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Stimulus-locked averaged event-related potentials (ERPs) are among the most frequently used signals in Cogni-
tiveNeuroscience. However, the late, cognitive or endogenous ERP components are often variable in latency from
trial to trial in a component-specific way, compromising the stability assumption underlying the averaging
scheme. Here we show that trial-to-trial latency variability of ERP components not only blurs the average ERP
waveforms, but may also attenuate existing or artificially induce condition effects in amplitude. Hitherto this
problem has not been well investigated. To tackle this problem, a method to measure and compensate compo-
nent-specific trial-to-trial latency variability is required. Here we first systematically analyze the problem of sin-
gle trial latency variability for condition effects based on simulation. Then, we introduce a solution by applying
residue iteration decomposition (RIDE) to experimental data. RIDE separates different clusters of ERP compo-
nents according to their time-locking to stimulus onsets, response times, or neither, based on an algorithm of it-
erative subtraction.We suggest to reconstruct ERPs by re-aligning the component clusters to theirmost probable
single trial latencies. We demonstrate that RIDE-reconstructed ERPs may recover amplitude effects that are di-
minished or exaggerated in conventional averages by trial-to-trial latency jitter. Hence, RIDE-corrected ERPs
may be a valuable tool in conditions where ERP effects may be compromised by latency variability.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Event-related brain potential (ERP) components are important and
frequently employed tools in Cognitive Neuroscience, in both basic
and applied settings. The components of averaged ERP waveforms can
be related to specific mental sub-processes; questions usually concern
amplitude or latency differences between experimental conditions
(e.g., Rugg and Coles, 1995), populations (e.g., Polich and Herbst,
2000), or individuals (e.g. Kaltwasser et al., 2014). Recently, latency var-
iability of certain ERP components has received growing attention in
single trial studies (e.g. Saville et al., 2014). However, despite the prev-
alence of the average ERP protocol in cognitive brain research, the exis-
tence and consequences of trial-to-trial latency variability (latency
jitter) is a long-standing but still under-explored problem (cf., Jung et
ong Kong Baptist University,

. This is an open access article under
al., 2001; Luck, 2005; Möcks et al., 1988; Picton et al., 1984; Woody,
1967). The present paper concerns the interpretation of measured am-
plitude effects as a mixture of amplitude variation and trial-to-trial la-
tency jitter (denoted as ‘latency jitter’ in the following). Latency jitter
smears or blurs averaged ERPs and – depending on the affected condi-
tion(s) – may obscure or mimic amplitude differences. For example,
schizophrenic patients show consistently smaller P3 amplitudes than
healthy controls (e.g., Jeon and Polich, 2003); however the effect may
be partly accounted for by different extents of latency jitter as patients
also show larger reaction time variability (Ford et al., 1994; Röschke et
al., 1996; Roth et al., 2007). Such ambiguities may pervade any study
where differences between conditions or population samples are con-
founded with different degrees of latency jitter, for example aging or
brain damage (Fjell et al., 2011; Patterson et al., 1988; Walhovd et al.,
2008). In principle, all amplitude variations in average ERP waveform
across conditions are mixtures of true amplitude variations and differ-
ent extents of latency jitter. As we will demonstrate, if strong enough
even identical amounts of latency jitter across conditions may suppress
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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true condition effects in amplitude. Therefore, it is imperative to inves-
tigate the effects of latency jitter and to findways of correcting for it. The
mixing problem and its solution are still under-explored probably be-
cause tackling this issue requires handling highly noisy single trial ERP
signals.

Notably, in addition to trial-to-trial latency jitter, there are other
causes of ERP waveform blurring, for examples, volume conduction,
trial-to-trial variability in amplitude and morphology, inter-individual
variability, etc. The present report exclusively addresses the blurring
problem due to trial-to-trial latency jitter, first on a theoretical level
and then by suggesting a solution based on a novel application of resi-
due iteration decomposition (RIDE; e.g., Ouyang et al., 2015b).

1.1. The consequences of latency jitter in ERPs

ERPs are obtained by averagingmany epochs – typically 30 to 60 – of
EEG from single trials, assuming that the stimulus- or response-related
signal embedded in the EEG is identical from trial to trial but that back-
ground noise varies independently of the signal around a mean of zero
across trials. But in fact, ERP components may strongly vary in latency
across trials, as recognized by ERP researchers for a long time (e.g.,
Jung et al., 2001; Kutas et al., 1977; Leuthold and Sommer, 1998;
Pfefferbaum et al., 1980; Verleger, 1997; Woody, 1967).

The trial-to-trial latency variability of ERP components may have
two major consequences on condition effects, as illustrated in Fig. 1.
Firstly, (Fig. 1, Case 1) trial-to-trial latency variability blurs the wave-
forms, attenuating both ERP component amplitudes and amplitude dif-
ferences between conditions. The reduced amplitude differences may
not be large enough to outweigh the noise, diminishing the size of ex-
perimental effects and statistical test parameters.

As a second consequence different extents of latency variability
across conditions may mimic amplitude effects in ERPs (Fig. 1, Case 2).
If conditions with identical amplitudes differ in variability of single
trial latencies, the average ERP will show amplitude differences across
conditions that might become statistically significant. In this case, am-
plitude differences may be erroneously attributed to different strengths
of activities generated by the underlying neural systems rather than to
different degrees of temporal variability of the neural activities across
single trials.

In reality, between-condition ERP differences might be affected by a
combination of both cases. This problem could lead to the erroneous
conclusions that there is an amplitude difference when there is only a
difference in latency variability or that there is no amplitude difference,
Cond. 1
Cond. 2

Case 1 

Case 2

Fig. 1. Illustration of the smearing effect by trial-to-trial latency variability. The blue and
red sinus half-waves represent ERP components from two conditions for different cases.
Case 1: Two components show the same latency variability but differ in amplitude. The
amplitude difference in the average ERPs for two conditions (red and blue) is
diminished by trial-to-trial latency variability. Case 2: Two components are the same in
amplitude but differ in trial-to-trial latency variability, mimicking an amplitude
difference between condition averages.
when latency variability obscures a true amplitude effect. Therefore it is
highly desirable to solve the ambiguities caused by latency variability.

1.2. Previous attempts

Although the problem of latency jitter in ERP data has been long rec-
ognized (Kutas et al., 1977;Woody, 1967), as explained next, a satisfac-
tory solution to the problem has not yet been established. In the
followingwewill briefly reviewprevious suggestions to solve the laten-
cy jitter problem and their limitations.

A traditional approach to tackle trial-to-trial latency variability is re-
sponse-locked averaging, with the idea that late ERP components,
blurred in stimulus-locked averaging, will come out more clearly
when synchronized to the response. While this assumption is true for
response-related components, response-lockinghas several limitations:
1) It compromises the stimulus-locked components (Fig. 2). 2) There
may be components that are neither locked to stimulus onsets nor to
RTs, which would be smeared by both stimulus and response locking.
3) A great number of experiments do not require immediate responses
or any responses, which precludes response-locked averaging. In this
case, an alternative method, latency-locked averaging, is to average sin-
gle trial ERP to the estimated latencies of a dominant component, for ex-
ample, the P300 (Ahmadi and Quiroga, 2013; Woody, 1967; Tuan et al.,
1987). This approach, however, still suffers from the above limitation
since ERPs are not solely composed of a unitary dominant component
or component cluster but are rather composed of multiple component
clusters with varying inter-component delays (Hansen, 1983; Jung et
al., 2001; Verleger, 1997).

Concisely speaking, stimulus-locked, response-locked, or
abovementioned latency-locked averaging schemes share the same
property of increasing the resolution of a certain component by sacrific-
ing the resolution of other components (Fig. 2), which Poli et al. (2010)
metaphorically termedmagnifying-glass effect. These authors proposed
a reaction-timebinningmethod in order to partly avoid themagnifying-
glass effect and suggested to average single-trial ERP from bins with
similar RTs. They separated single trials into three bins, each with 30%
of the trials after discarding 10% of the trials on the long tail of the RT
distribution. Although this procedure is likely to improve the ERP com-
ponents, the smearing effects are still present due to the spread of RTs,
especially in Bin 1 and 3. The results did show that the temporal resolu-
tion of ERP in each bin was increased, especially in Bin 2 where RT jitter
around the most probable RT value was relatively small. However, by
discarding many trials, only part of the data was analyzed, that is, a
great amount of information was lost. Since trials with long reaction
times were discarded, effects that might be exclusively localized in
slow responses might have been diminished. For example, the so-called
worst performance rule (Larson andAlderton, 1990) shows that general
intelligence is better reflected in the extreme responses (for a review,
see Coyle, 2003). In addition, the RT-binning method requires large
trial numbers and the analysis is limited to datasets with recorded RTs.

Jung et al. (2001) applied independent component analysis (ICA) to
single trial ERP data and identified some independent components (ICs)
that seem to have variable latency and correlate with RT. This approach
requires to evaluate and select the ICs with variable latency. Since ICA
can separate a great number of components (the same as the number
of electrodes), there is a large cluster of ICs that are not easy to classify
as being locked to the stimuli or RTs, or neither. Clear and applicable
criteria are missing for the selection of the ICs.

Another class of methods dealing with trial-to-trial variability is the
time marker-based separation of ERP components based on the as-
sumption that ERPs exclusively consist of marker-locked components
(Hansen, 1983; Knuth et al., 2006; Yin et al., 2009; Zhang, 1998;
Takeda et al., 2008). The markers refer to external events such as stim-
ulus onsets, response times or other cues. Although implemented by
different algorithms, there is a common theory underlying these
methods – the General Linear Model in which the markers serve as



Fig. 2. Illustration of stimulus-locked and RT-locked averaged ERPs – eachmethod smears the other component, which becomes the convolution of the componentwith the distribution of
reaction time (RT).
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regressors and the components are coefficients to be derived. Another
novel method that was not based on the approach of general linear
modelwas proposed by Kayser et al. (2007) in which they applied prin-
cipal component analysis (PCA) to concatenated stimulus- and re-
sponse-locked ERP waveforms, where some principal components are
exclusively stimulus-related, some are exclusively response-related,
and some show relations to both. The major limitation of the marker-
based approaches consists in the assumption that ERPs exclusively con-
sist ofmarker-locked components. A side issue is that theGeneral Linear
Model approach inherently suffers from distortion of ERP components
by low-frequency noise as reported in Ouyang et al. (2015b). In addi-
tion, when ERPs are separated into two ormore components, the ampli-
tude effects will probably be segregated into several parts, which brings
about a much higher level of complexity in the analysis as compared to
traditional ERP averaging. Therefore, a reconstruction of ERPs from the
separated, latency-corrected components is desirable, as will be intro-
duced in the following.

To overcome the limitations of previous approaches to solving the
latency jitter problem we essentially suggest to identify the various
component clusters and their single trial latencies – not merely relying
on external timemarkers – and to re-synchronize each component clus-
ter to its respective latency (see Fig. 3). After compensating for trial-to-
trial latency variability, the de-blurred waveforms and amplitudes of
ERP components between different conditions can be compared,
disentangling the confounded effects of differences in mean amplitude,
mean latency and latency variability across experimental conditions.
Recently, we have developed a newmethod – residue iteration decom-
position (RIDE) – for separating ERPs into different component clusters
with or without external time markers (Ouyang et al., 2011, 2015a,
2015b), which can also avoid the low-frequency distortion inherent in
several other methods (Ouyang et al., 2015b). In previous applications
of RIDE we have focused on component decomposition. Here, we
Fig. 3. Schematic illustration of conventional stimulus-locked average ERP (left) from single
correcting for latency variability (right). Please note, in reality, ERPs may differ with respect
extent of latency variability, etc.
systematically demonstrate for the first time that RIDE can also be
used to reconstruct jitter-compensated ERPs and, hence, disambiguate
the confounded effects of amplitude variation and latency jitter on
ERP amplitudes. In the following we will explain the principles of RIDE
and how it can be used to reconstruct jitter-compensated ERPs.

1.3. Re-constructed ERPs by RIDE

RIDE was developed to decompose ERPs into different component
clusters with specific latency variabilities relative to stimulus onset
(Ouyang et al., 2011, 2015a, 2015b). We showed that RIDE can un-mix
overlapping component clusters thatmaybe associated todifferent cog-
nitive sub-processes (Ouyang et al., 2013; Stürmer et al., 2013; Verleger
et al., 2014). Though developed as a tool for decomposing ERP compo-
nent clusters and extracting their single trial variability information,
RIDE has not been systematically explored on how it can improve the
analysis of cross-condition effects by compensating for trial-to-trial la-
tency variability. In this paper we demonstrate that by decomposing
and reconstructing ERPs with RIDE, we can restore condition effects in
amplitudes that are smeared by trial-to-trial latency variability, without
blurring either stimulus-, response-locked or intermediate components
as in previous averaging methods, using just one time marker at a time
(stimulus onset or reaction time or estimated latency).

Based on a general framework, RIDE decomposes the ERP from each
single trial into a stimulus-locked component cluster S, a central compo-
nent cluster C, and a response-locked component cluster R. The com-
plete algorithm can be found in Ouyang et al. (2015a) and a toolbox
can be obtained from http://cns.hkbu.edu.hk/RIDE.htm. A brief overview
of the method is given in the Method section below.

Fig. 3 illustrates the idea of latency-correcting ERPs with RIDE. For
ease of understanding, noise is not shown. Schematically, we assume
three component clusters in each single trial, shown in blue, red, and
trials with latency jitter, decomposition by RIDE (middle) and reconstructed ERP after
to the waveform patterns, polarities, inter-component temporal relationships and the

http://cns.hkbu.edu.hk/RIDE.htm
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green. The blue component is locked to the stimulus, whereas the red
and green components vary in their latencies relative to the stimulus
from trial to trial. The green component is assumed to be locked to reac-
tion time (RT). Due to the trial-to-trial latency variabilities of the red
and green components, the stimulus-locked averaged ERP (bottom)
blurs the representations of single trial ERPs and diminishes the true av-
erage amplitudes. The idea of ERP re-construction is shown in the right
column; it is achieved by first synchronizing each component cluster
(separated by RIDE) to its most probable latency across single trials,
followed by averaging. Therefore, the amplitudes of the various compo-
nents will not be attenuated, and the reconstructed ERP will show the
most probable neural response in single trials (Fig. 3, right, bottom).

In the present paper, wewill apply RIDE to datasets from several ex-
periments to obtain reconstructed ERPs, corrected for trial-to-trial la-
tency variability. Then we will compare the amplitude effects from
standard ERPs and RIDE-reconstructed ERPs to see how latency variabil-
ity affects amplitude differences.Wewill also conduct a validation anal-
ysis to show that the improvement of amplitude effects in reconstructed
ERPs is not an artifact of the method.

2. Method

2.1. Simulation

The simulation aimed to demonstrate the attenuation of ERP ampli-
tude effects between two conditions due to trial-to-trial latency vari-
ability. Only a single EEG channel was simulated; therefore, the
implications of the electrode montage in real data are not considered.
Based on the illustration in Fig. 1, we simulated single-trial EEG data
by a simple half sine wave (representing an ERP component) with 1/f
noise added, where f is frequency and spectrum power density is pro-
portional to 1/f (“pink noise”), which closely resembles the spectrum
pattern of EEG data. Thus, each single trial consists of a single half sine
wave (Fig. 5) with a given latency (varying across trials) and added
noise. Then, we assigned different parameters (e.g., latency variability
and noise strength) to different conditions to examine the smearing ef-
fect on the statistical results. Simulation parameters were as follows.
Each single trial epoch represented 500 ms, involving 500 sampling
points; ERP components were represented by half sine waves with a
span of 300 ms. The peak latency of the component was Gaussian-dis-
tributed across single trials, centered at t = 250ms with a standard de-
viation denoted as σ1. We added background noise with 1/f spectrum
and a standard deviation denoted as σ2. Conditions 1 and 2 were set
to grand average amplitudes of 10 and 11 for the ERP components, re-
spectively. Across-participant standard deviation of ERP amplitudes
wasσ3=1. For each participant, the amplitudewas constant across sin-
gle trials, which is an idealized setting that is unrealistic for empirical
data but sufficient to model the problem of trial-to-trial latency jitter.
There were 20 fictitious participants, each with 100 trials per condition.
The blurring effect on the simulation data was investigated across the
parameter range of [20−300] for σ1 and [1−12] for σ2, which covers
the transition of the condition effect from significant to insignificant
without correction of latency jitter (Fig. 5).

Single trial ERP data was simulated by the summation of compo-
nents with assigned random latencies and noise. Since the amplitude
of the components differed between conditions an amplitude effect
was expected to be revealed in statistical testing, for example, by t-
test or analysis of variance, given noise under certain level. Here, t-
tests were performed on the mean amplitudes between the two condi-
tions for the time window 100–400 ms covering the simulated ERP
component.

Since the simulated single trial ERPs vary in latencies, the cross-con-
dition amplitude effect will be attenuated if the statistical analysis is
conducted on the stimulus-locked ERPs. The main idea of the present
work is that the effect will be closer to the true amplitude effect when
the statistical analysis is conducted on latency-locked versions of ERPs,
which are obtained by re-synchronizing single trials to the retrieved
true latencies. Resynchronization of single trials was based on the laten-
cies detected by peak-picking after low-pass filtering at 3 Hz. Specifical-
ly, all single trials were synchronized to the detected single trial
latencies by temporally shifting each trial with the relative lag between
its latency and the median of all latencies across trials. In this way the
long-latency trials were shifted backward and the short-latency trials
were shifted forward in time. The t-tests were performed again after
resynchronization of the data.

2.2. Experimental data

In the empirical part we used five published datasets from different
experiments concerning various psychological questions. Here, the
datasets are dedicated to examine the smearing problem existing in ge-
neric ERP data that would affect the analysis of between-condition dif-
ferences. The five exemplary datasets covering various cognitive tasks
serve to demonstrate the validity of the method but are not exhaustive
in reflecting all potential entanglements of amplitude and latency ef-
fects in different cognitive psychological studies. Since only themethod-
ological issue is addressed in the present work, the specific
psychological issue in each dataset is not of particular interest; for
each dataset we compared only selected conditions since we intended
to demonstrate some typical scenarios about the smearing problem.
The datasets were provided by different labs with different setups, for
example reference selection, and different data preprocessing. For all
datasets that were fed into RIDE their original conditions after prepro-
cessing as described in the respective published paperweremaintained.

2.2.1. Dataset 1: face recognition
This data was taken from Herzmann and Sommer (2010) where

complete experimental details can be found. The experiment concerned
priming effects in face recognition. Briefly, 21 participants made famil-
iarity judgments by key-pressing about famous, unfamiliar, and experi-
mentally learned faces. All stimuli were preceded either by a different
face or by the same face; the latter case is a repetition priming condition.
Of interest herewaswhether and towhat extent the ERP amplitude var-
iation (particularly the early component sensitive to repetition) due to
face priming is affected (Schweinberger et al., 1995) by trial-to-trial la-
tency jitter. Therefore, only data for primed (Condition 1) and unprimed
(Condition 2) familiar faces were used here. Trials with ocular artifacts
(blinks or saccades) and other artifacts (voltage steps exceeding
50 μV/ms or a difference of more than 100 μV within an interval of
200 ms) and incorrect behavioral responses were discarded. ERPs
were aligned to a 100-ms baseline before target onset, digitally low-
pass filtered at 30 Hz with zero phase shift, and recalculated to average
reference. EEG was recorded from 65 sites covering the whole scalp.

2.2.2. Dataset 2: visual oddball
Complete experimental details can be found in Valsecchi et al.

(2009) who kindly provided the data. The experiment was a typical
oddball task. Herewe assessedwhether and towhat extent the ERP am-
plitude variation on the P3 component due to oddball frequency
(Squires et al., 1975; Duncan-Johnson and Donchin, 1977) is affected
by trial-to-trial latency jitter. Participants were 12 healthy adults. They
were instructed to minimize eye blinks and to maintain fixation on a
small (0.48° visual angle) white point that was continuously displayed
on an otherwise empty black screen. Once per second, a red or green
disc with a diameter of 2.04° appeared for 100 ms around the fixation
point. The participant's task was to silently count the stimuli with the
prespecified target color. The assignment of target color (red or green)
was counterbalanced over participants. In three experimental blocks
of 500 trials each, the frequency of target stimuli was 20, 50, or 80%.
Here, target conditions 20% (Condition 1) and 80% (Condition 2) were
used; 86% of all trials were free of eye blinks and submitted to analyses.
Data were recorded at a sampling rate of 250 Hz and a bandpass from
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0.1 to 70 Hz. All 40 channels, covering thewhole scalp, were referenced
against left mastoid and converted offline to average reference.

2.2.3. Dataset 3: Simon task
Data are from Böckler et al. (2011) where complete experimental

details can be found. The experiment concerned the compatibility effect
elicited by a Simon task. Here we investigated whether and to what ex-
tent the ERP amplitude variation on P3 component due to compatibility
(e.g., Sommer et al., 1993) is affected by trial-to-trial latency jitter. Six-
teen students participated in the experiment. Compatible and incom-
patible Simon task conditions were orthogonally combined with three
arousal conditions. A tone of 65 dB was presented either 500 or
200 ms before the visual stimulus or no tone was presented. The EEG
from 63 channels covering the whole scalp was referenced to the left
mastoid and converted to average reference offline. Bandpass was
0.01 to 70 Hz; sampling rate was 250 Hz. Trials containing blinks were
corrected off-line with Brain Electrical Source Analysis. Remaining arti-
factswere eliminated according to visual inspection. Here, data from the
compatible and incompatible conditionswithout tones were contrasted
(Conditions 1 and 2).

2.2.4. Dataset 4: reading
This data were provided byWang et al. (2015) where complete ex-

perimental details can be found. The experiment concerned semantic
and syntactic violation effects in reading tasks. Herewe assessedwheth-
er and to what extent the ERP amplitude variation on P600 component
due to the violation syntactic rules (Kuperberg, 2007) is affected by
trial-to-trial latency jitter. Eighteen Chinese native speakers read Chi-
nese sentences shown one word at a time. The sentences were either
regular (control condition, CON), contained semantic violations (SEM),
or both semantic and syntactic violations (SEM + SYN). In each condi-
tion there were 40 trials per participant. The EEG signals from 40 chan-
nels covering thewhole scalpwere digitized onlinewith a sampling rate
of 500 Hz and filtered offline with a bandpass of 0.02 to 30 Hz. Epochs
with amplitudes exceeding ±75 μV were excluded from the averages.
Online EEGwas referenced to the left mastoid and re-referenced offline
to the average of both mastoids. The CON and SEM + SYN were used
here.

2.2.5. Dataset 5: word recognition
This data was taken from Bayer et al. (2012). The experiment con-

cerned the emotion effect in word processing. Here we tested whether
and towhat extent the ERP amplitude variation on the LPC (late positive
component, Schacht and Sommer, 2009) due to the emotionmanipula-
tion is affected by trial-to-trial latency jitter. Briefly, 23 native German
speakers completed two tasks, reading and lexical decisions (LDT).
The stimuli consisted of 180 German words, which were positive, neu-
tral, or negative in valence and of either high or low arousal. For the lex-
ical decision task, 180 orthographically legal and pronounceable
pseudowords were constructed from other nouns by replacing one let-
ter at a random position within the word. During the LDT, participants
had to indicate by button presses whether or not a given letter string
represented a German word. All 62 channels covering the whole scalp
were recorded with left mastoid as initial reference, filtered with a
bandpass of 0.03–70 Hz, and sampled at 500 Hz. Offline, the EEG was
converted to average reference. Epochs containing artifacts and incor-
rect responses were discarded. ERP waveforms were referred to a
100 ms pre-stimulus baseline. Here, the data from positive (Condition
1) and negative (Condition 2) words in the LDT were used.

2.3. RIDE decomposition of ERPs

In the present paper we employed the RIDE algorithm from Ouyang
et al. (2015b). As illustrated in Fig. 3, RIDE aims to separate a stimulus-
locked component cluster S, RT-locked component cluster R and an in-
termediate component cluster C that is neither locked to stimulus onset
nor to RT. If no response is present, the R cluster is not derived. In gener-
ic cases, C captures themajor late componentwith variable trial-to-trial
latencies, for example, P3b. RIDE also obtains single trial latency infor-
mation of C. All information about the component clusters S, C, and R,
and about C latencies in single trials is obtained by the RIDE algorithm
consisting of a decomposition module as an inner iteration loop and a
latency estimation module as outer iteration loop described in the fol-
lowing. A flow-chart is provided in Fig. 4.

2.3.1. Decomposition module
Given that the single trial latencies of S, C, and R (notated as LS, LC,

and LR) are known (with LC being conveyed from the latency estimation
module), this inner iteration module separates the ERP into the three
component clusters. Initially S(t) = C(t) = R(t) = 0 was set. To esti-
mate S, RIDE subtracts C and R from each single trial and aligns the re-
siduals of all trials to the latency LS in order to obtain S as the median
waveform over all time points. The same procedure is applied to obtain
C and R. The whole procedure is iterated till convergence.

2.3.2. Latency estimation module
While the latencies of S and R are known – stimulus onsets and reac-

tion times, respectively – the latency of the assumed central component
cluster C is unknown. RIDE uses a self-optimized iteration scheme for la-
tency estimation, starting with an approximate initial estimation of LC
from the raw data. Woody's method is used to obtain an initial estimate
of LC: cross-correlation time courses between the ERP and single trials
are calculated for each single electrode and averaged across all elec-
trodes and low-pass filtered at 3 Hz. The lag of the maximum in the
scalp-averaged cross-correlation time course for each single trial is
taken as the single trial latency (LC). Starting with this LC estimate, the
analysis is subjected to the following iteration: (1) Use LS, LC, and LR to
decompose S, C, and R using theDecomposition Module till convergence.
The convergence is effectively defined as the difference between the
values of two successive iterations being much smaller (b10−3) than
that between the two initial iterations (Ouyang et al., 2015b). (2) Re-
move S and R (by subtraction) from each single trial and calculate the
cross-correlations between the residue and the C component cluster
to re-estimate the latency of LC. (3) Return to (1) and (2) and iterate
until convergence of both the latency LC and the component clusters S,
C, and R.

The C component cluster is latency-variable and has no overt latency
information corresponding to external time markers (e.g, stimulus on-
sets or response times). Due to volume conduction, components are
spread across the scalp, with dominant amplitudes at some electrodes
and weaker or close-to-zero amplitude at other electrodes. The average
reference scheme will further induce an inverse waveform of the dom-
inant component at theweak-amplitude electrodes. For example, P3b is
usually dominant at Pz/CPz and vanishes or inverses at frontal sites, de-
pending on the reference scheme. Therefore in estimating the single
trial latency of C by the latency estimation module, the data of the
whole scalp is used. That is, the cross-correlation time series are calcu-
lated for each electrode and the peak latency is identified from the aver-
age time series. This approach automatically emphasizes the
contribution of the dominant electrodes (for P3b it would be Pz and
its nearby electrodes) where the cross-correlation time series would
be bell-shaped; at the same time, the procedure weakens the contribu-
tions of the irrelevant sites where the cross-correlations fluctuate
around zero.

Signals at all electrodes are processed by RIDEwith a common set of
stimulus-onsets, C latencies and RTs in order to obtain the averaged
waveforms of S, C and R. The topographies of each RIDE component
can then be plotted for each time point. Using a common C latency for
all electrodes is largely justified based on the effect of volume conduc-
tion: A neural generator of a given ERP component will affect many re-
cording sites simultaneously. Of course, RIDE can be applied to each
electrode separately with an electrode-specific C latency estimated



Fig. 4. Flow-chart of RIDE decomposition. For explanation see text.
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only from that particular electrode. However, for electrodes with poor
signal-to-noise ratio or very weak C component, the latency estimation
would be less reliable and from a practical point of view, the topography
of C cannot be obtained without using a common latency for all
electrodes.

The RIDE method is extendable to other schemes, for example, no R
cluster when there is no response trigger, or more than one C cluster if
appropriate (e.g.,Wang et al., 2015).Whenmore than one C cluster is to
be separated, the initial latency estimations for different C clusters are
done in different time windows. For the experimental Datasets 1, 2, 3,
and 5 with available response times, we followed the general scheme
of separating ERP into the stimulus-locked S cluster, the central C cluster
(mainly capturing the P3 complex) and the response-locked R cluster.
For Dataset 4 concerning linguistic processing, we separated two C clus-
ters dedicated to capture theN400 and P600 components, but noR clus-
ter since there was no immediate overt response to the stimuli.

2.4. RIDE reconstruction of ERP

As explained in the introduction, non-stimulus-locked ERP compo-
nents are blurred by conventional stimulus-locked averaging, and ERP
reconstruction attempts to average each ERP component cluster in a
more appropriate way, that is, by synchronizing to their own latencies
rather than to stimulus onset. This can be done after RIDE decomposi-
tion. To obtain the ERP that shows themost probable waveforms in sin-
gle trials, we need to relocate each RIDE component cluster to its most
probable latency. We use the robust median value as an approximation
of the most probable latency. When each RIDE component cluster is
synchronized to its median latency, the ERP can be reconstructed in a
de-blurred version (Fig. 3, right). This can be done on each electrode
separately but with a common latency of C for all electrodes. The recon-
structed ERP may hence show larger amplitudes and richer waveform
patterns (Fig. 3, right, bottom) as a function of the amount of trial-to-
trial latency jitter across the recorded trials.

3. Results

3.1. Simulation of the smearing effect

In the first simulation we set the ERP amplitudes for the two condi-
tions to 10 and 11, respectively. In principle, if noise is relatively small,
the significance testwill reveal a condition effect in conventionally aver-
aged ERPs, whereas, the effect will be overridden as noise increases.
Apart from the effect of noise, as stressed in the introduction, the latency
variability of the component may diminish experimental effects on ERP
amplitudes. We gradually increased noise strength σ2 and latency vari-
ability σ1 and checked the changes of effect size (Cohen's d) and p-value
in t-tests (Fig. 5D, E). The p valuewas converted to binary levelswith the
customary threshold of 0.05. Indeed, latency variability and noise
strength did reduce effect size. These two variables exert effects on
the between-condition and within-condition variance, respectively.

Whereas noise (within-condition variance) is an inevitable contri-
bution to EEG signals, the between-condition difference can be properly
restored if it is depressed by latency variability. Once we compensated
for the latency variability of the simulated ERP components across sin-
gle trials by synchronizing the single trials to the median of the compo-
nent latencies detected by peak-picking, the result (effect size matrix
and binary p value in Fig. 5F, G) improved in line with expectations.
The difference between the effect size from original data (Fig. 5D) and
that from latency-corrected data (Fig. 5F) is shown in Fig. 5H, indicating
increase of effect size after compensating for the trial-to-trial latency jit-
ter. The lattices in σ1-σ2 panel where the p values are N0.05 in original
data (Fig. 5E) but b0.05 in latency-corrected data (Fig. 5G) are shown
in Fig. 5I, indicating the region where significant effects were hidden
by trial-to-trial latency jitter. This simulation illustrates how trial-to-
trial latency variability can diminish between-condition amplitude dif-
ferences and obscure true condition effects.

3.2. Real data

3.2.1. Single trial variability, RIDE separation, and reconstructed ERPs
Fig. 6 shows the scenario of RIDE separation and reconstruction of

data from a typical participant of Dataset 1. The layout of the figure is
similar to the illustration in Fig. 3. The data for panel A is from the single
electrode Pzwhere the P3 ismost pronounced. Left panels show the sin-
gle trial ERPs sorted by response times, and the average ERP, respective-
ly. The plot shows a late component cluster with variable latency that is
somewhat correlated with RT. The RIDE-separated component clusters
(Fig. 6, middle panels) show distinct wave shapes. After synchronizing
all component clusters at their own most probable latencies (Fig. 6,
right panel), the latency variability is greatly diminished (Fig. 6A,
right) and the reconstructed ERP (Fig. 6A, right) is enhanced in ampli-
tude and more detailed in structure than the conventional ERP (Fig.
6A, left). To better show the stimulus-locked component cluster we
also show the data from channel PO8 where the N170 component is
most prominent. However, the latency-variable cluster ismuchweaker.
The difference between panel A and B indicates that different RIDE com-
ponent clusters have different scalp topographies.

To better show the features of both stimulus-locked and latency-var-
iable component clusters, we applied a spatial filter to the data (Fig. 6C).
We applied PCA to each RIDE component cluster and obtained the first
principal component (PC) for each RIDE component. Each PC represents
the topographyonwhich each RIDE component is dominantly distribut-
ed. The PC weights for all three RIDE-derived component clusters were
added to form a single spatial filter that was applied on the spatio-tem-
poral patterns in each single trial. It is like a virtual channel integrating
the prominent features of all RIDE component clusters. Based on this ap-
proach of spatial filtering we can now show both stimulus-locked and



Fig. 5. Illustration of the simulation data (A–C) and the amplitude effects across different extents of latency variability (σ1) and noise strength (σ2) (D–G). A: Simulated ERPwaveform. B:
Simulated background noise when σ2 = 10. C: Simulated single trials data when σ1 = 80, σ2 = 10. D: The effect size of the amplitude difference between conditions. E: Binary p values
being larger or smaller than 0.05 across different parameters. F: The updated effect size for latency-synchronized ERP.G: Binary p values for latency-synchronized ERP.H: The difference of
effect size between D and F. I: Region of restored conditional effects shown by the lattices (black) where p b 0.05 in G but N0.05 in E.
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latency-variable component clusters (Fig. 6C). One can compare Figs. 3
and 6 to understand how RIDE separates and reconstructs ERP data.
Here we will focus on the smearing effect on amplitude differences.

3.2.2. Statistical testing on conventional and reconstructed ERPs
In this section we present the statistical results for the five datasets

from different experimental paradigms to see the change of between-
condition effects in selected time windows from standard ERPs to re-
constructed ERPs (Fig. 7). As expected, the amplitudes of the recon-
structed ERPs on the right panel are always larger than those of
standard ERPs. This is due to the correction of trial-to-trial latency
variability. On average, the increase of amplitudes of the largest peaks
in the reconstructed ERP is around 2 μV. But note that the increase of
the amplitude only indicates the correction for trial-to-trial latency jit-
ter.When it comes to the condition effect, the associated variance across
participants also plays an important role (Fig. 1). This will be revealed in
the following statistical analysis.

For each dataset, we superimposed waveforms at Pz for the condi-
tions considered here and for both ERPs and reconstructed ERPs. The
amplitude differences from this electrode between the two conditions
were t-tested across participants. The quantitative results for t and p
are shown directly in Fig. 7. The amplitudes were averaged within the



Fig. 6. Corresponding to the illustration in Fig. 3, but for real data from one participant of Dataset 1 at electrode Pz, PO8 and the first PC component. Left: single trial ERPs and the
conventional stimulus-locked average ERP. Middle: The separated S, C and R component clusters, synchronized to their own latency (most probable latency across single trials). Note
the different scales of the y-axis for the components. Right: Reconstructed single trial ERPs and their average. The waveform data was referenced to the average of all recording sites.
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Fig. 7. Comparison of condition effects in both standard and reconstructed ERPs at the Pz electrode. The t-test was performed on the time window indicated by the light green area,
covering the condition difference in question. The topographies show the average difference between two conditions in the tested window, with the same color scale for ERPs and
reconstructed ERPs. (A, B) Dataset 1: face recognition task. (C, D) Dataset 2: oddball task. (E, F) Dataset 3: Simon task. (G, H) Dataset 4: reading task. (I, J) Dataset 5: Lexical decision
task. The conditions are indicated in the legends. Right column: The mean latency variabilities of the C-component and error bars (± SD) across participants for the two conditions.
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time windows of interest which basically cover the prominent wave-
form differences. The time windows of interest are highlighted in
green in Fig. 7. The topographies of the amplitude differences across
all electrodes are shown for the time window of interest.

As already mentioned in the Method section, the five ERP compo-
nents to be examined for different datasets are 1) Priming effect
(N250r/ERE, early repetition effect) in face recognition, 2) classical odd-
ball effect in the P3., 3) Compatibility effect on P3 in Simon task, 4) se-
mantic/syntactic violation effect on P600 in reading, 5) emotion effect
on LPC (late positive component) in processing emotional words.
There are different patterns of results obtained from reconstructing
ERPs. (1) In the first two datasets, the condition effects were already
highly significant in the conventional ERP as seen from the large wave-
form differences and the statistical results. Yet the effects are still en-
larged after compensating for trial-to-trial latency variability in the
reconstructed ERPs. (2) In Dataset 3, reconstruction did not essentially
change statistical results. Here the time window was chosen to test
the compatibility effect in the amplitude of the P3 range (e.g. Sommer
et al., 1993). (3) Very interesting is Dataset 4,where the condition effect
was barely significant in the conventional ERP but became highly signif-
icant in the reconstructed ERPs. In this dataset, the P600was the compo-
nentwhere the effect was tested. The P600 reflects linguistic processing
and is elicited by syntactic and sometimes also by semantic violations
(e.g. Kuperberg, 2007).

In Dataset 5 it is the other way around: The significant effect
vanished in the reconstructed ERP. Here we tested the emotional effect
in the LPC component (e.g., Schacht and Sommer, 2009). The result in
Dataset 5 therefore should correspond to Case 2 proposed in the intro-
duction (Fig. 1), that is, a significant amplitude difference is largely
due to the difference in latency variability between conditions.

To corroborate these assumptions, we calculated the latency vari-
abilities (as standard deviation) of the C component clusters for both
conditions of each dataset. The error bars for both conditions (indicating
±1 SD across participants) are shown on the right panel of Fig. 7 to vi-
sually indicate the fluctuation of the latency variability across partici-
pants. In Dataset 5, for the positive- and negative-word conditions, the
average variability of C latency across participants was 109.3 ±
14.5 ms and 122.3 ± 21.0 ms, respectively. Indeed, the results
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confirmed our assumption: The paired t-test for the C latency variability
between the two conditions was significant, t(22) = 3.09, p b 0.01.
However, it is worthwhile to note that the error bars shown in Fig. 7
are not indicative of the significance of difference of latency variability
between conditions, because the samples are paired, in which case
only the SD and themean of thedifference are relevant. Notably, Dataset
2 showed a significant difference in both amplitude and latency
variability.
3.3. Validations

A critical question regarding the magnified or uncovered effects is
whether they are real or just artifacts of the method. To address this
question, we conducted two validations, using a surrogate from real
data, where the trials from the conditions are uniformly mixed, and
using simulated data without built-in condition effects.
3.3.1. Surrogate from real data
We conducted a permutation test: In each permutation, we mixed

the single-trial data of each participant of both conditions and randomly
split them into two halves labeled ‘Condition 1’ and ‘Condition 2’. In
these permutated data, no condition effect is supposed to be systemat-
ically found in the reconstructed ERP. We permutated Dataset 1 and
tested the same time window as in Fig. 7 (A, B). We used t-test to test
the between-condition effect in the reconstructed ERP from 100,000
permutations. The 100,000 realizations were divided into 100 bins. In
each bin we counted how many positive effects (α was set to 0.05)
were found. Fig. 8 (left panel) shows the probability of finding positive
effects in each bin. The results showed that the reconstructed ERPs did
not yield a significant effect at higher probability than chance. The re-
sults were the same for the other four datasets.
3.3.2. Simulated data without built-in condition effect
Amore straightforward test of whether RIDE may generate artificial

effects is applying it to noise data without a structured component. In
this test, we generated 1/f noise, resembling the spectrum pattern of
EEG data. The data for two conditions (the numbers of participants
and trials are the same as in Dataset 1) are identical except for the ran-
dom number seed. We constructed 100,000 datasets with two condi-
tions; in each the random number seed was different, and RIDE was
appliedwith the sameparameters as in Dataset 1 to generate the recon-
structed ERPs. Finally we t-tested the reconstructed data and found that
the obtained number of positive effects did not outnumber the random
probability across the 100 sets of 1000 permutations (Fig. 8, right).
Fig. 8.Validations of reconstructed ERPs. Left: the probability offinding positive effect (αwas se
split data from experimental Dataset 1. Right: the probability of finding a positive effect across
4. Discussion

In the present paper we explored the problem of confounding trial-
to-trial latency variability with amplitude effects across conditions. The
latency variability problem obscures the analysis of ERP amplitudes
when researchers investigate the effects of variables of interest. We
reviewed the limitations of previous attempts to tackle this problem
and proposed the RIDE method as a possible solution. Essentially, RIDE
decomposes ERPs into different component clusters that have different
latency variabilities or are time-locked to different events (across single
trials). After decomposing ERPs into different component clusters, RIDE
synchronizes each component cluster to its own latency across single
trials, reconstructing a new ERP that is corrected for trial-to-trial latency
variability. The reconstructed ERPs usually show enhanced amplitudes
and appear to have a richer structure, owing to de-blurring by
correcting for trial-to-trial latency jitter. Moreover, reconstructed ERPs
show different scenarios concerning the condition effects. Reconstruct-
ed ERPs have diminished latency variability and thus may be supposed
to reveal purer amplitude effects. The applications to various datasets
shows that, in some situations, the existing amplitude effects are ob-
scured by smearing (e.g., Dataset 4), whereas in some other situations,
amplitude differences in conventional ERP may be due to differences
in latency variability (Dataset 5) and each effect may be significant by
itself or in combination (Dataset 2).

We performed validations to clarify that the changes in amplitude
after latency correction are not spurious ormethod artifacts.We applied
RIDE to surrogates derived from real data, and to simulated data with-
out true amplitude effects. In both cases, no condition effects were ex-
pected, and we found indeed that the RIDE-reconstructed ERPs did
not show significant amplitude effects at a higher rate than chance in
a vast number of realizations. Therefore, if there are no significant differ-
ences between conditions in terms of amplitude or latency of ERP com-
ponents other thanwhat would be expected from chance alone, there is
no reason to assume that RIDEwill create an effect that is not present in
the data.

4.1. Novelty of RIDE

The entanglement of latency variability and amplitude effects in
ERPs has been pointed out and discussed in previous literature (Luck,
2005; McDowell et al., 2003; Pfefferbaum et al., 1980; Poli et al., 2010;
Roth et al., 2007; Verleger et al., 2005; Walhovd et al., 2008; Woody,
1967). In these previous works, researchers identified the trial-to-trial
latency variability as a confounding effect for between-condition ampli-
tude differences. Simple adjustment, for example, estimating the P3
complex as a whole (Tuan et al., 1987; Walhovd et al., 2008; Woody,
1967), has been proposed and applied to retrieve the single trial latency
variability and to correct ERP waveforms. However, treating the whole
t to be 0.05) from100,000 permutations (divided into 100 sets) of conditionallymixed and
the 100 sets of 1000 simulation datasets with two conditions.
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ERP as a unitary latency-variable component cluster and synchronizing
it, will lead to blurring of early and late components. Other approaches
(Hansen, 1983; Knuth et al., 2006; Yin et al., 2009; Zhang, 1998; Takeda
et al., 2008) based on General Linear model require explicit time
markers and suffer from low-frequency distortions (Ouyang et al.,
2015b). In contrast, RIDE first separates ERP into component clusters
with different types of latency variability, that is, being either locked
to stimulus onsets, responses, or neither and aligns the waveforms of
each component cluster by synchronizing them to their ownmost prob-
able single trial latencies in order to reconstruct un-blurred ERPs.
4.2. Limitations and challenges

RIDE aims to synchronize all ERP component clusters to their own
single trial latency in order to generate an un-blurred waveform. Effec-
tively, the reconstructed ERPs show enhanced structure and ampli-
tudes. Nevertheless, this method involves the estimating the latency
of C by cross-correlation. This step is inevitably affected by background
noise and involves some estimation error. While the noise effect is un-
avoidable, it can be alleviated by increasing the trial number (to better
shape the C component) or by enhancing the signal-to-ratio through
careful data pre-processing. In this sense, depending on the component,
there may be a trade-off between stimulus-locked averaging and
performing latency estimation with RIDE. For example, it is not advis-
able to treat the early ERP components (e.g., the visual P1-N1 complex)
as latency-variable component cluster and attempt to estimate and
compensate its variability. Because the early component clusters are rel-
atively stable in latency and their waveforms resemble background
alpha waves, the latency estimation would possibly introduce more er-
rors. Therefore, stimulus-locked averaging is preferable for these early
components. Because the late P3 family shows stronger latency variabil-
ity and is more distinguishable from background noise due to its slow
waveform, latency estimation is more feasible for these components.

The number of three component clusters is based on a general consid-
eration about typical ERP experiment settings (with RTs); accordingly,
there are at least three types of component clusters: stimulus-locked, re-
sponse-locked, and not locked to either stimulus or response. This as-
sumption is inevitably a simplification of the ERP structure. One of the
main limitations of this assumption is that there might be more than
one cluster of C components that vary in latency somewhat independent-
ly from each other. In this case considering only one C cluster remains an
imprecisemodel of the data. However, separatingmore than oneC cluster
requires that different component clusters are distinct from each other in
morphology, such that estimating the single trial latencies of eachonewill
not affect the other. This renders great challenges in separating some en-
dogenous ERP components, for example, the P3 complex, into sub-C com-
ponent clusters. But in certain situations such separations are possible; for
example, in psycholinguistic studies N400 and P600 components can be
treated as two C clusters (Wang et al., 2015). The early ERP components
like P2, N2, and even P1, N1, might also be considered as latency-variable
depending on the time scale one is referring to. But in the RIDE context it
is difficult to treat them as additional C component clusters because their
single trial latency is greatly affected by the background alpha noise, lead-
ing to close-to-arbitrary estimation of single trial latency. Therefore the
RIDE method works best in separating large, late endogenous compo-
nents like P3, N400, P600, etc.

RIDE requires prior knowledge about the timewindows inwhich the
component clusters are assumed (Ouyang et al., 2015b). This is similar
to previous simpler approaches like the Woody filter (Woody, 1967;
Kutas et al., 1977) where the time window needs to be specified before
applying themethod. The timewindow specification is usually based on
visual inspection of (grand) average ERP waveforms (Ouyang et al.,
2015a). This introduces a certain amount of subjectivity but facilitates
hypothesis-driven applications. In principle, the sensitivity of the results
with respect to the model parameters needs to be examined, especially
when the statistical results supporting the relevant conclusions are
marginally significant.

Inter-individual variability is another factor that blurs the between-
condition amplitude effect. Similar to within-person trial-to-trial laten-
cy variability, there must be also person-to-person latency variability of
ERP sub-components. This partly explains why the differences between
the grand average ERP andRIDE-reconstructed ERP is usually not as dra-
matic as Fig. 3 indicates. For R cluster it is easy to compensate the per-
son-to-person latency variability – simply synchronizing R to the
grand mean (or median) of individual mean (or median) RTs, just
treating each subject like a single trial. But the major challenge stems
from the treatment of the C component cluster for which no external
timemarker is available. In principle we might use a common template
to estimate the relative single-subject latencies of C and synchronize
them to the grand average. But the problem is that there is great mor-
phology variability across participants where some may show very
large components whereas some show almost none, rendering the
identification of the relative latency of single subject C component
very difficult or, if done, very un-reliable. A simpler approach of peak-
picking may suffer from similar problem of individual differences as
some subjects' C components have a single and clear peak but some
do not. For readers' reference we tried to compensate the person-to-
person latency variability of RIDE components (for C it was based on
peak-picking) in our previous work (Ouyang et al., 2015b) for the pur-
pose of revealing how seriously the ERP waveform could be blurred
due to the combination of intra- and inter-subject latency variability.
But due to the relatively larger variability of morphology across individ-
uals whichmight lead to questionable synchronization of the C compo-
nent across participants, in the present work we do not attempt to
compensate for inter-individual variability in the context of blurring of
conditional effects. This challenge should be taken up in future work.
An interesting line of researchmay consist in trying to use them as neu-
rophysiological correlates of individual differences in performance.

Likewise, we should point out that latency variability does not only
affect amplitudes and amplitude differences. There is also an effect on
certain chronometric measures of the averages, in particular onsets
and offsets of ERP components (e.g., Sommer et al., 1996). Thus, given
invariant mean peak latency, increasing variability of peak latency in
single trials will advance average onset latencies and delay average off-
set latencies. RIDE should in principle be able to deal with this problem
and future work should systematically explore this option.

The effects of ERP preprocessing on RIDE results are also of impor-
tance. It has to be noted that reference settings for the five different
datasets used here were not always consistent (average reference for
datasets #1, #2, #3, and #5 and linked mastoids for #4). The inconsis-
tency arose because the datasets were from different labs and we had
to make sure the datasets were in the original states as described in
the respective published paper before feeding them into RIDE for fur-
ther analysis. In principle, any steps in ERP preprocessing could affect
RIDE results to some extent. In essence, changing the reference causes
re-distribution of the zero level across electrodes, therefore, should af-
fect the relative contribution of a given channel to the cross-correlation
curve averaged over all electrodes to determine the latency. However,
since RIDE uses the spatiotemporal pattern from the whole-scalp data
to determine the single trial C latencies, results will probably remain
stable across different references. After all, RIDE is a secondary data pro-
cessing algorithm that is applied on ‘clean’ ERP data that were already
baselined, filtered, referenced, artifact rejected. RIDE aims to address a
more specific problem how the trial-to-trial latency jitter blurs the
ERP waveforms and affects condition effects. That being said, any prob-
lems in ERP analysis that stem frompreprocessing stepswould not real-
ly benefit from RIDE processing, since RIDE was not designed to solve
them. For example, different reference settings were shown to affect
statistical results (Brunet et al., 2011). The degrading of ERP results in
standard ERP analysis due to sub-optimal choice of reference would
not be resolved by RIDE. But it is possible that ERP data from different
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kinds of reference settings would all benefit from RIDE reconstruction
because the existence of trial-to-trial latency-jitter is independent of
reference selection. In general, a better choice of reference, as well as
other preprocessing steps, are recommended before applying RIDE, as
it will affect RIDE results like it does with standard ERP analysis.

Author contributions

G.O., W.S., and C.Z. discussed the work and plan; G.O. conducted the
data analysis, prepared the figures and drafted the manuscript; G.O.,
W.S., and C.Z edited and revised the manuscript.

Acknowledgements

This work was partially supported by Hong Kong Baptist University
(HKBU) Strategic Development Fund, the HKBU Faculty Research
Grant (FRG2/14-15/025), the Hong Kong Research Grant Council
(RGC) (HKBU12302914), Germany-Hong Kong Joint Research Scheme
(G-HK012/12), the National Natural Science Foundation of China
(Grant No. 11275027) to G.O. and C.Z., and the Germany-Hong Kong
Joint Research Scheme (PPP 56062391) toW.S., and by the German Re-
search Foundation (DFG, Project SO177/26-1 toW.S.). This researchwas
conducted using the resources of the High Performance Cluster Com-
puting Centre, Hong Kong Baptist University, which receives funding
from RGC, University Grant Committee of the HKSAR and HKBU.

References

Ahmadi, M., Quiroga, R.Q., 2013. Automatic denoising of single-trial evoked potentials.
NeuroImage 66, 672–680.

Bayer, M., Sommer, W., Schacht, A., 2012. P1 and beyond: functional separation of multi-
ple emotion effects in word recognition. Psychophysiology 49, 959–969.

Böckler, A., Alpay, G., Stürmer, B., 2011. Accessory stimuli affect the emergence of conflict,
not conflict control: a Simon-task ERP study. Exp. Psychol. 58 (2), 102.

Brunet, D., Murray, M.M., Michel, C.M., 2011. Spatiotemporal analysis of multichannel
EEG: CARTOOL. Comput. Intell. Neurosci. 2.

Coyle, T.R., 2003. A review of the worst performance rule: evidence, theory, and alterna-
tive hypotheses. Intelligence 31 (6), 567–587.

Duncan-Johnson, C.C., Donchin, E., 1977. On quantifying surprise: the variation of event-
related potentials with subjective probability. Psychophysiology 14 (5), 456–467.

Fjell, A.M., Westlye, L.T., Amlien, I.K., Walhovd, K.B., 2011. Reduced white matter integrity
is related to cognitive instability. J. Neurosci. 31 (49), 18060–18072.

Ford, J.M., White, P., Lim, K.O., Pfefferbaum, A., 1994. Schizophrenics have fewer and
smaller P300s - a single-trial analysis. Biol. Psychiatry 35 (2), 96–103.

Hansen, J.C., 1983. Separation of overlapping waveforms having known temporal distri-
butions. J. Neurosci. Methods 9 (2), 127–139.

Herzmann, G., Sommer, W., 2010. Effects of previous experience and associated knowl-
edge on retrieval processes of faces: an ERP investigation of newly learned faces.
Brain Res. 1356, 54–72.

Jeon, Y.W., Polich, J., 2003. Meta-analysis of P300 and schizophrenia: patients, paradigms,
and practical implications. Psychophysiology 40 (5), 684–701.

Jung, T.P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., Sejnowski, T.J., 2001.
Analysis and visualization of single-trial event-related potentials. Hum. Brain Mapp.
14 (3), 166–185.

Kaltwasser, L., Hildebrandt, A., Recio, G., Wilhelm, O., Sommer, W., 2014. Neurocognitive
mechanisms of individual differences in face cognition: a replication and extension.
Cogn. Affect. Behav. Neurosci. 14, 861–878.

Kayser, J., Tenke, C.E., Gates, N.A., Bruder, G.E., 2007. Reference-independent ERP old/new
effects of auditory and visual word recognition memory: joint extraction of stimulus-
and response-locked neuronal generator patterns. Psychophysiology 44 (6),
949–967.

Knuth, K.H., Shah, A.S., Truccolo, W.A., Ding, M., Bressler, S.L., Schroeder, C.E., 2006. Differ-
entially variable component analysis: identifying multiple evoked components using
trial-to-trial variability. J. Neurophysiol. 95 (5), 3257–3276.

Kuperberg, G.R., 2007. Neural mechanisms of language comprehension: challenges to
syntax. Brain Res. 1146, 23–49.

Kutas, M., McCarthy, G., Donchin, E., 1977. Augmenting mental chronometry: the P300 as
a measure of stimulus evaluation time. Science 197 (4305), 792–795.

Larson, G.E., Alderton, D.L., 1990. Reaction time variability and intelligence: a “worst per-
formance” analysis of individual differences. Intelligence 14 (3), 309–325.

Leuthold, H., Sommer, W., 1998. Postperceptual effects and P300 latency. Psychophysiol-
ogy 35 (1), 34–46.

Luck, S.J., 2005. An Introduction to the Event-related Potential Technique. MIT Press, Cam-
bridge, MA.

McDowell, K., Kerick, S.E., Santa Maria, D.L., Hatfield, B.D., 2003. Aging, physical activity,
and cognitive processing: an examination of P300. Neurobiol. Aging 24 (4), 597–606.
Möcks, J., Köhler, W., Gasser, T., Pham, D.T., 1988. Novel approaches to the problem of la-
tency jitter. Psychophysiology 25 (2), 217–226.

Ouyang, G., Herzmann, G., Zhou, C., Sommer, W., 2011. Residue iteration decomposition
(RIDE): a newmethod to separate ERP components on the basis of latency variability
in single trials. Psychophysiology 48, 1631–1647.

Ouyang, G., Schacht, A., Zhou, C., Sommer, W., 2013. Overcoming limitations of the ERP
method with Residue Iteration Decomposition (RIDE): a demonstration in go/no-go
experiments. Psychophysiology 50 (3), 253–265.

Ouyang, G., Sommer, W., Zhou, C., 2015a. A toolbox for residue iteration decomposition
(RIDE)—a method for the decomposition, reconstruction, and single trial analysis of
event related potentials. J. Neurosci. Methods 250, 7–21.

Ouyang, G., Sommer, W., Zhou, C., 2015b. Updating and validating a new framework for
restoring and analyzing latency-variable ERP components from single trials with res-
idue iteration decomposition (RIDE). Psychophysiology 52 (6), 839–856.

Patterson, J.V., Michalewski, H.J., Starr, A., 1988. Latency variability of the components of
auditory event-related potentials to infrequent stimuli in aging, Alzheimer-type de-
mentia, and depression. Electroencephalography and Clinical Neurophysiology/
Evoked Potentials Section 71 (6), 450–460.

Pfefferbaum, A., Ford, J.M., Roth, W.T., Kopell, B.S., 1980. Age differences in P3-reaction
time associations. Electroencephalogr. Clin. Neurophysiol. 49 (3), 257–265.

Picton, T.W., Hink, R.F., Perez-Abalo, M., Linden, R.D., Wiens, A.S., 1984. Evoked potentials:
how now? Am. J. Electroneurodiagnostic Technol. 10, 177–221.

Poli, R., Cinel, C., Citi, L., Sepulveda, F., 2010. Reaction-time binning: a simple method for
increasing the resolving power of ERP averages. Psychophysiology 47 (3), 467–485.

Polich, J., Herbst, K.L., 2000. P300 as a clinical assay: rationale, evaluation, and findings. Int.
J. Psychophysiol. 38 (1), 3–19.

Röschke, J., Wagner, P., Mann, K., Fell, J., Grözinger, M., Frank, C., 1996. Single trial analysis
of event related potentials: a comparison between schizophrenics and depressives.
Biol. Psychiatry 40 (9), 844–852.

Roth, A., Roesch-Ely, D., Bender, S., Weisbrod, M., Kaiser, S., 2007. Increased event-related
potential latency and amplitude variability in schizophrenia detected through wave-
let-based single trial analysis. Int. J. Psychophysiol. 66 (3), 244–254.

Rugg, M.D., Coles, M.G.H., 1995. The ERP and cognitive psychology: conceptual issues. In:
Rugg, M.D., Coles, M.G.H. (Eds.), Electrophysiology of Mind. Event-related Potentials
and Cognition. Oxford University Press, Oxford, pp. 27–39.

Saville, C.W.N., Lancaster, T.M., Stefanou, M.E., Salunkhe, G., Lourmpa, I., Nadkarni, A., ...
Feige, B., 2014. COMT Val 158 Met genotype is associated with fluctuations in work-
ing memory performance: converging evidence from behavioural and single-trial
P3b measures. NeuroImage 100, 489–497.

Schacht, A., Sommer, W., 2009. Time course and task dependence of emotion effects in
word processing. Cogn. Affect. Behav. Neurosci. 9, 28–43.

Schweinberger, S.R., Pfütze, E.M., Sommer, W., 1995. Repetition priming and associative
priming of face recognition: Evidence from event-related potentials. J. Exp. Psychol.
Learn. Mem. Cogn. 21 (3), 722.

Sommer, W., Leuthold, H., Hermanutz, M., 1993. Covert effects of alcohol revealed by
event-related potentials. Percept. Psychophys. 54, 127–135.

Sommer, W., Ulrich, R., Leuthold, H., 1996. The lateralized readiness potential as psycho-
physiological approach to the investigation of cognitive processes. Psychol. Rundsch.
47, 1–14.

Squires, N.K., Squires, K.C., Hillyard, S.A., 1975. Two varieties of long-latency positive
waves evoked by unpredictable auditory stimuli in man. Electroencephalogr. Clin.
Neurophysiol. 38 (4), 387–401.

Stürmer, B., Ouyang, G., Zhou, C., Boldt, A., Sommer, W., 2013. Separating stimulus-driven
and response-related LRP components with Residue Iteration Decomposition (RIDE).
Psychophysiology 50 (1), 70–73.

Takeda, Y., Yamanaka, K., Yamamoto, Y., 2008. Temporal decomposition of EEG during a
simple reaction time task into stimulus-and response-locked components.
NeuroImage 39 (2), 742–754.

Tuan, P.D., Möcks, J., Köhler, W., Gasser, T., 1987. Variable latencies of noisy signals: esti-
mation and testing in brain potential data. Biometrika 74 (3), 525–533.

Valsecchi, M., Dimigen, O., Kliegl, R., Sommer, W., Turatto, M., 2009. Microsaccadic inhibi-
tion and P300 enhancement in a visual oddball task. Psychophysiology 46 (3),
635–644.

Verleger, R., 1997. On the utility of P3 latency as an index ofmental chronometry. Psycho-
physiology 34, 131–156.

Verleger, R., Jaśkowski, P., Wascher, E., 2005. Evidence for an integrative role of P3b in
linking reaction to perception. J. Psychophysiol. 19 (3), 165–181.

Verleger, R., Metzner, M.F., Ouyang, G., Smigasiewicz, K., Zhou, C., 2014. Testing the stim-
ulus-to-response bridging function of the oddball-P3 by delayed response signals and
residue iteration decomposition (RIDE). NeuroImage 100C, 271–280.

Walhovd, K.B., Rosquist, H., Fjell, A.M., 2008. P300 amplitude age reductions are not
caused by latency jitter. Psychophysiology 45 (4), 545–553.

Wang, F., Ouyang, G., Zhou, C., Wang, S., 2015. Re-examination of chinese semantic pro-
cessing and syntactic processing: Evidence from conventional ERPs and reconstruct-
ed ERPs by residue iteration decomposition (RIDE). PLoS One 10 (1).

Woody, C.D., 1967. Characterization of an adaptive filter for the analysis of variable laten-
cy neuroelectric signals. Med. Biol. Eng. 5 (6), 539–554.

Yin, G., Zhang, J., Tian, Y., Yao, D., 2009. A multi-component decomposition algorithm for
event-related potentials. J. Neurosci. Methods 178 (1), 219–227.

Zhang, J., 1998. Decomposing stimulus and response component waveforms in ERP.
J. Neurosci. Methods 80 (1), 49–63.

http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0005
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0005
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0010
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0010
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0015
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0015
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf9000
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf9000
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0020
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0020
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0025
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0025
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0030
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0030
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0035
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0035
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0040
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0040
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0045
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0045
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0045
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0050
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0050
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0055
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0055
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0060
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0060
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0060
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0065
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0065
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0065
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0065
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0070
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0070
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0070
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0075
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0075
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0080
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0080
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0085
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0085
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0090
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0090
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0095
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0095
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0100
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0100
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0105
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0105
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0110
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0110
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0110
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0115
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0115
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0115
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0120
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0120
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0120
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0125
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0125
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0125
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0130
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0130
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0130
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0130
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0135
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0135
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0140
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0140
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0145
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0145
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0150
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0150
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0155
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0155
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0155
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0160
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0160
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0160
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0165
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0165
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0165
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0170
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0170
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0170
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0175
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0175
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0180
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0180
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0180
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0185
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0185
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0190
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0190
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0190
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0195
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0195
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0195
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0200
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0200
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0200
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0205
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0205
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0205
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0210
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0210
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0215
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0215
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0215
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0220
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0220
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0225
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0225
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0230
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0230
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0230
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0235
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0235
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0240
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0240
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0240
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0245
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0245
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0250
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0250
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0255
http://refhub.elsevier.com/S0167-8760(16)30710-3/rf0255

	Reconstructing ERP amplitude effects after compensating for trial-�to-�trial latency jitter: A solution based on a novel ap...
	1. Introduction
	1.1. The consequences of latency jitter in ERPs
	1.2. Previous attempts
	1.3. Re-constructed ERPs by RIDE

	2. Method
	2.1. Simulation
	2.2. Experimental data
	2.2.1. Dataset 1: face recognition
	2.2.2. Dataset 2: visual oddball
	2.2.3. Dataset 3: Simon task
	2.2.4. Dataset 4: reading
	2.2.5. Dataset 5: word recognition

	2.3. RIDE decomposition of ERPs
	2.3.1. Decomposition module
	2.3.2. Latency estimation module

	2.4. RIDE reconstruction of ERP

	3. Results
	3.1. Simulation of the smearing effect
	3.2. Real data
	3.2.1. Single trial variability, RIDE separation, and reconstructed ERPs
	3.2.2. Statistical testing on conventional and reconstructed ERPs

	3.3. Validations
	3.3.1. Surrogate from real data
	3.3.2. Simulated data without built-in condition effect


	4. Discussion
	4.1. Novelty of RIDE
	4.2. Limitations and challenges

	Author contributions
	Acknowledgements
	References


