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Abstract

In this paper, we consider the estimation of the finite time survival probability in the classical risk
model when the initial surplus is zero. We construct a nonparametric estimator by Fourier inversion and
kernel density estimation method. Under some mild assumptions imposed on the kernel, bandwidth
and claim size density, we derive the order of the bias and variance, and show that the estimator has
asymptotic normality property. Some simulation studies show that the estimator performs quite well
in the finite sample setting.

Keywords: Finite time survival probability, Fourier transform, Kernel, Bias, Variance, Asymptotic
normality.

1 Introduction

The calculation or estimation of ruin probability (or survival probability) is one of the main topics in
risk theory. In this paper, we propose a nonparametric estimator for the finite time survival probability
in the classical risk model, where we assume that the Poisson claim arrival intensity is known but the
claim size density is unknown.

In the classical risk model, the surplus process {Ut, t ≥ 0} has the following form,

Ut = u+ ct−
Nt∑
j=1

Xj ,

where u ≥ 0 is the initial surplus, c > 0 is the constant premium rate, {Nt, t ≥ 0} denoting the
number of claims up to time t is a Poisson process with intensity λ > 0. The i.i.d. random variables

∗College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, PR China. Corresponding Author:
Zhimin Zhang (cquzzm@163.com)

†Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong Kong.
‡College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, PR China

1



{Xj , j = 1, 2, · · · }, independent of {Nt, }, have the same distribution as that of X with unknown density
f .

The ruin time defined by
τ = inf{t > 0 : Ut < 0}

is the first time when the surplus becomes negative. One of the ruin functions of interest in ruin theory
is the finite time ruin probability

ψ(u, t) = P(τ ≤ t|U0 = u), t > 0,

which is the probability of ruin that occurs in (0, t] when the initial surplus is u. Let φ(u.t) = 1−ψ(u, t)
be the finite time survival probability.

The distribution of ruin time is very hard to estimate even in the classical risk model. Although some
actuarial researchers have done some interesting contributions, for example, formulas for the Laplace
transform of the ruin time are obtained in some cases (see e.g. Dickson and Hipp (2001)), it is still
hard to obtain its distribution by inverting the Laplace transform because the parameter of the Laplace
transform is implicitly embedded in the roots of the (generalized) Lundberg fundamental equation. In
the classical risk model with exponential claim size distribution, an explicit formula for the distribution
of the ruin time has been known for many years, see. e.g. Asmussen (2000) and Drekic and Willmot
(2003). Again for exponential claim size distribution, Dickson et al. (2005) and Dickson and Borovkov
(2008) obtain the density of the ruin time in the Sparre Andersen risk model with Erlang and some more
general inter-claim time distributions, respectively.

Since it is difficult to study the finite time ruin probability by analytic or probabilistic method, it
is necessary to study it via other approaches. In the last two decades, some researchers have done
some interesting works on applications of the statistical methods in ruin theory. Various nonparametric
estimators for the infinite time ruin probability are proposed by Croux and Veraverbeke (1990), Hipp
(1994) and Mnatsakanov et al. (2008), etc. For the finite time ruin probability, Loisel et al. (2008,
2009) applies the empirical distribution to construct a nonparametric estimator. Statistical properties of
the estimator are analyzed in detail in their papers. Recently, Qin and Pitts (2011) considers the finite
time survival probability when the initial surplus is zero. They construct a plug-in estimator based on
Seal’s formula, and use a functional approach to study the consistency and asymptotic normality of the
estimator.

In this paper, we will propose a nonparametric estimator for the finite time survival probability when
the initial surplus is zero. Inspired by Qin and Pitts (2011), Seal’s formula will be used to construct a
plug-in estimator. Different from Qin and Pitts (2011), our estimator is based on Fourier inversion and
kernel density estimate method. Note that one appealing advantage of kernel smoothing is that it can
reduce the variance when an appropriate bandwidth is used. The reminder of this paper is organized as
follows: In Section 2, we illustrate how to construct the plug-in type estimator in detail. In Section 3, some
statistical properties of the estimator, such as the order of bias and variance, and asymptotic normality,
are given. In Section 4, we present some simulation results to show the finite sample performance of
the estimator. Some concluding remarks are given in Section 5. The technical proofs are given in the
Appendix.
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2 The estimator

Throughout this paper, we will use φ(t) to denote φ(0, t) for notational convenience. The proposed
estimator of φ(t) is based on Seal’s formula (see e.g. Seal (1978) and Gerber (1979)). Firstly, the density
of the aggregate claim process St =

∑Nt
j=1Xj is given by

fSt(y) = e−λt
∞∑
j=0

(λt)j

j!
f∗j(y), y ≥ 0,

where f∗0 = δ0 is the Dirac-Delta function at zero and f∗j is the j-fold convolution of f with itself for
j ≥ 1. Let

gSt(y) =

∞∑
j=1

(λt)j

j!
f∗j(y),

then
fSt(y) = e−λtδ0(y) + e−λtgSt(y).

Seal’s formula states that the finite time survival probability with zero initial surplus can be expressed
as

φ(t) =
1

ct

∫ ct

0

∫ x

0−
fSt(y)dydx = e−λt +

e−λt

ct

∫ ct

0

∫ x

0
gSt(y)dydx. (2.1)

For an integrable function v, we denote its Fourier transform by

ϕv(ω) =

∫
eiωxv(x)dx.

Here and after the domain of integration is the whole real line if it is not specified. If ϕv is integrable,
then Fourier inversion transform gives

v(x) =
1

2π

∫
e−iωxϕv(ω)dω.

By some standard properties of Fourier transform, we have

ϕgSt
(ω) =

∫
eiωygSt(y)dy = eλtϕf (ω) − 1.

By Fourier inversion transform, we have

gSt(y) =
1

2π

∫
e−iωy

(
eλtϕf (ω) − 1

)
dω, (2.2)

provide that |ϕf (ω)| is integrable. We will estimate the density gSt by replacing the characteristic function
ϕf by some estimator. Firstly, given n observations of the claim sizes X1, X2, . . . , Xn, we can estimate
the claim size density f by the following kernel estimator

f̂n(x) =
1

nhn

n∑
j=1

K

(
x−Xj

hn

)
,
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where K is a kernel function, and hn > 0 is a positive number, usually called bandwidth, such that
hn → 0 as n → ∞. With the understanding that hn is a function of the sample size n, h will be used
in this paper for notational convenience. For more details about kernel density estimate, we refer the
readers to Wand and Jones (1995). Next, we can calculate the Fourier transform of f̂n as follows,

ϕf̂n(ω) =

∫
eiωx

1

nh

n∑
j=1

K

(
x−Xj

h

)
dx = ϕemp(ω)ϕK(ωh),

where ϕemp(ω) =
1
n

∑n
j=1 e

iωXj is the empirical characteristic function. Finally, replacing ϕf in (2.2) by
ϕf̂n gives the following estimator of gSt(y),

ĝn,St(y) =
1

2π

∫
e−iωy

(
eλtϕemp(ω)ϕK(ωh) − 1

)
dω. (2.3)

Now we are ready to propose our estimator for the finite time survival probability. Replacing gSt(y)
in (2.1) by ĝn,St(y) and using Fubini’s theorem, we can obtain an estimator for φ(t) as follows,

φ̂n(t) = e−λt +
e−λt

ct

∫ ct

0

∫ x

0
ĝn,St(y)dydx (2.4)

= e−λt +
e−λt

2πct

∫ ∫ ct

0

∫ x

0
e−iωy

(
eλtϕemp(ω)ϕK(ωh) − 1

)
dydxdω

= e−λt +
e−λt

2πct

∫
e−iωct − 1 + iωct

(iω)2

(
eλtϕemp(ω)ϕK(ωh) − 1

)
dω. (2.5)

In (2.5), we can replace ϕemp(ω)ϕK(ωh) by ϕf (ω) to obtain

φ(t) = e−λt +
e−λt

2πct

∫
e−iωct − 1 + iωct

(iω)2

(
eλtϕf (ω) − 1

)
dω. (2.6)

It is easy to see that the integrals in (2.5) and (2.6) are both real-valued. Formulae (2.5) and (2.6)
are useful for studying the asymptotic properties of the estimator. For numerical calculation, we shall
use formulae (2.1) and (2.4) because can be apply Fast Fourier (Inversion) Transform to calculate the
integrands gSt(y) and ĝSt(y). For details, see Section 4.

3 Assumptions and asymptotic properties

To study the estimator of the finite time survival probability, we present some assumptions imposed on
the kernel K, bandwidth h and density f . For a function q, define µj(q) =

∫
xjq(x)dx, j = 0, 1, 2, · · · .

Also, we let R(q) =
∫
q(x)2dx. Throughout this paper all the limits are taken as n→ ∞.

Assumption K K is a probability kernel, symmetric about zero, 0 < µ2(K) < ∞, R(K) < ∞ and∫
|ϕK(ω)|dω <∞.

Assumption H
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(H1) h→ 0;

(H2) nh→ ∞.

Assumption F

(F1) f(x) ≡ 0 for x < 0, f is continuously differentiable in (0,∞), right-continuous at zero, and f ′′ exists
almost everywhere;

(F2)
∫
|f ′(x)|dx <∞,

∫
|f ′′(x)|dx <∞.

(F3)
∫
|ϕf (ω)|dω <∞.

Remark 1 The assumptions K and H are standard and widely used in the nonparametric kernel
estimate literature. The assumptions (F1) and (F2) are also not restrictive, and many popular densities in
ruin theory, such as exponential, combination of exponentials, gamma, Pareto, satisfy these assumptions.
Assumption (F3) seems to be restrictive because it excludes exponential density. However, (F3) is only
a technical assumption for the study of the asymptotic properties of the estimator. As we will see in the
simulation studies, our estimator also behaves well when the claim size density is exponential.

In this paper, we prefer to measure the performance of the estimator by the mean squared error
(MSE),

MSE(φ̂n(t)) = E(φ̂n(t)− φ(t))2.

One appealing feature of MSE is the following bias-variance decomposition

MSE(φ̂n(t)) = [Bias(φ̂n(t))]
2 +Var(φ̂n(t)),

where Bias(φ̂n(t)) = Eφ̂n(t)− φ(t).

Proposition 1 Suppose that assumptions K, H and F hold. Then

Bias(φ̂n(t)) =

{
O((nh)−1 + h2), f(0) = 0,
O((nh)−1 + h), f(0) > 0.

(3.1)

From Proposition 1 we know that the order of the bias depends on the continuity of f at zero: the
bias will converge to zero more quickly if the claim size density is continuous at zero. Also, from the
proof of Proposition 1 we know that the order h2 can not be improved even if the higher order derivatives
of the claim size density at zero are smooth. Different from the kernel density estimate, there exists an
additional term (nh)−1 in the order of Bias(φ̂n(t)), which reflects the difficulty in estimating the finite
time survival probability.

Remark 2 By Proposition 1 we know that the optimal bandwidth that minimizes the order of bias is
given by

hbopt =

{
n−

1
3 , f(0) = 0,

n−
1
2 , f(0) > 0.

(3.2)

5



Applying the optimal bandwidth given by (3.2), we have

Bias(φ̂n(t)) =

{
O(n−

2
3 ), f(0) = 0,

O(n−
1
2 ), f(0) > 0.

(3.3)

It follows from (3.3) that the estimator depends on the smoothness of the claim size density, i.e. it would
perform better if the density is continuous at zero.

Proposition 2 Suppose that Assumptions K, H, F hold. Then

Var(φ̂n(t)) =


O(n−1 + (n2h)−1 + h4), if

∫
|ωϕf (ω)|4dω <∞,

O(n−1 + (n2h)−1 + h3), if
∫
|ω|3|ϕf (ω)|4dω <∞,

O(n−1 + (n2h)−1 + h2), if
∫
|ω|2|ϕf (ω)|4dω <∞,

O(n−1 + (n2h)−1 + h), if
∫
|ω||ϕf (ω)|4dω <∞.

In particular, if one of the following additional conditions hold:

(1)
∫
|ωϕf (ω)|4dω <∞, nh4 → 0;

(2)
∫
|ω|3|ϕf (ω)|4dω <∞, nh3 → 0;

(3)
∫
|ω|2|ϕf (ω)|4dω <∞, nh2 → 0,

then

Var(φ̂n(t)) =
λ2e−2λt

nc2
(B0(t) +B1(t) + 2B2(t)) + o(n−1),

where Bi(t), i = 0, 1, 2, are given in Appendix A.

Proposition 2 shows that the order of Var(φ̂n(t)) depends on the smoothness of the characteristic
function ϕf (ω). Note that if there exists some C, δ, ω0 > 0 such that for all |ω| > ω0,

|ϕf (ω)|4|ω|α ≤ C

1 + |ω|1+δ
, α = 1, 2, 3, 4,

and assumptions K , H , F , hold, then

Var(φ̂n(t)) = O(n−1 + (n2h)−1 + hα). (3.4)

From Proposition 2 we also know that the optimal bandwidth that minimizes the order O((n2h)−1+hα)
is given by

bvopt = n−
2

1+α , if

∫
|ω|α|ϕf (ω)|4dω <∞, (3.5)

which is different from hbopt given by (3.2).

The following theorem and its corollary show the asymptotic normality of the estimator.

6



Theorem 1 Suppose that assumptions K, H, F and one of the following assumptions hold:

(1)
∫
|ωϕf (ω)|4dω <∞, nh4 → 0;

(2)
∫
|ω|3|ϕf (ω)|4dω <∞, nh3 → 0;

(3)
∫
|ω|2|ϕf (ω)|4dω <∞, nh2 → 0.

Then
φ̂n(t)− Eφ̂n(t)√

Var(φ̂n(t))

D→ N(0, 1),

where N(0, 1) is the standard normal distribution.

Corollary 1 Suppose that assumptions K, H, F and the following assumptions hold:

f(0) = 0,

∫
|ωϕf (ω)|4dω <∞, nh4 → 0, nh2 → ∞.

Then
φ̂n(t)− φ(t)√
Var(φ̂n(t))

D→ N(0, 1).

Remark 3 We can use Corollary 1 to obtain the confidence interval and make other statistical inference
for φ(t). It is easy to see that the gamma density with shape parameter strictly larger tan 1.25 satisfies
the conditions f(0) = 0 and

∫
|ωϕf (ω)|4dω <∞.

4 Simulation studies

In this section we present some simulation studies to illustrate the finite sample performance of the
estimator. All the results are based on formulas (2.1) and (2.4).

Firstly, we need to calculate the functions gSt and ĝSt . To this end, we use Fast Fourier (Inversion)
Transform. For gSt we have

gSt(y) =
1

2π

∫
e−iωy

(
eλtϕf (ω) − 1

)
dω

=
1

2π

∫ ∞

0
e−iωy

(
eλtϕf (ω) − 1

)
dω +

1

2π

∫ 0

−∞
e−iωy

(
eλtϕf (ω) − 1

)
dω

:= gt,1(y) + gt,2(y).

For a small d > 0, set ωj = (j − 1)d, j = 1, 2, . . .. Then

gt,1(y) ≈
N∑
j=1

e−idy(j−1)d
(
eλtϕf ((j−1)d) − 1

)
2π

,
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where N is taken to be some power of 2. In particular, for yk = 2π(k−1)/(dN), k = 1, 2, . . . , N , we have

gt,1(yk) ≈
N∑
j=1

exp

(
−2πi

N
(j − 1)(k − 1)

)
d
(
eλtϕf ((j−1)d) − 1

)
2π

.

Then we can use Fast Fourier Transform to calculate gt,1(yk). For gt,2 we have

gt,2(y) =
1

2π

∫ ∞

0
eiωy

(
eλtϕf (−ω) − 1

)
dω

≈ 1

N

N∑
k=1

eidy(k−1)Nd

2π

(
eλtϕf (−(k−1)d) − 1

)
.

In particular, for yj = 2π(j − 1)/(dN), j = 1, 2, . . . , N , we have

gt,2(yj) ≈
1

N

N∑
k=1

exp

(
2πi

N
(j − 1)(k − 1)

)
Nd

2π

(
eλtϕf (−(k−1)d) − 1

)
.

Then we can use Fast Fourier Inversion Transform to calculate gt,2(yj). By exactly the same procedure,
we can calculate ĝSt .

We use the Gauss kernel that is given by

K(x) =
1√
2π
e−

x2

2 , ϕK(ω) = e−
ω2

2 .

For the bandwidth, we use hbopt that is given by (3.2). Note that φ(t) is monotone, then it’s mode is
very simple. This will weaken the importance of the selection of bandwidth. The following simulation
results show that the estimator performs quite well using our bandwidth selection.

As for the claim size density, we consider the following three examples.
Example 1. Exp(1) density with

f(x) = e−x, x ≥ 0.

Example 2. Mixture of exponentials density with

f(x) =
1

3
e−x +

4

3
e−2x, x ≥ 0.

Example 3. Gamma(6, 1) density with

f(x) =
1

120
x5e−x, x ≥ 0.

We set the Poisson intensity λ = 1. The premium rate is chosen such that the net profit condition
c > λEX holds. For the above two examples, we set c = 1.5, 1, 6.5, respectively. We calculate the
approximation of the true finite time survival probability and its estimators in the time interval [0.05, 6]
by Fast Fourier (Inversion) Transform. We set d = 0.01, N = 216. Results are given in Figures 1, 2 and
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3. In Figures 1(a), 2(a) and 3(a), we have plotted 20 estimated curves on the same figure to show the
weak variability of the estimator, where the sample is 300. In Figures 1(b), 2(b) and 3(b), we plotted the
bootstrap confidence bands and bootstrap means. This procedure is taken as follows, Firstly, we simulate
300 variables from exponential, mixture of exponentials and Gamma distributions; secondly, we resample
600 times from the original sample, then for fixed t, the we compute 600 estimated values φ̂n(t); thirdly,
we obtain bootstrap mean and the percentile bootstrap confidence interval from the 600 estimated values,
where the confidence level is 0.95. Compared with exponential and mixture of exponentials densities, the
survival probability is easier to estimate for Gamma(6.1) density. This is due to the fact that the Fourier
transform of Gamma(6,1) density has a faster convergence rate as ω tends to ∞.
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(a)
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0.7
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0.9

1

t

bootstrap confidence band
bootstrap confidence band
bootstrap mean
FFT approximation to the true value

(b)

Figure 1: (a) Estimation of φ(t) for exponential density, where the blue curve is the FFT approximation
to the true value, the red curves are 20 estimate curves. (b) Bootstrap confidence band, mean, and the
FFT approximation to the true value for exponential density.

5 Concluding remarks

In this paper, we have proposed a nonparametric estimator for the finite time survival probability in
the classical risk model with zero initial surplus. The construction of the estimator is based on Seal’s
formula, Fourier inversion and kernel density estimate method. The order of the bias and variance are
derived under some mild assumptions. We also discussed the asymptotic normality of the estimator.

All the results obtained in this paper are based on the assumption that the claim size density function
is unknown. The observations of the individual claim sizes are used to construct the kernel density
estimator. We can also obtain a consistent estimator when the Poisson intensity λ is also unknown.
Assume that we can observe the number of claims at some lattice time points, i.e. for d > 0 a sample
{Nd, N2d, N3d, . . . , } can be observed. Then an unbiased estimator for λ is

λ̂n =
Nnd

nd
.

Without loss of generality, we assume that d = 1. We can replace λ by λ̂n in (2.4) to obtain the following
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Figure 2: (a)Estimation of φ(t) for mixture of exponentials density, where the blue curve is the FFT
approximation to the true value, the red curves are 20 estimate curves. (b) Bootstrap confidence band,
mean, and the FFT approximation to the true value for mixture of exponentials density.

estimator,

φ̃n(t) = e−λ̂nt +
e−λ̂nt

2πct

∫
e−iωct − 1 + iωct

(iω)2
(eλ̂ntϕemp(ω)ϕK(ωh) − 1)dω.

Then by this and (2.6) we have

φ̃n(t)− φ(t) = (e−λ̂nt − e−λt)

(
1− 1

2πct

∫
e−iωct − 1 + iωct

(iω)2
dω

)
+ φ̂n(t)− φ(t)

+
1

2πct

∫
e−iωct − 1 + iωct

(iω)2

(
e−λ̂nt(1−ϕemp(ω)ϕK(ωh)) − e−λt(1−ϕemp(ω)ϕK(ωh))

)
dω.

It is easy to see from the above formula that φ̃n(t) is a consistent estimator under assumptions K,H,F.
However, more tedious arguments are called for analyzing the convergence rate.
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Appendix

A Proofs of the results in Section 3

By (2.5) and (2.6), we have

φ̂n(t)− φ(t) =
e−λt

2πct

∫
e−iωct − 1 + iωct

(iω)2

(
eλtϕemp(ω)ϕK(ωh) − eλtϕf (ω)

)
dω

=
e−λt

2πct

∫
e−iωct − 1 + iωct

(iω)2
eλtϕf (ω)

(
eλt(ϕemp(ω)ϕK(ωh)−ϕf (ω)) − 1

)
dω

=
λe−λt

2πc

∫
e−iωct − 1 + iωct

(iω)2
eλtϕf (ω)(ϕemp(ω)ϕK(ωh)− ϕf (ω))dω

+
e−λt

2πct

∫
e−iωct − 1 + iωct

(iω)2
eλtϕf (ω)Ln(ω)dω

= I + II, (A.1)

where
Ln(ω) = eλt(ϕemp(ω)ϕK(ωh)−ϕf (ω)) − 1− λt(ϕemp(ω)ϕK(ωh)− ϕf (ω)).

In the sequel, we will use C to denote a finite generic constant that is possibly dependent on the
parameters c, λ, t, and can take different values at different steps. In order to study the order of the
bias and variance, we need the following Taylor’s expansions which are special cases of Lemma 4.3 and
Lemma 4.4 in van Eeden (1985).

Lemma 1 Suppose that assumption F holds. If x > 0 and x− uh < 0, then

f(x− uh)− f(x) + uhf ′(x)− h2
∫ u

0
(u− s)f ′′(x− sh)ds = −f ′(0+)(x− uh)− f(0).

If x < 0 and x− uh > 0, then

f(x− uh)− f(x) + uhf ′(x)− h2
∫ u

0
(u− s)f ′′(x− sh)ds = f ′(0+)(x− uh) + f(0).

12



If x(x− uh) > 0, then

f(x− uh)− f(x) + uhf ′(x)− h2
∫ u

0
(u− s)f ′′(x− sh)ds = 0.

Lemma 2 Suppose that assumptions K, F and (H1) hold. Then

E
∫ ct

0

∫ x

0
(f̂n(y)− f(y))dydx =

{
O(h2), f(0) = 0,
O(h), f(0) > 0.

Proof. Note that f(x) ≡ 0 for x < 0. Using the Taylor’s expansions given in Lemma 1, we have

E
∫ ct

0

∫ x

0
(f̂n(y)− f(y))dydx

=

∫ ct

0

∫ x

0

∫
K(u)[f(y − uh)− f(y)]dudydx

= h2
∫ ct

0

∫ x

0

∫ ∫ u

0
K(u)(u− s)f ′′(y − sh)dsdudydx

−
∫ ct

0

∫ x

0

∫
1(y−uh<0)K(u)

(
f ′(0+)(y − uh) + f(0)

)
dudydx. (A.2)

By Fubini’s theorem,∣∣∣∣∫ ct

0

∫ x

0

∫ ∫ u

0
K(u)(u− s)f ′′(y − sh)dsdudydx

∣∣∣∣
=

∣∣∣∣∫ ∫ u

0

∫ ct

0

∫ x

0
K(u)(u− s)f ′′(y − sh)dydxdsdu

∣∣∣∣ ≤ 1

2
ctµ2(K)

∫
|f ′′(y)|dy. (A.3)

By Fubini’s theorem again we have∫ ct

0

∫ x

0

∫
1(y<uh)K(u)(y − uh)dudydx

=

∫ ∞

0

∫ ct

0

∫ x∧uh

0
K(u)(y − uh)dydxdu

=

∫ ct
h

0
K(u)

(∫ uh

0

∫ x

0
(y − uh)dydx+

∫ ct

uh

∫ uh

0
(y − uh)dydx

)
du

+

∫ ∞

ct
h

K(u)

∫ ct

0

∫ x

0
(y − uh)dydxdu

=

∫ ct
h

0
K(u)

(
1

6
u3h3 − 1

2
ctu2h2

)
du+

∫ ∞

ct
h

K(u)

(
1

6
c3t3 − 1

2
c2t2uh

)
du.

13



Then using the following results∫ ct
h

0
K(u)u2h2du < h2µ2(K),∫ ct

h

0
K(u)u3h3du < h2ct

∫ ct
h

0
K(u)u2du < h2ctµ2(K),∫ ∞

ct
h

K(u)du <
h2

c2t2

∫ ∞

ct
h

K(u)u2du < h2
µ2(K)

c2t2
,∫ ∞

ct
h

K(u)uhdu <
h2

ct

∫ ∞

ct
h

K(u)u2du < h2
µ2(K)

ct
,

we obtain ∫ ct

0

∫ x

0

∫
1(y<uh)K(u)(y − uh)dudydx = O(h2). (A.4)

Similarly, we can show that ∫ ct

0

∫ x

0

∫
1(y<uh)K(u)dudydx = O(h). (A.5)

By (A.2-A.5), we complete the proof.

Lemma 3 Suppose that assumptions K, F and (H1) hold. Then for m = 1, 2, · · · ,

E
∫ ct

0

∫ x

0
f∗m ∗ (f̂n − f)(y)dydx =

{
O(h2), f(0) = 0,
O(h), f(0) > 0.

Proof. Similar to Lemma 2, we can use the Taylor’s expansions given in Lemma 1 to obtain

E
∫ ct

0

∫ x

0
f∗m ∗ (f̂n − f)(y)dydx

=

∫ ct

0

∫ x

0

∫ ∫
f∗m(y − z)K(u) (f(z − uh)− f(z)) dudzdydx

= h2
∫ ct

0

∫ x

0

∫ ∫ ∫ u

0
f∗m(y − z)K(u)(u− s)f ′′(z − sh)dsdudzdydx

+

∫ ct

0

∫ x

0

∫ ∫
1(z<0,z−uh>0)f

∗m(y − z)K(u)
[
f ′(0+)(z − uh) + f(0)

]
dudzdydx

−
∫ ct

0

∫ x

0

∫ ∫
1(z>0,z−uh<0)f

∗m(y − z)K(u)
[
f ′(0+)(z − uh) + f(0)

]
dudzdydx.

By Fubini’s theorem, we have∣∣∣∣∫ ct

0

∫ x

0

∫ ∫ ∫ u

0
f∗m(y − z)K(u)(u− s)f ′′(z − sh)dsdudzdydx

∣∣∣∣
=

∣∣∣∣∫ ∫ u

0

∫ ∫ ct

0

∫ x

0
f∗m(y − z)K(u)(u− s)f ′′(z − sh)dydxdzdsdu

∣∣∣∣
≤ 1

2
ctµ2(K)

∫
|f ′′(x)|dx.
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Since the density f∗m is bounded, then∫ ct

0

∫ x

0

∫ ∫
1(z<0,z−uh>0)f

∗m(y − z)K(u)(z − uh)dudzdydx

≤ C

∫ ct

0

∫ x

0

∫ 0

−∞

∫ 0

uh
K(u)(z − uh)dzdudydx

=
C

8
c2t2µ2(K)h2.

Similarly, we can obtain∫ ct

0

∫ x

0

∫ ∫
1(z>0,z−uh<0)f

∗m(y − z)K(u)(uh− z)dudzdydx = O(h2),

∫ ct

0

∫ x

0

∫ ∫
1(z<0,z−uh>0)f

∗m(y − z)K(u)dudzdydx = O(h),

and ∫ ct

0

∫ x

0

∫ ∫
1(z>0,z−uh<0)f

∗m(y − z)K(u)dudzdydx = O(h).

Combining above results completes the proof.

The following lemma is due to Theorem 3.1 in van Eeden (1985).

Lemma 4 Suppose that assumptions K, F and H hold. Then the mean integrated squared error (MISE)
of f̂n is given by

MISE(f̂n) =


O((nh)−1 + h4), f(0) = f ′(0+) = 0,
O((nh)−1 + h3), f(0) = 0, f ′(0+) ̸= 0,
O((nh)−1 + h), f(0) > 0.

Proof of Proposition 1. By (A.1), we have

Bias(φ̂n(t)) = EI + EII.

From the derivation procedure of (2.5), we have

I =
λe−λt

2πc

∫ ∫ ct

0

∫ x

0
e−iωyeλtϕf (ω)(ϕemp(ω)ϕK(ω)− ϕf (ω))dydxdω

=
λe−λt

c

∞∑
m=0

(λt)m

m!

∫ ct

0

∫ x

0
f∗m ∗ (f̂n − f)(y)dydx.

Thus, by Lemma 2 and Lemma 3 we have

EI =
{
O(h2), f(0) = 0,
O(h), f(0) > 0.

(A.6)
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Now we consider the order of EII. Since |ϕemp(ω)ϕK(ωh) − ϕf (ω)| < 2, it is easy to see that there
exists some constant C such that the following inequality holds uniformly in ω,

|Ln(ω)| ≤ C|ϕemp(ω)ϕK(ωh)− ϕf (ω)|2, (A.7)

which together with the following inequalities∣∣e−iωct − 1 + iωct
∣∣ ≤ 1

2
|iωct|2 , |eλtϕf (ω)| ≤ eλt, (A.8)

gives

|EII| ≤ C

2π
E
∫

|ϕemp(ω)ϕK(ωh)− ϕf (ω)|2 dω

= C · E
∫

(f̂n(x)− f(x))2dx

= C ·MISE(f̂n).

where we have used Parseval’s identity in the second step. Thus, by Lemma 4 we obtain

EII =


O((nh)−1 + h4), f(0) = f ′(0+) = 0,
O((nh)−1 + h3), f(0) = 0, f ′(0+) ̸= 0,
O((nh)−1 + h), f(0) > 0.

(A.9)

Finally, combining (A.6) and (A.9) completes the proof. �

In order to find the order of Var(φ̂n(t)), we need two lemmas.

Lemma 5 Suppose that assumptions K, F and (H1) hold. Then

Var

(∫ ct

0

∫ x

0
f̂n(y)dydx

)
=

1

n
B0(t) + o(n−1), (A.10)

Var

(∫ ct

0

∫ x

0
gSt ∗ f̂n(y)dydx

)
=

1

n
B1(t) + o(n−1), (A.11)

Cov

(∫ ct

0

∫ x

0
f̂n(y)dydx,

∫ ct

0

∫ x

0
gSt ∗ f̂n(y)dydx

)
=

1

n
B2(t) + o(n−1), (A.12)

where

B0(t) =

∫ ct

0

∫ ct

0

∫ x1∧x2

0
f(y)dydx2dx1 −

(∫ ct

0

∫ x

0
f(y)dydx

)2

,

B1(t) =

∫ ct

0

∫ ct

0

∫ ∞

0

∫ x1

0

∫ x2

0
gSt(y1 − z)gSt(y2 − z)f(z)1(y1>z,y2>z)dy2dy1dzdx2dx1

−
(∫ ct

0

∫ x

0
gSt ∗ f(y)dydx

)2

,

B2(t) =

∫ ct

0

∫ ct

0

∫ x1

0

∫ x2

0
gSt(y2 − y1)f(y1)1(y2>y1)dy2dy1dx2dx1

−
(∫ ct

0

∫ x

0
f(y)dydx

)(∫ ct

0

∫ x

0
gSt ∗ f(y)dydx

)
.
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Proof. We only prove (A.12) since (A.10) and (A.11) can be obtained in a similar way. Let Kh(·) =
1
hK(·/h). By Lemma 2 and Lemma 3, we know that

E
∫ ct

0

∫ x

0
f̂n(y)dydx =

∫ ct

0

∫ x

0
f(y)dydx+ o(1),

E
∫ ct

0

∫ x

0
gSt ∗ f̂n(y)dydx =

∫ ct

0

∫ x

0
gSt ∗ f(y)dydx+ o(1).

Straightforward calculation gives

Cov

(∫ ct

0

∫ x

0
f̂n(y)dydx,

∫ ct

0

∫ x

0
gSt ∗ f̂n(y)dydx

)
=

1

n
E
[∫ ct

0

∫ x1

0
Kh(y1 −X)dy1dx1

∫ ct

0

∫ x2

0

∫
gSt(y2 − z)Kh(z −X)dzdy2dx2

]
− 1

n

(∫ ct

0

∫ x

0
f(y)dydx

)(∫ ct

0

∫ x

0
gSt ∗ f(y)dydx

)
+ o(n−1).

With the understanding that f(x) = gSt(x) = 0 for x < 0, we can calculate the expectation in the above
equation as follows,

E
∫ ct

0

∫ x1

0

∫ ct

0

∫ x2

0

∫
Kh(y1 −X)Kh(z −X)gSt(y2 − z)dzdy2dx2dy1dx1

=

∫ ∫ ct

0

∫ x1

0

∫ ct

0

∫ x2

0

∫
Kh (y1 − s)Kh (z − s) gSt(y2 − z)f(s)dzdy2dx2dy1dx1ds

=

∫ ∫ ct

0

∫ x1

0

∫ ct

0

∫ x2

0

∫
K(u1)Kh (z − y1 + u1h) gSt(y2 − z)f(y1 − u1h)dzdy2dx2dy1dx1du1

=

∫ ∫ ct

0

∫ x1

0

∫ ct

0

∫ x2

0

∫
K(u1)K(u2)gSt(y2 − y1 − (u2 − u1)h)f(y1 − u1h)du2dy2dx2dy1dx1du1

=

∫ ∫ ∫ ct

0

∫ x1

0

∫ ct

0

∫ x2

0

∫
K(u1)K(u2)gSt(y2 − y1 − (u2 − u1)h)f(y1 − u1h)dy2dx2dy1dx1du2du1

=

∫ ct

0

∫ ct

0

∫ x1

0

∫ x2

0
gSt(y2 − y1)f(y1)dy2dy1dx2dx1 + o(1),

where the second and third steps follow from changing variables u1 = y1−s
h and u2 = z−y1

h + u1, and
the last two steps follow by using Fubini’s theorem, dominated convergence theorem and the identity∫ ∫

K(u1)K(u2)du1du2 = 1. This completes the proof.

Lemma 6 Suppose that assumptions K, H, F hold. Then

Var

(∫
e−iωct − 1 + iωct

(iω)2
eλtϕf (ω)Ln(ω)dω

)

=


O((n2h)−1 + h4), if

∫
|ωϕf (ω)|4dω <∞,

O((n2h)−1 + h3), if
∫
|ω|3|ϕf (ω)|4dω <∞,

O((n2h)−1 + h2), if
∫
|ω|2|ϕf (ω)|4dω <∞,

O((n2h)−1 + h), if
∫
|ω||ϕf (ω)|4dω <∞.

(A.13)
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Proof. According to the inequalities (A.7), (A.8) and Cauchy-Schwarz inequality, we have

Var

(∫
e−iωct − 1 + iωct

(iω)2
eλtϕf (ω)Ln(ω)dω

)
≤ E

∣∣∣∣∫ e−iωct − 1 + iωct

(iω)2
eλtϕf (ω)Ln(ω)dω

∣∣∣∣2
≤ C · E

(∫ ∣∣∣∣e−iωct − 1 + iωct

(iω)2
(ϕemp(ω)ϕK(ωh)− ϕf (ω))

2

∣∣∣∣ dω)2

≤ C

(∫ ∣∣∣∣e−iωct − 1 + iωct

(iω)2

∣∣∣∣2 dω
)
E
∫

|ϕemp(ω)ϕK(ωh)− ϕf (ω)|4 dω,

≤ C · E
∫

|ϕemp(ω)ϕK(ωh)− ϕf (ω)|4 dω, (A.14)

where the last step follows from the fact that∫ ∣∣∣∣e−iωct − 1 + iωct

(iω)2

∣∣∣∣2 dω <∞.

Using Cr-inequality, we have

E
∫

|ϕemp(ω)ϕK(ωh)− ϕf (ω)|4 dω

= E
∫

|ϕemp(ω)ϕK(ωh)− ϕf (ω)ϕK(ωh) + ϕf (ω)ϕK(ωh)− ϕf (ω)|4 dω

≤ C

∫
E |ϕemp(ω)− ϕf (ω)|4 |ϕK(ωh)|4dω + C

∫
|ϕK(ωh)− 1|4|ϕf (ω)|4dω. (A.15)

By Rosenthal’s inequality (see Theorem 2.12 in Hall and Heyde (1980)) , it is not hard to check that
there exists some constant C such that

E|ϕemp(ω)− ϕf (ω)|4 ≤
C

n2
,

which leads to ∫
E |ϕemp(ω)− ϕf (ω)|4 |ϕK(ωh)|4dω ≤ C

n2h

∫
|ϕK(ω)|4dω ≤ C

n2h
. (A.16)

It follows from the inequality |ϕK(ωh)− 1| ≤ 2 and

|ϕK(ωh)− 1| ≤
∫

|eiωhx − 1|K(x)dx ≤ ωh

∫
|x|K(x)dx

that

∫
|ϕK(ωh)− 1|4|ϕf (ω)|4dω ≤


Ch4, if

∫
|ωϕf (ω)|4dω <∞,

Ch3, if
∫
|ω|3|ϕf (ω)|4dω <∞,

Ch2, if
∫
|ω|2|ϕf (ω)|4dω <∞,

Ch, if
∫
|ω||ϕf (ω)|4dω <∞.

(A.17)

By (A.14)-(A.17) we obtain the desired results.
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Proof of Proposition 2. By straightforward calculation and application of Cauchy-Schwarz inequality,
we have

Var(φ̂n(t)) = Var(φ̂n(t)− φ(t))

= Var(I + II)

= Var(I) + Var(II) + 2Cov(I, II)

≤ Var(I) + Var(II) + 2
√

Var(I)Var(II)

≤ 2Var(I) + 2Var(II).

It follows from Lemma 5 that

Var(I) =
λ2e−2λt

nc2
(B0(t) +B1(t) + 2B2(t)) + o(n−1).

By Lemma 6 we know that the order of Var(II) is given by (A.13). From these we can easily obtain the
results. �

Proof of Theorem 1 Firstly, it follows from (A.1) that

φ̂n(t)− Eφ̂n(t)√
Var(φ̂n(t))

=
I− EI + II− EII√

Var(φ̂n(t))
.

It follows from Chebyshev’s inequality, Lemma 5 and Lemma 6 that for any ϵ > 0, we have

P

(∣∣∣∣∣ II− EII√
Var(φ̂n(t))

∣∣∣∣∣ > ϵ

)
≤ Var(II)

ϵ2Var(φ̂n(t))
→ 0.

Then II−EII√
Var(φ̂n(t))

converges to zero in probability, and consequently, it can be neglected by Slutsky’s

theorem. Since Var(φ̂n(t)) ∼ Var(I) by Proposition 2, it suffices to show that

I− EI√
Var(I)

D→ N(0, 1).

Note that

I =
1

n

λe−λt

c

n∑
j=1

Vn,j , (A.18)

where

Vn,j =
1

2π

∫
e−iωct − 1 + iωct

(iω)2
eλtϕf (ω)(eiωXjϕK(ωh)− ϕf (ω))dω.

is a bounded random variable. The asymptotic normality follows by directly checking the sufficient con-
ditions for central limit theorem. This completes the proof. �

Proof of Corollary 1. We have

φ̂n(t)− φ(t)√
Var(φ̂n(t))

=
φ̂n(t)− Eφ̂n(t) + Bias(φ̂n(t))√

Var(φ̂n(t))

By Theorem 1, it suffices to show that Bias(φ̂n(t))/
√

Var(φ̂n(t)) converges to zero, or equivalently,√
nBias(φ̂n(t)) converges to zero. However, this is obvious thanks to Proposition 1. This completes the

proof. �
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