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Abstract 10 

Exposure is a frequency measure of being in situations in which crashes could occur. In 11 

modeling multiple-vehicle crash frequency, traditional exposure measures, such as vehicle 12 

kilometrage and travel time, may not be sufficiently representative because they may include 13 

situations in which vehicles rarely meet each other and multiple-vehicle crashes can never 14 

happen. The meeting frequency of vehicles should be a better exposure measure in such cases. 15 

This study aims to propose a novel Gas Dynamic Analogous Exposure (GDAE) to model 16 

multiple-vehicle crash frequency. We analogize the meeting frequency of vehicles with the 17 

meeting frequency of gas molecules because both systems consider the numbers of the 18 

meetings of discrete entities. A meeting frequency function of vehicles is derived based on 19 

the central idea of the classical collision theory in physical chemistry with consideration of 20 

constrained vehicular movement by the road alignments. The GDAE is then formulated on 21 
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the basis of the major factors that contribute to the meeting frequency of vehicles. The 22 

proposed GDAE is a more representative proxy exposure measure in modeling of multiple-23 

vehicle crash frequency because it further investigates and provides insight into the physics 24 

of the vehicle meeting mechanism. To demonstrate the applicability of the GDAE, zonal 25 

crash frequency models are constructed on the basis of multiple-vehicle crashes involving 26 

taxis in 398 zones of Hong Kong in 2011. The GDAE outperforms the conventional time 27 

exposure in multiple-vehicle crash modeling. To account for any unobservable heterogeneity 28 

and to cope with the over-dispersed count data, a random-parameter negative binomial model 29 

is established. Explanatory factors that contribute to the zonal multiple-vehicle crash risk 30 

involving taxis are identified. The proposed GDAE is a promising exposure measure for 31 

modeling multiple-vehicle crash frequency. 32 

 33 

Keywords: Gas dynamic analogy, Exposure, Multiple-vehicle crash frequency, Zonal crash 34 

frequency, Taxi safety 35 

 36 

1 Introduction 37 

In road safety, crash frequency modeling is an important and useful tool for identification of 38 

factors that contribute to crash frequency. Remedy measures or policies can be formulated 39 

and implemented on the basis of the identified factors to enhance road safety. Depending on 40 

the purpose of the given study, crash frequency models in terms of different categories, such 41 

as the sites of interest (e.g., intersections, road segments, highways, and zonal networks), the 42 

numbers of vehicles involved (e.g., single and multiple vehicles), the vehicle types (e.g., 43 

motorcycles, taxis, and trucks), and injury severity (e.g., slight-injury and killed or seriously 44 

injured), can be established. 45 

 46 
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1.1 Exposure to crash risk 47 

Exposure measures are the essential elements that are tightly linked to all kinds of crash 48 

frequency models. Exposure has been defined differently over the decades. Chapman (1973) 49 

defined exposure as the number of opportunities for crashes of a certain type to occur over a 50 

given time in a given area. Wolfe (1982) later offered a modified definition of exposure as 51 

simply being in a situation that incurs some risk of being involved in a crash and expressed 52 

risk as the number of crashes that take place in the same situation in a certain period divided 53 

by exposure. More recently, Elvik (2015) defined an event-based definition of exposure in 54 

which each event with the potential to generate a crash is interpreted as a trial, as defined in 55 

probability theory. Although certain levels of differences lie in these definitions, they all 56 

serve the single purpose of determining crash risks or accident rates that indicate the relative 57 

risk levels of various traffic situations (Wolfe, 1982). 58 

 59 

Broadly speaking, the exposure measure is rather conceptual, and direct measurement may 60 

not be feasible in many situations. In practice, although the use of exposure measures is 61 

constrained by the availability and quality of data (Naci et al., 2009), various proxy measures 62 

have been developed and used in different crash frequency analyses, including population 63 

and fuel consumption (Amoh-Gyimah et al., 2017; Fridstrøm et al., 1995), traffic volume 64 

(Chiou and Fu, 2015; Heydari et al., 2017; Qin et al., 2004, 2006; Wong et al., 2007), travel 65 

time (Chipman et al., 1993; Imprialou et al., 2016), vehicle-miles traveled (Li et al., 2003; Pei 66 

et al., 2016), potential conflict counts (Bie et al., 2005; Wong et al., 2006), and quasi-induced 67 

exposure (Huang and Chin, 2009; Jiang et al., 2014; Stamatiadis and Deacon, 1997). 68 

 69 

In general, zonal-level exposure measures such as population are suitable for zonal crash 70 

frequency models, and micro-level exposure measures such as traffic flows are more 71 
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frequently used in modeling crash frequencies at specific roadway entities such as road 72 

segments and junctions. For instance, Lee et al. (2015) used zonal population as exposure 73 

measure to develop macroscopic multivariate crash analysis reporting models. It was 74 

anticipated to efficiently help policymakers allocate resources to improve road safety for 75 

different zones. Similarly, Amoh-Gyimah et al. (2017) incorporated population and vehicle-76 

kilometers in a macroscopic crash model and investigated the effects of spatial variations in 77 

the unobserved heterogeneity. The results showed that when the spatial variability is 78 

considered, an increase in the population of young people increased the crash risk, although 79 

the parameter of this variable was negative. For crash risk at road segments, Pei et al. (2012) 80 

estimated the travel distance and travel time across 112 road segments in Hong Kong using 81 

global positioning system (GPS) data and investigated the influence of these two exposure 82 

measures on the relationship between speed and crash risk. Their results revealed a positive 83 

correlation between the average speed and crash risk when the distance exposure was adopted. 84 

In contrast, average speed had a negative correlation to the crash risk when the time exposure 85 

was used. Tulu et al. (2015) investigated pedestrian crash frequency for two-way two-lane 86 

rural roads in Ethiopia by considering the product of vehicle volume and pedestrian volume 87 

as the exposure measure and established a random-parameter negative binomial model. A 88 

nonlinear effect of the exposure measure was found, and the modeling results indicated that 89 

the proportion of the daily crossing volume by pedestrians younger than 19 years of age 90 

could be used to explain pedestrian exposure in further studies. However, these exposure 91 

measures are highly aggregated measures that may not adequately represent exposure to crash 92 

risk. For instance, a greater zonal population is not necessarily equivalent to a greater number 93 

of commuters, and a greater number of commuters does not mean that all of them are 94 

exposed to situations that could possibly develop into a crash (e.g., a pedestrian walking on a 95 
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street without any vehicles). Similarly, Qin et al. (2006) also pointed out that the 96 

conventional aggregated exposure measures do not account for temporal variations in traffic. 97 

 98 

Because different types of crashes have different causes, exposure to these traffic hazards 99 

(crash risk) may vary. To better identify the factors that contribute to the crash risk, it is of 100 

great importance to use a more representative exposure measure for the model development. 101 

Many researchers attempted to formulate different kinds of exposure measures by using 102 

disaggregated data and considering the mechanism for a potential crash. In a study 103 

concerning crash rate prediction in two-lane highway segments, Qin et al. (2004) formulated 104 

different exposure functions for single-vehicle crashes and multiple-vehicle crashes in three 105 

directions: the same direction, opposite directions, and intersecting directions. The 106 

disaggregated flow for each direction of the highway and the segment length were used for 107 

the formulations. The results showed that most of the proposed exposure functions had linear 108 

relationships with the crash frequency of their corresponding crash types, whereas the 109 

conventional exposure measure, vehicle-miles traveled, had nonlinear relationships with the 110 

crash frequencies. This finding revealed that their proposed exposure functions would be 111 

more representative than vehicle-miles traveled in these scenarios. Instead of using hourly 112 

traffic volume, Miranda-Moreno et al. (2011) applied disaggregated flows by movement type 113 

and vehicle type in their study of crash risk at intersections. They proposed that the 114 

movement types exhibited by vehicles and bicyclists at an intersection may have different 115 

effects on the crash risk. Disaggregated flows were used to formulate three exposure 116 

measures: aggregated flows, motor vehicle flows aggregated by movement type, and 117 

potential conflicts between motor vehicles and cyclists. The products of the different 118 

combinations of conflicting disaggregated flows were considered to indicate the conflicting 119 

volumes. Similar concepts have been included in a more advanced model—the latent class 120 
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model with Bayesian inference—to study the unobserved heterogeneity in pedestrian and 121 

cyclist crashes (Heydari et al., 2017). 122 

 123 

Multiple-vehicle crashes are one of the important crash types in which transport authorities 124 

have great interest. For instance, a concerned local authority may wish to identify the factors 125 

that contribute to the risk of multiple-vehicle crashes involving trucks and private cars for 126 

policy formulations. The amount of energy released in a crash involving a truck could be 127 

huge, and the private car driver and passengers could be seriously injured or killed due to the 128 

great size difference between the two vehicles. Chen and Xie (2016) studied the role of 129 

average annual daily traffic (AADT) in the prediction of multiple-vehicle crash frequency by 130 

establishing generalized additive models and piecewise linear negative binomial regression 131 

models. Forty-eight three-approach signalized intersections and 52 four-approach signalized 132 

intersections were included and modeled separately; the results revealed that a nonlinear 133 

functional form of AADT performed better than a linear form in multiple-vehicle crash 134 

frequency models. However, conventional exposure measures that are normally adopted for 135 

multiple-vehicle crashes may not be sufficiently representative, because they may include 136 

situations in which vehicles rarely meet and multiple-vehicle crashes can never happen. 137 

Because multiple-vehicle crashes can only happen when vehicles meet, their meeting 138 

frequency should be a more representative exposure measure in these cases. 139 

 140 

1.2 Methodological challenges in crash modeling 141 

With advancements in modeling methods, recent crash frequency models have been 142 

established to address various important issues, such as cross-equation error correlation, crash 143 

frequency by injury severity, unobserved heterogeneity, and space- and time-specific 144 

heterogeneity, which has enabled more accurate estimation of the relationships between crash 145 
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frequency and various contributive factors. The cross-equation error correlation naturally 146 

arises from unobserved factors that may affect multiple crash counts or the injury levels of 147 

different types of crashes (Serhiyenko et al., 2016), different occupants in the same crash 148 

(Russo et al., 2014), or different crash severity levels (Anastasopoulos, 2016; Sarwar and 149 

Anastasopoulos, 2017) simultaneously, or from the temporal correlation at the same road 150 

entity (Mannering et al., 2016). Multivariate modeling approaches have been shown to 151 

adequately address cross-equation error correlation and to outperform their univariate 152 

counterparts in multiple studies (Barua et al., 2015; Huang et al., 2017; Serhiyenko et al., 153 

2016). In addition to cross-equation correlation, unobserved heterogeneities across various 154 

road entities, various periods, or both are also worthy of note; if not addressed, they may 155 

cause problematic estimation results by introducing variation in the effects of observed 156 

variables (Mannering et al., 2016). The most common approach to consider full unobserved 157 

heterogeneities in crash likelihood modeling is a random-parameter model, which has been 158 

thoroughly investigated in various studies (Anastasopoulos and Mannering, 2009; Barua et al., 159 

2016; Bhat et al., 2014; Chen and Tarko, 2014; Coruh et al., 2015; Venkataraman et al., 2011; 160 

Venkataraman et al., 2013). In addition, the latent-class model is another possible way to 161 

model unobserved effects in crash data (Buddhavarapu et al., 2016; Heydari et al., 2016), and 162 

random parameters can be further adopted within each class (Xiong and Mannering, 2013). 163 

Moreover, the consideration of space- and time-specific heterogeneity and spatial/temporal 164 

correlation has provided new insights for scholars investigating crash frequency modeling 165 

(Chiou et al., 2014, 2015; Huang et al., 2017). 166 

 167 

Furthermore, some studies have incorporated heterogeneous and/or space-time effects in 168 

exposure measures, where AADT is a preferable exposure measure in modeling crash risk 169 

when considering spatial heterogeneity or spatial correlation. Barua et al. (2016) established a 170 
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multivariate random-parameter model for severe and no-injury collisions in Vancouver and 171 

showed that the exposure variable contained spatial heterogeneity. Similar results were found 172 

by Huang et al. (2017) in a multivariate Poisson log-normal model with spatial random 173 

effects. Moreover, Chiou and Fu (2015) modeled the spatiotemporal dependence of the crash 174 

frequency and severity and concluded that temporal effects were more suitable for crash 175 

frequency than for crash severity because the temporal effects mainly came from the traffic 176 

volume, which was closely correlated with the crash frequency. Kroyer et al. (2016) studied 177 

the effect of pedestrian and bicyclist flows on intersection crash frequencies, in which the 178 

temporal variability of the exposure effects was considered with the use of an exposure 179 

distribution curve. Safety performance functions were proposed in relation to the increased 180 

model reliability achieved with short observational periods. Although some studies have 181 

considered the temporal effects of the exposure measures on the risk of multiple-vehicle 182 

crashes, few studies have considered the development of the exposure measures from the 183 

perspective of their meeting mechanisms, which could yield a more representative measure. 184 

 185 

In this paper, we propose a gas dynamic analogous exposure (GDAE) to model multiple-186 

vehicle crashes. The meeting frequency of vehicles is analogized with the meeting frequency 187 

of gas molecules, as both systems describe the number of meetings of discrete entities. The 188 

meeting frequency function of vehicles that further considers the mechanism of their meeting 189 

frequency is derived based on the central idea of the classical collision theory in physical 190 

chemistry. The GDAE is formulated on the basis of the major identified factors with 191 

correction terms. Negative binomial (NB) models with only an exposure variable are 192 

established for multiple-vehicle crashes, in which the GDAE is compared with the traditional 193 

travel time exposure measures, using the data of crashes involving taxis in Hong Kong in 194 

2011 as a case study. The results reveal that the GDAE performed better than the traditional 195 
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travel time exposure measures for multiple-vehicle crashes. Thus, multiple-vehicle crash 196 

frequency models are established using the GDAE and other potential explanatory variables 197 

that contribute to the crash risk. A random-parameter negative binomial (RPNB) model is 198 

used to account for the unobserved heterogeneity in the dataset. Influential factors with a 199 

significant association with the risk of multiple-vehicle crashes involving taxis in Hong Kong 200 

are identified. 201 

 202 

The remainder of this paper is organized as follows. In Section 2, the meeting frequency 203 

function and the GDAE are derived, and the methods of modeling crash data with 204 

consideration of the presence of heterogeneity are discussed. Section 3 presents the 205 

background, databases, results, and discussions regarding the case study of modeling 206 

multiple-vehicle crashes involving taxis in Hong Kong. Section 4 provides concluding 207 

remarks and recommendations for future research. 208 

 209 

2 Methods 210 

This section first derives the meeting frequency function and the GDAE. The GDAE is a 211 

potentially more representative proxy measure of exposure for modeling multiple-vehicle 212 

crash frequency because it provides further insight into the physics of the vehicle meeting 213 

mechanism. The modeling methods of crash data in the form of panel data with consideration 214 

of the existence of overdispersion and heterogeneity are then presented. 215 

 216 

2.1 Meeting frequency function and GDAE 217 

The meeting frequency of vehicles can generally be analogized with the meeting frequency of 218 

gas molecules because both systems consider the meeting quantities of discrete entities. The 219 

major difference between the two systems is that molecules move freely and randomly, 220 
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whereas vehicular movements are constrained by road alignments. In this subsection, the 221 

meeting frequency function of vehicles is first derived by leveraging the concept of the 222 

classical collision theory in physical chemistry (Laidler, 1973). However, it should be 223 

stressed that a meeting of molecules, which is usually called a collision of molecules in 224 

physical chemistry, only corresponds to a meeting of vehicles, but not a crash. The resultant 225 

meeting frequency function offers physical insight into the meeting mechanisms of multiple 226 

vehicles. The GDAE is then formulated by the identified factors that contribute to the 227 

meeting quantities. 228 

 229 

Because vehicles interact with surrounding vehicles as they travel, their speeds should be 230 

similar and can generally be assumed to follow a distribution with mean ݑത  (i.e., |࢛|തതതത ൌ  ത). 231ݑ

Consider a vehicle A traveling with a mean speed, ݑത, as shown in Fig. 1. ݀஺஻ is a conceptual 232 

effective meeting width that depends on various factors, such as the sizes of the type A and B 233 

vehicles and the characteristics of the road segment. For instance, if vehicle A is traveling in 234 

the middle lane of a three-lane road, ݀஺஻ is approximately equal to the width of the three-lane 235 

road. However, if vehicle A is traveling on a two-lane road, ݀஺஻ is at most equal to the width 236 

of a two-lane road. In a given time interval, ∆ݐ, the distance traveled by vehicle A is ܮ ൌ  237 ,ݐ∆തݑ

and the influential area swept over by ݀஺஻is given by ܵ ൌ  ஺஻.  238݀ܮ
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 239 

Fig. 1. Idealized scenario of meetings of type A vehicle and type B vehicles within influential 240 

area ܵ in given time interval ∆241 .ݐ 

 242 

Denote the average number density of type B vehicles by ݊஻ ൌ ஻ܰ ܴ⁄ , where ஻ܰ  is the 243 

average number of type B vehicles in a given time interval, ∆ݐ, and a given road space,	ܴ. 244 

Imagine that the type B vehicles with their centers lying in ܵ are stationary, as shown in 245 

Figure 1. The number of type B vehicles met by vehicle A in the time interval, ∆ݐ, is given by 246 

݀஺஻ݑത݊஻∆ݐ . However, type B vehicles are not really stationary, thus the mean speed, ݑത , 247 

should be replaced by the mean relative speed, |࢛࢘|തതതതത or ݑത௥ . Consider the relative velocity 248 

vector of any pair of type A and B vehicles as illustrated in Fig. 2. ࡭࢛ and ࡮࢛ are the velocity 249 

vectors for vehicles A and B. ߠ is the angle between ࡭࢛ and 250 .࡮࢛ 
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 251 

Fig. 2. Relative velocity of any pair of type A and B vehicles. 252 

Because |࢛࢘|ଶ ൌ ࢛࢘ ∙ ࢛࢘ and ࢛࢘ ൌ ࡭࢛ െ  253 ,࡮࢛

ଶ|࢛࢘|  ൌ ଶ|࡭࢛| െ |࡮࢛||࡭࢛|ߠݏ݋2ܿ ൅   ଶ|࡮࢛|

Taking average on both sides,  254 

ଶതതതതതതത|࢛࢘|  ൌ ଶതതതതതതത|࡭࢛| െ തതതതതതതതതതതതതതതതത|࡮࢛||࡭࢛|ߠݏ݋2ܿ ൅ ଶതതതതതതത (1)|࡮࢛|

In the classical collision theory, the second term on the right-hand side of Eq. (1) is zero (i.e., 255 

࡭࢛ ∙ തതതതതതതതത࡮࢛ ൌ 0), because gas molecules move freely and randomly and the average case appears 256 

to be ߨ 2⁄  meeting angle. However, this is not the case in the meeting frequency of vehicles 257 

because vehicular movements are constrained by road alignments. Using first-order Taylor 258 

series approximation at (|࡭࢛|തതതതതത, |࡮࢛|തതതതതത, ܿߠݏ݋തതതതതത), 259 

തതതതതଶ|࢛࢘|  ൎ തതതതതതଶ|࡭࢛| െ തതതതതതߠݏ݋2ܿ തതതതതത|࡭࢛| തതതതതത|࡮࢛| ൅   തതതതതതଶ|࡮࢛|

Because |࡭࢛|തതതതതത ൌ തതതതതത|࡮࢛| ൌ  ത, 260ݑ

ത௥ݑ  ൎ ඥ2 െ തതതതതതߠݏ݋2ܿ   തݑ

The angle between ࡭࢛ and ߠ ,࡮࢛, can be assumed to follow a probability distribution denoted 261 

by ݂ሺߠሻ, ߠ∀ ∈ ሺെߨ,  ሿ, which should be system-dependent. For instance, if a network has 262ߨ

many junctions or the local drivers frequently overtake each other, the probabilities of ߠ at 263 

larger values could be higher. Nevertheless, because networks are designed to segregate 264 
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traffic traveling in different directions, cases such as head-to-head vehicle meetings (i.e., 265 

ߠ ൎ  are usually infrequent. Therefore, 266 (ߨ

തതതതതതߠݏ݋ܿ ൌ න ሻߠሺ݂	ߠݏ݋ܿ
ଶగ

଴
 ߠ݀

∃ an unknown constant effective meeting angle ߠ∗ ∈ ሾ0, .ݏ	ሻߨ2 .ݐ ∗ߠݏ݋ܿ ൌ  ത௥ can 267ݑ ,തതതതതത. Thusߠݏ݋ܿ

be rewritten as 268 

ത௥ݑ  ൎ √2 െ ∗ߠݏ݋2ܿ   .തݑ

Given that the average number density of type A vehicles is ݊஺ ൌ ஺ܰ ܴ⁄ , where ஺ܰ is the 269 

number of type A vehicles in a given time interval, ∆ݐ, and a given road space,	ܴ, the meeting 270 

frequency of type A and B vehicles, ݉஺஻, in the given time interval, ∆ݐ, and the given road 271 

space, ܴ, is given by Eq. (2): 272 

 ݉஺஻ ൌ ݀஺஻ ത௥ݑ ݊஺ ݊஻ ܴ (2) .ݐ∆

Because ݑത௥ ൎ √2 െ ത, ݊஺ݑ	∗ߠݏ݋2ܿ ൌ ஺ܰ ܴ⁄  and ݊஻ ൌ ஻ܰ ܴ⁄ , 273 

 ݉஺஻ ൎ √2 െ ∗ߠݏ݋2ܿ ݀஺஻ തݑ
ேಲ
ோ

ேಳ
ோ
ܴ (3) .ݐ∆

In addition, using the definitions of ஺ܰ and ஻ܰ, the total travel time of type A and B vehicles, 274 

஺ܶ and ஻ܶ, can be expressed as Eq. (4a) and (4b), respectively. 275 

 ஺ܶ ൌ ஺ܰ∆ݐ (4a)

 ஻ܶ ൌ ஻ܰ∆ݐ (4b)

Substituting Eq. (4a) and (4b) into Eq. (3), 276 

݉஺஻ ൎ 	
√ଶିଶ௖௢௦ఏ∗ ௗಲಳ

∆௧

௨ഥ

ோ ஺ܶ ஻ܶ ൌ ܫܥ ஺ܶ ஻ܶ,  (5) 

where ܥ ൌ √2 െ ஺஻݀	∗ߠݏ݋2ܿ ⁄ݐ∆  is an unknown constant for a given ∆ݐ; and ܫ ൌ തݑ ܴ⁄  is a 277 

state-topological factor that captures both the operation state (i.e., ݑത) and the road space (i.e., 278 

ܴ ) of a network. In particular, if the meeting frequency for the same vehicle type is 279 
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considered (i.e., type A = type B), the corresponding meeting frequency function is given by 280 

Eq. (6), 281 

݉஺஺ ൎ ܫᇱܥ ஺ܶ
ଶ, (6) 

where ܥᇱ ൌ ܥ 2⁄  is also an unknown constant. The factor of 1 2⁄  is introduced to avoid 282 

double-counting the meeting of the same pairs of vehicles. Therefore, more generically, the 283 

GDAE is applicable to multiple-vehicle crashes but not simply multiple types of vehicles. 284 

The derived meeting frequency function provides a theoretical foundation for quantifying 285 

exposure in multiple-vehicle crashes and offers insights into the physics of the vehicle 286 

meeting mechanism by revealing the physical quantities that govern the number of meetings. 287 

The meeting frequency function links the meeting quantity with the effective meeting angle 288 

and the width, mean speed, road space, and total travel time of type A and B vehicles. With 289 

all other factors kept constant, the meeting quantity should increase with the mean speed of 290 

the vehicles for a given road space and time period because the area of influence covered by 291 

the vehicles increases with their mean speed in the spatiotemporal volume, leading to a 292 

greater likelihood of meeting. Similarly, the meeting frequency should increase with the total 293 

travel time of the type A and B vehicles.  294 

 295 

Compared with conventional exposure measures, it should be a more representative proxy 296 

measure for exposure in multiple-vehicle crashes because it further explores the mechanism 297 

of such meetings. However, direct evaluation of Eq. (5) may not be possible because 298 ܥ 

comprises two unknown constants, ݀஺஻  and ߠ∗ . Nevertheless, the function identifies the 299 

major factors, ܫ  and ஺ܶ ஻ܶ , related to the meeting frequency of two types of vehicles. In 300 

practice, instead of directly applying the meeting frequency function, an alternative proxy 301 

exposure measure, the GDAE, as shown in Eq. (7) should be adopted because it is formulated 302 
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by the identified factors with data inputs that can be readily extracted from different 303 

databases. 304 

ܧܣܦܩ  ൌ ఊభሺܫ ஺ܶ ஻ܶሻఊమ, (7)

where ߛଵ  and ߛଶ  are the correction terms of the GDAE that account for any distinctions 305 

between the idealized scenario and the reality. Because ߛଵ and ߛଶ are the model parameters to 306 

be calibrated, both the GDAE and the sensitivity parameters of the explanatory variables are 307 

calibrated simultaneously upon regressions of the crash frequency models. Moreover, the 308 

calibrated correction terms should be positive because both ܫ and ஺ܶ ஻ܶ should increase with 309 

݉஺஻, as shown in Eq. (5). 310 

 311 

2.2 Crash frequency modeling 312 

Because overdispersion exists in most crash data, NB regression is more favored in crash 313 

frequency modeling than the use of the Poisson model because it is commonly used to deal 314 

with overdispersion (Coruh et al., 2015). Moreover, unobserved heterogeneity may lead to 315 

underestimated standard errors associated with the estimated coefficients and thus inflated t-316 

ratios (Venkataraman et al., 2013). Therefore, an RPNB model was used in this study to 317 

better address the overdispersion and the unobserved heterogeneity in the crash dataset. The 318 

probability that ݕ௜ crashes occur in zone ݅ is as follows: 319 

 ܲሺݕ௜ሻ ൌ
Γ ቀ1ߙ ൅ ௜ቁݕ

Γ ቀ1ߙቁ !௜ݕ
ቌ

1
ߙ

ቀ1ߙቁ ൅ ௜ߣ
ቍ

ଵ
ఈ

ቌ
௜ߣ

ቀ1ߙቁ ൅ ௜ߣ
ቍ

௬೔

, (8)

where ߣ௜ represents the expected number of crashes in zone ݅ in a certain period, and ߙ is the 320 

overdispersion parameter. The Poisson regression model is a special case of the NB 321 

regression model, in which ߙ approaches zero.  322 

 323 
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If the crashes are divided into ܫ zones and ܶ periods, the expected number of crashes in zone 324 

݅ and period ݐ can be determined by a series of explanatory variables in log-link form, as 325 

follows: 326 

௜௧ߣ  ൌ ௜௧ܧ EXPሺ܆ࢼ௜௧ ൅ ߳௜ሻ, (9)

where ܧ௜௧ is the exposure measure, ࢄ௜௧ represents the vector of the explanatory variables, ࢼ is 327 

the vector of the coefficients to be estimated, and EXPሺ߳௜ሻ is the error term, which follows a 328 

gamma distribution with a mean of 1 and variance ߙ (Washington et al., 2011). The random 329 

parameters of RPNB models are generally stated in the form of a mean and a random term as 330 

follows (Greene, 2007; Mannering et al., 2016): 331 

௜ߚ  ൌ ߚ ൅ ߮௜, (10)

where ߚ௜ is the estimable coefficient for the ݅th zone, ߚ is the fixed proportion of the random 332 

parameter, and ߮௜ is a normally distributed parameter among various zones with mean 0 and 333 

variance ߪ௜ଶ. The parameter ߚ௜  is considered to be random only if the variance ߪ௜ଶ of the 334 

random part ߮௜ is greater than zero (Anastasopoulos and Mannering, 2009). To identify the 335 

explanatory factors that contribute to the crash risk and determine whether their effects are 336 

heterogeneous, Z-tests should be performed to determine the significance levels of the 337 

estimated coefficients. 338 

 339 

In particular, if the multiple-vehicle crash frequency is modeled, the GDAE proposed in the 340 

previous subsection should be considered as one of the candidate exposure measures, because 341 

it further investigates the mechanism of vehicle meeting and is anticipated to be a more 342 

representative proxy measure for exposure in these cases. 343 

 344 
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3 Case Study: Taxi Crashes 345 

The proposed GDAE is expected to be a more representative proxy measure of exposure for 346 

modeling multiple-vehicle crash frequency. However, such an anticipation lacks statistical 347 

evidence and empirical data support. To demonstrate the applicability of the proposed GDAE, 348 

zonal multiple-vehicle crash frequency models were developed on the basis of crashes 349 

involving taxis in 398 zones of Hong Kong in 2011. Taxis were chosen as the vehicle type of 350 

interest for the case study because they are generally regarded as a risky group in road safety 351 

(i.e., type A vehicles, taxi; type B vehicles, all other types of vehicles). The explanatory 352 

factors that contribute to the multiple-vehicle crash risk were identified. 353 

 354 

3.1 Taxi safety 355 

Compared with nonprofessional drivers, professional road users such as taxi drivers and bus 356 

drivers are considered to face a greater risk of involvement in crashes, especially fatal ones, 357 

because their exposure to this risk is higher (Baker et al., 1976, Johnson et al., 1999). 358 

According to the Transport Department of Hong Kong, the involvement of taxis in road 359 

accidents has increased over the past decade, ranking second among all vehicular classes in 360 

2013, in which 4300 taxis were involved in crashes (Transport Department, 2014). Table 1 361 

reveals the crash risk comparison between taxis and all vehicle types for crashes with 362 

different levels of injury severity (i.e., slight injury versus killed or severely injured) based on 363 

crash data in 2011 in Hong Kong. (A detailed database description is covered in Section 3.2.) 364 

The crash risk here was defined as the number of crashes per million vehicle hours. The 365 

results showed that taxis generally were more likely to be involved in crashes, especially 366 

slight-injury crashes, than vehicles overall. Therefore, taxis were the chosen vehicle type for 367 

this case study. 368 

 369 
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Table 1. Crash risk comparison. 370 

 Taxi crash risk  
(crash/million vehicle hours) 

Total traffic crash risk 
 (crash/million vehicle hours) 

Slight-injury crashes 26.81 18.87 
KSI crashes 3.53 3.31 
Crashes of all types 30.34 22.18 
KSI, killed or severely injured. 371 

 372 

In the past decade, preliminary studies of taxi safety have been conducted with several points 373 

of focus. First, studies have examined taxi drivers’ views of the factors responsible for their 374 

risky behavior and have used questionnaire surveys as the optimal means of eliciting these 375 

views (Machin and De Souza, 2004; Rosenbloom and Shahar, 2007; Shams et al., 2011). In 376 

addition to collecting and analyzing data on taxi drivers’ attitudes, some researchers have 377 

objectively analyzed their behavior using observed data and identified a tendency toward 378 

aggression (Burns and Wilde, 1995; Dalziel and Job, 1997; Sullman et al., 2013). As data 379 

emerged on the aggression of taxi drivers relative to other road users, taxi-safety researchers 380 

began to consider the quantifiable relationship between crash risk and some influential factors 381 

(Lam, 2004; La et al., 2013).  382 

 383 

Although a few studies have focused on identifying the explanatory factors that contribute to 384 

the crash risk of taxis, the adoption of an exposure measure is still restricted to traditional 385 

travel time and travel distance exposure. However, these measures may not be sufficiently 386 

representative for multiple-vehicle crashes involving taxis. A more appropriate and 387 

representative exposure measure could facilitate the identification of contributory factors that 388 

influence crash risk. 389 

 390 
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3.2 Data 391 

This subsection presents the preparation of a comprehensive dataset that comprises necessary 392 

information for modeling zonal multiple-vehicle crash frequency, which includes zonal taxi 393 

crashes, network features, land-use patterns, temporal factors, and the essential data that 394 

constituted the exposure measures. 395 

 396 

In 2012, the Planning Department of Hong Kong created a zoning system based on the 397 

Territory Survey of 2011. The resulting PDZ454 system divides the overall territory of Hong 398 

Kong into 398 zones. This zoning system was adopted in this study.  399 

 400 

The Hong Kong Police Force and Transport Department collaboratively established a Traffic 401 

Information System to record detailed crash information (Wong et al., 2007). It includes the 402 

severity and environmental conditions (e.g., weather, lighting, and road type) for each crash. 403 

In 2011, there were 3,685 taxi-related crashes, of which 2,597 were multiple-vehicle crashes. 404 

These 2,597 multiple-vehicle crashes were used for model development in this case study. 405 

Six time periods were defined: 07:00 to 11:00 (morning), 11:00 to 15:00 (noon), 15:00 to 406 

19:00 (afternoon), 19:00 to 23:00 (evening), 23:00 to 03:00 (midnight) and 03:00 to 07:00 407 

(dawn) (Pei et al., 2012).  Thus, a longitudinal cross-sectional panel data structure was 408 

applied in this case: the crashes were divided into 398 zones and 6 periods according to the 409 

location and time at which they occurred.  410 

 411 

The road density, defined as the zonal road space ܴ (i.e., zonal trafficable area) divided by 412 

the zonal area, and the intersection density, defined as the zonal intersection number divided 413 

by the zonal road space ܴ, were anticipated as influential factors that contribute to crash risk. 414 

Vehicles interact with each other on road segments, and the interaction is even more intensive 415 
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at intersections, thus a higher zonal road density and a higher intersection density could 416 

increase the likelihood of crashes. The zonal road space ܴ and zonal area were extracted from 417 

the digital map using ArcGIS. 418 

 419 

A Traffic Characteristics Survey (TCS) conducted in Hong Kong in 2011 provided updated 420 

travel data. The survey comprised three parts: a Household Interview Survey, a Stated 421 

Preference Survey, and a Hotel/Guesthouse Tourists Survey (Transport Department, 2014). 422 

Trip-destination information was extracted from the TCS database. Agglomerative 423 

hierarchical cluster analysis was used to categorize zones according to land use, including 424 

mainly residential areas, mainly workplace areas, residential and miscellaneous areas, 425 

workplace and miscellaneous areas, retail areas, and cross-boundary areas (Meng et al., 2016). 426 

The observed crash data and a summary of the contributory factors (including 2 continuous 427 

variables and 10 dummy variables) are presented in Table 2. 428 

 429 
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Table 2. Summary of dependent and independent variables. 430 

 Min. Max. Mean Standard 
deviation 
(SD) 

Dependent variables:     
No. of multiple-vehicle crashes 0 16 1.09 1.52 
     
Continuous variables:     
Road density (%) 0.1 39.1 11.9 8.8 
Intersection density (0.001*km-2) 0 3.04 0.26 0.26 
 
Dummy variables: 
Land use 

    

Mainly residential area (baseline)   39.3%  
Mainly workplace area   10.4%  
Residential and miscellaneous area   22.1%  
Workplace and miscellaneous area   15.7%  
Retail area   12.4%  
Cross-boundary area    1.1%  
Time period     
03:00-07:00 (baseline)   16.6%  
07:00-11:00   16.7%  
11:00-15:00   16.7%  
15:00-19:00   16.7%  
19:00-23:00   16.7%  
23:00-03:00   16.6%  
 431 

The conventional taxi travel time exposure and the GDAE were the two candidate exposure 432 

measures chosen for this case study. The annual total traffic travel time ௧ܶ௢௧௔௟ and the annual 433 

taxi travel time ௧ܶ௔௫௜ of each zone in each time period were the essential ingredients of the 434 

two chosen exposure measures. However, these quantities were not observable. Therefore, 435 

linear data projection, which is a common data-scaling method that can estimate 436 

unobservable traffic data by multiplying the observable traffic data by a scaling factor (Wong 437 

and Wong, 2015, 2016a, 2016b), was used for the data estimation. The scaling factor is 438 

usually taken as a dimensionless ratio to bridge the observable traffic data and unobservable 439 

traffic data. 440 

 441 
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The Annual Traffic Census (ATC) 2011 (i.e., stationary source) and the taxi GPS database 442 

(i.e., mobile source) were used to constitute the observable traffic data and the corresponding 443 

scaling factors. The ATC report provided detailed traffic information, such as the annual 444 

average daily traffic data, obtained from 114 core stations and 730 coverage stations across 445 

Hong Kong (Lam et al., 2003; Tong, 2003). The core stations are distributed almost equally 446 

across the three districts of Hong Kong: 38 in Hong Kong Island, 33 in Kowloon, and 43 in 447 

the New Territories (Transport Department, 2012). Eighty-five core stations were chosen to 448 

represent the counting stations over the network. The AADT and the occupied probe taxi 449 

counts across each station were used to determine the scaling factors. The GPS data were 450 

obtained from GPS trackers installed in 460 probe taxis that traversed the Hong Kong 451 

network in 2011. The data comprised information on the taxi travel time, coordinates (in 452 

WGS84 format), speed, and direction at 30-second intervals. The travel times of the occupied 453 

probe taxis of each zone in each time period were the observable traffic data. These 454 

observations were obtained by multiplying the number of observed occupied taxi GPS 455 

records for each zone in each time period by 30 seconds. The total-traffic-to-probe-taxi ratio 456 

and total-taxi-to-probe-taxi ratio were the corresponding scaling factors used to estimate the 457 

annual total traffic travel time ௧ܶ௢௧௔௟ and the annual taxi travel time ௧ܶ௔௫௜, respectively, using 458 

linear data projection. The scaling factors were estimated using the scaling factor estimation 459 

models proposed by Meng et al. (2016), which quantify the scaling factors as functions of a 460 

number of factors, such as the land use of a zone and distances between zones. Moreover, the 461 

zonal taxi average speed, ݑത , was estimated from the GPS data. Table 3 summarizes the 462 

logarithmic transformations of the conventional taxi travel time exposure, log	ሺ ௧ܶ௔௫௜,௜௧ሻ, and 463 

major factors of the GDAE, log	ሺ ௧ܶ௔௫௜,௜௧ ௧ܶ௢௧௔௟,௜௧ሻ, and log	ሺܫ௜௧ሻ, of the 398 zones and 6 time 464 

periods. 465 

 466 
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Table 3. Logarithmic transformations of taxi time exposure and factors of GDAE. 467 

 Min. Max. Mean SD 
log	ሺ ௧ܶ௔௫௜,௜௧ሻ 9.40 9.57 9.48 0.044 
log	ሺ ௧ܶ௔௫௜,௜௧ ௧ܶ௢௧௔௟,௜௧ሻ 20.7 21.0 20.8 0.081 
log	ሺܫ௜௧ሻ −5.86 7.34 −1.10 0.020 
 468 

To prevent bias due to correlation and multicollinearity between the various independent 469 

variables, correlation tests and variance inflation factor tests of data associated with multiple-470 

vehicle crashes were conducted. None of the independent variables in the dataset were found 471 

to be highly correlated with each other (all correlation figures were lower than 0.6), and all of 472 

the variance inflation factor values for the variables were less than 10. Therefore, there was 473 

no statistical evidence to suggest multicollinearity. 474 

 475 

 476 

3.3 Results 477 

To demonstrate the applicability of the proposed GDAE, zonal multiple-vehicle crash 478 

frequency models were calibrated on the basis of collected data. This subsection presents the 479 

results of the exposure measure selection, RPNB model establishment, and final modeling. 480 

 481 

Two candidate exposure measures, conventional taxi travel time exposure and the proposed 482 

GDAE, were considered in this case study. If the conventional taxi travel time exposure is 483 

adopted, the crash frequency can be expressed as  484 

௜௧ߣ   ൌ ௧ܶ௔௫௜,௜௧
ఛ ൈ EXPሺ܆ࢼ௜௧ ൅ ߳௜ሻ (11)

where ௧ܶ௔௫௜,௜௧  is the annual taxi travel time for zone ݅ in time period ݐ; and ߬ is the model 485 

parameter that accounts for the nonlinear effect of the exposure measure. Previous studies 486 

have shown that the logarithmic transformation of an exposure measure could better fit the 487 

crash frequency function than the exposure measure itself (Kim and Washington, 2006; Mitra 488 



 

24 
 

and Washington, 2007; Washington et al, 2011). Therefore, the logarithmic form of annual 489 

zonal taxi travel time is used in this study. 490 

 491 

In contrast, if the proposed GDAE is used, the crash frequency can be alternatively expressed 492 

as 493 

௜௧ߣ  ൌ ௜௧ܫ
ఊభሺ ௧ܶ௔௫௜,௜௧ ௧ܶ௢௧௔௟,௜௧ሻఊమ ൈ EXPሺ܆ࢼ௜௧ ൅ ߳௜ሻ, (12)

where ܫ௜௧ is the state-topological factor in zone ݅  in time period ݐ and ௧ܶ௢௧௔௟,௜௧ is the annual 494 

total traffic travel time in zone ݅ in time period 495  .ݐ 

 496 

To select the most representative exposure measure, two NB models were established for 497 

multiple-vehicle crashes involving taxis using only the candidate exposure measures. The 498 

conventional taxi travel time exposure was used in Model 1, and the GDAE measure was 499 

considered in Model 2. The results are presented in Table 4. A maximum likelihood 500 

estimation (MLE) approach was used to estimate the coefficients. The probability that each 501 

value of Z was above the upper limit or below the lower limit of the 95% confidence interval 502 

of the critical value is given as “P > |ࢠ|” in the table.  503 

 504 

As shown in Table 4, the AIC value of Model 2 is lower than that of Model 1; the MSE and 505 

RMSE values of the two models are quite similar, yet the predicted crash frequency of Model 506 

2 (2599.4) is closer to the observed crash frequency (2597) than that of Model 1 (2589.8). 507 

The GDAE outperformed the conventional taxi travel time exposure, which provided 508 

statistical evidence that the GDAE should be a more representative exposure measure for 509 

modeling the multiple-vehicle crash frequency. 510 

 511 
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Table 4. NB models with only one exposure measure. 512 

Variables 
Model 1  Model 2 

Coefficient P > |ݖ| Coefficient P > |ݖ| 
Constant −3.467** 0.000 −4.242** 0.000 
log	ሺ ௧ܶ௔௫௜,௜௧ሻ 0.352** 0.000 - - 
log	ሺ ௧ܶ௔௫௜,௜௧ ௧ܶ௢௧௔௟,௜௧ሻ - - 0.180** 0.000 
log	ሺܫ௜௧ሻ - - 0.292** 0.000 

Overdispersion parameter 0.545 0.485 

No. of observations 2385 2385 
Log likelihood −3206.163 −3162.240 
AIC (df a) 6418.326 6332.480 
MSE 1.888 1.889 
RMSE 1.374 1.374 
Predicted crash frequency 2589.8 2599.4 
a. df = degrees of freedom. 513 

* Statistically significant at the 5% level. 514 

** Statistically significant at the 1% level. 515 

 516 

The RPNB model was then calibrated for multiple-vehicle crashes involving taxis in Hong 517 

Kong by further incorporating the collected explanatory variables that contributed to the 518 

crash risk. A simulated MLE with 200 Halton draws was conducted (Train, 1999; Bhat, 519 

2003). The normal distributions were used for all of the estimated coefficients, and the 520 

coefficients with both a significant mean and standard deviation were considered to be 521 

random, whereas the conventional fixed parameters were applied to the other coefficients. 522 

Table 5 presents the results of the calibrated RPNB model. 523 

 524 

It is worth noting that three variables in Table 5 had coefficients that were insignificant at the 525 

5% level or above (“residential and miscellaneous area,” “cross-boundary area,” and 526 

“intersection density”). To test the robustness and predictability of the model, these three 527 

statistically insignificant variables were dropped, and the results turned out to be similar and 528 

consistent with the model shown in Table 5 (i.e., all of the significant coefficients remained 529 
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significant and were very close to those presented in Table 5) 3 . To provide more 530 

comprehensive information to the readers, these variables are presented in the final model. 531 

 532 

Table 5. RPNB crash frequency models for multiple-vehicle crashes using GDAE. 533 

Variables Coefficient Standard Error P>|ݖ| 
Fixed parameters:    
Constant −7.062** 0.311 0.000 
log	ሺ ௧ܶ௔௫௜,௜ ௧ܶ௢௧௔௟,௜ሻ 0.134** 0.010 0.000 
Residential and miscellaneous area 0.097 0.063 0.122 
Retail area 0.465** 0.074 0.000 
Cross-boundary area −0.209 0.216 0.332 
07:00-11:00 0.824** 0.089 0.000 
11:00-15:00 0.671** 0.088 0.000 
15:00-19:00 0.810** 0.086 0.000 
19:00-23:00 0.777** 0.086 0.000 
Intersection density in 0.001 (km−2)  −0.136 0.166 0.414 
Road density (%) 2.539** 0.293 0.000 
    
Means for random parameters:    
log	ሺܫ௜ሻ 0.389** 0.037 0.000 
Mainly workplace area −0.456** 0.117 0.001 
Workplace and miscellaneous area 0.298** 0.069 0.000 
23:00-03:00 0.231** 0.093 0.013 
    
Scale parameters for distributions of random parameters:
log	ሺܫ௜ሻ 0.017** 0.003 0.000 
Mainly workplace area 0.678** 0.099 0.000 
Workplace and miscellaneous area 0.253** 0.052 0.000 
23:00-03:00 0.331** 0.060 0.000 
Overdispersion Parameter 5.138** 0.869 0.000 
No. of observations 2385 
Log likelihood at convergence −3013.947 
Restricted log likelihood −4476.931 
Pseudo R2 0.327 
AIC 6067.894 
BIC 6183.423 

                                                 
3 The inclusion of the three insignificant variables may lead to a loss in efficiency, resulting in an increase in 
standard error of the estimated coefficients. 
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3.4 Discussion 534 

This subsection discusses the results of the exposure measure selection and the calibrated 535 

crash frequency model. A better understanding of the proposed GDAE and the identified 536 

factors that contribute to multiple-vehicle crash risk could help improve taxi road safety. 537 

 538 

According to the model calibration results of the RPNB model, 12 results (2 for the GDAE, 1 539 

for the continuous explanatory variables, 8 for the subvariables of the categorical variables, 540 

and 1 constant) were found to be significant at the 5% level or above, among which eight 541 

were fixed parameters and four were random variables. These results reveal that unobserved 542 

heterogeneity across various zones existed in the crash frequency model regarding taxis in 543 

Hong Kong and were captured by the four random parameters acquired in the RPNB model. 544 

 545 

For the proposed GDAE, both correction terms were significant at the 5% level, in which γଵ 546 

was fixed (coefficient, 0.134) and γଶ was random (with a mean of 0.389 and scale parameter 547 

0.017). Thus, heterogeneity existed in the state-topological factor, I୧. Because the same zonal 548 

average speed under different traffic volumes may result in different vehicular meeting 549 

potentials, the effect of the state-topological factor was intuitively heterogeneous and thus 550 

resulted in the heterogeneous effect of GDAE on the multiple-vehicle crash frequency. Based 551 

on the calibrated distribution of γଶ , the 95% confidence interval was between 0.292 and 552 

0.496. Because the lower boundary was greater than 0 and the upper boundary was less than 553 

1, we have sufficient confidence to believe that both the travel time effect,	 ௧ܶ௔௫௜,௜ ௧ܶ௢௧௔௟,௜, and 554 

the state-topological factor, ܫ௜ , had positive effects on the multiple-vehicle crash rate. 555 

Moreover, the growth rate of GDAE decreased with ௧ܶ௔௫௜,௜ ௧ܶ௢௧௔௟,௜ and ܫ௜, indicating that the 556 

increase in the meeting frequency of taxis and other vehicles due to the increase in 557 

௧ܶ௔௫௜,௜ ௧ܶ௢௧௔௟,௜ and ܫ௜ became less effective as their values increased. 558 
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 559 

Three explanatory variables had random coefficients on the zonal risk of multiple-vehicle 560 

crashes involving taxis, namely “mainly workplace area,” “workplace and miscellaneous 561 

area,” and “23:00 to 3:00”. The heterogeneity effects of these covariates are discussed in 562 

relation to the other land use types and time periods below. 563 

 564 

To study the effects of the time periods on the crash risk, 03:00 to 07:00 (i.e., dawn) was 565 

selected as the baseline reference. Compared to the baseline time period, 07:00 to 11:00 566 

(coefficient, 0.824), including the morning peak hours, and 15:00 to 19:00 (coefficient, 0.810) 567 

and 19:00 to 23:00 (coefficient, 0.777), covering the afternoon and evening peak hours, were 568 

the three most dangerous periods of the day. (It should be noted that traffic in Hong Kong 569 

during the evening is usually still considered “busy”.) Obviously, the number of passengers 570 

and the intensity of taxi activity were the highest in the morning and afternoon peak hours, 571 

especially on weekdays. During these busy hours, taxi drivers must concentrate on activities 572 

such as cruising, searching for passengers, and picking up and dropping off passengers. This 573 

heavy workload could possibly lead to driver fatigue, which could make the taxi drivers less 574 

aware of possible dangerous situations. Thus, they might not be able to respond sufficiently 575 

quickly to avoid crashes. The period from 11:00 to 15:00 (coefficient, 0.671), here referred to 576 

as “noon,” was found to be less risky than the morning and afternoon peaks, because the 577 

workload of the taxi drivers during this period was relatively low.  Compared with 03:00 to 578 

07:00, the effect of 23:00 to 03:00 was heterogeneous, and the 95% confidence interval of the 579 

random coefficient for 23:00 to 03:00 was between −0.344 to 0.806. This heterogeneous 580 

effect could have resulted from the highly uneven spatial distribution of the taxis due to their 581 

special cruising behavior, which was influenced by the time-specific attractions in the zones 582 

with intensive night activities. 583 
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 584 

The land use categorical explanatory variable “mainly residential area” was chosen as the 585 

baseline reference. The highly significant calibrated mean of the random coefficient for 586 

“mainly workplace areas” (−0.456) showed that the risk of multiple-vehicle crashes involving 587 

taxis in those areas was lower than that of “mainly residential areas” for most cases, yet the 588 

scale parameter (0.678) indicated that there were exceptions. Although workplaces normally 589 

attract intense traffic, the intensity of the attraction varies with the location of the workplace. 590 

In Hong Kong, workplaces are concentrated in commercial and administrative areas, such as 591 

Central and Admiralty. The traffic density is extremely high in these areas, especially during 592 

workdays. Compared with residential areas, workplace areas have heavier traffic and attract 593 

more taxi trips, which make taxi drivers considerably more cautious when driving in these 594 

areas. In the New Territories, however, zones with large industrial areas are also categorized 595 

as workplaces, but the traffic is relatively lighter with a certain number of taxi trips. 596 

Compared with some residential areas, the multiple-vehicle crash risk in such areas is likely 597 

to be lower. Moreover, compared to “mainly residential areas,” “retail areas” were associated 598 

with a higher multiple-vehicle crash risk (coefficient, 0.465). The total zonal crash risk has 599 

been shown to be higher in mixed land-use zones than in any other land-use type (Pulugurtha 600 

et al., 2013; Chen, 2015). Because the land use proportions of the retail areas sampled in this 601 

study were similar to those of the mixed land-use zones, our finding of the effects of “retail 602 

areas” on the crash risk is generally consistent with those of previous studies. 603 

 604 

The zonal road density, obtained by dividing the zonal road space by the zonal area, had a 605 

positive effect on the crash risk (coefficient, 2.539). Vehicles interact on the road space, and 606 

in certain circumstances, some interactions result in crashes. Given the same zonal area, a 607 
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zone with greater zonal density offers more road space for interactions among vehicles and 608 

hence leads to a greater crash risk. 609 

 610 

4 Conclusions 611 

This study proposes a more representative exposure measure for modeling multiple-vehicle 612 

crash frequency. We analogized the meeting frequency of vehicles with the meeting 613 

frequency of gas molecules. Based on the central idea of the classical collision theory in 614 

physical chemistry, the meeting frequency function of vehicles was derived. It was found that 615 

the meeting frequency of vehicles is, theoretically, dependent on the time exposures of the 616 

two vehicle types of interest, the mean speed of the vehicles, the road space of a given area, 617 

the effective meeting width, and the angle of the vehicles. However, at the current stage, 618 

direct application of the meeting frequency function may not be possible because the 619 

effective meeting width and the angle of the vehicles—two unknown constants—of a study 620 

region of interest are not easily obtainable. Thus, the GDAE was formulated by means of the 621 

obtainable major factors identified in the meeting frequency function. Correction terms were 622 

incorporated to account for any differences between the idealized scenario and reality. 623 

Compared to conventional exposure measures, the proposed GDAE can provide further 624 

insight into the physics of the vehicle meeting mechanism, which is its major distinctive 625 

feature and the major contribution of this study.  626 

 627 

To provide statistical evidence on the applicability of the proposed GDAE, a zonal multiple-628 

vehicle crash frequency model involving taxis and total traffic as the two chosen vehicle 629 

types was established on the basis of the crash data from Hong Kong in 2011. The 630 

performance of the GDAE was compared with that of the conventional time exposure in 631 

modeling multiple-vehicle crashes involving taxis. The GDAE was found to be a better 632 
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exposure measure of multiple-vehicle crash frequency than the conventional time exposure 633 

based on the information criterion.  634 

 635 

The explanatory factors that contributed significantly to the crash risk of taxis and total traffic 636 

were then identified on the basis of an RPNB model that addressed the possible unobserved 637 

heterogeneity. The state-topological factor was found to have a heterogeneous effect on the 638 

multiple-vehicle crash risk involving taxis, whereas the travel time measurement had a fixed 639 

positive effect. The relatively busy periods in Hong Kong (i.e., 07:00 to 11:00, 15:00 to 19:00, 640 

and 19:00 to 23:00) were found to be the most dangerous times of day in terms of the 641 

likelihood of multiple-vehicle crashes involving taxis. In terms of land use, “retail area” was 642 

the riskiest of the different land-use areas. Furthermore, the crash risk was found to increase 643 

with the road density. 644 

 645 

The proposed GDAE is a novel and promising proxy exposure measure for modeling 646 

multiple-vehicle crash frequency. With a more representative exposure measure, it can 647 

facilitate the identification of factors that contribute to crash risk and hence the formulation of 648 

policies to improve road safety. Further incorporation of the effective meeting width and 649 

angle in the exposure measure and the application of this proxy to less aggregated datasets 650 

present interesting future research directions. Moreover, the GDAE is derived from the 651 

meeting frequency function, which quantifies the number of potential traffic conflicts. 652 

Because traffic conflict is an essential and important concept in transportation research, the 653 

proposed GDAE could be used in other cases with suitable modifications. In addition, due to 654 

the limitations of the dataset available, the empirical modeling of taxi crashes in Hong Kong 655 

lacks contributory factors such as roadway geometric characteristics and environmental 656 

conditions. Future studies may investigate the effects of these variables with crash data 657 
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neutralized by GDAE and explore other modeling approaches, such as multivariate, latent-658 

class, zero-inflated, and space-time models with incorporation of GDAE. 659 

 660 

 661 

Acknowledgments 662 

This study was supported by a Research Postgraduate Studentship, grants from the University 663 

Research Committee of the University of Hong Kong (201511159015), and the Joint 664 

Research Scheme of the National Natural Science Foundation of China/Research Grants 665 

Council of Hong Kong (Project Nos. 71561167001 and N_HKU707/15). The third author 666 

was also supported by the Francis S. Y. Bong Professorship in Engineering. We express our 667 

special thanks to Concord Pacific Satellite Technologies Ltd. and Motion Power Media Ltd. 668 

for providing the GPS taxi data and to the Transport Department of the Hong Kong Special 669 

Administrative Region for providing the TCS and ATC data. 670 

 671 

 672 

References 673 

Amoh-Gyimah, R., Saberi, M., Sarvi, M., 2017. The effect of variations in spatial units on 674 

unobserved heterogeneity in macroscopic crash models. Analytic Methods in 675 

Accident Research 13, 28-51. 676 

Anastasopoulos, P., Mannering, F., 2009. A note on modeling vehicle accident frequencies 677 

with random-parameters count models. Accident Analysis and Prevention 41 (1), 153-678 

159. 679 

Baker, S.P., Wong, J., Baron, R.D., 1976. Professional drivers: Protection needed for a high-680 

risk occupation. American Journal of Public Health 66 (7), 649-654. 681 



 

33 
 

Barua, S., El-Basyouny, K., Islam, M.T., 2015. Effects of spatial correlation in random 682 

parameters collision count-data models. Analytic Methods in Accident Research 5-6, 683 

28-42. 684 

Barua, S., El-Basyouny, K., Islam, M.T., 2016. Multivariate random parameters collision 685 

count data models with spatial heterogeneity. Analytic Methods in Accident Research 686 

9, 1-15. 687 

Bhat, C., 2003. Simulation estimation of mixed discrete choice models using randomized and 688 

scrambled Halton sequences. Transportation Research Part B: Methodological 37 (1), 689 

837-855. 690 

Bhat, C., Born, K., Sidharthan, R., Bhat, P., 2014. A count data model with endogenous 691 

covariates: formulation and application to roadway crash frequency at intersections. 692 

Analytic Methods in Accident Research 1, 53-71. 693 

Bie, J., Lo, H.K., Wong, S., Hung, W., Loo, B.P., 2005. Safety analysis of traffic roundabout: 694 

Conventional versus Alberta-type markings. Journal of the Eastern Asia Society for 695 

Transportation Studies 6, 3309-3324. 696 

Buddhavarapu, P., Scott J. G., Prozzi, J.A., 2016. Modeling unobserved heterogeneity using 697 

finite mixture random parameters for spatially correlated discrete count data. 698 

Transportation Research Part B 91, 492-510. 699 

Burns, P.C., Wilde, G.J.S., 1995. Risk taking in male taxi drivers: Relationships among 700 

personality, observational data and driver records. Personality and Individual 701 

Differences 18 (2), 267-278. 702 

Chapman, R., 1973. The concept of exposure. Accident Analysis and Prevention 5 (2), 95-703 

110. 704 



 

34 
 

Chen, E., Tarko, A.P., 2014. Modeling safety of highway work zones with random 705 

parameters and random effects models. Analytic Methods in Accident Research 1, 86-706 

95. 707 

Chen, P., 2015. Built environment factors in explaining the automobile-involved bicycle 708 

crash frequencies: A spatial statistic approach. Safety Science 79, 336-343. 709 

Chen, C., Xie, Y., 2016. Modeling the effects of AADT on predicting multiple-vehicle 710 

crashes at urban and suburban signalized intersections. Accident Analysis and 711 

Prevention 91, 72-83. 712 

Chiou, Y-C., Fu, C., Chih-Wei, H., 2014. Incorporating spatial dependence in simultaneously 713 

modeling crash frequency and severity. Analytic Methods in Accident Research 2, 1-714 

11. 715 

Chiou, Y-C., Fu, C., 2015. Modeling crash frequency and severity with spatiotemporal 716 

dependence. Analytic Methods in Accident Research 5-6, 43-58. 717 

Chipman, M.L., MacGregor, C.G., Smiley, A.M., Lee-Gosselin, M., 1993. The role of 718 

exposure in comparisons of crash risk among different drivers and driving 719 

environments. Accident Analysis and Prevention 25 (2), 207-211. 720 

Coruh, E., Bilgic, A., Tortum, A., 2015. Accident analysis with aggregated data: The random 721 

parameters negative binomial panel count data model. Analytic Methods in Accident 722 

Research 7, 37-49. 723 

Dalziel, J.R., Job, R.F.S., 1997. Motor vehicle accidents, fatigue and optimism bias in taxi 724 

drivers. Accident Analysis and Prevention 29 (4), 489-494. 725 

Elvik, R., 2015. Some implications of an event-based definition of exposure to the risk of 726 

road accident. Accident Analysis and Prevention 76, 15-24. 727 



 

35 
 

Fridstrøm, L., Ifver, J., Ingebrigtsen, S., Kulmala, R., Thomsen, L.K., 1995. Measuring the 728 

contribution of randomness, exposure, weather, and daylight to the variation in road 729 

accident counts. Accident Analysis and Prevention 27 (1), 1-20. 730 

Greene, W., 2007. Limdep, Version 9.0. Econometric Software Inc., Plainview, NY. 731 

Heydari, S., Fu, L., Miranda-Moreno, L.F., Joseph, L., 2017. Using a flexible multivariate 732 

latent class approach to model correlated outcomes: A joint analysis of pedestrian and 733 

cyclist injuries. Analytic Methods in Accident Research 13, 16-27. 734 

Huang, H., Chin, H.C., 2009. Disaggregate propensity study on red light running crashes 735 

using quasi-induced exposure method. Journal of Transportation Engineering 135 (3), 736 

104-111. 737 

Huang, H., Zhou, H., Wang, J., Chang, F., Ma, M., 2017. A multivariate spatial model of 738 

crash frequency by transportation modes for urban intersections. Analytic Methods in 739 

Accident Research 14, 10-21. 740 

Imprialou, M.M., Quddus, M., Pitfield, D.E., 2016. Predicting the safety impact of a speed 741 

limit increase using condition-based multivariate Poisson lognormal regression. 742 

Transportation Planning and Technology 39 (1), 3-23. 743 

Jiang, X., Lyles, R.W., Guo, R., 2014. A comprehensive review on the quasi-induced 744 

exposure technique. Accident Analysis and Prevention 65, 36-46. 745 

Johnson, N.J., Sorlie, P.D., Backlund, E., 1999. The impact of specific occupation on 746 

mortality in the US national longitudinal mortality study. Demography 36 (3), 355-747 

367. 748 

Kim, D.G., Washington, S., 2006. The significance of endogeneity problems in crash models: 749 

An examination of left-turn lanes in intersection crash models. Accident Analysis and 750 

Prevention 38 (6), 1094-100. 751 



 

36 
 

Kroyer, H.R.G., 2016. Pedestrian and bicyclist flows in accident modeling at intersections: 752 

Influence of the length of observational period. Safety Science 82. 315-324. 753 

La, Q.N., Lee, A.H., Meuleners, L.B., Van Duong, D., 2013. Prevalence and factors 754 

associated with road traffic crash among taxi drivers in Hanoi, Vietnam Accident 755 

Analysis and Prevention 50, 451-455. 756 

Laidler, K.J., 1973. Chemical Kinetics, 3rd edition. Tata McGraw-Hill, US. 757 

Lam, L.T., 2004. Environmental factors associated with crash-related mortality and injury 758 

among taxi drivers in New South Wales, Australia. Accident Analysis and Prevention 759 

36 (5), 905-908. 760 

Lam, W.H.K., Hung, W.T., Lo, H.K., Lo, H.P., Tong, C.O., Wong, S.C., Yang, H., 2003. 761 

Advancement of the annual traffic census in Hong Kong. In: Proceedings of the 762 

Institution of Civil Engineers-Transport 156 (2), 103-115. 763 

Lee, J., Abdel-Aty, M., Jiang, X., 2015. Multivariate crash modeling for motor vehicle and 764 

non-motorized modes at the macroscopic level. Accident Analysis and Prevention 78, 765 

146-154. 766 

Li, G., Braver, E.R., Chen, L., 2003. Fragility versus excessive crash involvement as 767 

determinants of high death rates per vehicle-mile of travel among old drivers. 768 

Accident Analysis and Prevention 35, 227–235. 769 

Machin, M.A., De Souza, J.M.D., 2004. Predicting health outcomes and safety behaviour in 770 

taxi drivers. Transportation Research Part F: Traffic Psychology and Behaviour 7 (4-771 

5), 257-270. 772 

Mannering, F.L., Shankar, V., Bhat, C.R., 2016. Unobserved heterogeneity and the statistical 773 

analysis of highway accident data. Analytic Methods in Accident Research 11, 1-16. 774 



 

37 
 

Meng, F., Wong, S.C., Wong, W., Li, Y. C., 2017. Estimation of scaling factors for traffic 775 

counts based on stationary and mobile sources of data. International Journal of 776 

Intelligent Transportation Systems Research 15 (3), 180-191. 777 

Miranda-Moreno, L., Strauss, J., Morency, P., 2011. Disaggregate exposure measures and 778 

injury frequency models of cyclist safety at signalized intersections. Transportation 779 

Research Record: Journal of the Transportation Research Board 2236, 74-82. 780 

Mitra, S., Washington, S., 2007. On the nature of over-dispersion in motor vehicle crash 781 

prediction models. Accident Analysis and Prevention 39 (3), 459-468. 782 

Naci, H., Chisholm, D., Baker, T.D., 2009. Distribution of road traffic deaths by road user 783 

group: a global comparison. Injury Prevention 15, 55-59. 784 

Pei, X., Wong, S.C., Sze, N.N., 2012. The roles of exposure and speed in road safety analysis. 785 

Accident Analysis and Prevention 48, 464-471. 786 

Pei, X., Sze, N.N., Wong, S.C., Yao, D., 2016. Bootstrap resampling approach to 787 

disaggregated analysis of road crashes in Hong Kong. Accident Analysis and 788 

Prevention 95, 512-520. 789 

Pulugurtha, S.S., Duddu, V.R., Kotagiri, Y., 2013. Traffic analysis zone level crash 790 

estimation models based on land use characteristics. Accident Analysis and 791 

Prevention 50, 678-687. 792 

Qin, X., Ivan, J.N., Ravishanker, N., 2004. Selecting exposure measures in crash rate 793 

prediction for two-lane highway segments. Accident Analysis and Prevention 36, 183-794 

191. 795 

Qin, X., Ivan, J.N., Ravishanker, N., Liu, J., Tepas, D., 2006. Bayesian estimation of hourly 796 

exposure functions by crash type and time of day. Accident Analysis and Prevention 797 

38 (6), 1071-1080. 798 



 

38 
 

Rosenbloom, T., Shahar, A., 2007. Differences between taxi and nonprofessional male 799 

drivers in attitudes towards traffic-violation penalties. Transportation Research Part F: 800 

Traffic Psychology and Behaviour 10 (5), 428-435. 801 

Russo, B.J., Savolainen, P.T., Schneider, W.H. IV, Anastasopoulos, P., 2014. Comparison of 802 

factors affecting injury severity in angle collisions by fault status using a random 803 

parameters bivariate ordered probit model. Analytic Methods in Accident Research 2, 804 

21-29. 805 

Sarwar, M.T., Anastasopoulos, P., 2017. The effect of long term non-invasive pavement 806 

deterioration on accident injury-severity rates: a seemingly unrelated and multivariate 807 

equations approach. Analytic Methods in Accident Research 13, 1-15. 808 

Serhiyenko, V., Mamun, S.A., Ivan, J.N., Ravishanker, N., 2016. Fast Bayesian inference for 809 

modeling multivariate crash counts. Analytic Methods in Accident Research 9, 44-53. 810 

Shams, M., Shojaeizadeh, D., Majdzadeh, R., Rashidian, A., Montazeri, A., 2011. Taxi 811 

drivers’ views on risky driving behavior in Tehran: A qualitative study using a social 812 

marketing approach. Accident Analysis and Prevention 43 (3), 646-51. 813 

Stamatiadis, N., Deacon, J.A., 1997. Quasi-induced exposure: Methodology and insight. 814 

Accident Analysis and Prevention 29 (1), 37-52. 815 

Sullman, M.J., Stephens, A.N., Kuzu, D., 2013. The expression of anger amongst Turkish 816 

taxi drivers. Accident Analysis and Prevention 56, 42-50. 817 

Tong, C.O., Hung, W. T., Lam, W. H. K., Lo, H.P., Wong, S.C., Yang, H., 2003. A new 818 

survey methodology for the annual traffic census in Hong Kong. Traffic Engineering 819 

and Control 44, 214-218. 820 

Transport Department, 2012. The Annual Traffic Census 2011. Transport Department, 821 

HKSAR. 822 



 

39 
 

Transport Department, 2014. Road Traffic Accident Statistics. Transport Department, 823 

HKSAR. 824 

Transport Department, 2014. Travel Characteristics Survey 2011 Final Report. Transport 825 

Department, HKSAR. 826 

Train, K., 1999. Halton Sequences for Mixed Logit. Working Paper. University of California, 827 

Department of Economics, Berkley. 828 

Tulu, G.S., Washington, S., Haque, M.M., King, M.J., 2015. Investigation of pedestrian 829 

crashes on two-way two-lane rural roads in Ethiopia. Accident Analysis and 830 

Prevention 78, 118-126. 831 

Venkataraman, N., Ulfarsson, G., Shankar, V., Oh, J., Park, M., 2011. Model of relationship 832 

between interstate crash occurrence and geometrics: Explanatory insights from 833 

random parameter negative binomial approach. Transportation Research Record 2236, 834 

41-48. 835 

Venkataraman, N., Ulfarsson, G.F., Shankar, V.N., 2013. Random parameter models of 836 

interstate crash frequencies by severity number of vehicles involved, collision and 837 

location type. Accident Analysis and Prevention 50, 309-318. 838 

Washington, S.P., Karlaftis, M.G., Mannering, F.L., 2011. Statistical and econometric 839 

methods for transportation data analysis (Second Edition). New York: CRC Press. 840 

Wolfe, A.C., 1982. The concept of exposure to the risk of a road traffic accident and an 841 

overview of exposure data collection methods. Accident Analysis and Prevention 14 842 

(5), 337-340. 843 

Wong, S.C., Sze, N.N., Li, Y.C., 2007. Contributory factors to traffic crashes at signalized 844 

intersections in Hong Kong. Accident Analysis and Prevention 39 (6), 1107-1113. 845 



 

40 
 

Wong, W., Wong, S.C., 2015. Systematic bias in transport model calibration arising from the 846 

variability of linear data projection. Transportation Research Part B: Methodological 847 

75, 1-18. 848 

Wong, W., Wong, S.C., 2016a. Biased standard error estimations in transport model 849 

calibration due to heteroscedasticity arising from the variability of linear data 850 

projection. Transportation Research Part B: Methodological 88, 72-92. 851 

Wong, W., Wong, S.C., 2016b. Unbiased calibration of nonlinear transport models based on 852 

linearly projected data: A case study of macroscopic fundamental diagram. 853 

Transportation Science. Under review. 854 

Xiong, Y., Mannering, F., 2013. The heteroscedastic effects of guardian supervision on 855 

adolescent driver-injury severities: A finite mixture-random parameters approach. 856 

Transportation Research Part B 49, 39-54. 857 


