
Set Containment Join Revisited

Panagiotis Bouros · Nikos Mamoulis ·
Shen Ge · Manolis Terrovitis

Abstract Given two collections of set objects R and S, the R on⊆ S set con-
tainment join returns all object pairs (r, s) ∈ R × S such that r ⊆ s. Besides
being a basic operator in all modern data management systems with a wide range
of applications, the join can be used to evaluate complex SQL queries based on
relational division and as a module of data mining algorithms. The state-of-the-
art algorithm for set containment joins (PRETTI) builds an inverted index on the
right-hand collection S and a prefix tree on the left-hand collection R that groups
set objects with common prefixes and thus, avoids redundant processing. In this
paper, we present a framework which improves PRETTI in two directions. First, we
limit the prefix tree construction by proposing an adaptive methodology based on
a cost model; this way, we can greatly reduce the space and time cost of the join.
Second, we partition the objects of each collection based on their first contained
item, assuming that the set objects are internally sorted. We show that we can
process the partitions and evaluate the join while building the prefix tree and the
inverted index progressively. This allows us to significantly reduce not only the join
cost, but also the maximum memory requirements during the join. An experimen-
tal evaluation using both real and synthetic datasets shows that our framework
outperforms PRETTI by a wide margin.

Keywords Set-valued data · containment join · query processing · inverted
index · prefix tree

To appear at the Knowledge and Information Systems Journal (KAIS).

Panagiotis Bouros
Department of Computer Science, Aarhus University, Denmark
E-mail: pbour@cs.au.dk

N. Mamoulis · S. Ge
Department of Computer Science, The University of Hong Kong, Hong Kong SAR, China
E-mail: {nikos,sge}@cs.hku.hk

M. Terrovitis
Institute for the Management of Information Systems, Research Center “Athena”, Greece
E-mail: mter@imis.athena-innovation.gr

ar
X

iv
:1

60
3.

05
42

2v
1

 [
cs

.D
B

]
 1

7
M

ar
 2

01
6

2 P. Bouros et al.

1 Introduction

Sets are ubiquitous in computer science and most importantly in the field of
data management; they model among others transactions and scientific data, click
streams and Web search data, text. Contemporary data management systems al-
low the definition of set-valued (or multi-valued) data attributes and support op-
erations such as containment queries [1,23,37,38,42]. Joins are also extended to
include predicates on sets (containment, similarity, equality, etc.) [21]. In this pa-
per, we focus on the efficient evaluation of an important join operator: the set
containment join. Formally, let R, S be two collections of set objects, the R on⊆ S
set containment join returns all pairs of objects (r, s) ∈ R× S such that r ⊆ s.
Application examples/scenarios. Set containment joins find application in a
wide range of domains for knowledge and data management. In decision support
scenarios, the join is employed to identify resources that match a set of preferences
or qualifications, e.g., on real estate or job agencies. Consider a recruitment agency
which besides publishing job-offers also performs a first level filtering of the can-
didates. The agency retains a collection of job-offers R where an object r contains
the set of required skills for each job, and a collection of job-seekers S with s cap-
turing the skills of each candidate. The Ron⊆ S join returns all pairs of jobs and
qualifying candidates for them which the agency then forwards to job-offerers for
making the final decision. Containment joins can also support critical operations in
data warehousing. For instance, the join can be used to compare different versions
of set-valued records for entities that evolve over time (e.g., sets of products in the
inventories of all departments in a company). By identifying records that subsume
each other (i.e., a set containment join between two versions), the evolution of the
data is monitored and possibly hidden correlations and anomalies are discovered.

In the core of traditional database systems and data engineering, set contain-
ment joins can be employed to evaluate complex SQL queries based on division
[13,32]. Consider for example Figure 1 which shows two relational tables. The first
table shows students and the courses they have passed, while the second table
shows the required courses to be taken and passed in order for a student to ac-
quire a skill. For example, Maria has passed Operating systems and Programming.
As the courses required for a Systems Programming skill are Operating systems
and Programming, it can be said that Maria has acquired this skill. Consider the
query “for each student find the skills s/he has acquired” expressed in SQL below:

select P1.Student, R1.Skill
from Passes as P1, Requires as R1
where not exists (select R2.Course

from Requires as R2
where R1.Skill = R2.Skill
and not exists (select P2.Course

from Passes as P2
where P2.Student=P1.Student
and P2.Course=R2.Course));

It is not hard to see that this query is in fact a set containment join between tables
Requires and Passes, considering each skill and student as the set of courses they
require or have passed, respectively. This example demonstrates the usefulness of
set containment joins even in classic databases with relations in 1NF.

Set Containment Join Revisited 3

Student Course

John Algorithms
Peter Databases
Maria Op. Systems
Peter Programming
John Databases
Maria Programming
Peter Op. Systems

Skill Course

DBA Databases
DBWeb Databases
DBWeb Programming

Sys. Prog. Programming
Sys. Prog. Op. Systems

(a) table Passes (b) table Requires

Fig. 1 Example of relational division based on set containment join: “for each student find
the skills s/he has acquired”

In the context of data mining, containment join can act as a module during
frequent itemset mining [31]. Consider the classic Apriori algorithm [2] which is
well-known for its generality and adaptiveness to mining problems in most data
domains; besides, studies like [43] report that Apriori can be faster than FP-
growth-like algorithms for certain support threshold ranges and datasets. At each
level, the Apriori algorithm (i) generates a set of candidate frequent itemsets (hav-
ing specific cardinality) and (ii) counts their support in the database. Candidates
verification (i.e., step (ii)), which is typically more expensive than candidates gen-
eration (i.e., step (i)), can be enhanced by applying a set containment join between
the collection of candidates and the collection of database transactions. The differ-
ence is that we do not output the qualifying pairs, but instead count the number
of pairs where each candidate participates (i.e., a join followed by aggregation).

Motivation. The above examples highlight not only the range of applications for
set containment join but also the importance of optimizing its evaluation. Even
though this operation received significant attention in the past with a number of
algorithms proposed being either signature [21,28,29,30] or inverted index based
[24,27], to our knowledge, since then, there have not been any new techniques that
improve the state-of-the-art algorithm PRETTI [24]. PRETTI evaluates the join by
employing an inverted index IS on the right-hand collection S and a prefix tree
TR on the left-hand collection R that groups set objects with common prefixes
in order to avoid redundant processing. The experiment analysis in [24] showed
that PRETTI outperforms previous inverted index-based [27] and signature-based
methods [29,30], but as we discuss in this paper, there is still a lot of room for
improvement primarily due to the following two shortcomings of PRETTI. First, the
prefix tree can be too expensive to build and store, especially if R contains sets of
high cardinality or very long. Second, PRETTI completely traverses the prefix tree
during join evaluation, which may be unnecessary, especially if the set of remaining
candidates is small.

Contributions. Initially, we tackle the aforementioned shortcomings of PRETTI

by proposing an adaptive evaluation methodology. In brief, we avoid building the
entire prefix tree TR on left-hand collection R which significantly reduces the re-
quirements in both space and indexing time. Under this limited prefix tree denoted
by `TR, the evaluation of set containment join becomes a two-phase procedure that
involves (i) candidates generation by traversing the prefix tree, and (ii) candidates
verification. Then, we propose a cost model to switch on-the-fly to candidates ver-

4 P. Bouros et al.

ification if the cost of verifying the remaining join candidates in current subtree is
expected to be lower than prefix-tree based evaluation, i.e., candidates generation.

Next, we propose the Order and Partition Join (OPJ) paradigm which considers
the items of each set object in a particular order (e.g., in decreasing order of their
frequency in the objects of R ∪ S). Collection R and S are divided into partitions
such that Ri (Si) contains all objects in R (S) for which the first item is i. Then,
for each item i in order, OPJ processes partitions Ri and Si by (i) updating inverted
index IS to include all objects in Si and (ii) creating prefix tree TRi

for partition
Ri and joining it with IS . As the inverted index is incrementally built, its lists are
initially shorter and the join is faster. Further, the overall memory requirements
are reduced since each TRi

is constructed and processed separately, but most
importantly, it can be discarded right after joining it with IS .

As an additional contribution of our study, we reveal that ordering the set
items in increasing order of their frequency (in contrast with decreasing frequency
proposed in [24]) in fact improves query performance. Although such an ordering
may lead to a larger prefix tree (compared to PRETTI), it dramatically reduces the
number of candidates during query processing and enables our adaptive technique
to achieve high performance gains.

We focus on main-memory evaluation of set containment joins (i.e., we optimize
the main module of PRETTI, which joins two in-memory partitions); note that
our solution is easily integrated in the block-based approaches of [24,27]. The
fact that we limit the size of the prefix tree and that we use the OPJ paradigm,
allows our method to operate with larger partitions compared to PRETTI in an
external-memory problem, thus making our overall improvements even higher. Our
thorough experimental evaluation using real datasets of different characteristics
shows that our framework always outperforms PRETTI, being up to more than one
order of magnitude times faster and saving at least 50% of memory.

Outline. The rest of the paper is organized as follows. Section 2 describes in detail
the state-of-the-art set containment join algorithm PRETTI. Our adaptive evalua-
tion methodology and the OPJ novel join paradigm are presented in Sections 3 and
4, respectively. Section 5 presents our experimental evaluation. Finally, Section 6
reviews related work and Section 7 concludes the paper.

2 Background on Set Containment Join: The PRETTI Algorithm

In this section, we describe in detail the state-of-the-art method PRETTI [24] for
computing the R ./⊆ S set containment join of two collections R and S. The
method has the following key features:

(i) The left-hand collection R is indexed by a prefix tree TR and the right-hand
collection S by an inverted index IS . Both index structures are built on-
the-fly, which enables the generality of the algorithm (for example, it can be
applied for arbitrary data partitions instead of entire collections, and/or on
data produced by underlying operators without interesting orders).

(ii) PRETTI traverses the prefix tree TR in a depth-first manner. While following a
path on the tree, the algorithm intersects the corresponding lists of inverted
index IS . The join algorithm is identical to the one proposed in [27] (see
Section 6); however, due to grouping the objects under TR, PRETTI performs
the intersections for all sets in R with a common prefix only once.

Set Containment Join Revisited 5

r1: {G,F,E,C,B}
r2: {G,F,D,B}
r3: {G,D,A}
r4: {F,D,C,B}
r5: {G,F,E}
r6: {E,C}
r7: {G,F,E}

s1: {D,C,A}
s2: {G,F,E,D,C,A}
s3: {D,B}
s4: {G,F,C,B}
s5: {G,F,E,B}
s6: {F,E,D,C,B}
s7: {G,E,D,C,B}
s8: {G,E,D,C,B}
s9: {G,F,E,D}
s10: {G,F,E,D}
s11: {G,F}
s12: {G,F,E}

(a) left-hand collection R (b) right-hand collection S

Fig. 2 Example of two collections R and S

Algorithm 1: PRETTI(R,S)

input : Collections R and S; every object r ∈ R is internally sorted such that the
most frequent item appears first

output: the set J of all object pairs (r, s) such that r ∈ R, s ∈ S and r ⊆ s

11 TR ← ContructPrefixTree(R);
22 IS ← ConstructInvertedIndex(S);
3 foreach child node c of the root in TR do
4 CL← {s|s ∈ S}; // Candidates list
5 ProcessNode(c, CL, IS , J);

6 return J ;

7 Function ProcessNode(n,CL, IS , J)
8 CL′ ← CL ∩ IS [n.item]; // List intersection
9 foreach object r ∈ n.RL do

10 foreach object s ∈ CL′ do
11 J ← J ∪ (r, s);

12 foreach child node c of n do
13 ProcessNode(c, CL′, IS , J); // Recursion

Algorithm 1 illustrates the pseudocode of PRETTI. During the initialization
phase (Lines 1–2), PRETTI builds prefix tree TR and inverted index IS for input
collections R and S, respectively. To construct TR, every object r in R is internally
sorted, so that its items appear in decreasing order of their frequency in R (this
ordering is expected to achieve the highest path compression for TR).1 Each node
n of prefix tree TR is a triple (item, path,RL) where n.item is an item, n.path is
the sequence of the items in the nodes from the root of TR to n (including n.item),
and finally, n.RL is the set of objects in R whose content is equal to n.path. For
example, Figure 3(a) depicts prefix tree TR for collection R in Figure 2(a). Set
n.RL is shown next to every node n unless it is empty. The inverted index IS on
collection S associates each item i in the domain of S to a postings list denoted

1 Our experiments show that an increasing frequency order is in practice more beneficial.
Yet, for the sake of readability, we present both PRETTI and our methodology considering a
decreasing order.

6 P. Bouros et al.

G

G

A: {s1,s2}
B: {s3, s4,s5,s6,s7,s8}
C: {s1,s2,s4,s6,s7,s8}
D: {s1,s2,s3,s6,s7,s8,s9,s10}
E: {s2,s5,s6,s7,s8,s9,s10,s12}
F : {s2,s4,s5,s6,s9,s10,s11,s12}
G: {s2,s4,s5,s7,s8,s9,s10,s11,s12}

(a) prefix tree TR (b) inverted index IS

Fig. 3 Indices of PRETTI for the collections in Figure 2

by IS [i]. The IS [i] postings list has an entry for every object s ∈ S that contains
item i. Figure 3(b) pictures inverted index IS for collection S in Figure 2(b).

The second phase of the algorithm involves the computation of the join result
set J (Lines 3–5). PRETTI traverses the subtree rooted at every child node c of TR’s
root by recursively calling the ProcessNode function. For a node n, ProcessNode
receives as input from its parent node p in TR, a candidates list CL. List CL
includes all objects s ∈ S that contain every item in p.path, i.e., p.path ⊆ s. Note
that for every child of the root in TR, CL = S. Next, ProcessNode intersects
CL with inverted list IS [n.item] to find the objects in S that contain n.path
and stores them in CL′ (Line 8). At this point, every pair of objects in n.RL ×
CL′ is guaranteed to be a join result (Lines 9–11). Finally, the algorithm calls
ProcessNode for every child node of n (Line 12–13).

Example 1 We demonstrate PRETTI for the set containment join of collections R
and S in Figure 2. The algorithm constructs prefix tree TR and inverted index
IS shown in Figures 3(a) and 3(b), respectively. To construct TR note that the
items inside every object r ∈ R are internally sorted in decreasing order of global
item frequency in R (this is not necessary for the objects in S). First, PRETTI

traverses the leftmost subtree of TR under the node labeled by item G. Considering
paths 〈/,G〉 and 〈/,G, F 〉, the algorithm intersects candidates list CL (initially
containing every object in S, i.e., {s1, . . . , s12}) first with IS [G] and then with
IS [F], and produces candidates list {s2,s4,s5,s9, s10,s11,s12}, i.e., the objects in S
that contain both G and F . The RL lists of the nodes examined so far are empty and
thus, no result pair is reported. Next, path 〈/,G, F,E〉 is considered where CL is
intersected with IS [E] producing CL′ = {s2,s5,s9,s10,s12}. At current node, RL =
{r5,r7}, and thus, PRETTI reports result pairs (r5, s2), (r5, s5), (r5, s9), (r5, s10),
(r5, s12), (r7, s2), (r7, s5), (r7, s9), (r7, s10), (r7, s12). The algorithm proceeds in
this manner to examine the rest of the prefix tree nodes performing in total 15 list
intersections. The result of the join contains 16 pairs of objects. �

Finally, to deal with the case where the available main memory is not sufficient
for computing the entire set containment join of the input collections, a partition-

Set Containment Join Revisited 7

based join strategy was also proposed in [24]. Particularly, the input collections R
and S are horizontally partitioned so that the prefix tree and the inverted index for
each pair of partitions (Ri, Sj) from R and S, respectively, fit in memory. Then, in
a nested-loop fashion, each partition Ri is joined in memory with every partition
Sj in S invoking PRETTI(Ri, Sj).

3 An Adaptive Methodology

By employing a prefix tree on the left-hand collection R, PRETTI avoids redundant
intersections and thus outperforms previous methods that used only inverted in-
dices, e.g., [27]. However, we observe two important shortcomings of the PRETTI

algorithm. First, the cost of building and storing the prefix tree on R can be high
especially if R contains sets of high cardinality. This raises a challenge when the
available memory is limited which is only partially addressed by the partition-
based join strategy in [24]. Second, after a candidates list CL becomes short,
continuing the traversal of the prefix tree to obtain the join results for CL may in-
cur many unnecessary in practice inverted list intersections. This section presents
an adaptive methodology which builds upon and improves PRETTI. In Section 3.1
we primarily target the first shortcoming of PRETTI proposing the LIMIT algo-
rithm, while in Section 3.2 we propose an extension to LIMIT, termed LIMIT+,
that additionally deals with the second shortcoming.

3.1 The LIMIT Algorithm

To deal with the high building and storage cost of the prefix tree TR, [24] suggests
to partition R, as discussed in the previous section. Instead, we propose to build
TR only up to a predefined maximum depth `, called limit. Hence, computing set
containment join becomes a two-phase process that involves a candidate generation
and a verification stage; for every candidate pair (r, s) with |r| > ` we need to
compare the suffixes of objects r and s beyond ` in order to determine whether
r ⊆ s. This approach is adopted by the LIMIT algorithm.

Algorithm 2 illustrates the pseudocode of LIMIT. Compared to PRETTI (Al-
gorithm 1), LIMIT differs in two ways. First in Line 1, LIMIT constructs limited
prefix tree `TR on the left-hand collection R w.r.t. limit `. The `TR prefix tree
has almost identical structure to unlimited TR built by PRETTI except that the
n.RL list of a leaf node n contains every object r ∈ R with r ⊇ n.path instead
of r = n.path. Figures 4(a) and (b) illustrate the limited versions of the prefix
tree in Figure 3(b) for ` = 2 and ` = 3, respectively. Second, the ProcessNode

function distinguishes between two cases of objects in n.RL (Lines 11–14). If, for
a object r ∈ n.RL, |r| ≤ ` holds, then r = n.path and, similar to PRETTI, pair
(r, s) is guaranteed to be part of the join result J (Line 12). Otherwise, r ⊃ n.path
holds and ProcessNode invokes the Verify function which compares the suffixes
of objects r and s beyond ` (Line 14). Intuitively, the latter case arises only for
leaf nodes according to the definition of the limited prefix tree. To achieve a low
verification cost, the objects of both R and S collections are internally sorted, i.e.,
the items appear in decreasing order of their frequency in R ∪ S, which enables
Verify to operate in a merge-sort manner.

8 P. Bouros et al.

Algorithm 2: LIMIT(R,S, `)

input : Collections R and S, limit `; every object r∈R and s∈S is internally sorted
such that the most frequent item in R ∪ S appears first

output: the set J of all object pairs (r, s) such that r ∈ R, s ∈ S and r ⊆ s

11 `TR ← ContructPrefixTree(R, `);
22 IS ← ConstructInvertedIndex(S);
3 foreach child node c of the root in TR do
4 CL← {s|s ∈ S}; // Candidates list
5 ProcessNode(c, `, CL, IS , J);

6 return J ;

7 Function ProcessNode(n, `, CL, IS , J)
8 CL′ ← CL ∩ IS [n.item]; // List intersection
9 foreach object s ∈ CL′ do

10 foreach object r ∈ n.RL do
11 if |r| ≤ ` then
12 J ← J ∪ (r, s);

13 else
14 Verify(r, s, `, J); // Compare object suffixes

15 foreach child node c of n do
16 ProcessNode(c, `, CL′, IS , J); // Recursion

G

G

G

G

(a) ` = 2 (b) ` = 3

Fig. 4 Limited prefix tree `TR for collection R in Figure 2

Example 2 We demonstrate LIMIT using collections R and S in Figure 2; in con-
trast to PRETTI and Example 1, the objects of both collections are internally sorted.
Consider first the case of ` = 2. LIMIT constructs limited prefix tree `TR shown in
Figure 4(a) for collection R in Figure 2(a), and inverted index IS in Figure 3(b).
Then, similar to PRETTI, it traverses `TR. When considering path 〈/,G, F 〉, can-
didates list CL′ = {s2,s4,s5,s9,s10, s11,s12} is produced. The RL = {r1,r2,r5,r7}
set of current node (F) is non-empty and thus, the algorithm examines every pair
of objects from RL×CL′ to report join results. As all objects in RL are of length
larger than limit ` = 2, LIMIT compares the suffixes beyond length ` = 2 of all
candidates by calling Verify, and finally, reports results (r5, s2), (r5, s5), (r5, s9),
(r5, s10), (r5, s12), (r7, s2), (r7, s5), (r7, s9), (r7, s10), (r7, s12). At the next steps,
the algorithm proceeds in a similar way to examine the rest of the prefix tree nodes
performing 4 list intersections and verifying 37 candidate pairs by comparing their

Set Containment Join Revisited 9

suffixes. Finally, if ` = 3 LIMIT traverses similarly prefix tree `TR in Figure 4(b)
performing 8 this time list intersections but verifying only 10 candidate object pairs
by comparing their suffixes. �

The advantage of LIMIT over PRETTI and the partition-based join strategy
of [24] is two-fold. First, building the prefix tree up to ` is faster than building
the entire tree, but most importantly, with `, the space needed to store the tree
in main memory is reduced. If the unlimited TR does not fit in memory, PRETTI
would partition R and construct a separate (memory-based) TRi

for each partition
Ri; therefore, two objects ri, rj of R that have the same `-prefix but belong to
different partitions Ri and Rj , would be considered separately, which increases the
evaluation cost of the join. In other words, reducing the size of TR to fit in memory
can have high impact on performance. In contrast, LIMIT guarantees that, for every
path of length up to ` on limited `TR, all redundant intersections are avoided
similar to utilizing the unlimited prefix tree. Finally, an interesting aftermath of
employing ` for set containment joins is related to the second shortcoming of
PRETTI. For instance, with ` = 3 and prefix tree `TR in Figure 3(b), LIMIT will
verify object r1 against CL={s2,s5,s9,s10,s12} and quickly determine that it is not
part of the join result without performing two additional inverted list intersections.

An issue still open involves how limit ` is defined and most importantly,
whether there is an optimal value of ` that balances the benefits of using the
limited prefix tree over the cost of including a verification stage. Determining the
optimal value for ` is a time-consuming task which involves more than an extra
pass over the input collections. In specific, it requires computing expensive statis-
tics with a process reminiscent to frequent itemsets mining; note that this process
must take place online before building `TR. Instead, in Section 5.4 we discuss and
evaluate four strategies for estimating a good ` value based on simple and cheap-
to-compute statistics. Our analysis shows that typically these strategies tend to
overestimate the optimal `. Besides, we also observe that the optimal ` value may
in fact vary between different subtrees of `TR depending on the number of objects
stored inside the nodes. In view of this, we next propose an adaptive extension
to LIMIT which employs an ad-hoc limit ` for each path of `TR by dynamically
choosing between list intersection and verification of the objects under the current
subtree.

3.2 The LIMIT+ Algorithm

As Example 2 shows, using limit ` for set containment joins introduces an interest-
ing trade-off between list intersection and candidates verification which is directly
related to the second shortcoming of the PRETTI algorithm. Specifically, as ` in-
creases and LIMIT traverses longer paths of `TR, candidates lists CL shorten due
to the additional list intersections performed. Consequently, the number of object
pairs to be verified by accessing their suffixes also reduces. However, from some
point on, the number of candidates in CL no longer significantly reduces or, even
worst, it remains unchanged; therefore, performing additional list intersections be-
comes a bottleneck. Similarly, if for a node n, CL is already too short, verifying
the candidate pairs between the contents of CL and the objects contained under
the subtree rooted at n can be faster than performing additional list intersections.

10 P. Bouros et al.

Algorithm 3: LIMIT+(R,S, `)

input : Collections R and S, limit `; every object r∈R and s∈S is internally sorted
such that the most frequent item in R ∪ S appears first

output: the set J of all object pairs (r, s) such that r ∈ R, s ∈ S and r ⊆ s

11 `TR ← ContructPrefixTree(R, `);
22 IS ← ConstructInvertedIndex(S);
3 foreach child node c of the root in TR do
4 CL← {s|s ∈ S}; // Candidates list
5 ProcessNode(c, `, CL, IS , J);

6 return J ;

7 Function ProcessNode(n, `, CL, IS , J)
8 if ContinueAsLIMIT(n,CL, IS) then
9 CL′ ← CL ∩ IS [n.item]; // List intersection

10 foreach object s ∈ CL′ do
11 foreach object r ∈ n.RL do
12 if |r| ≤ ` then
13 J ← J ∪ (r, s);

14 else
15 Verify(r, s, `, J); // Compare object suffixes

16 foreach child node c of n do
17 ProcessNode(c, `, CL′, IS , J); // Recursion

18 else
19 foreach object s ∈ CL do
20 foreach object r ∈ `Tn

R do // `Tn
R:subtree under n

21 Verify(r, s, `−1, J); // Compare object suffixes

The LIMIT algorithm addresses only a few of the cases when candidates ver-
ification is preferred over list intersection, for instance the case of object r1 in
Figure 2(a) with limit ` = 3. Due to global limit `, the “blind” approach of LIMIT
processes every path of the prefix tree in the same manner. To tackle this prob-
lem, we devise an adaptive strategy of processing `TR adopted by the LIMIT+
algorithm. Apart from global limit `, LIMIT+ also employs a dynamically deter-
mined local limit `p for each path p of the prefix tree. The basic idea behind this
process is to decide on-the-fly for every node n of the prefix tree between:

(A) performing the CL′ = CL ∩ IS [n.item] intersection, reporting the pairs in
n.RL×CL′, and then, processing the descendant nodes of n in a similar way,
or

(B) stopping the traversal of the current path and verifying the candidates be-
tween the objects of R contained in the subtree rooted at n denoted by `Tn

R

and those in CL, i.e., all candidate pairs in `Tn
R × CL.

In the first case, LIMIT+ would operate exactly as LIMIT does for the internal
nodes of `TR while in the second case, it would treat node n as a leaf node but
without performing the corresponding list intersection. Therefore, in practice, a
local limit for current path n.path is employed by LIMIT+.

Algorithm 3 illustrates the pseudocode of LIMIT+. Compared to LIMIT (Algo-
rithm 2), LIMIT+ only differs on how a node of `TR is processed. Specifically, given
a node n, ProcessNode calls the ContinueAsLIMIT function (Line 8) to determine

Set Containment Join Revisited 11

(a) strategy for CA (b) strategy for CB

Fig. 5 The two strategies considered by LIMIT+

whether the algorithm will continue processing n similar to LIMIT (Lines 10–17),
or it will stop traversing current path n.path and start verifying all candidates in
`Tn

R × CL invoking the Verify function (Lines 18–21). In the latter case, notice
that for every verifying pair (r, s) with r ∈ `Tn

R × CL and s ∈ CL, the algorithm
accesses the suffixes of r and s beyond length `−1 and not ` as the CL∩IS [n.item]
intersection has not taken place for current node n (Line 21).

Next, we elaborate on ContinueAsLIMIT. Intuitively, in order to determine how
LIMIT+ will process current node n the function has to first estimate and then
compare the computational costs CA and CB of the two alternative strategies: (A)
processing current node and its descendants in the subtree `Tn

R similar to LIMIT,
or (B) verifying candidates in `Tn

R ×CL. In practice, it is not possible to estimate
the cost of processing current node n and its descendants in `Tn

R similar to LIMIT

since the involved intersections are not known in advance with the exception of
CL ∩ IS [n.item]. Therefore, we estimate CA as the cost of computing the list
intersection at current node n and, verifying, for each child node ci of n, the
candidate pairs between all objects under subtree `T ci

R and the objects in CL′.
Figure 5 illustrates the two alternative strategies, the costs of which are compared
by ContinueAsLIMIT.

We now discuss how costs CA and CB can be estimated. For this purpose, we
first break n.RL set into two parts: n.RL = n.RL=∪n.RL⊃, where n.RL= denotes
the objects r in n.RL with r = n.path, while n.RL⊃ the objects with r ⊃ n.path.
Note that according to the definition of limited prefix tree `TR, n.RL = n.RL=

holds for every internal node n, as n.RL⊃ = ∅. Second, we introduce the following
cost functions to capture the computational cost of the three tasks involved in
strategies (A) and (B):

(i) List intersection. The cost of computing CL′ = CL∩IS [n.item] in current
node n, denoted by C∩, depends on the lengths of the involved lists and it is
also related to the way list intersection is actually implemented. For instance,
if list intersection is performed in a merge-sort manner, then C∩ is linear to
the sum of the lists’ length, i.e., C∩ = α1 · |CL| + β1 · |IS [n.item]| + γ1.
On the other hand, if the intersection is based on a binary search over the
IS [n.item] list then C∩ = α2·|CL|·log2(|IS [n.item]|)+β2. Note that constants
α1, α2, β1, β2 and γ1 can be approximated by executing list intersection
for several inputs and then, employing regression analysis over the collected
measurements.

12 P. Bouros et al.

(ii) Direct output of results. Similar to PRETTI and LIMIT, after list intersec-
tion CL′ = CL ∩ IS [n.item], every pair (r, s) with r ∈ n.RL and s ∈ CL′
such that r = n.path, i.e., r ∈ n.RL=, is guaranteed to be among the join
results and it would be directly reported. The cost of this task, denoted
by Cd, is linear to the number of object pairs to be reported, and thus,
Cd = α3 · |CL′| · |n.RL=|+β3. Constants α3 and β3 can be approximated by
regression analysis.

(iii) Verification. To determine whether an (r, s) pair is part of the join result
Verify would compare their suffixes in a merge-sort manner. Under this, the
verification cost for each candidate pair is linear to the sum of their suffixes’
length. Both alternative strategies considered by ContinueAsLIMIT involve
verifying all candidate pairs between a subset of objects in R and a subset in
S (candidates list CL or CL′). Without loss of generality consider the case
of strategy (A). In total, |`Tn

R rn.RL=| · |CL′| candidates would be verified.
Considering the length sum of the objects in `Tn

R and of the objects in CL′,
the total verification cost for (A) is

Cv = α4 · |CL′| ·
∑

r∈{`Tn
Rrn.RL=}

(|r| − `)

+ β4 · |`Tn
R r n.RL=| ·

∑
s∈CL′

(|s| − `) + γ4

where |r| − ` (|s| − `) equals the length of the suffix for a object r (s) with
respect to limit `. Similar to the previous tasks, constants α4, β4 and γ4 can
be approximated by regression analysis. On the other hand, to approximate
|CL′| = |CL ∩ IS [n.item]| and

∑
s∈CL′ (|s| − `), we adopt an independent

assumption approach based on the frequency of the item contained in current
node n. Under this, |CL′| ≈ |CL| · |IS [n.item]|

|S| while the length sum of the

objects in CL′ can be estimated with respect to the |CL′|
|CL| ≈

|IS [n.item]|
|S| de-

crease ratio, hence, we have
∑

s∈CL′ (|s| − `) ≈ |IS [n.item]|
|S| ·

∑
s∈CL (|s| − `).

Finally, note that
∑

r∈{`Tn
Rrn.RL=} (|r| − `) can be computed using statis-

tics gathered while building prefix tree `TR and that
∑

s∈CL (|s| − `) can be
computed while performing the list intersection at the parent of current node
n.

With C∩, Cd, and Cv, the computational costs of the (A) and (B) strategies con-
sidered by ContinueAsLIMIT are estimated by:

CA = C∩(CL, IS [n.item]) + Cd(n.RL=, CL′) + Cv({`Tn
R r n.RL=}, CL′, `)

CB = Cv(`Tn
R , CL, `− 1)

As intersection CL′ = CL∩ IS [n.item] is not computed in (B), candidates list CL
and object suffixes beyond `− 1 are considered by CB in place of CL′ and suffixes
beyond ` considered by CA.

Example 3 We illustrate the functionality of LIMIT+ using Example 2. Assuming
` = 3, LIMIT+ constructs prefix tree `TR of Figure 4(b) and inverted index IS
of Figure 3(b). First, the algorithm traverses the subtree of `TR under the node
labeled by item G. The computational cost of the alternative strategies for this

Set Containment Join Revisited 13

node are as follows. CA involves the cost of computing CL′ = {s1, . . . , s12} ∩
IS [G] = {s2, s4, s5, s7, s8, s9, s10, s11, s12} and based on the two child nodes, the
cost of verifying all candidates in {r1, r2, r5, r7}×CL′ and {r3}×CL′; note that
no direct join results exist as RL for current node is empty. On the other hand,
CB captures the cost of verifying all candidates in {r1, r2, r3, r5, r7}×CL. Without
loss of generality assume CA < CB. Hence, LIMIT+ processes current node (G)
similar to LIMIT: path 〈/,G, F 〉 and the node labeled by F are next considered.
Assuming CA>CB for this node, LIMIT+ imposes a local limit equal to 2 and verifies
all candidates in {r1, r2, r5, r7}×CL with CL= {s2, s4, s5, s7, s8, s9, s10, s11, s12}
(objects in S containing item G). Notice the resemblance to Example 2 for `= 2
with the exception that {s2, s4, s5, s7, s8, s9, s10, s11, s12} ∩ IS [F] is not computed.
�

4 A Novel Join Paradigm

As discussed in Section 2, the join paradigm of PRETTI [24], which is also followed
by LIMIT and LIMIT+, constructs the entire prefix tree TR (or `TR) and the entire
inverted index IS before joining them. However, we observe that the construction
of TR and IS can be interleaved with the join process since for joining a set of
objects from R that lie in a subtree of TR it is not necessary to have constructed
the entire IS . For example, consider again the TR and IS indices of Figure 3. When
performing the join for the nodes in the subtree rooted at node G, obviously, we
need not have constructed the subtrees rooted at nodes F and E already. At the
same time, only the objects from S that contain item G can be joined with each
object in that subtree. Therefore, we only need a partially built IS which includes
just these objects. In this section, we propose a new paradigm, termed Order and
Partition Join (OPJ), which is based on this observation. OPJ operates as follows:

(i) Assume that for each object (in either R or S), the items are considered
in a certain order (i.e., in decreasing order of their frequency in R ∪ S). OPJ
partitions the objects of each collection into groups based on their first item.2

Thus, for each item i, there is a partition Ri (Si) of R (S) that includes all
objects r ∈ R (s ∈ S), for which the first item is i. For example, partition
RG of collection R in Figure 2(a) includes {r1, r2, r3, r5, r7}, while partition
RE includes just r6. Due to the internal sorting of the objects, an object in
Ri or Si includes i but does not include any item j, which comes before i
in the order (e.g., r6 ∈ RE cannot contain G or F). Then, OPJ initializes an
empty inverted index IS for S.

(ii) For each item i in order, OPJ creates a prefix tree TRi
for partition Ri and

updates IS to include all objects from partition Si. Then, TRi
is joined with

IS using PRETTI (or our algorithms LIMIT and LIMIT+). After the join, TRi

is dumped from the memory and OPJ proceeds with the next item i + 1 in
order to construct TRi+1

using Ri+1, update IS using Si+1 and join TRi+1

with IS .

OPJ has several advantages over the PRETTI join paradigm. First, the entire TR
needs not be constructed and held in memory. For each item i the subtree of TR

2 This is different than the external-memory partitioning of the PRETTI paradigm, discussed
at the end of Section 2.

14 P. Bouros et al.

Algorithm 4: OPJ(R,S, `)

input : Collections R and S, limit `; every Object r∈R and s∈S is internally sorted
such that the most frequent item in R ∪ S appears first

output: the set J of all Object pairs (r, s) such that r ∈ R, s ∈ S and r ⊆ s

11 Partition(S); Partition(R); // w.r.t. the first item in each Object
22 IS ← ∅;
3 foreach item i in decreasing frequency order do
4 `TRi

← ContructPrefixTree(Ri, `);
5 IS ← UpdateInvertedIndex(IS , Si);
6 c← child node of `TRi

’s root; // `TRi
’s root has a single child c with

c.item = i
7 CL← Objects in S seen so far; // Candidates list
8 ProcessNode(c, CL, IS , J, `); // PRETTI,LIMIT,LIMIT+
9 delete `TRi

;

10 return J ;

rooted at i (i.e., TRi
) is built, joined, and then removed from memory. Second,

the inverted index IS is incrementally constructed, therefore TRi
for each item i

in order is joined with a smaller IS which (correctly) excludes objects of S having
only items that come after i. Thus, the inverted lists of the partially constructed
IS are shorter and the join is faster.3 Finally, the overall memory requirements of
OPJ are much lower compared to PRETTI join paradigm as OPJ only keeps one TRi

in memory at a time (instead of the entire TR).
Algorithm 4 illustrates a high-level sketch of the OPJ paradigm. OPJ receives as

input collections R and S, and limit `; for PRETTI ` =∞ (i.e., `TRi
becomes TRi

).
Initially, collections R and S are partitioned to put all objects having i as their
first item inside partitions Ri and Si, respectively (Line 1). Also, IS (the inverted
index of S) is initialized (Line 2). Then, for each item i, OPJ computes the join
results between objects from R having i as their first item and objects from S
having i or a previous item in order as their first item (Lines 3–9). Specifically,
for each item i in order, OPJ builds a (limited) prefix tree `TRi

using partition
Ri, adds all objects of partition Si into IS , and finally joins `TRi

with IS using
the methodology of PRETTI, LIMIT, or LIMIT+. Note that for each `TRi

the root
has a single child c with c.item = i, because all objects in Ri have i as their
first item. Thus, OPJ has to invoke the ProcessNode function (of either PRETTI,
LIMIT or LIMIT+) only for c. In addition, note that candidates list CL is initialized
with only the objects in S accessed so far instead of all objects in S according to
the PRETTI join paradigm; the examination order guarantees that the rest of the
objects in S cannot be joined with the objects in R under node c.

Example 4 We demonstrate OPJ on collections R and S in Figure 2. The items in
decreasing frequency order over R∪S are G(14), F (13), E(12), D(11), C(9), B(9),
A(3), resulting in the internally sorted objects shown in the figure. Without loss of
generality, assume that the PRETTI algorithm is used to perform the join between
each `TRi

and IS (i.e., ` =∞ and `TRi
= TRi

). Initially, the objects are partitioned
according to their first item. The partitions for R are RG = {r1, r2, r3, r5, r7},
RF ={r4}, and RE ={r6}; the partitions for S are shown in Figure 6(a). OPJ first

3 Note that OPJ and PRETTI perform the same number of list intersections; i.e., OPJ does not
save list intersections, but makes them cheaper.

Set Containment Join Revisited 15

s2: {G,F,E,D,C,A} A: {s2}
s4: {G,F,C,B} B: {s4,s5,s7,s8}
s5: {G,F,E,B} C: {s2,s4,s7,s8}
s7: {G,E,D,C,B} D: {s2,s7,s8,s9,s10}

SG s8: {G,E,D,C,B} E: {s2,s5,s7,s8,s9,s10,s12}
s9: {G,F,E,D} F : {s2,s4,s5,s9,s10,s11,s12}
s10: {G,F,E,D} G: {s2,s4,s5,s7,s8,s9,s10,s11,s12}
s11: {G,F}
s12: {G,F,E}

B: {s4,s5,s6,s7,s8}
C: {s2,s4,s6,s7,s8}

SF s6: {F,E,D,C,B} D: {s2,s6,s7,s8,s9,s10}
E: {s2,s5,s6,s7,s8,s9,s10,s12}
F : {s2,s4,s5,s6,s9,s10,s11,s12}

s1: {D,C,A} A: {s1,s2}
SD s3: {D,B} B: {s3,s4,s5,s6,s7,s8}

C: {s1,s2,s4,s6,s7,s8}
D: {s1,s2,s3,s6,s7,s8,s9,s10}

(a) Partitions of S (b) Updates in IS

Fig. 6 Employing the OPJ join paradigm

accesses partition RG and builds TRG
, which is identical to the leftmost subtree of

the unlimited TR in Figure 3(a). Then, OPJ updates the (initially empty) inverted
index IS to include the objects of SG; the resulting IS is shown on the right of SG,
at the top of Figure 6(b). After joining TRG

with IS, TRG
is deleted from memory,

and the next item F in order is processed. OPJ builds TRF
(which is identical to

the 2nd subtree of TR in Figure 3(a)) and updates IS to include the objects in
SF ; these updates are shown on the right of SF in Figure 6(b). Then, TRF

is
joined with IS, and OPJ proceeds to the next item E. In this case, TRE

is built (the
rightmost subtree of TR in Figure 3(a)), but IS is not updated as SE is empty.
Still, TRE

is joined with current IS. In the next round (item D), there is no join
to be performed, because RD is empty. If there were additional partitions Ri to
be processed, IS would have to be updated to include the objects in SD, as shown
on the right of SD in Figure 6(b). However, since all objects from R have been
processed, OPJ can terminate without processing SD. �

5 Experimental Evaluation

In this section, we present an experimental evaluation of our methodology for set
containment joins. Section 5.1 details the setup of our analysis. Section 5.2 inves-
tigates the preferred global ordering of the items, while Section 5.3 demonstrates
the advantage of the OPJ join paradigm. Section 5.4 shows how limit ` affects the
efficiency of our methodology and presents four strategies for estimating its op-
timal value. Finally, Section 5.5 conducts a performance analysis of our methods
against the state-of-the-art PRETTI [24].

16 P. Bouros et al.

Table 1 Characteristics of real datasets

characteristic BMS FLICKR KOSARAK NETFLIX

Cardinality 515K 1.7M 990K 480K
Domain size 1.6K 810K 41K 18K
Avg object length 63 52 398 1,557
Weighted avg

7 10 9 210
object length
Max object length 164 102 2497 17,653
File size (Mb) 11 76 31 407

Table 2 Characteristics of synthetic datasets

characteristic values default value file size (Gb)

Cardinality 1M , 3M , 5M , 7M , 10M 5M 0.3, 0.8, 1.4, 1.9, 2.7
Domain size 10K, 50K, 100K, 500K, 1M 100K 1.1, 1.3, 1.4, 1.6, 1.6
Weighted avg

10, 30, 50, 70, 100 50 0.3, 0.8, 1.4, 1.9, 2.7
object length
Zipfian

0, 0.3, 0.5, 0.7, 1 0.5 1.4, 1.4, 1.4, 1.3, 1.1
distribution

5.1 Setup

Our experimental analysis involves both real and synthetic collections. Particu-
larly, we use the following real datasets:

– BMS is a collection of click-stream data from Blue Martini Software and KDD
2000 cup [43].

– FLICKR is a collection of photographs from Flickr website for the city of
London [10]. Each object contains the union of “tags” and “title” elements.

– KOSARAK is a collection of click-stream data from a hungarian on-line news
portal available at http://fimi.ua.ac.be/data/.

– NETFLIX is a collection of user ratings on movie titles over a period of 7 years
from the Netflix Prize and KDD 2007 cup.

Table 1 summarizes the characteristics of the real datasets. BMS covers the case
of small domain collections while FLICKR the case of datasets with very large
domains. NETFLIX is a collection of extremely long objects. In addition, to study
the scalability of the methods, we generated synthetic datasets with respect to
(i) the collection cardinality, (ii) the domain size, (iii) the weighted average object
length and (iv) the order of the Zipfian distribution for the item frequency. Table 2
summarizes the characteristics of the synthetic collections. On each test, we vary
one of the above parameters while the rest are set to their default values.

Similar to [24] for set containment joins (and other works on set similarity joins
[9,41]), our experiments involve only self-joins, i.e., R = S (note, however, that
our methods operate exactly as in case of non self-joins, i.e., they take as input two
copies of the same dataset). The collections and the indexing structures used by all
join methods are stored entirely in main memory; as discussed in the introduction
we focus on the main module of the evaluation methods which joins two in-memory
partitions, but our proposed methodology is easily integrated in the block-based

Set Containment Join Revisited 17

approaches of [24,27]. Further, we do not consider any compression techniques, as
they are orthogonal to our methodology.

To assess the performance of each method, we measure its response time, the
total number of intersections performed and the total number of candidates; note
that the response time includes both the indexing and joining cost of the method,
and in case of the OPJ paradigm, also the cost of sorting and partitioning the inputs.
Finally, all tested methods are written in C++ and the evaluation is carried out
on an 3.6Ghz Intel Core i7 CPU with 64GB RAM running Debian Linux.

5.2 Items Global Ordering

The goal of the first experiment is to determine the most appropriate ordering for
the items inside an object. In practice, only the characteristics of prefix tree TR and
how it is utilized are affected by how we order the items inside each object (neither
the size of inverted index IS nor the number of objects accessed from S depend
on this ordering). Therefore, in this experiment, we only focus on the PRETTI join
paradigm. In [24], to construct a compact prefix tree TR the items inside an object
are arranged in decreasing order of their frequency. On the other hand, arranging
the items in increasing frequency order allows for faster candidate pruning as the
candidates list CL rapidly shrinks after a small number of list intersections. In
other words, the ordering of the items affects not only the building cost and the
storage requirements of TR, but most importantly, the response time of the join
method. In practice, we observe that the best ordering is also related to how the
CL ∩ IS [n.item] list intersection is implemented. Although the problem of list
intersection is out of scope of this paper per se, we implemented: (i) a merge-sort
based approach, and (ii) a hybrid approach based on [4] that either adopts the
merge-sort approach or binary searches every object of CL inside the IS [n.item]
postings list. Table 3 confirms our claim regarding the correlation between the
global ordering of the items and the response time of the PRETTI join algorithm
(note that the reported time involves both the indexing and the join phase of the
method). Arranging the items in decreasing order of their frequency is generally
better only if the merge-sort based approach is adopted for the list intersections,
while in case of the hybrid approach, the objects should be arranged in increasing
order; an exception arises for NETFLIX where adopting the increasing ordering
is always more beneficial because of its extremely long objects. In summary, the
combination of the hybrid approach and the increasing frequency global ordering
minimizes the response time of the PRETTI algorithm in all cases. Thus, for the rest
of this analysis, we employ the hybrid approach for list intersection and arrange
the items inside an object in the increasing order of their frequency. Note that
for matters of reference and completion we also include the original version of
[24] denoted by orgPRETTI corresponding to the Decreasing-Hybrid combination
of Table 3.

5.3 Employing the OPJ Join Paradigm

Next, we investigate the advantage of OPJ (Section 4) over the PRETTI join paradigm
of [24]. For this purpose we devise an extension to the PRETTI algorithm that fol-

18 P. Bouros et al.

Table 3 Determining items global ordering, response time (sec) of the PRETTI algorithm

Dataset
Increasing Decreasing

Merge-sort Hybrid Merge-sort Hybrid

BMS 407 42 106 71
FLICKR 1606 30 187 108
KOSARAK 1606 73 282 136
NETFLIX 18,399 504 35,169 14,051

Table 4 Employing the OPJ join paradigm, response time (sec)

Dataset orgPRETTI PRETTI PRETTI∗ Improvement ratio over
orgPRETTI PRETTI

BMS 71 42 28 2.5× 1.5×
FLICKR 108 30 20 5.4× 1.5×
KOSARAK 136 73 54 2.5× 1.4×
NETFLIX 14,051 504 391 38.5× 1.3×

Table 5 Limit ` determined by each estimation strategy

Dataset Optimal AV G W–AV G MDN FRQ

BMS 2 63 7 4 4
FLICKR 2 52 10 8 3
KOSARAK 4 398 9 3 5
NETFLIX 6 1,557 210 96 6

lows OPJ, denoted by PRETTI∗. Table 4 reports the response time of the algorithms.
The results experimentally prove the superiority of the OPJ paradigm; PRETTI∗ is
from 1.3 to 1.5 times faster than PRETTI. Recall at this point that compared to the
algorithm discussed in [24], our version of PRETTI arranges the items in increasing
order of their frequency as discussed in Section 5.2; thus, the overall improvement
of PRETTI∗ (which follows OPJ) over the original method of [24] orgPRETTI is even
greater: 2.5× for BMS-POS, 5.4× for FLICKR, 2.5× for KOSARAK and 38.5×
for NETFLIX. For the rest of our analysis we adopt the OPJ paradigm for all tested
methods.

5.4 The Effect of Limit `

As discussed in Section 3, employing limit ` for set containment joins introduces
a trade-off between list intersection and candidates verification. To demonstrate
this effect, we run the LIMIT algorithm (adopting OPJ) while varying limit ` from
1 to the average object length in R, and then plot its response time (Figure 7),
the number of list intersections performed (Figure 8) and the total number of
candidates (Figure 9). The total number of candidates includes both (r, s) pairs
which are directly reported as results, i.e., with |r| ≤ `, and those that are verified
by comparing their prefixes beyond `, i.e., with |r| > `. To have a better under-
standing of this experiment we also include the measurements for PRETTI∗ which
uses an unlimited TR. The figures clearly show the trade-off introduced by limit `
and confirm the existence of an optimal value that balances the benefits of using

Set Containment Join Revisited 19

 10

 20

 30

 40

 50

 60

 70

1 2 4 7 63

R
es

p
o
n
se

 t
im

e
(s

ec
)

PRETTI*
LIMIT

 10

 12

 14

 16

 18

 20

1 2 3 8 10 52

R
es

p
o

n
se

 t
im

e
(s

ec
)

PRETTI*
LIMIT

` (log scale) ` (log scale)
(a) BMS (b) FLICKR

 100

1 3 4 5 9 398

R
es

p
o

n
se

 t
im

e
(s

ec
)

PRETTI*
LIMIT

 240
 260
 280
 300
 320
 340
 360
 380
 400
 420
 440
 460

1 6 96 210 1557

R
es

p
o

n
se

 t
im

e
(s

ec
)

PRETTI*
LIMIT

` (log scale) ` (log scale)
(c) KOSARAK (d) NETFLIX

Fig. 7 Vary limit `, response time

the limited prefix tree over the cost of including a verification stage. According to
Figures 8 and 9, as ` increases, LIMIT naturally performs more list intersections,
and thus, the number of candidate pairs decreases until it becomes equal to the
join results, i.e., the number of candidates for PRETTI∗. However, regarding its
performance shown in Figure 7, although LIMIT initially benefits from having to
verify fewer candidate pairs, when ` increases beyond a specific value, performing
additional list intersections becomes a bottleneck and the algorithm slows down
until its response time becomes almost equal to the time of PRETTI∗.

Apart from the trade-off introduced by limit `, Figures 7, 8 and 9 also show
that the LIMIT algorithm can be faster than PRETTI∗ as long as ` is properly set,
i.e., close to its optimal value. However, as discussed in Section 3, determining the
optimal ` value is a time-consuming procedure, reminiscent to frequent itemsets
mining which cannot be employed in practice; recall that ` must be determined
online. For this purpose, we propose the following simple strategies to select a
good ` value based on cheap-to-compute statistics that require no more than a
pass over the input collection R. First, strategies AV G and W–AV G set ` equal to
the average and the weighted average object length in R, respectively. Similarly,
strategy MDN sets ` to the median value of the object length in R. Last, we
also devise a frequency-based strategy termed FRQ. The idea behind FRQ is to
estimate when paths greater than ` would only be contained in very few objects. We
start with a path p that contains the most frequent item in R and progressively

20 P. Bouros et al.

 0

 0.5

 1

 1.5

 2

 2.5

1 2 4 7 63

#
 o

f
in

te
rs

e
c
ti

o
n
s

(i
n
 m

il
li

o
n
s)

PRETTI*
LIMIT

 0

 2

 4

 6

 8

 10

 12

1 2 3 8 10 52

#
 o

f
in

te
rs

e
c
ti

o
n

s
(i

n
 m

il
li

o
n

s)

PRETTI*
LIMIT

` (log scale) ` (log scale)
(a) BMS (b) FLICKR

 0

 1

 2

 3

 4

 5

 6

 7

1 3 4 5 9 398

#
 o

f
in

te
rs

e
c
ti

o
n

s
(i

n
 m

il
li

o
n

s)

PRETTI*
LIMIT

 0

 20

 40

 60

 80

 100

1 6 96 210 1557

#
 o

f
in

te
rs

e
c
ti

o
n

s
(i

n
 m

il
li

o
n

s)

PRETTI*
LIMIT

` (log scale) ` (log scale)
(c) KOSARAK (d) NETFLIX

Fig. 8 Vary limit `, number of intersections.

add the next items in decreasing frequency order. We estimate the probability
that this path appears in a object by considering only the support of the items.
When this probability falls under a threshold, which makes the expected cost of
list intersection greater than the cost of verification (according to our analysis in
Section 3.2), we stop adding items in p and set `= |p|. Note that this probability
serves as an upper bound for all paths of length ` (assuming item independence),
since p includes the most frequent items. Table 5 summarizes the values of `
determined by each strategy for the experimental datasets. Overall FRQ provides
the best estimation of optimal `; in fact for NETFLIX it identifies the actual
optimal value. Figures 7, 8 and 9 confirm this observation as the performance of
LIMIT with a limit set by FRQ is very close to its performance for the optimal `.
Thus, for the rest of our analysis we adopt FRQ to set limit ` value.

5.5 Comparison of the Join Methods

In Section 5.4, we showed that by properly selecting limit ` (FRQ strategy),
LIMIT outperforms PRETTI∗ and, based on Sections 5.3 and 5.2, also PRETTI and
orgPRETTI. Next, we experiment with LIMIT+ which (like LIMIT) employs FRQ.
Figure 10 reports the response time of orgPRETTI, PRETTI, PRETTI∗, LIMIT and
LIMIT+ on all four real datasets. To further investigate the properties of LIMIT+,

Set Containment Join Revisited 21

 3000

 3500

 4000

 4500

 5000

 5500

 6000

1 2 4 7 63

#
 o

f
c
a
n
d
id

a
te

s
(i

n
 m

il
li

o
n
s)

LIMIT
PRETTI*

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 2200

1 2 3 8 10 52

#
 o

f
c
a
n

d
id

a
te

s
(i

n
 m

il
li

o
n

s)

LIMIT
PRETTI*

` (log scale) ` (log scale)
(a) BMS (b) FLICKR

 54000

 56000

 58000

 60000

 62000

 64000

 66000

 68000

1 34 5 9 398

#
 o

f
c
a
n

d
id

a
te

s
(i

n
 m

il
li

o
n

s)

LIMIT
PRETTI*

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

1 6 96 210 1557

#
 o

f
c
a
n

d
id

a
te

s
(i

n
 m

il
li

o
n

s)

LIMIT
PRETTI*

` (log scale) ` (log scale)
(c) KOSARAK (d) NETFLIX

Fig. 9 Vary limit `, number of candidates (for PRETTI∗ equals the number of results)

we also include the response time of two oracle methods4: (i) L−ORACLE corre-
sponds to LIMIT with ` set to its optimal value (see Table 5), (ii) T−ORACLE is a
version of LIMIT+ which compares the actual execution time of the two alterna-
tive strategies for current prefix tree node instead of utilizing the cost model of
Section 3.2; note that for this purpose we run offline both alternative strategies
for every prefix tree node and store their execution time. With the exception of
orgPRETTI and PRETTI the rest of the algorithms follow the OPJ join paradigm.
We break the response time of all methods into three parts, (i) building prefix
tree TR, (ii) building inverted index IS and (iii) computing the join results. Note
that for PRETTI+, LIMIT, LIMIT+ and the oracles, the indexing time additionally
includes the sorting and partitioning cost of the input objects. As expected the
total indexing time is negligible compared to the joining time; an exception arises
for FLICKR due its large number of objects.

Figure 10 shows that LIMIT+ is the most efficient method for set containment
joins. It is at least two times faster than PRETTI. LIMIT+ also outperforms LIMIT

for the BMS, FLICKR and KOSARAK datasets while for NETFLIX, both algo-
rithms perform similarly as (i) the FRQ strategy sets limit ` to its optimal value
and (ii) the TR prefix tree for NETFLIX is quite balanced. The adaptive approach

4 These are infeasible methods using apriori knowledge which is not known at runtime and
it is extremely expensive to compute before the join.

22 P. Bouros et al.

 0

 20

 40

 60

 80

orgPR
ETTI

PR
ETTI

PR
ETTI*

LIM
IT

LIM
IT+

L-O
R
A

C
LE

T-O
R
A

C
LE

R
es

p
o
n
se

 t
im

e
(s

ec
)

Prefix tree
Inverted index

Join

 0

 20

 40

 60

 80

 100

 120

orgPR
ETTI

PR
ETTI

PR
ETTI*

LIM
IT

LIM
IT+

L-O
R
A

C
LE

T-O
R
A

C
LE

R
es

p
o

n
se

 t
im

e
(s

ec
)

Prefix tree
Inverted index

Join

(a) BMS (b) FLICKR

 0

 20

 40

 60

 80

 100

 120

 140

orgPR
ETTI

PR
ETTI

PR
ETTI*

LIM
IT

LIM
IT+

L-O
R
A

C
LE

T-O
R
A

C
LE

R
es

p
o

n
se

 t
im

e
(s

ec
)

Prefix tree
Inverted index

Join

0

500

1000

1500

2000

14000

orgPR
ETTI

PR
ETTI

PR
ETTI*

LIM
IT

LIM
IT+

L-O
R
A

C
LE

T-O
R
A

C
LE

R
es

p
o

n
se

 t
im

e
(s

ec
)

Prefix tree
Inverted index

Join

(c) KOSARAK (d) NETFLIX

Fig. 10 Comparison of the set containment join methods on real datasets (limit ` set by FRQ
according to Table 5)

of LIMIT+ that dynamically chooses between list intersection and candidates ver-
ification, copes better with (i) overestimated ` values and (ii) cases where TR is
unbalanced. Specifically, due to employing an ad-hoc limit for each path of the
prefix tree, LIMIT+ can be faster than LIMIT even with optimal `, i.e., faster than
L−ORACLE (see Figures 10(b) and (c)). For these datasets, TR is quite unbalanced
and thus, there is no fixed value of ` to outperform the adaptive strategy. Note
that even if ` is overestimated, e.g., using strategy W–AV G, the performance of
LIMIT+ is almost the same as when an optimal (or close to optimal) ` is used.
Note also that the response time of LIMIT+ is very close to that of T−ORACLE
which proves the accuracy of our cost model proposed in Section 3.2. We would
like to stress at this point that the overall performance improvement achieved by
LIMIT+ over the original method of [24] which arranges the items inside an object
in decreasing frequency order is as expected even larger compared to our version of
PRETTI; LIMIT+ is 5 times faster than orgPRETTI for BMS, 11 times for FLICKR,
3.5 times for KOSARAK and 70 times for NETFLIX.

Next, we analyze the advantage of LIMIT+ (using FRQ) over orgPRETTI of
[24] that arranges the items in decreasing frequency order, with respect to their
memory requirements. Figure 11(a) shows the space for indexing only the left-hand
collection R when neither method follows the OPJ paradigm. We observe that by
constructing limited prefix tree `TR instead of unlimited TR, LIMIT+ saves at least
50% of space compared to orgPRETTI; for NETFLIX, where TR has the highest
storing cost due to its extremely long objects, the savings are over 90%. Then, in

Set Containment Join Revisited 23

Dataset
memory ratio

`TR/TR

BMS 50%
FLICKR 44%
KOSARAK 46%
NETFLIX 3%

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

R
at

io
 o

f
to

ta
l

m
em

o
ry

 (
%

)

% of partitions processed

BMS
FLICKR

KOSARAK
NETFLIX

(a) LIMIT+ (not OPJ) Vs orgPRETTI (b) LIMIT+ (OPJ) Vs orgPRETTI

Fig. 11 Memory requirements (LIMIT+ using FRQ)

Figure 11(b) we consider LIMIT+ adopting OPJ and report the space for indexing
both input collections while evaluating the join, compared to orgPRETTI which
does not follow the OPJ paradigm. We observe that by incrementally building `TR
and IS , LIMIT+ uses at least 50% less space than orgPRETTI. Naturally, the amount
of space used by LIMIT+ increases while examining the collection partitions, but
it is always lower than the space for orgPRETTI due to never actually building and
storing the entire prefix tree; only one subtree of `TR is kept in memory at a time.
Finally, notice the different trend for NETFLIX as its partitions have balanced
sizes; in contrast for BMS, FLICKR and KOSARAK, the first partitions contain
very few objects while the last ones are very large.

Finally, we present the results of our scalability tests on the synthetic datasets
of Table 2. Figure 12 reports the response time of our best method LIMIT+ and
the orgPRETTI and PRETTI competitors. The purpose of these tests is twofold:
(i) to demonstrate how the characteristics of a dataset affect the performance of
the methods, and (ii) to determine their “breaking point”. First, we notice that
all methods are affected in a similar manner; their response time increases as the
input contains more or longer objects and decreases while the domain size becomes
larger. An exception arises in Figure 12(d). The performance of orgPRETTI is
severely affected when increasing the order of the Zipfian distribution; recall that
orgPRETTI arranges the items inside an object, in decreasing frequency order. As
expected, LIMIT+ outperforms orgPRETTI and PRETTI under all setups, similar to
the case of real datasets. Second, we also observe that both orgPRETTI and PRETTI

are unable to cope with the increase of the cardinality and weighted average object
length of the datasets. These two factors directly affect the size of the TR prefix
tree and the memory requirements. In practice, orgPRETTI and PRETTI failed to
run for inputs with more than 5M objects and/or when their weighted average
length is larger than 50, because the unlimited prefix tree cannot fit inside the
available memory; in these cases the methods would have to adopt a block-based
evaluation approach similar [24,27]. In contrast, LIMIT+ is able to index left-hand
relation R due to employing limit ` and following OPJ, and hence, compute the
join results.

24 P. Bouros et al.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

1 3 5 7 10

R
es

p
o

n
se

 t
im

e
(s

ec
)

of objects (in millions)

orgPRETTI
PRETTI
LIMIT+

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

10 50 100 500 1000

R
es

p
o
n
se

 t
im

e
(s

ec
)

of items (log scale, in thousands)

orgPRETTI
PRETTI
LIMIT+

(a) Cardinality (b) Domain size

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

10 30 50 70 100

R
es

p
o

n
se

 t
im

e
(s

ec
)

of items

orgPRETTI
PRETTI
LIMIT+

 100

 1000

 10000

 100000

0 0.3 0.5 0.7 1

R
es

p
o
n
se

 t
im

e
(s

ec
)

order

orgPRETTI
PRETTI
LIMIT+

(c) Weighted avg object length (d) Zipfian distribution

Fig. 12 Scalability tests on synthetic datasets (limit ` set by FRQ), default parameter values:
candinality 5M objects, domain size 100K items, weighted avg object length 50 items, order
of Zipfian distribution 0.5

6 Related Work

Our work is related to query operators on sets. In this section, we summarize
previous work done for set containment queries, set containment joins, and set
similarity joins. In addition, we review previous work on efficient computation of
list intersection, which is a core module of our algorithms.

6.1 Set Containment Queries

Signatures and inverted files are two alternative indexing structures for set-valued
data. Signatures are bitmaps used to exactly or approximately represent sets.
With |D| being the cardinality of the items domain, a set x is represented by
a |D|-length signature sig(x). The i-th bit of sig(x) is set to 1 iff the i-th item
of domain D is present in x. If the sets are very small compared to |D|, exact
signatures are expensive to store, and therefore, approximations of fixed length
l < |D| are typically used. Experimental studies [22,44] showed that inverted files
outperform signature-based indices for set containment queries on datasets with
low cardinality set objects, e.g., typical text databases.

In [37,38], the authors proposed extensions of the classic inverted file data
structure, which optimize the indexing set-valued data with skewed item distribu-

Set Containment Join Revisited 25

tions. In [14], the authors proposed an indexing scheme for text documents, which
includes inverted lists for frequent word combinations. A main-memory method
for addressing error-tolerant set containment queries was proposed in [1]. In [42],
Zhang et al. addressed the problem of probabilistic set containment, where the
contents of the sets are uncertain. The proposed solution relies on an inverted file
where postings are populated with the item’s probability of belonging to a certain
object. The study in [23] focused on containment queries on nested sets, and pro-
poses an evaluation mechanism that relies on an inverted file which is populated
with information for the placement of an element in the tree of nested sets. The
above methods use classic inverted files or extend them either by trading update
and creation costs for response time [1,14,37,38] or by adding information that is
needed for more complex queries [23,42]. Employing these extended inverted files
for set containment joins (i.e., in place of our IS) is orthogonal to our work.

6.2 Set Containment Joins

In [21], the Signature Nested Loops (SNL) Join and the Signature Hash Join (SHJ)
algorithm for set containment joins were proposed, with SHJ shown to be the
fastest. For each set object r in the left-hand collection R, both algorithms com-
pare signatures to identify every object s in the right-hand collection S with
sig(r) & ¬sig(s) = 0 and |r| ≤ |s| (filter phase), and then, perform explicit
set comparison to discard false drops (verification phase). Later, the hash-based
algorithms Partitioned Set Join (PSJ) in [30] and Divide-and-Conquer Set Join
(DCJ) in [28] aimed at reducing the quadratic cost of the algorithms in [21]. In
these approaches, the input collections are partitioned based on hash functions
such that object pairs of the join result fall in the same partition. Finally, Mel-
nik and Molina [29] proposed adaptive extensions to PSJ and DCJ, termed APSJ

and ADCJ, respectively, to overcome the problem of a potentially poor partitioning
quality.

Inverted files were employed by [24,27] for set containment joins. Specifically,
in [27], Mamoulis proposed a Block Nested Loops (BNL) Join algorithm that indexes
the right-hand collection S by an inverted file IS . The algorithm iterates through
each object r in the left-hand collection R and intersects the corresponding post-
ings lists of IS to identify the objects in S that contain r. The experimental analysis
in [27] showed that BNL is significantly faster than previous signature-based meth-
ods [21,30]. In [24], Jampani and Pudi targeted the major weakness of BNL; the fact
that the overlaps between set objects are not taken into account. The proposed
algorithm PRETTI, employs a prefix tree on the left-hand collection, allowing list
intersections for multiple objects with a common prefix to be performed just once.
Experiments in [24] showed that PRETTI outperforms BNL and previous signature-
based methods of [29,30]. Our work first identifies and tackles the shortcomings
of the PRETTI algorithm and then, proposes a new join paradigm.

6.3 Set Similarity Joins

The set similarity join finds object pairs (r, s) from input collections R and S,
such that sim(r, s) ≥ θ, where sim(·, ·) is a similarity function (e.g., Jaccard

26 P. Bouros et al.

coefficient) and θ is a given threshold. Computing set similarity joins based on
inverted files was first proposed in [34]: for each object in one input, e.g., r ∈ R, the
inverted lists that correspond to r’s elements on the other collection are scanned to
accumulate the overlap between r and all objects s ∈ S. Among the optimization
techniques on top of this baseline, Chaudhuri et al. [15] proposed a filter-refinement
framework based on prefix filtering ; for two internally sorted set objects r and s
to satisfy sim(r, s) ≥ θ their prefixes should have at least some minimum overlap.
Later, [3,9,33,41] built upon prefix filtering to reduce the number of candidates
generated. Recently, Bouros et al. [10] proposed a grouping optimization technique
to boost the performance of the method in [41], and Wang et al. [40] devised a cost
model to judiciously select the appropriate prefix for a set object. An experimental
comparison of set similarity join methods can be found in [25]. In theory, the above
methods can be employed for set containment joins, considering for instance the
asymmetric containment Jaccard measure, sim(r, s) = |r∩s|

|r| and threshold θ= 1.
In practice, however, this approach is not efficient as it generates a large number of
candidates. For each object r ∈ R prefix filtering can only prune objects in S that
do not contain r’s first item while the rest of the candidates need to be verified by
comparing the actual set objects. Therefore, the ideas proposed in previous work
on set similarity joins are not applicable to set containment joins.

6.4 List Intersection

In [19,20], Demaine et al. presented an adaptive algorithm for computing set in-
tersections, unions and differences. Specifically, the algorithm in [19] (ameliorated
in [20] and extended in [7]) polls each list in a round robin fashion. Baeza-Yates [4]
proposed an algorithm that adapts to the input values and performs quite well in
average. It can be seen as a natural hybrid of the binary search and the merge-sort
approach. Experimental comparison of the above, among others, methods of list
intersection, with respect to their CPU cost can be found in [5,6,8]. The trade-off
between the way sets are stored and the way they are accessed in the context of
the intersection operator was studied in [18]. Finally, recent work [35,36,39] con-
sidered list intersection with respect to the characteristics of modern hardware and
focused on balancing the load between multiple cores. In [35,36], Tatikonda et al.
proposed inter-query parallelism and intra-query parallelism. The former exploits
parallelism between different queries, while the latter parallelizes the processing
within a single query. On the other hand, the algorithm in [39] probes the lists in
order to gather statistics that would allow efficient exploration of the multi-level
cache hierarchy. Efficient list intersection is orthogonal to our set containment join
problem. Yet, in Section 5.2, we employ a hybrid list intersection method based
on [4] to determine the preferred ordering of the items inside the objects.

6.5 Estimating Set Intersection Size

Estimating the intersection size of two sets has received a lot of attention in the
area of information retrieval [11,12,16,17,26], to determine the similarity between
two documents modelled as sets of terms. Given sets A and B, the basic idea
is to compute via sampling small sketches S(A) and S(B), respectively. Then,

Set Containment Join Revisited 27

|S(A) ∩ S(B)| is used as an estimation of |A ∩B|. Our adaptive methodology for
set containment joins (Section 3.2) involves estimating the size of a list intersection.
Yet, the methods discussed above are not applicable as they require an expensive
preprocessing step, i.e., precomputing and indexing the sketches for every list of
the inverted index at the right-hand collection. In addition, one of the two lists at
each intersection (i.e., candidates list CL) is the result of previous intersections.
Thus, computing the sketch of CL should be done on-the-fly, i.e., the overall cost
of the sketch-based intersection would exceed the cost of performing the exact list
intersection (especially since CL becomes shorter every time it is intersected with
a inverted list of the right-hand collection).

7 Conclusion

In this paper we revisited the set containment join R ./⊆ S between two collections
R and S of set objects r and s, respectively. We presented a framework which
improves the state-the-art method PRETTI, greatly reducing the space requirements
and time cost of the join. Particularly, we first proposed an adaptive methodology
(algorithms LIMIT and LIMIT+) that limits the prefix tree constructed for the left-
hand collection R. Second, we proposed a novel join paradigm termed OPJ that
partitions the objects of each collection based on their first contained item, and
then examines these partitions to evaluate the join while progressively building the
indices on R and S. Finally, we conducted extensive experiments on real datasets
to demonstrate the advantage of our methodology.

Besides the fact that the OPJ paradigm significantly reduces both the join cost
and the maximum memory requirements, it can be applied in a parallel processing
environment. For instance, by assigning each partition Ri of the left-hand collec-
tion to a single computer node vi while replicating the partitions of the right-hand
collection such that node vi gets every object in S which starts either by item i or
an item before i according to the global item ordering, our method runs at each
node and there is no need for communication among the nodes, since join results
are independent and there are no duplicates. In the future, we plan to investigate
the potential of such an implementation.

References

1. P. Agrawal, A. Arasu, and R. Kaushik. On indexing error-tolerant set containment. In
SIGMOD Conference, pages 927–938, 2010.

2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases.
In VLDB, pages 487–499, 1994.

3. A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins. In VLDB, pages
918–929, 2006.

4. R. A. Baeza-Yates. A fast set intersection algorithm for sorted sequences. In CPM, pages
400–408, 2004.

5. R. A. Baeza-Yates and A. Salinger. Experimental analysis of a fast intersection algorithm
for sorted sequences. In SPIRE, pages 13–24, 2005.

6. R. A. Baeza-Yates and A. Salinger. Fast intersection algorithms for sorted sequences. In
Algorithms and Applications, Essays Dedicated to Esko Ukkonen on the Occasion of His
60th Birthday, pages 45–61. 2010.

7. J. Barbay and C. Kenyon. Adaptive intersection and t-threshold problems. In SODA,
pages 390–399, 2002.

28 P. Bouros et al.

8. J. Barbay, A. López-Ortiz, T. Lu, and A. Salinger. An experimental investigation of set
intersection algorithms for text searching. ACM Journal of Experimental Algorithmics,
14:7:3.7–7:3.24, Jan. 2009.

9. R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity search. In WWW,
2007.

10. P. Bouros, S. Ge, and N. Mamoulis. Spatio-textual similarity joins. PVLDB, 6(1):1–12,
2012.

11. A. Broder. On the resemblance and containment of documents. In SEQUENCES, pages
21–29, 1997.

12. A. Z. Broder. Identifying and filtering near-duplicate documents. In CPM, pages 1–10,
2000.

13. B. Cao and A. Badia. A nested relational approach to processing sql subqueries. In
SIGMOD Conference, pages 191–202, 2005.

14. S. Chaudhuri, K. W. Church, A. C. König, and L. Sui. Heavy-tailed distributions and
multi-keyword queries. In SIGIR, pages 663–670, 2007.

15. S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity joins in data
cleaning. In ICDE, page 5, 2006.

16. Z. Chen, F. Korn, N. Koudas, and S. Muthukrishnan. Selectivity estimation for boolean
queries. In PODS, pages 216–225, 2000.

17. Z. Chen, F. Korn, N. Koudas, and S. Muthukrishnan. Generalized substring selectivity
estimation. J. Comput. Syst. Sci., 66(1):98–132, 2003.

18. J. S. Culpepper and A. Moffat. Efficient set intersection for inverted indexing. ACM
Trans. Inf. Syst., 29(1):1, 2010.

19. E. D. Demaine, A. López-Ortiz, and J. I. Munro. Adaptive set intersections, unions, and
differences. In SODA, pages 743–752, 2000.

20. E. D. Demaine, A. López-Ortiz, and J. I. Munro. Experiments on adaptive set intersections
for text retrieval systems. In ALENEX, pages 91–104, 2001.

21. S. Helmer and G. Moerkotte. Evaluation of main memory join algorithms for joins with
set comparison join predicates. In VLDB, pages 386–395, 1997.

22. S. Helmer and G. Moerkotte. A performance study of four index structures for set-valued
attributes of low cardinality. VLDBJ, 12(3):244 – 261, 2003.

23. A. Ibrahim and G. H. L. Fletcher. Efficient processing of containment queries on nested
sets. In EDBT, pages 227–238, 2013.

24. R. Jampani and V. Pudi. Using prefix-trees for efficiently computing set joins. In DASFAA,
pages 761–772, 2005.

25. Y. Jiang, G. Li, J. Feng, and W. Li. String similarity joins: An experimental evaluation.
PVLDB, 7(8):625–636, 2014.

26. H. Köhler. Estimating set intersection using small samples. In ACSC, pages 71–78, 2010.
27. N. Mamoulis. Efficient processing of joins on set-valued attributes. In SIGMOD Confer-

ence, pages 157–168, 2003.
28. S. Melnik and H. Garcia-Molina. Divide-and-conquer algorithm for computing set con-

tainment joins. In EDBT, pages 427–444, 2002.
29. S. Melnik and H. Garcia-Molina. Adaptive algorithms for set containment joins. ACM

Trans. Database Syst., 28:56–99, 2003.
30. K. Ramasamy, J. M. Patel, J. F. Naughton, and R. Kaushik. Set containment joins: The

good, the bad and the ugly. In VLDB, pages 351–362, 2000.
31. R. Rantzau. Processing frequent itemset discovery queries by division and set containment

join operators. In DMKD, pages 20–27, 2003.
32. R. Rantzau, L. D. Shapiro, B. Mitschang, and Q. Wang. Algorithms and applications for

universal quantification in relational databases. Inf. Syst., 28(1-2):3–32, 2003.
33. L. Ribeiro and T. Härder. Efficient set similarity joins using min-prefixes. In Advances

in Databases and Information Systems, 13th East European Conference, ADBIS 2009,
Riga, Latvia, September 7-10, 2009. Proceedings, pages 88–102, 2009.

34. S. Sarawagi and A. Kirpal. Efficient set joins on similarity predicates. In SIGMOD
Conference, pages 743–754, 2004.

35. S. Tatikonda, B. B. Cambazoglu, and F. P. Junqueira. Posting list intersection on multicore
architectures. In SIGIR, pages 963–972, 2011.

36. S. Tatikonda, F. Junqueira, B. B. Cambazoglu, and V. Plachouras. On efficient posting
list intersection with multicore processors. In SIGIR, pages 738–739, 2009.

37. M. Terrovitis, P. Bouros, P. Vassiliadis, T. K. Sellis, and N. Mamoulis. Efficient answering
of set containment queries for skewed item distributions. In EDBT, pages 225–236, 2011.

Set Containment Join Revisited 29

38. M. Terrovitis, S. Passas, P. Vassiliadis, and T. K. Sellis. A combination of trie-trees and
inverted files for the indexing of set-valued attributes. In CIKM, pages 728–737, 2006.

39. D. Tsirogiannis, S. Guha, and N. Koudas. Improving the performance of list intersection.
PVLDB, 2(1):838–849, 2009.

40. J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?: an adaptive framework for
similarity join and search. In SIGMOD Conference, pages 85–96, 2012.

41. C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity joins for near duplicate
detection. In WWW, pages 131–140, 2008.

42. X. Zhang, K. Chen, L. Shou, G. Chen, Y. Gao, and K.-L. Tan. Efficient processing of
probabilistic set-containment queries on uncertain set-valued data. Inf. Sci., 196:97–117,
2012.

43. Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association rule algorithms.
In KDD, pages 401–406, 2001.

44. J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted files versus signature files for text
indexing. TOIS, 23(4):453–490, 1998.

	1 Introduction
	2 Background on Set Containment Join: The PRETTI Algorithm
	3 An Adaptive Methodology
	4 A Novel Join Paradigm
	5 Experimental Evaluation
	6 Related Work
	7 Conclusion

