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Abstract

This note revisits the problem in Meng et al. [15] [H. Meng, T.K. Siu, H. Yang,
Optimal insurance risk control with multiple reinsurers. J. Comput. Appl. Math.
306 (2016), 40-52] where an optimal insurance risk control problem was discussed
in a diffusion approximation model with multiple reinsurers adopting variance pre-
mium principles. It was shown in Meng et al. [15] that under a certain technical
condition, a combined proportional reinsurance treaty is an optimal form in a class of
plausible reinsurance treaties. From both theoretical and practical perspectives, an
interesting question may be whether the combined proportional reinsurance treaty
is still an optimal form in a quite considerably larger class of plausible reinsurance
treaties. This note addresses this question and shows that a combined proportional
reinsurance treaty is still an optimal form.
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1 Introduction

Since the classical work by Borch [4] and Arrow [1], many aspects of generalizations
have been studied in the literature. One direction of these generalizations is to consider
multiple (re)-insurance parties, see, for example, Asimit et al. [2], Chi and Meng [6], Cong
and Tan [7] and Boonen et al. [3]. For some related discussions and relevant literature,
see Cheung and Lo [5] and Boonen et al. [3]. Some recent works on generalizations
to dynamic modeling settings and multiple re-insurers include, for example, Meng [12],
Meng et al. [14] and Meng et al. [15]. See Meng et al. [14] for some related discussions
and relevant literature.

The purpose of this paper is to further generalize the recent work of Meng et al. [15] by
enlarging the space of reinsurance treaties with a view to presenting a scientific inquiry on
optimal reinsurance policies in a more general and flexible modeling environment. Using
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the Lagrangian function method, we establish the optimality result that the combined
proportional reinsurance treaty is still an optimal form in a quite considerably larger
class of plausible reinsurance treaties than the one considered in Meng et al. [15]. The
organization of this paper is as follows. The next section presents the model formulation.
The main result, namely the optimality result, is presented in Section 3.

2 Model formulation

In Meng et al. [15], we discussed an optimal risk control problem in a diffusion approxi-
mation model with the multiple reinsurers adopting variance premium principles. That
is, the surplus process of the insurance company without dividends satisfies

dX(t) = U(QO(t7Z)7gl(t7Z)7"'7gm(taz))dt+0(90(t7z))d‘8(t>7 (21)

where {B(t),t > 0} is a standard Brownian motion on a given complete, filtered proba-
bility space (Q, F,{Ft}+>0,P),

U(QO(tvz)agl(t7Z)7”'7gm(taz)) = A QOUZ_ZHjE[(gj(t7Z))2] ) (22)

and

0(90(t7 Z)) = )‘E[(QO(tZ))QL (23)

where E[-] is the expectation taken under P; Z is a nonnegative random variable; 02 =
E[Z% and \,0; > 0,7 =0,1,--- ,m; the expectations in (2.2) and (2.3) are taken only for
the random variable Z under the measure P. In Meng et al.[15], a reinsurance strategy
(90,91, -+ ,gm) is called an admissible policy if it satisfies the following four conditions:

(1) for each z € R* and each j =0,1,--- ,m, {g;(t,2);t > 0} is {F; }+>o-predictable;
(2) for each (t,w) € [0,00) x Q, g;(t, z,w) is Borel-measurable in z;

(3) gj(t.2) >0, 377 g;(t, 2) = z;

(4) There is at least a pair (k,1) such that
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where 1 <k, Il <m , k#I.

We write A;_4 for the space of all reinsurance strategies satisfying the above four
conditions. Meng et al. [15] showed that within the class of reinsurance policies that
satisfy Aj_4, a combined proportional reinsurance treaty is an optimal form. Indeed,
the condition (4) is purely technical and was used in Meng et al. [15] to prove the
optimality result of reinsurance strategy. As illustrated in Example 2 in Section 2 of
Meng et al. [15], this purely technical condition rules out some reinsurance strategies.
From both theoretical and practical perspectives, an interesting question may be what
is an optimal form of reinsurance strategies if this purely technical condition is relaxed.
From the practical perspective, the relaxation of the purely technical condition would



enhance the applicability and practicality of the theoretical results in Meng et al. [15].
From the theoretical point of view, the relaxation of the purely technical condition would
strengthen the universality of the optimal form of reinsurance strategies as a combined
proportional reinsurance treaty by considering a (possibly) considerably larger space of
reinsurance strategies. We shall discuss this interesting problem in this note and show
that a combined proportional reinsurance strategy is still an optimal form even when the
condition (4) is dropped.

3 Optimal reinsurance form

This section presents the main result of this note. The key mathematical tool used to
establish the optimality result is the Lagrangian method. Note that the Lagrangian
method was used in Meng et al. [15], Section 4, to derive an explicit solution to the op-
timal dividend problem within the class of combined proportional reinsurance strategies.
Indeed, a considerable amount of effort has been given to discussing optimal forms of
reinsurance treaties in continuous-time insurance risk models. Some examples of these
works are Meng and Zhang [8], Meng and Siu [9], [10], [11], Meng [12], and Meng et
al. [13], [14], among others. For interested audience, please see Meng et al. [15] and
the relevant references therein for related discussions. Here we use A;_3 for denoting
the space of all reinsurance strategies only satisfying the conditions (1)-(3) in section 1.
In this section, we shall show that in the wider class A;_3 of reinsurance strategies, a
combined proportional reinsurance treaty is still an optimal form.

Firstly, for any fixed reals z > 0,y > 0, we adopt the Lagrangian function method to
construct the following function:

fWosy1s-+ sym) = —Z%yj h + > i T Zyg -z, (31
=1 6; 'y j=0
where (yanb e 7ym) € §Rm+1'
It can be seen that (3.1) can be rewritten as:
m
Yo, Y1, s Ym) = — Wi —9i(7,2))" =7 (Yo — Yo7, 2
i ) 0 (7,2))* = (v,2))?
j=1
222 - 9 9
—ﬁJFZ@j@j(%Z)) +7(@0(r,2)7  (32)
j=10; " v j=1
where (gO(’% z)a’gl(’% Z), e aym(’% Z)) is
1
vo(v,2) = ﬁ% (3.3)
2j=18; T 5
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Obviously, (50(7, 2), 41(7,2), - - Um(7, 2)) is the maximum point of f(yo, y1,- -+, Ym)

over all points (Yo, Y1, - ,¥m) € R™T! and it satisfies
m
> g1z = 2 (3.5)
§=0



In particular, for each y; > 0 satisfying Z;n:o y; = %, we have

f(gﬂ(’% 2)7331(77 Z)7 U 7@771(’7’ Z)) > f(??o,?)h T 7@771)’ (36)
that is
—> 053, 2)” = (@1, 2)* = = Y 0;; — Vi (3.7)
j=1 j=1

Similarly, it can be shown that (g1(z), -, ¥m(2)) is the maximum point of fo(y1, -, Ym)

over all points (y1, - ,ym) € R™ and it satisfies the condition that
m
> uix) = = (3:8)
7j=1
where
folyr, -+ sym) = —Zejyjz'ﬁLW dyi—z], (3.9)
j=1 J=10; \j=1
and
1
_ 0; .
yi(z) = mijlz, j=1--,m. (3.10)
2li=17;

fo(gl(z)’." 7@7’71(2)) > fo(glf" 7gm)7 (311)
that is
=D 0@i(2)° = = > 0507 (3.12)
j=1 j=1

We now put z as the nonnegative random variable Z and fix a reinsurance strategy
{9;(¢, 2)}] € Ar—s .
Noting E[(go(t, Z))?] € [0,0?], three cases are considered: E[(go(t, Z))?] € (0,0?),
]

E[(go(t, Z))?] = 0 or E[(go(t, Z))?] = 0. The last two cases are degenerate cases.
When E[(§o(t, Z))?] € (0,0?%) and noting
1 2
El(50(v, 2))%] = <m711> o, (3.13)
D A
we can choose a predictable process {7} such that
E[(50(%, 2))*] = E[(go(t, Z))?]. (3.14)

Note that the expectations are taken only for the random variable Z under the measure
P.



Letting
g](t7Z):g](’Yt)Z)7]:07177m) (315)

we have, with (3.7),
(3.16)

=Y 0;(9;(t, 2)) = %(Go(t, 2))* = =Y 0;(3;(t, 2))* = w(do(t, Z))*.

j=1 j=1
Taking the expectation for the random variable Z under P on both sides of (3.16)

gives:
(3.17)

=Y 0E[(;(t, 2)))) = = > 0;E[3;(t, 2))),
j=1 J=1

which results in
U(?O(ta Z)agl(tv Z)a T 7gm(t’ Z)) > U(.&O(t Z)’gl(t’ Z)7 e 7gm(t’ Z)) (318)

When E[(Go(t, Z))?] = 0, (i.e., the insurance company cedes all of the losses to the m

reinsurance companies), setting
go(t,Z)ZO, gj(t,Z):ﬂj(Z),j:L-n , MM, (3.19)
and using (3.12) give:
m m
=2 00,(6,2))° = = 3053t 2))*, (3.20)
j=1

j=1

Taking the expectation for the random variable Z under P then gives:
(3.21)

U(gﬂ(tvz)agl(tvz)v T u‘jm(tv Z)) > U(éO(t> Z)vgl(ta Z))' o vgm(taz))'

o2, (i.e., the insurance company retains all of the losses),

When E[(go(t,2))?] =
letting
g()(t,Z):Z7 g](t7Z):Ovj:177m7 (322)

gives:
(3.23)

U(go(t,Z),gl(t,Z),'“ 7gm(t7 Z)) :U(§0(t72)7§1(t7 Z)? 7§m(t7 Z))

Consequently, we have the following optimality result.
g1+ 9m) € A1_3, there exists a

Theorem 3.1. For any fixed reinsurance strategy (go, g1
combined proportional reinsurance treaty (go, g1 ,dm) € Ai—3 such that

U(§0(t7z)agl(tvz)v”' agm(t7Z)) > U(§0(7
o(go(t, Z2)) = o(go(

gl(taz)v e 7.§~7m(tv Z))7

This theorem shows that, under general case (i.e., without the condition (4)), a com-

bined proportional reinsurance treaty is still an optimal form.



Remark 3.1. In J. Comput. Appl. Math. 306 (2016), 40-52, we considered an opti-
mal risk control problem in a diffusion approximation model with multiple reinsurers and
dividends payout. In the present paper, we only focus on an optimal risk control problem
without dividend payments. Dividend payouts may not affect the optimal form of reinsur-
ance treaty. In particular, the main result presented in Theorem 3.1 may hold since at an
intuitive level, the dividends strategy may be kept fized and another reinsurance strategy
may be chosen to enlarge the surplus of the insurance company.
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