3 +η3b2b3)P

(
X∗e−L(ti) > x′,Y ∗e−L(ti) > y′, θ̃ ∗ = si

)
+η1b1b2P

(
X̃∗e−L(ti) > x′,Ỹ ∗e−L(ti) > y′,θ ∗ = si

)
+η2b1b3P

(
X̃∗e−L(ti) > x′,Y ∗e−L(ti) > y′, θ̃ ∗ = si

)
+η3b2b3P

(
X∗e−L(ti) > x′,Ỹ ∗e−L(ti) > y′, θ̃ ∗ = si

)
. (3.31)

Denote the seven probability terms on the right-hand side of equality (3.31) by Jl(x′,y′; s⃗k),
l = 1,2, . . . ,7, respectively. By Lemma 3.3, it holds uniformly for all s⃗k ∈ Ωk,t that

J1(x′,y′; s⃗k)

P(θi = si)
∼ Px,y(ti, ti), (3.32)

J2(x′,y′; s⃗k)

P(θi = si)
∼
(

1− d1

b1

)
Px,y(ti, ti), (3.33)

J3(x′,y′; s⃗k)

P(θi = si)
∼
(

1− d2

b2

)
Px,y(ti, ti) (3.34)

J5(x′,y′; s⃗k)

P(θi = si)
∼
(

1− d1

b1

)(
1− d2

b2

)
Px,y(ti, ti). (3.35)

Noting that for any z ≥ 0,

P
(

θ̃ ∗ ∈ dz
)
=

(
1− φ3(z)

b3

)
P(θ ∗ ∈ dz) ,

by Lemma 3.3, it holds uniformly for all s⃗k ∈ Ωk,t that

J4(x′,y′; s⃗k)

P(θi = si)
∼
(

1− φ3(si)

b3

)
Px,y(ti, ti), (3.36)

J6(x′,y′; s⃗k)

P(θi = si)
∼
(

1− d1

b1

)(
1− φ3(si)

b3

)
Px,y(ti, ti), (3.37)

J7(x′,y′; s⃗k)

P(θi = si)
∼
(

1− d2

b2

)(
1− φ3(si)

b3

)
Px,y(ti, ti). (3.38)

Plugging (3.32)-(3.38) into (3.31) and performing a slightly tedious calculation give the unifor-
mity of relation (3.28).

Next, we prove the uniformity of relation (3.29). Note that (Xi,θi) and (Yj,θ j) are indepen-
dent random vectors for every fixed i ̸= j. Applying the decomposition

1+η2φ1φ3 = (1+η2b1b3)−η2b1b3

(
1− φ1

b1

)
−η2b1b3

(
1− φ3

b3

)
+η2b1b3

(
1− φ1

b1

)(
1− φ3

b3

)
(3.39)

to the probability P(Xie−L(ti) > x′,Yje−L(t j) > y′,θi = si,θ j = s j) leads to

P
(

Xie−L(ti) > x′,Yje−L(t j) > y′,θi = si,θ j = s j

)
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= (1+η2b1b3)P
(

X∗
i e−L(ti) > x′,Yje−L(t j) > y′,θ ∗

i = si,θ j = s j

)
−η2b1b3P

(
X̃∗

i e−L(ti) > x′,Yje−L(t j) > y′,θ ∗
i = si,θ j = s j

)
−η2b1b3P

(
X∗

i e−L(ti) > x′,Yje−L(t j) > y′, θ̃ ∗
i = si,θ j = s j

)
+η2b1b3P

(
X̃∗

i e−L(ti) > x′,Yje−L(t j) > y′, θ̃ ∗
i = si,θ j = s j

)
:= (1+η2b1b3)J′1(x

′,y′; s⃗k)−η2b1b3
{

J′2(x
′,y′; s⃗k)+ J′3(x

′,y′; s⃗k)− J′4(x
′,y′; s⃗k)

}
. (3.40)

Furthermore, applying the decomposition

1+η3φ2φ3 = (1+η3b2b3)−η3b2b3

(
1− φ2

b2

)
−η3b2b3

(
1− φ3

b3

)
+η3b2b3

(
1− φ2

b2

)(
1− φ3

b3

)
, (3.41)

to J′1(x
′,y′; s⃗k) in (3.40) leads to

J′1(x
′,y′; s⃗k)

= (1+η3b2b3)P
(

X∗
i e−L(ti) > x′,Y ∗

j e−L(t j) > y′,θ ∗
i = si,θ ∗

j = s j

)
−η3b2b3P

(
X∗

i e−L(ti) > x′,Ỹ ∗
j e−L(t j) > y′,θ ∗

i = si,θ ∗
j = s j

)
−η3b2b3P

(
X∗

i e−L(ti) > x′,Y ∗
j e−L(t j) > y′,θ ∗

i = si, θ̃ ∗
j = s j

)
+η3b2b3P

(
X∗

i e−L(ti) > x′,Ỹ ∗
j e−L(t j) > y′,θ ∗

i = si, θ̃ ∗
j = s j

)
:= (1+η3b2b3)J′11(x

′,y′; s⃗k)−η3b2b3
{

J′12(x
′,y′; s⃗k)+ J′13(x

′,y′; s⃗k)− J′14(x
′,y′; s⃗k)

}
. (3.42)

By Lemma 3.3, it holds uniformly for all s⃗k ∈ Ωk,t that

J′11(x
′,y′; s⃗k)

P
(
θi = si,θ j = s j

) ∼ Px,y(ti, t j), (3.43)

J′12(x
′,y′; s⃗k)

P
(
θi = si,θ j = s j

) ∼ (1− d2

b2

)
Px,y(ti, t j), (3.44)

J′13(x
′,y′; s⃗k)

P
(
θi = si,θ j = s j

) ∼ (1−
φ3(s j)

b3

)
Px,y(ti, t j), (3.45)

J′14(x
′,y′; s⃗k)

P
(
θi = si,θ j = s j

) ∼ (1− d2

b2

)(
1−

φ3(s j)

b3

)
Px,y(ti, t j). (3.46)

Plugging (3.43)-(3.46) into (3.42) gives that, uniformly for all s⃗k ∈ Ωk,t ,

J′1(x
′,y′; s⃗k)

P
(
θi = si,θ j = s j

) ∼ (1+η3d2φ3(s j)
)

Px,y(ti, t j) = φ̌3(s j)Px,y(ti, t j). (3.47)

Similar to the derivations in (3.41)-(3.47), we obtain, uniformly for all s⃗k ∈ Ωk,t ,

J′2(x
′,y′; s⃗k)

P
(
θi = si,θ j = s j

) ∼ (1− d1

b1

)
φ̌3(s j)Px,y(ti, t j), (3.48)
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J′3(x
′,y′; s⃗k)

P
(
θi = si,θ j = s j

) ∼ (1− φ3(si)

b3

)
φ̌3(s j)Px,y(ti, t j), (3.49)

J′4(x
′,y′; s⃗k)

P
(
θi = si,θ j = s j

) ∼ (1− d1

b1

)(
1− φ3(si)

b3

)
φ̌3(s j)Px,y(ti, t j). (3.50)

Plugging (3.47)-(3.50) into (3.40) gives the uniformity of relation (3.29). This ends the proof.

Following the method used in the proof of Lemmas 3.3-3.4 with some obvious modifica-
tions, we can obtain the following lemma.

Lemma 3.5. Let Θ be a nonnegative random variable independent of (X ,Y,θ)ᵀ and (X∗,Y ∗,θ ∗)ᵀ.
Under the conditions of Theorem 2.1, if there is some constant η1 > J+F +J+G such that EΘη1 <
∞, then for arbitrarily fixed i ≥ 1 and T ∈ Λ, it holds uniformly for all u ∈ ΛT that

P(XiΘ > x | θi = u)∼ φ̂3(u)P(X∗Θ > x) as x → ∞,

P(YiΘ > y | θi = u)∼ φ̌3(u)P(Y ∗Θ > y) as y → ∞,

P(XiΘ > x,YiΘ > y | θi = u)∼ (1+η1d1d2)φ̈3(u)P(X∗Θ > x,Y ∗Θ > y) ,

and for every 1 ≤ i ̸= j < ∞, it holds uniformly for all (u,v) ∈ Ω2,T that

P
(
XiΘ > x,Y jΘ > y | θi = u,θ j = v

)
∼ φ̂3(u)φ̌3(v)P(X∗Θ > x,Y ∗Θ > y) ,

where φ̂3(·), φ̌3(·), and φ̈3(·) are defined in (2.1)-(2.3).

For any t ≥ 0, define

Zt =
∫ t

0−
e−L(s)ds. (3.51)

Lemma 3.6. Under the conditions of Theorem 2.1, for arbitrarily fixed k ≥ 1, T ∈ Λ, and
c̃1, c̃2 ≥ 0, it holds uniformly for all t ∈ ΛT that

P

(
k

∑
i=1

Xie−L(τi)− c̃1Zt > x,
k

∑
j=1

Y je−L(τ j)− c̃2Zt > y,Nt = k

)

∼ (1+η1d1d2)
k

∑
i=1

P
(

X∗e−L(τ̈∗i ) > x,Y ∗e−L(τ̈∗i ) > y, N̈t = k
)

+ ∑
1≤i̸= j≤k

P
(

X∗e−L(τ∗i ) > x,Y ∗e−L(τ∗j) > y,Nt = k
)

(3.52)

with {τ̈∗j ,τ
∗
j , j ≥ 1}, {N̈t ,Nt , t ≥ 1} specified in (2.5)-(2.6).

Proof. We only prove the uniformity of relation (3.52) when k ≥ 2. The proof of the uniformity
of relation (3.52) when k = 1 is similar but simpler. Trivially, for any t ∈ ΛT and k ≥ 2,

P

(
k

∑
i=1

Xie−L(τi)− c̃1Zt > x,
k

∑
j=1

Y je−L(τ j)− c̃2Zt > y,Nt = k

)

=
∫

· · ·
∫

Ωk,t

P

(
k

∑
i=1

Xie−L(ti)− c̃1Zt > x,
k

∑
j=1

Y je−L(t j)− c̃2Zt > y
∣∣∣ θ⃗k = s⃗k

)
H(t − tk)

k

∏
l=1

dH(sl)
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:=
∫

· · ·
∫

Ωk,t

K(x,y; s⃗k, t)H(t − tk)
k

∏
l=1

dH(sl). (3.53)

Write x′ = x− l(x) and y′ = y− l(y) with the function l(·) specified as in Lemma 3.2. Trivially,

K(x,y; s⃗k, t)

≤ P

(
k

∑
i=1

Xie−L(ti) > x,
k

∑
j=1

Yje−L(t j) > y
∣∣∣ θ⃗k = s⃗k

)

≤ P

(
k∪

i=1

{Xie−L(ti) > x′},
k∪

j=1

{Yje−L(t j) > y′}
∣∣∣ θ⃗k = s⃗k

)

+P

(
k∪

i=1

{Xie−L(ti) > x′},
k

∑
j=1

Yje−L(t j) > y,
k∩

n=1

{Yne−L(tn) ≤ y′}
∣∣∣ θ⃗k = s⃗k

)

+P

(
k

∑
i=1

Xie−L(ti) > x,
k∩

m=1

{Xme−L(tm) ≤ x′},
k∪

j=1

{Y je−L(t j) > y′
∣∣∣ θ⃗k = s⃗k

)

+P

(
k

∑
i=1

Xie−L(ti) > x,
k

∑
j=1

Y je−L(t j) > y,
∩

1≤m,n≤k

{Xme−L(tm) ≤ x′,Yne−L(tn) ≤ y′}
∣∣∣ θ⃗k = s⃗k

)
:= K1(x,y; s⃗k)+K2(x,y; s⃗k)+K3(x,y; s⃗k)+K4(x,y; s⃗k). (3.54)

For K1(x,y; s⃗k), by Lemma 3.4, it holds uniformly for all s⃗k ∈ Ωk,T that

K1(x,y; s⃗k)≤
k

∑
i=1

k

∑
j=1

P
(

Xie−L(ti) > x′,Yje−L(t j) > y′
∣∣∣ θ⃗k = s⃗k

)
∼ (1+η1d1d2)

k

∑
i=1

φ̈3(si)Px,y(ti, ti)+ ∑
1≤i̸= j≤k

φ̂3(si)φ̌3(s j)Px,y(ti, t j)

:= P̃x,y(⃗sk). (3.55)

Take p > J+F and q > J+G such that p+q ≤ η . Recall that Ewv
T < ∞ for any 0 ≤ v ≤ η . Hence,

for arbitrarily fixed ε > 0, choose some b > 0 large enough such that

E
{

1(wT>b)(w
p
T +1)(wq

T +1)
}
< ε. (3.56)

For the fixed b, by (3.11), we have, with k1 = k−1 and k2 = (k−1)−1,

K2(x,y; s⃗k)

≤ ∑
1≤i, j,n≤k, j ̸=n

P
(

Xie−L(ti) > x′,Y je−L(t j) > k2l(y),Yne−L(tn) > k1y | θ⃗k = s⃗k

)
≤ ∑

1≤i, j,n≤k, j ̸=n
P
(

XiwT > x′,Y jwT > k2l(y),YnwT > k1y | θ⃗k = s⃗k

)
≤ ∑

1≤i, j,n≤k, j ̸=n
P
(

Xi > x′/b,Y j > k2l(y)/b,Yn > k1y/b | θ⃗k = s⃗k

)
+ ∑

1≤i, j,n≤k, j ̸=n
P
(

XiwT > x′,Y jwT > k2l(y),YnwT > k1y,wT > b | θ⃗k = s⃗k

)
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:= K21(x,y; s⃗k)+K22(x,y; s⃗k). (3.57)

By Lemma 3.5, we can derive that, for all large x,y and s⃗k ∈ Ωk,T ,

K21(x,y; s⃗k)

≤ ∑
1≤i= j ̸=n≤k

P
(
Xi > x′/b,Yi > k2l(y)/b | θi = si

)
P(Yn > k1y/b | θn = sn)

+ ∑
1≤i=n̸= j≤k

P
(
Xi > x′/b,Yi > k1y/b | θi = si

)
P
(
Yj > k2l(y)/b | θ j = s j

)
+ ∑

1≤i̸= j ̸=n≤k
P
(
Xi > x′/b | θi = si

)
P
(
Yj > k2l(y)/b | θ j = s j

)
P
(
Yn > k1y/b | θ j = s j

)
≤CF(x′/b)G(k2l(y)/b)G(k1y/b) ∑

1≤i ̸=n≤k
(1+η1d1d2)φ̈3(si)φ̌3(sn)

+CF(x′/b)G(k1y/b)G(k2l(y)/b) ∑
1≤i̸= j≤k

(1+η1d1d2)φ̈3(si)φ̌3(s j)

+CF(x′/b)G(k2l(y)/b)G(k1y/b) ∑
1≤i̸= j ̸=n≤k

φ̂3(si)φ̌3(s j)φ̌3(sn)

≤CεF(x)G(y)
k

∑
i=1

(1+η1d1d2)φ̈3(si)+CεF(x)G(y) ∑
1≤i̸= j≤k

φ̂3(si)φ̌3(s j)

≤CεP̃x,y(⃗sk), (3.58)

where at the third step we used inequality (3.1), Lemma 3.2, and the boundedness of φ̌3(·),
while at the last step we used relation (3.6). Note that by (3.1), Lemma 3.3(i), and (3.56), we
have, for all large x,y,

P
(
X∗wT > x′,Y ∗wT > k1y,wT > b

)
= E

{
1(wT>b)P(X∗wT > x′ | wT )P(Y ∗wT > k1y | wT )

}
≤CF(x′)G(k1y)E

{
1(wT>b)(w

p
T +1)(wq

T +1)
}

≤CεF(x)G(y). (3.59)

Hence, by Lemma 3.5 and relation (3.6) in Lemma 3.3, we can derive that, for all large x,y,

K22(x,y; s⃗k)≤C ∑
1≤i=n≤k

P
(
XiwT > x′,YiwT > k1y,wT > b | θi = si

)
+C ∑

1≤i̸=n≤k
P
(
XiwT > x′,YnwT > k1y,wT > b | θi = si,θn = sn

)
≤C ∑

1≤i=n≤k
(1+η1d1d2)φ̈3(si)P

(
X∗wT > x′,Y ∗wT > k1y,wT > b

)
+C ∑

1≤i̸=n≤k
φ̂3(si)φ̌3(sn)P

(
X∗wT > x′,Y ∗wT > k1y,wT > b

)
≤CεF(x)G(y)

k

∑
i=1

(1+η1d1d2)φ̈3(si)+CεF(x)G(y) ∑
1≤i̸=n≤k

φ̂3(si)φ̌3(sn)

≤CεP̃x,y(⃗sk). (3.60)

It follows from (3.57)-(3.60) that, for all large x,y and s⃗k ∈ Ωk,T ,

K2(x,y; s⃗k)≤CεP̃x,y(⃗sk). (3.61)
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A similar derivation to that in (3.57)-(3.61) gives that, for all large x,y and s⃗k ∈ Ωk,T ,

K3(x,y; s⃗k)≤CεP̃x,y(⃗sk). (3.62)

Let b be the positive constant specified in (3.56). We have,

K4(x,y; s⃗k)

≤ ∑
1≤i̸=m≤k,
1≤ j ̸=n≤k

P
(

Xie−L(ti) > k2l(x),Xme−L(tm) > k1x,Y je−L(t j) > k2l(y),Yne−L(tn) > k1y | θ⃗k = s⃗k

)

≤ ∑
1≤i̸=m≤k,
1≤ j ̸=n≤k

P
(

XiwT > k2l(x),XmwT > k1x,Y jwT > k2l(y),YnwT > k1y | θ⃗k = s⃗k

)

≤ ∑
1≤i ̸=m≤k,
1≤ j ̸=n≤k

P
(

Xi > k2l(x)/b,Xm > k1x/b,Y j > k2l(y)/b,Yn > k1y/b | θ⃗k = s⃗k

)

+ ∑
1≤i ̸=m≤k,
1≤ j ̸=n≤k

P
(

XiwT > k2l(x),XmwT > k1x,YjwT > k2l(y),YnwT > k1y,wT > b | θ⃗k = s⃗k

)
:= K41(x,y; s⃗k)+K42(x,y; s⃗k). (3.63)

For K41(x,y; s⃗k), similar to the derivation in (3.58), we can obtain, for all large x,y and s⃗k ∈Ωk,T ,

K41(x,y; s⃗k)

≤ ∑
1≤i̸=m=n̸= j≤k

P(Xi > k2l(x)/b | θi = si)P(Xm > k1x/b,Ym > k1y/b | θm = sm)

+ ∑
1≤i̸=m, j ̸=n≤k,

m ̸=n,i=n

P(Xm > k1x/b | θm = sm)P(Xn > k2l(x)/b,Yn > k1y/b | θn = sn)

+ ∑
1≤i̸=m, j ̸=n≤k,

m ̸=n,i̸=n

P(Xi > k2l(x)/b | θi = si)P(Xm > k1x/b | θm = sm)P(Yn > k1y/b | θn = sn)

≤CεP̃x,y(⃗sk). (3.64)

For K42(x,y; s⃗k), similar to the derivation in (3.59)-(3.60), we have, for all large x,y and s⃗k ∈
Ωk,T ,

K42(x,y; s⃗k)≤C ∑
1≤m=n≤k

P(XmwT > k1x,YmwT > k1y,wT > b | θm = sm)

+C ∑
1≤m̸=n≤k

P(XmwT > k1x,YnwT > k1y,wT > b | θm = sm,θn = sn)

≤CεP̃x,y(⃗sk). (3.65)

By (3.63)-(3.65), we have, for all large x,y and s⃗k ∈ Ωk,T ,

K4(x,y; s⃗k)≤CεP̃x,y(⃗sk). (3.66)

Combining (3.53)-(3.55), (3.61)-(3.62), and (3.66) gives that, uniformly for all t ∈ ΛT ,

P

(
k

∑
i=1

Xie−L(τi) > x,
k

∑
j=1

Y je−L(τ j) > y,Nt = k

)
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.
∫

· · ·
∫

Ωk,t

P̃x,y(s⃗k)H(t − tk)
k

∏
l=1

dH(sl)

= (1+η1d1d2)
k

∑
i=1

P
(

X∗e−L(τ̈∗i ) > x,Y ∗e−L(τ̈∗i ) > y, N̈t = k
)

+ ∑
1≤i̸= j≤k

P
(

X∗e−L(τ∗i ) > x,Y ∗e−L(τ∗j) > y,Nt = k
)
.

This completes the proof of the upper-bound version of relation (3.52).
It remains to prove the lower-bound version of relation (3.52). Let b > 0 be the constant

specified in (3.56) and take D > 0 such that D/T > b. With x̃ = x+ c̃1D, ỹ = y+ c̃2D, we have

K(x,y; s⃗k, t)≥
k

∑
i=1

k

∑
j=1

P
(

Xie−L(ti) > x̃,Yje−L(t j) > ỹ | θ⃗k = s⃗k

)
−

k

∑
i=1

k

∑
j=1

P
(

Xie−L(ti) > x̃,Y je−L(t j) > ỹ,Zt > D | θ⃗k = s⃗k

)
− ∑

1≤i, j,m≤k,i̸=m
P
(

Xie−L(ti) > x̃,Xme−L(tm) > x̃,Yje−L(t j) > ỹ | θ⃗k = s⃗k

)
− ∑

1≤i, j,n≤k, j ̸=n
P
(

Xie−L(ti) > x̃,Yje−L(t j) > ỹ,Yne−L(tn) > ỹ | θ⃗k = s⃗k

)
:= K′

1(x̃, ỹ; s⃗k)−K′
2(x̃, ỹ; s⃗k, t)−K′

3(x̃, ỹ; s⃗k)−K′
4(x̃, ỹ; s⃗k). (3.67)

By Lemma 3.4, it holds uniformly for all s⃗k ∈ Ωk,T that

K′
1(x̃, ỹ; s⃗k)∼ (1+η1d1d2) ∑

1≤i≤k
φ̈3(si)Px,y(ti, ti)+ ∑

1≤i̸= j≤k
φ̂3(si)φ̌3(s j)Px,y(ti, t j)

= P̃x,y(⃗sk). (3.68)

Noting that ZT ≤ wT ·T and D/T > b, we have, for all s⃗k ∈ Ωk,T and t ∈ ΛT ,

K′
2(x̃, ỹ; s⃗k, t)≤

k

∑
i=1

k

∑
j=1

P
(

XiwT > x̃,Y jwT > ỹ,wT > D/T | θ⃗k = s⃗k

)
≤

k

∑
i=1

k

∑
j=1

P
(

XiwT > x̃,Y jwT > ỹ,wT > b | θ⃗k = s⃗k

)
≤CεF(x̃)G(ỹ)

{
(1+η1d1d2)

k

∑
i=1

φ̈3(si)+ ∑
1≤i̸= j≤k

φ̂3(si)φ̌3(s j)

}
≤CεP̃x,y(⃗sk), (3.69)

where at the third step we used a similar derivation to that in (3.59)-(3.60), while at the last step
we used Lemma 3.2 and relation (3.6) in Lemma 3.3. Following the derivation in (3.56)-(3.61)
with some obvious modifications, we have, for all large x,y and s⃗k ∈ Ωk,T ,

K′
3(x̃, ỹ; s⃗k)+K′

4(x̃, ỹ; s⃗k)≤CεF(x̃)G(ỹ)

{
(1+η1d1d2) ∑

1≤i≤k
φ̈3(si)+ ∑

1≤i̸= j≤k
φ̂3(si)φ̌3(s j)

}
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≤CεP̃x,y(⃗sk). (3.70)

Combining (3.67)-(3.69) gives the lower-bound version of relation (3.52). This ends the proof.

Lemma 3.7. Under the conditions of Theorem 2.1, for arbitrarily fixed T ∈ Λ,

lim
m→∞

lim
(x,y)ᵀ→(∞,∞)ᵀ

sup
t∈ΛT

∑∞
k=mP

(
∑k

i=1 Xie−L(τi) > x,∑k
j=1Y je−L(τ j) > y,Nt = k

)
(1+η1d1d2)P̈+P

= 0, (3.71)

lim
m→∞

lim
(x,y)ᵀ→(∞,∞)ᵀ

sup
t∈ΛT

∑∞
k=m ∑k

i=1P
(

X∗e−L(τ̈∗i ) > x,Y ∗e−L(τ̈∗i ) > y, N̈t = k
)

P̈
= 0, (3.72)

lim
m→∞

lim
(x,y)ᵀ→(∞,∞)ᵀ

sup
t∈ΛT

∑∞
k=m ∑1≤i ̸= j≤kP

(
X∗e−L(τ∗i ) > x,Y ∗e−L(τ∗j) > y,Nt = k

)
P

= 0, (3.73)

where {τ̈∗j , j ≥ 1}, {τ∗j , j ≥ 1} are specified in (2.5)-(2.6),

P̈ = P
(

X∗
1 e−L(τ̈∗1 ) > x,Y ∗e−L(τ̈∗1 ) > y, τ̈∗1 ≤ t

)
,

P = P
(

X∗e−L(τ∗1) > x,Y ∗e−L(τ∗2) > y,τ∗2 ≤ t
)
+P

(
X∗e−L(τ∗2) > x,Y ∗e−L(τ∗1) > y,τ∗2 ≤ t

)
.

Proof. With Px,y(·, ·) specified in (2.12) and τ̈∗1 in (2.5), by relation (3.6) in Lemma 3.3, it holds
uniformly for all t ∈ ΛT that

P̈ =
∫ t

0−
Px,y(u,u)φ̈3(u)dH(u)≍ F(x)G(y)

∫ t

0−
φ̈3(u)dH(u). (3.74)

With τ∗1 and τ∗2 specified in (2.6), by relation (3.6) in Lemma 3.3, it holds uniformly for all
t ∈ ΛT that

P =
∫∫

Ω2,t

φ̂3(u)φ̌3(v)(Px,y(u,u+ v)+Px,y(u+ v,u))dH(u)dH(v)

≍ F(x)G(y)
∫∫

Ω2,t

φ̂3(u)φ̌3(v)dH(u)dH(v). (3.75)

Denote the summand in the numerator of (3.71) by Pk. For all t ∈ ΛT and any k ≥ 2,

Pk ≤ ∑
1≤i, j≤k

P
(

Xie−L(τi) >
x
k
,Yje−L(τ j) >

y
k
,Nt = k

)
=

k

∑
i=1

∫
· · ·
∫

Ωk,t

P
(

Xie−L(ti) >
x
k
,Yie−L(ti) >

y
k
| θi = si

)
H(t − tk)

k

∏
l=1

dH(sl)

+ ∑
1≤i̸= j≤k

∫
· · ·
∫

Ωk,t

P
(

Xie−L(ti) >
x
k
,Y je−L(t j) >

y
k
| θi = si,θ j = s j

)
H(t − tk)

k

∏
l=1

dH(sl)

:= Pk1 +Pk2. (3.76)

Take p > J+F and q > J+G such that p+ q ≤ η . By relation (3.28) in Lemma 3.4 and relation
(3.6) in Lemma 3.3, we can derive that, for all large x,y and all t ∈ ΛT ,

Pk1 ∼
k

∑
i=1

∫
· · ·
∫

Ωk,t

(1+η1d1d2)φ̈3(si)Px/k,y/k(ti, ti)H(t − tk)
k

∏
l=1

dH(sl)
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≍ kF
(x

k

)
G
(x

k

)∫
· · ·
∫

Ωk,t

(1+η1d1d2)φ̈3(s1)H(t − tk)
k

∏
l=1

dH(sl)

≤CpCqkp+q+1F(x)G(y)
∫ t

0−
(1+η1d1d2)φ̈3(u)P(Nt−u = k−1)dH(u)

≤Ckp+q+1F(x)G(y)P(NT ≥ k−1)
∫ t

0−
(1+η1d1d2)φ̈3(u)dH(u), (3.77)

where at the second step we interchanged si and s1 for every 1 ≤ i ≤ k, while at the third step
we used inequality (3.1). By relation (3.29) in Lemma 3.4 and relation (3.6) in Lemma 3.3, we
have, for all large x,y and all t ∈ ΛT ,

Pk2 ∼ ∑
1≤i̸= j≤k

∫
· · ·
∫

Ωk,t

φ̂3(si)φ̌3(s j)Px/k,y/k(ti, t j)H(t − tk)
k

∏
l=1

dH(sl)

≍ k(k−1)F
(x

k

)
G
(x

k

)∫
· · ·
∫

Ωk,t

φ̂3(s1)φ̌3(s2)H(t − tk)
k

∏
l=1

dH(sl)

≤Ckp+q+2F(x)G(y)
∫∫

Ω2,t

φ̂3(u)φ̌3(v)P(Nt−u−v = k−2)dH(u)dH(v)

≤Ckp+q+2F(x)G(y)P(NT ≥ k−2)
∫∫

Ω2,t

φ̂3(u)φ̌3(v)dH(u)dH(v), (3.78)

where at the second step we used the interchanges of si � s1 and s j � s2 for every 1≤ i ̸= j ≤ k.
By (3.74)-(3.78), we obtain, for all large x,y and all t ∈ ΛT ,

∑∞
k=mP

(
∑k

i=1 Xie−L(τi) > x,∑k
j=1Y je−L(τ j) > y,Nt = k

)
(1+η1d1d2)P̈+P

≤C
∞

∑
k=m

kη+2P(NT ≥ k−2)≤C
∞

∑
k=m−2

kη+3P(NT = k) =CE{Nη+3
T 1(NT≥m−2)}.

By Lemma 3.2 in Hao and Tang (2008), there exists some h̄ > 0 such that Eeh̄NT < ∞. Hence,
the last expectation above tends to 0 as m → ∞. Thus, relation (3.71) holds.

It remains to prove relations (3.72)-(3.73). In fact, by going along the same lines of the
proof of relation (3.71) with some obvious modifications, we can verify relations (3.72)-(3.73)
and conclude the proof.

4 Proof of Theorem 2.1
First we prove the upper-bound version of relation (2.11). Trivially, for arbitrarily fixed

t ∈ ΛT ,

Ψ(x,y; t) = P

( ∪
0≤s≤t

{
e−L(s)U1s < 0,e−L(s)U2s < 0

} ∣∣∣U10 = x,U20 = y

)

= P

( ∪
0<s≤t

{
Ns

∑
i=1

Xie−L(τi)− c1Zs > x,
Ns

∑
j=1

Y je−L(τ j)− c2Zs > y

})
(4.1)
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≤ P

(
Nt

∑
i=1

Xie−L(τi) > x,
Nt

∑
j=1

Y je−L(τ j) > y

)

=

(
m

∑
k=1

+
∞

∑
k=m+1

)
P

(
k

∑
i=1

Xie−L(τi) > x,
k

∑
j=1

Y je−L(τ j) > y,Nt = k

)
:= M1(x,y; t)+M2(x,y; t). (4.2)

By the uniformity of relation (3.52) in Lemma 3.6, it holds uniformly for all t ∈ ΛT that

M1(x,y; t)∼ (1+η1d1d2)
m

∑
k=1

k

∑
i=1

P
(

X∗e−L(τ̈∗i ) > x,Y ∗e−L(τ̈∗i ) > y, N̈t = k
)

+
m

∑
k=1

(
k

∑
i=1

k

∑
j=i+1

+
k

∑
j=1

k

∑
i= j+1

)
P
(

X∗e−L(τ∗i ) > x,Y ∗e−L(τ∗j) > y,Nt = k
)

:= (1+η1d1d2)M11(x,y; t)+M12(x,y; t)+M13(x,y; t). (4.3)

Interchanging the order of the sums of i and k gives that

M11(x,y; t)≤
∞

∑
k=1

k

∑
i=1

P
(

X∗e−L(τ̈∗i ) > x,Y ∗e−L(τ̈∗i ) > y, N̈t = k
)

=
∞

∑
i=1

P
(

X∗e−L(τ̈∗i ) > x,Y ∗e−L(τ̈∗i ) > y, τ̈∗i ≤ t
)

:= M′
11(x,y; t). (4.4)

Interchanging the order of the sum of (i, j) and k leads to

M12(x,y; t)≤
∞

∑
k=1

k

∑
i=1

k

∑
j=i+1

P
(

X∗e−L(τ∗i ) > x,Y ∗e−L(τ∗j) > y,Nt = k
)

=
∞

∑
i=1

∞

∑
j=i+1

P
(

X∗e−L(τ∗i ) > x,Y ∗e−L(τ∗j) > y,τ∗j ≤ t
)

:= M′
12(x,y; t). (4.5)

Similarly,

M13(x,y; t)≤
∞

∑
k=1

k

∑
j=1

k

∑
i= j+1

P
(

X∗e−L(τ∗i ) > x,Y ∗e−L(τ∗j) > y,Nt = k
)

=
∞

∑
j=1

∞

∑
i= j+1

P
(

X∗e−L(τ∗i ) > x,Y ∗e−L(τ∗j) > y,τ∗i ≤ t
)

:= M′
13(x,y; t). (4.6)

By (4.3)-(4.6), it holds uniformly for all t ∈ ΛT that

M1(x,y; t). (1+η1d1d2)M′
11(x,y; t)+M′

12(x,y; t)+M′
13(x,y; t). (4.7)

Note that with P̈ and P specified as in Lemma 3.7,

(1+η1d1d2)M′
11(x,y; t)+M′

12(x,y; t)+M′
13(x,y; t)≥ (1+η1d1d2)P̈+P. (4.8)
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Hence, by (4.8) and relation (3.71) in Lemma 3.7,

lim
m→∞

lim
(x,y)ᵀ→(∞,∞)ᵀ

sup
t∈ΛT

M2(x,y; t)
(1+η1d1d2)M′

11(x,y; t)+M′
12(x,y; t)+M′

13(x,y; t)
= 0. (4.9)

By (4.2), (4.7), and (4.9), it holds uniformly for all t ∈ ΛT that

Ψ(x,y; t). (1+η1d1d2)M′
11(x,y; t)+M′

12(x,y; t)+M′
13(x,y; t). (4.10)

Recalling the definition of M′
11(x,y; t) in (4.4) with {τ̈∗i , i ≥ 1} specified in (2.5), we have

M′
11(x,y; t) =

∞

∑
i=1

∫ t

0−
Px,y(u,u)P(τ̈∗i ∈ du) =

∫ t

0−
Px,y(u,u)dλ̈u, (4.11)

where {λ̈t , t ≥ 0} is the renewal function of {N̈t , t ≥ 0} and specified in (2.8). From the defini-
tion of M′

12(x,y; t) in (4.5) with {τ∗i , i ≥ 1} specified in (2.6), it is easy to see that

M′
12(x,y; t)

=
∞

∑
j=2

∫∫
Ω2,t

P
(

X∗e−L(u) > x,Y ∗e−L(u+v) > y
)
P(τ∗j − τ∗1 ∈ dv)P(τ∗1 ∈ du)

+
∞

∑
i=2

∞

∑
j=i+1

∫∫
Ω2,t

P
(

X∗e−L(u) > x,Y ∗e−L(u+v) > y
)
P(τ∗j − τ∗i ∈ dv)P(τ∗i ∈ du)

=
∫∫

Ω2,t

Px,y(u,u+ v)φ̂3(u)(dλ̌v −dλv)dH(u)+
∫∫

Ω2,t

Px,y(u,u+ v)dλvdλ u (4.12)

with {λ̌t , t ≥ 0} and {λ t , t ≥ 0} specified in (2.7)-(2.8). Similarly, by the definition of M′
13(x,y; t)

in (4.6) with {τ∗i , i ≥ 1} specified in (2.6), we can obtain

M′
13(x,y; t) =

∫∫
Ω2,t

Px,y(u+ v,u)φ̂3(u)(dλ̌v −dλv)dH(u)+
∫∫

Ω2,t

Px,y(u+ v,u)dλvdλ u. (4.13)

By (4.10)-(4.13), we obtain the upper-bound version of relation (2.11).
Next, we prove the lower-bound version of relation (2.11). In fact, by (4.1) and Lemma 3.6,

it holds uniformly for all t ∈ ΛT that

Ψ(x,y; t)≥ P

(
Nt

∑
i=1

Xie−L(τi)− c1Zt > x,
Nt

∑
j=1

Y je−L(τ j)− c2Zt > y

)

≥
m

∑
k=1

P

(
k

∑
i=1

Xie−L(τi)− c1Zt > x,
k

∑
j=1

Y je−L(τ j)− c2Zt > y,Nt = k

)

∼ (1+η1d1d2)
m

∑
k=1

k

∑
i=1

P
(

X∗e−L(τ̈∗i ) > x,Y ∗e−L(τ̈∗j ) > y, N̈t = k
)

+
m

∑
k=1

(
k

∑
i=1

k

∑
j=i+1

+
k

∑
j=1

k

∑
i= j+1

)
P
(

X∗e−L(τ∗i ) > x,Y ∗e−L(τ∗j) > y,Nt = k
)

= (1+η1d1d2)M′
11(x,y; t)+M′

12(x,y; t)+M′
13(x,y; t)

− (1+η1d1d2)
∞

∑
k=m+1

k

∑
i=1

P
(

X∗e−L(τ̈∗i ) > x,Y ∗e−L(τ̈∗i ) > y, N̈t = k
)
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−
∞

∑
k=m+1

∑
1≤i̸= j≤k

P
(

X∗e−L(τ∗i ) > x,Y ∗e−L(τ∗j) > y,Nt = k
)
. (4.14)

with M′
1l(x,y; t), l = 1,2,3, specified in (4.4)-(4.6), respectively. For the last two terms in

(4.14), by (4.8) and relations (3.72)-(3.73) in Lemma 3.7, we obtain

lim
m→∞

lim
(x,y)ᵀ→(∞,∞)ᵀ

sup
t∈ΛT

∑∞
k=m+1 ∑k

i=1P
(

X∗e−L(τ̈∗i ) > x,Y ∗e−L(τ̈∗i ) > y, N̈t = k
)

(1+η1d1d2)M′
11(x,y; t)+M′

12(x,y; t)+M′
13(x,y; t)

= 0, (4.15)

and

lim
m→∞

lim
(x,y)ᵀ→(∞,∞)ᵀ

sup
t∈ΛT

∑∞
k=m+1 ∑1≤i̸= j≤kP

(
X∗e−L(τ∗i ) > x,Y ∗e−L(τ∗j) > y,Nt = k

)
(1+η1d1d2)M′

11(x,y; t)+M′
12(x,y; t)+M′

13(x,y; t)
= 0.

(4.16)

By (4.14)-(4.16), it holds uniformly for all t ∈ ΛT that

Ψ(x,y; t)& (1+η1d1d2)M′
11(x,y; t)+M′

12(x,y; t)+M′
13(x,y; t).

This, together with equalities (4.11)-(4.13), gives the lower-bound version of relation (2.11).
Finally, we prove the local uniformity of relation (2.13). In fact, following the method used

in the proof of the uniformity of relation (2.11) and applying relation (3.10) in Lemma 3.3 to
(4.11)-(4.13), we can obtain the local uniformity of relation (2.13) and conclude the proof.
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