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Abstract Floating-point division is a complex operation among all floating-point

arithmetic; it is also an area and performance dominating unit. This paper presents

double-precision floating-point division architectures on FPGA platforms. The de-

signs are area-optimized, running at higher clock-speed, with less latency, and are

fully pipelined. Proposed architectures are based on the well-known Taylor-series

expansion, using relatively smaller amount of hardware in-terms of memory (initial

look-up table), multiplier blocks and slices. Two architectures have been presented

with various trade-offs amongst area, memory and accuracy. Designs are based on the

use of the partial block multipliers (PBM), in order to reduce hardware usage while

minimizing the loss of accuracy. All the implementations have been targeted and

optimized separately for different Xilinx FPGAs to exploit their specific resources

efficiently. Compared to previously reported literature, the proposed architectures re-

quire less area, reduced latency, with the advantage of higher performance gain. The

accuracy of the designs have been both theoretically analyzed and validated using

random test cases.

Keywords Floating point arithmetic · Division · Partial Block Multiplication ·
Taylor Series Expansion · Karatsuba Method · Accuracy · Arithmetic · FPGA.

1 Introduction

Floating point arithmetic is a core function used in a large set of scientific and en-

gineering applications [17, 23, 29]. Its large dynamic range and convenient scaling

of the numbers in its range provides a convenient platform for designers to realize
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their algorithms. On the other hand, the complexity involved in implementing these

arithmetic operations for floating point numbers in hardware is an issue. Among the

basic floating point operations (add, subtract, multiply, divide), division is generally

the most difficult (inefficient) to implement in hardware. Division is a fairly common

operation in many scientific and signal processing applications.

The IEEE-754 standard [1,2] for floating point defines the format of the numbers,

and also specifies various rounding modes that determine the accuracy of the result.

For many signal processing, and graphics applications, it is acceptable to trade off

some accuracy [20] (in the least significant bit positions) for faster and better opti-

mized implementations. In the past few decades several works have been dedicated

to performance improvement of floating point computations, both at algorithmic and

architecture level [4, 11, 12, 15, 26, 27, 29, 30]. Many have also given prime attention

to FPGA-based implementations [7, 10–12, 14, 25, 30, 33].

A set of related work has also focused on designing efficient division implemen-

tations. In general the implementation of division operation falls in three categories:

digit recurrence, multiplicative-based, and approximation techniques [22]. Digit Re-

currence (DR) is an iterative method with several variations. The most widely used

digit recurrence method is SRT (Sweeney, Robertson, and Tocher) method. This

method is well suited for smaller operands, specially up to single precision, because

of less area requirement and circuit complexity. However, for large operands, this

method needs higher latency and performance penalty, when compared to multiplicative-

based or approximation techniques, though with less required area. Several researchers

have focused their work using this method or its derivatives. Wang et. al. (SRT) [34],

Thakkar et. al. (DR) [28], Hemmert et. al. (SRT) [13] are some of the works which

use this method.

However, the multiplicative-based implementation is based on an initial approx-

imation of the inverse of the divisor and iterative improvements of this initial ap-

proximation, and it is based on multipliers. The famous methods in this category are

Newton-Raphson (NR) method [5, 21] and division by convergence (DC) algorithm

also known as Goldschmidts (GS) division [9]. Several implementations based on

this include works of Antelo et. al. (NR) [5], Venishetti et. al. (DC) [31], Govindu

et. al. (NR) [10], Daniel et. al. (NR, GS) [7], and Pasca (NR) [24]. This method

requires large amounts of logic (area) in terms of memory and multipliers, but is

better in terms of latency and performance vis-a-vis digit recurrence method. The

approximation method comes in to play when the desired level of accuracy is low,

and generally falls in two categories: Direct Approximation (using look-up tables)

and linear/polynomial approximation (using small look-up tables and/or partial prod-

uct arrays) [16, 19, 33]. All these methods primarily vary in terms of area, speed,

latency and/or accuracy, and mainly targeted the normalized implementation. In lit-

erature, most of the previous works require large look-up tables, along with wider

multipliers, which affect the area and performance, with varying accuracies.

The proposed architecture in this work is based on the well-known Taylor-series

expansion methodology. Based on the design metrics (discussed in section(2)), there

is variation in the different hardware resources. So, two architectures have been pro-

posed on same principle, to have an idea of trade-offs between various hardware

resources like BRAM, multiplier blocks, slices. All the required intermediate multi-
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pliers have been optimized for their accuracy requirement (at their respective stages),

which results in smaller area, shorter delay, and accuracy up to the desired level (ac-

curacy trade off). Multipliers based on the partial block multiplier (PBM) have been

utilized, to save hardware with minimal accuracy effect. A detailed error analysis

is presented to verify the accuracy of the designs. The design is currently aimed

for normalized numbers, and all exceptional cases are detected at input and output.

The comparison with the best state-of-the-art work in the literature shows that our

proposed architectures are able to achieve better efficiency with a clear mechanism

of area-accuracy trade-offs. We have used Xilinx ISE synthesis tool, ModelSim SE

simulation tool, and Xilinx Virtex2-Pro, Virtex-4 and Virtex-5 FPGA platforms for

evaluation of our proposed architectures and comparisons with other work.

This work builds on the work presented by Jaiswal et. al. [18]. Initially, the basic

idea has been generalized and elaborated in much detail with the various possible

hardware and accuracy trade-offs. This will help to further assess and opt for differ-

ent architectural composition to achieve required accuracy with available hardware.

We have done a design space exploration of the proposed approach. This manuscript

explores two architectures. Both have been designed for two different latencies, to

show the various hardware variations (slice, BRAMs, MULT18x18/DSP48). This de-

sign space exploration can further leads to some different architectures depending on

the users / applications requirements on hardware usage and accuracy. Further, all

the proposed designs have been targeted and optimized for different Xilinx FPGA

platforms to exploit their specific resources and IPs. As a significant contribution, a

detail theoretical and experimental error analysis has been presented for all the pro-

posed architectures, to establish their potential. An extensive comparison with the

several recent state-of-the-art division methodologies available in the literature has

been presented and discussed comprehensively with different metrics including hard-

ware utilization, performance and accuracy. Compared to the previous works reported

in the literature, the proposed modules achieve higher performance with relatively

lower latency and area reduction in terms of number of multiplier blocks as well as

number of block memory reduces with less slices.

The main contributions of this paper can be summarized as follows:

1. Proposed an approach for double precision floating point division, with two ar-

chitectures implemented on a range of FPGA platforms.

2. Error performance of both designs have been analyzed theoretically, as well as

using large simulation.

3. Extensively compared with state-of-the-art methods published previously in lit-

erature.

4. Proposed architectures have improved area and speed numbers, with similar ac-

curacy standard.

This paper is organized as follows. The next section 2 explains our design ap-

proach. Section 3 discusses the complete implementation with all required process-

ing in floating point division operation. Section 4 discusses error analysis, the error

cost of Partial Block Multipliers (PBMs) and total error. Section 5 has included the

implementation results, while comparison with previously reported implementations

along with discussion is included in Section 6. Finally, paper concludes in Section 7.
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2 Design Approach

A double precision floating point number is represented as,

1−bit
︷ ︸︸ ︷

Sign−bit

11−bits
︷ ︸︸ ︷

exponent

52−bits
︷ ︸︸ ︷

mantissa

In order to explain the floating point division in detail, let X be the dividend and

Y the divisor. To obtain the resultant quotient Q, the following operation is required.

Q =
X

Y
(1)

The quotient Q is also a floating point number, whose

– Sign-bit is the XOR operation of the sign-bit of X and Y .

– Exponent is the difference of the exponent of X and Y with proper biasing.

– Mantissa is obtained by the division of the X-mantissa by the Y -mantissa.

– Finally, rounding and normalization of the mantissa division and adjustment of

the output exponent are applied.

The sign and exponent manipulations are relatively trivial operations. The man-

tissa processing (division) is the most critical step in this arithmetic operation. It has

a major impact on the required area and performance speed. The present method

performs this mantissa processing as below.

Let x represent the mantissa of X , and y represent mantissa of Y . Let q be the

division result, which can be computed as follows,

q =
x

y
= x×

1

y

= x×
1

a1 +a2
= x× (a1 +a2)

−1 (2)

For this purpose, we have partitioned the denominator mantissa in two parts, m-

bit a1 and remaining as a2. a1 is used as an address input to a look-up table (memory)

fetch some pre-computed value of a−1
1 .

Thus, we have

(a1 +a2)
−1 = a−1

1 −a−2
1 .a2 +a−3

1 .a2
2 −a−4

1 .a3
2 + · · · (3)
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By inspecting the terms of the above equation 3, the content of each of the terms

in the equation will look like:

a−1
1 = X .

signi f icant bits
︷ ︸︸ ︷

XXXXXXXX

a−2
1 .a2 = 0.

m−zero bits
︷ ︸︸ ︷

00 · · ·00

signi f icant bits
︷ ︸︸ ︷

XX · · ·XX

a−3
1 .a2

2 = 0.

2m−zero bits
︷ ︸︸ ︷

00 · · ·0 · · ·00

signi f icant bits
︷ ︸︸ ︷

XX · · ·XX

a−4
1 .a3

2 = 0.

3m−zero bits
︷ ︸︸ ︷

00 · · ·0 · · ·0 · · ·00

signi f icant bits
︷ ︸︸ ︷

XX · · ·XX

· · ·and so on (4)

where m is the number of bits of a1.

In the light of the above equation, the higher order terms contribution to the main

result diminishes. Only the initial few terms significantly contribute to the final result

(depending on the precision requirement). As a result, based on the precision choices,

we can select suitable number of terms for calculating (a1 + a2)
−1, (based on the

value of m). For double precision accuracy requirement (2−53), for a given m, the

number of terms (N) can be decided by following in-equality,

|EN |= |a
−(N+1)
1 .aN

2 (1−a−1
1 .a2 +a−2

1 .a2
2 −a−3

1 .a3
2 −·· ·)|

= |
a
−(N+1)
1 .aN

2

1+a−1
1 .a2

| ≤ 2−53 (5)

where, EN is composed by all the ignored terms. For maximum error, denominator

of eq.(5) should be minimum and numerator should be maximum. So, with most

pessimistic estimation, for minimum denominator, let (1+a−1.a2)≈ 1, and for max-

imum numerator a−1
1 = 1, and thus,

|EN |max = |aN
2 | ≤ 2−53 (6)

A variation on value of m and required number of terms is shown in Table 1.

For a given accuracy requirement, as the value of m increases, the number of re-

quired terms decreases. On the contrary, the amount of memory address space for

look-up table increases exponentially. The number of terms used for a given m di-

rectly decides the amount of logic needed for different multiplications, additions and

subtractions. The more the number of terms are there, the more hardware it needs,

and further more number of pipeline stages, would be needed to meet a given perfor-

mance requirement. Thus, from the hardware implementation point of view, the value

of m specifically determines the total hardware composition for a given accuracy re-

quirement. So, based on the value of m we will have a trade-off between the required

memory space for pre-computed look-up table, and other hardware resources plus

latency of the design.
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Table 1: Required numbers of terms (N) and Look-up Table Address Space for a

given m, needed for Double Precision Accuracy

m No. of terms (N) Max Absolute Error Look-up Table

7 9 a9
2max 5.551 E-17 26(64)

9 7 a7
2max 1.387 E-17 28(256)

11 6 a6
2max 8.673 E-19 210(1k)

13 5 a5
2max 8.673 E-19 212(4k)

15 4 a4
2max 1.387 E-17 214(16k)

17 4 a4
2max 5.421 E-20 216(64k)

19 3 a3
2max 5.551 E-17 218(256k)

For double precision requirements, we consider two values of m namely, 9 and

13, and do a design space exploration. With m = 9, a small look-up table is required

but with more number of terms. However, for m = 13, a bigger look-up table is re-

quired with relatively, less number of terms for computation. This gives us an idea of

the variation of different logic (multipliers and memories) in both designs. However,

more higher value of m leads to exponential increase in usage of memory, and more

lower value leads to more computational logic (specially in terms of required multi-

pliers). So, the 9 ≤ m ≤ 15 would be more balance condition compare to other either

side values. We have selected two of them for design space exploration.

2.1 Case-1: m = 9 bits

For m = 9 bits (including 1 hidden bit) of a1, seven terms (up to a−7
1 .a6

2) from series

expansion have been taken for the purpose. We have further simplified the selected

terms in such a way that helps use less hardware with low latency and good accuracy.

The simplification of all the selected terms are performed as below,

q = x× [a−1
1 −a−1

1 {(a−1
1 .a2 −a−2

1 .a2
2)

× (1+a−2
1 .a2

2 +a−4
1 .a4

2)}]

= x.a−1
1 − x.a−1

1 {(a−1
1 .a2 −a−2

1 .a2
2)

× (1+a−2
1 .a2

2 +a−4
1 .a4

2)} (7)

Though we can simplify the above equations even further, it will affect the area,

latency and accuracy of the final result. The accuracy is affected due to the fact that

floating point operations are not completely associative, i.e. u(v + w) may not be

exactly equal to (uv+ uw). This is mainly due to the finite number of bits used to

represent the numbers.

The error cost in this due to restricted number of terms (N) and m can be ob-

tained from Table 1, which is ≤ 1.387 E − 17, is with in double precision accuracy

requirement.
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A2

B1B2

A1

A2 x B2

A2 x B1

A1 x B2

A1 x B1 A1 x B1

A1 x B2

A2 x B1

A1 x B3 

A2 x B2

A3 x B2

A3 x B3

A1A2A3

B1B2B3

A2 x B3

A3 x B1

Fig. 1: Block multiplier for 2 and 3 blocks

2.2 Case-2: m = 13 bits

Likewise, for m = 13 bits (including 1 hidden bit) of a1, five terms (up to a−5
1 .a4

2)

from series expansion have been selected. This again has been simplified as follows,

q = x.a−1
1 − x.a−1

1 {(a−1
1 .a2 −a−2

1 .a2
2)(1+a−2

1 .a2
2)} (8)

Here, also the maximum error is within the acceptance limit of the required pre-

cision of double precision accuracy.

2.3 Partial Block Multiplication (PBM) Optimization

In order to implement the eq.(7,8) for mantissa division processing, we need a set of

multipliers along with some adders and subtractors. The size of each of the operands

in each multiplication is quite large (≥ 51-bit), and we do need a large number of

multiplier blocks in FPGA to implement all these multiplications. But, as we have

seen in eq.(4), terms are associated with the leading zeros, and so, we can eliminate

some of the multiplier blocks.

Another point of interest is that after all the processing, the desired output will

need only 53-bit representation. In view of this, first, we will consider Fig. 1 for block

multiplication of two operands. In multiplication, if we need only some of the most

significant bits (MSBs) of the result to be accurate, we can discard some of the lower

order multiplier blocks (depending on the precision requirements). For example, if

we do multiplication of two 51-bit operands using three block partitioning, each of

17-bits, just by using 6 multiplier blocks (by ignoring top three multiplier blocks:

A1×B1, A1×B2, and A2×B1 in Fig. 1), we can get a result that has 50-bit accuracy.

Thus, it has a ≈ 33% hardware saving with small loss of precision.

We have used the above discussed optimization approach (partial block multipli-

cation, PBM) to perform all the multiplications. The details on these implementations

are explained in the next sections, along with the required processing for floating

point division.
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Pre-processing 

(Unpacking and Exceptional Check-up)

Divisor (Y)Dividend (X)

64-bit64-bit

Mantissa(X)

(53-bit)

Mantissa(Y)

(53-bit)

Mantissa Computation
Sign & Exp

Computation

S(Y)

(1-bit)

S(X)

(1-bit)

Exp(Y)

(11-bit)

Exp(X)

(11-bit)

Rounding

60-bit

54-bit

Normalization

Final Output 

& Status Signals

Fig. 2: Architecture of Floating Point Division

3 Design Implementation

In this section we discuss the implementation details of both FP division designs.

The implementation work flow of design is shown in Fig. 2. A floating point arith-

metic operation generally works separately on the sign, exponent and mantissa part

and finally combines them after rounding and normalization to get the final result.

Likewise, we have performed similar operations as follows.

The sign bit implementation of output quotient requires very simple logic, as it is

only an XOR operation of the input operands sign bits.

Sign out = Sign in1⊕Sign in2 (9)

The exponent computation of the output quotient is done in two phases. In the ini-

tial phase, a temporary exponent is computed by taking the difference of the dividend

exponent and divisor exponent, with proper BIAS adjustments. In the case of double

precision floating point numbers, the BIAS is equal to 1023, and generally computed
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as (2exp bit−1 −1).

Exp out tmp = (Exp dividend −Bias)

− (Exp divisor−Bias)

= Exp dividend −Exp divisor (10)

The next phase of the exponent computation occurs after the normalization of

the mantissa. In this phase, the temporary exponent is adjusted based on the nor-

malization, and finally biased to produce the final exponent result. The mantissa

computation is the complex part of this routine. This computation is discussed ahead

(in subsection 3.1, occurs in parallel with the sign & exponent computation. After,

mantissa computation, the rounding of the mantissa has been performed using round-

to-nearest method. Rounding first need to find out the correct rounding position and

further requires a 54-bit adder along with some logic for round-bit computation us-

ing guard, round and sticky bit. Further, the normalization of mantissa (using right

shift, if require), exponent update, and exceptional case status check, results in final

outputs.

3.1 Mantissa Division Architectures

Here, we discuss the proposed architectures for the double precision mantissa divi-

sion operation, for both the cases m = 9 and m = 13. In the mantissa division archi-

tectures shown in Fig. 3 and Fig. 4, for both cases, several stages use the multipliers.

As discussed earlier, multipliers use partial block multiplication (PBM) in order to

reduce the number of the multiplier blocks. However, it has a minor error overhead,

which has been analyzed and discussed in section 4. The architectures of PBMs are

discussed in section 3.2.

3.1.1 Case-1 : m = 9 bits

The architecture for m = 9 bits is based on the discussion in section 2.1. The under-

lying equation(7) to be implemented is reproduced here again for convenience.

q = x.a−1
1 − x.a−1

1 {(a−1
1 .a2 −a−2

1 .a2
2)

× (1+a−2
1 .a2

2 +a−4
1 .a4

2)} (11)

Here, for the case of m = 9 bits, a1 has the form 1.XX (in hex) and a2 will be like

0.00XXXXXXXXXXX (in hex), where XX .. is significant.

The architecture for implementing eq(11) is shown in Fig. 3. In Fig. 3, mantissa

is divided into two parts (8-bit a1 and 44-bit a2 ). a1 has been used to access the pre-

computed inverse of the 1.a1 (including the hidden bit of the mantissa). The word size

of the pre-computed value of a1 has been kept 53 bits and is stored in a block memory

(BRAM) available on the FPGA as a hard IP core. The address space of this BRAM is

28 = 256 words. Further processing involves several multiplications of intermediate

terms, along with some addition and subtraction. The size of the multipliers has been
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varied depending on the contribution of their result in the final result. Further, the

size of the adders and subtractors are relatively longer, to save the precision, as loss

in these is more than that of multiplications.

The architecture shown in Fig. 3 consists of 8-stages, each of which have been

pipelined further for better performance. The pipeline depth of each stage is based on

the type of multipliers, which is discussed later in more detail. Whereas, the pipeline

depth of addition and subtraction in stages 4,5 and 8 has been kept 2. Each of the

stages 2,3,4,6 and 7 consists of different multipliers.

Now, as soon as we receive the value of a1, we can get the pre-computed value of

a−1
1 from the BRAM. The next step involves the computation of x.a−1

1 and a−1
1 .a2 .

For the computation of x.a−1
1 we have used a 53-bit PBM. The computation of a−1

1 .a2

is done by a 51-bit PBM. Since, a2 contains 8 bits of leading zero (LZ), the product

a−1
1 .a2 will be appended by 8’h00 LZ. Next processing step is the computation of

a−2
1 .a2

2 . This is the square of the previous stage output, and it has been computed

by using 51-bit square PBM. This is mainly the 51-bit multiplier, but due to the

special nature of the inputs (same input), here we have saved more multiplier blocks.

Further, the product a−2
1 .a2

2 will be appended by 16’h0000 LZ for proper decimal

point adjustment.

Further, stage-4 computes two terms, a−4
1 .a4

2 and a−1
1 .a2 −a−2

1 .a2
2. Since the term

a4
1.a

4
2 contains 32 leading zeros, and very few parts of it actually contribute to the

main result, we compute it using a 34-bit square full block multiplication scheme

(section(3.2.4)). This multiplication uses 3-multiplier blocks. Term a−1
1 .a2− a−2

1 .a2
2

has been computed using a two stage 60-bit subtractor.

The next step (Stage-5) uses a two-stage 60-bit adder to compute 1+ a−2
1 .a2

2 +

a−4
1 .a4

2. The output of this adder has a special nature. It is in the form of 1. < 15′b0 >

XXXX .....XXX . To exploit the availability of this term, in the stage-6 multiplication,

we have used a 51-bit m9-reduced PBM, which is able to further reduce some block

multipliers.

In stage-7, we have computed the multiplication of xa−1
1 with the output of the last

stage multiplier. Finally, this stage-7 output is subtracted from x.a−1
1 to get the final

mantissa division result. The complete mantissa processing needs 28 18x18 multiplier

IP blocks and one BRAM.

After completing the mantissa computation, we round and normalize it to get it

back in proper format and then adjust the exponent accordingly, to finalize the output

result.

3.1.2 Case-2 : m = 13 bits

Architecture for this is based on equation(8), repeated below for quick reference. In

this case, a1 is 13 bits (including 1-hidden bit) and is used to fetch the pre-computed

look-up table value with 12-bit address space. The form of a2 in this equation has the

12 leading zero’s (LZ).

q = x.a−1
1 − x.a−1

1 {(a−1
1 .a2 −a−2

1 .a2
2)(1+a−2

1 .a2
2)} (12)

The proposed architecture to implement eq(12) is shown in Fig. 4. As in the pre-

vious case, the computation flow is very straight forward. It requires a BRAM to
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53−Bit MULT 51−Bit MULT

51−Bit MULT

60−Bit Subtraction

60−Bit Addition

60−Bit Subtraction34−Bit Square

51−Bit Square

BRAM

54−bit Mantissa Division Result

Stage−8

Stage−7

Stage−6

Stage−5

Stage−4

Stage−3

Stage−2

Stage−1

51−Bit m9 Reduced MULT

β = α.(a−1

1
.a2 − a−2

1
.a2

2
)

α = 1 + a−2

1
.a2

2
+ a−4

1
.a4

2

a−1

1
.a2 − a−2

1
.a2

2

a2 (44-bit)x (53-bit)
a1 (8-bit)

x.a−1

1
a−1

1
.a2

a−2

1
.a2

2

a−4

1
.a4

2

x.a−1

1
.β

x.a−1

1
− x.a−1

1
.β

Fig. 3: Architecture of the Mantissa Division : Case-1 (m = 9 bits)
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53−Bit MULT 51−Bit MULT

51−Bit Square

BRAM

Stage−7

Stage−6

Stage−5

Stage−4

Stage−3

Stage−2

Stage−1

51−Bit MULT

60−Bit Subtraction

60−Bit SubtractionAppend

54−bit Mantissa Division Result

51−Bit m13 Reduced MULT

a2 (40-bit)x (53-bit)
a1 (12-bit)

x.a−1

1
a−1

1
.a2

a−2

1
.a2

2

x.a−1

1
.β

x.a−1

1
− x.a−1

1
.β

α = 1 + a−2

1
.a2

2

β = α.(a−1

1
.a2 − a−2

1
.a2

2
)

a−1

1
.a2 − a−2

1
.a2

2

Fig. 4: Architecture of the Mantissa Division : Case-2 (m = 13 bits)
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17−bits17−bits17−bits2−bits
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A3 x B1

A2 x B3

A3 x B2

A3 x B3
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17−bits
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34−bits
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Fig. 5: 53-bit Partial Block Multiplication

fetch the pre-computed data of a−1
1 using the 12-bit address space of a1. For other

processing, it needs one 53-bit PBM (for stage-2), two 51-bit PBM (for stage 2 and

6), one 51-bit squarer PBM (stage-3), one 51-bit m13-reduced PBM (stage-5), and

two subtractors (stage-4,7).

3.2 Multipliers Architecture

In this section, we discuss the computational flow and architecture of the different

partial block multipliers (PBMs) used in the mantissa division architectures.

3.2.1 53-bit PBM

For the computation of x.a−1
1 in each case, we have used a 53-bit partial block mul-

tiplier (Fig. 5). The 53-bit multiplier in its PBM format, as shown in Fig. 5, uses 6-

multiplier blocks along with four 2x19 bit multipliers (implemented with logic slices)

and a 2x2 multiplier (need four LUTs). The size of each block has been taken as 17

bits because of availability of 17x17 bit unsigned multiplier IP block on Xilinx FP-

GAs. The size of this multiplication is longer (53 bits) than the others, because the

output of this term mainly contributes to the final result. Only 53 bits of the output

result from this stage has been forwarded to the next stages.

The architectural flow of this multiplier is shown in Fig. 6. The shown architecture

is targeted for using DSP48, but can be easily used with the simple MULT18x18

IP also. The design uses 6 DSP48/MULT18x18 blocks. When we use DSP48, we

can save some logic for adders and registers available on DSP48. However, with

MULT18x18 we need some extra logic. The design has a latency of 5.
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Fig. 6: Architecture of 53-bit PBM
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Fig. 7: 51-bit Partial Block Multiplication

3.2.2 51-bit Partial Block Multiplier

Similar to 53-bit PBM, in the 51-bit PBM we have left top three multiplier blocks

with computation flow as shown in Fig. 7 and architecture as shown in Fig. 8. As, in

previous cases, this also uses only 6-DSP48/MULT18x18 IP blocks, with a latency

of 5 clock cycles.

3.2.3 51-bit Partial Block Square

The computation flow of the 51-bit partial block square is similar to the 51-bit PBM

as in Fig. 7. However, we can reuse the block A1×B3 for A3×B1, and A2×B3 for

A3×B2. Also, since the A1×B3 and A3×B1 are same, it’s addition will be just a

1-bit shifting. It is likewise for A2×B3 and A3×B2. In this way we can save some
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Multiplier o/p

Fig. 8: Architecture of 51-bit PBM

two multiplier blocks and some logic. The architecture of this module is similar to

51-bit PBM (Fig. 8) with above discussed simple modifications. The latency of this

design is 4 clock cycles.

3.2.4 34-bit Full Square Multipliers

The square full multiplier follows the conventional trend and use all multiplication

blocks, except which are common. For 34-bit multiplier, by using two block method

(as in Fig. 1), A1×B2 and A2×B1 are identical and one has been removed. Thus, it

needs a total of 3-DSP48 blocks. The latency for 34-bit square is 3 clock cycles.

3.2.5 51-bit Reduced Partial Block Multiplier

In the mantissa division architectures, we have a kind of reduced multiplication due

to its specific nature of inputs. The computational flow and architecture of these are

similar to Fig. 7 and Fig. 8, with the simple modifications, discussed below, for both

cases.

For case-1 design, the 51-bit reduced multiplication is used in stage-6. The input

α (in Fig. 3) to this stage is of the form 1. < 15′b0 > XXX . . .XX . So, if we correlate

α with A in Fig. 7, then A3 will be equal to 1. < 15′b0 > X . The multiplication of any

term with this quantity needs only one level of AND operation and only one addition.

So, the multiplier blocks corresponding to the A3×B1, A3×B2 and A3×B3 have

been replaced by simple logic, which further saved three more multiplier blocks.

Thus, the architecture is similar to 51-bit PBM (Fig. 8) with these modifications. The

latency of this design is also 5 clock cycles.

However for case-2, the reduced multiplication occurs at stage-5. In this case, on

correlating α with A in Fig. 7, A3 comes out to be 1. < 16′b0 >, then we do not need

any multiplier block for multiplication with this term. Thus, here also we have saved

3 multiplier blocks as above.
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3.3 Utilization of 25x18 DSP48 Architecture

The architecture of PBMs in previous subsection are based on 18x18 multiplier IPs

available on the FPGAs. However, recent FPGAs have replaced them with 25x18

DSP48 multiplier blocks. To use them, the simplest strategy will be to directly use

the previous mentioned architecture, as 25x18 is the super-set of 18x18 multiplier IPs.

However, to achieve better optimization, we need to partition the operands differently.

For 53-bit PBM, we can partition the first operands as |24−bit|24−bit|5−bit| and

second operands as |17− bit|17− bit|17− bit|2− bit|. In this case, we can ignore

LSBs 5x2, 17x5 and 24x2 multipliers and can compute the multiplication using 5

numbers 24x17 multiplier and one 24x2 multiplier. The error cost in this case will

be much less than previous case. Similarly for 51-bit PBM, operands partition can

be done as |24− bit|24− bit|3− bit| and |17− bit|17− bit|17− bit|, and this also

needs only 5 multiplier IPs, compared to 6 using 18x18 IPs. For reduced 51-bit PBM

case we will have similar benefit as in previous one, since one operand still would

have similar partitioning format. However, for square 51-bit PBM, architecture using

18x18 multiplier IPs will be more area efficient compared to 25x18 IPs, because

of same input operands. Thus, the proposed mantissa division architecture can save

another 4 multiplier IP blocks using 25x18 DSP48 IPs vis-a-vis using 18x18 IPs, in

both cases.

4 Error Analysis

There are three possible source of errors in the proposed architectures. First one is EN ,

the error caused by the restricted number of terms used for computation, which decide

the address space of the initial approximation by look-up table. The second cause is

the number of bits used for initial approximation from look-up table. However, since

we have used enough bits for it (53-bit), this error is beyond the double precision

requirement, and has been ignored. Third error, EPBM , is caused by partial block

multiplication (PBM) used at different levels of mantissa computation.

In all of the used PBMs: 53-bit PBM, 51-bit PBM, 51-bit Square PBM, and 51-

bit Reduced PBM, we have ignored the top three multipliers corresponding to the

LSB side in Fig. 5 and Fig. 7. We can quantify the error by the sum of these three

multiplier blocks outputs. The discarded multiplier blocks in these multiplications,

as shown in Fig. 5 and Fig. 7, are A1 ×B1, A1 ×B2 and A2 ×B1. Then the maximum

errors in these three blocks will be given by A1 = 0x1FFFF , A2 = 0x1FFFF ,

B1 = 0x1FFFF , and B2 = 0x1FFFF (the maximum values of these components),

which will be equal to

EPBM = (A1 ×B1)+{(A1 ×B2)+(A2 ×B1),17′h00000}

= 0xFFFF400000001 (13)

Since these multiplier modules have been used at several stages of mantissa division

architectures, we analyze it on case by case basis.
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Table 2: Error cost of PBMs at different stages of both designs

Stages Computation Operands Form Max. Error

Error Cost of PBMs in Case 1 (m = 9 bits)

Stage-2

x → 1. < 52−bit Signi f icant >

x.a−1
1 a−1

1 → 0. < 53−bit Signi f icant > EM1−21 = EPBM ∗2−105

x.a−1
1 → x. < Signi f icant bits > = 1.11 E −16 ≤ 2−53

a−1
1 → 0. < 53−bit Signi f icant >

a−1
1 .a2 a2 → 0. < 8′h00 >< 44−bit Signi f icant > EM1−22 = EPBM ∗2−(102+8)

a−1
1 .a2 → 0. < 8′h00 >< Signi f icant bits > = 3.467 E −18 ≤ 2−58

Stage-3 a−2
1 .a2

2

a−1
1 .a2 → 0. < 8′h00 >< Signi f icant bits > EM1−3 = EPBM ∗2−(102+16)

a−2
1 .a2

2 → 0. < 16′h0000 >< Signi f icant bits > = 1.35 E −20 ≤ 2−63

Stage-6

α → 1. < 15′h0000 >< Signi f icant bits >

β ≈ α.(a−1
1 .a2 −a−2

1 .a2
2) a−1

1 .a2 −a−2
1 .a2

2 → 0. < 8′h00 >< Signi f icant bits > EM1−6 = EPBM ∗2−(101+8)

β → 0. < 8′h00 >< Signi f icant bits > = 6.938 E −18 ≤ 2−57

Stage-7

x.a−1
1 → x. < Signi f icant bits >

xa−1
1 .β β → 0. < 8′h00 >< Signi f icant bits > EM1−7 = EPBM ∗2−(101+8)

xa−1
1 .β → 0. < 8′h00 >< Signi f icant bits > = 6.938 E −18 ≤ 2−57

Error Cost of PBMs in Case 2 (m = 13 bits)

Stage-2

x.a−1
1 Similar to Case-1 EM2−21 = EPBM ∗2−105

= 1.11 E −16 ≤ 2−53

a−1
1 → 0. < 53−bit Signi f icant >

a−1
1 .a2 a2 → 0. < 12′h00 >< 40−bit Signi f icant > EM2−22 = EPBM ∗2−(102+12)

a−1
1 .a2 → 0. < 12′h00 >< Signi f icant bits > = 2.168 E −19 ≤ 2−62

Stage-3 a−2
1 .a2

2

a−1
1 .a2 → 0. < 12′h00 >< Signi f icant bits > EM2−3 = EPBM ∗2−(102+24)

a−2
1 .a2

2 → 0. < 24′h0000 >< Signi f icant bits > = 5.29 E −23 ≤ 2−74

Stage-5

α → 1. < 24′h0000 >< Signi f icant bits >

β ≈ α.(a−1
1 .a2 −a−2

1 .a2
2) a−1

1 .a2 −a−2
1 .a2

2 → 0. < 12′h00 >< Signi f icant bits > EM2−5 = EPBM ∗2−(101+12)

β → 0. < 12′h00 >< Signi f icant bits > = 4.33 E −19 ≤ 2−61

Stage-6

x.a−1
1 → x. < Signi f icant bits >

xa−1
1 .β β → 0. < 12′h00 >< Signi f icant bits > EM2−6 = EPBM ∗2−(101+12)

xa−1
1 .β → 0. < 12′h00 >< Signi f icant bits > = 4.33 E −19 ≤ 2−61

4.1 Error Cost of PBMs in Case:1 (m = 9 bits)

Here, we discuss the error produced by the PBMs at their respective stages, depend-

ing on their specific input operands. The details of computation involving PBMs at

different stages, their input/output operands and maximum error at the corresponding

stages are made available in Table [2].

In stage-2, a 53x53-bit PBM has been used for the computation of x.a−1
1 . The

maximum error, EM1−21 (PBM error (EM) of case (1) in stage 2, multiplier 1) , for

this will be given by EPBM ∗2−105 = 1.11 E −16, which is equivalent to 2−53.

Similarly, in the computation of a−1
1 .a2 in the second stage, the maximum error,

EM1−22, will be given by EPBM ∗2−(102+8) = 3.467 E −18, where 2−102 is due to the

51x51 bit multiplication and 2−8 is due to 8-bit leading Zeros after decimal point in

a2.

Likewise, the other stages PBMs error are tabulated in Table [2]. Stage-4 includes

a 34-bit full multiplier (effectively, a 50-bit full multiplier, because of input operands

nature 0. < 16′h0000 >< Signi f icant bits >), instead of PBM, and thus have no
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inherent PBM error. The addition and subtraction operations at different stages are

assumed to be error free.

We can see from above that none of the stages using PBMs produce error of more

than 2−53 (1.11 E −16).

4.2 Error Cost of PBMs in Case:2 (m = 13 bits)

As in previous case, details of errors caused by PBMs at different stages of computa-

tion are shown in Table [2]. Here, in this also, all the PBM’s maximum errors is less

than 2−53.

Thus, we can see that, although PBMs, individually, at the respective stages are

less error prone, the propagation of these errors throughout the stages may cause

some errors.

4.3 Total Error in Case:1 (m = 9 bits)

To calculate the total error, we need to estimate the propagation of errors through all

the stages of the architecture. In the stage-2 computation:

[x.a−1
1 ]exact = x.a−1

1 +EM1−21

[a−1
1 .a2]exact = a−1

1 .a2 +EM1−22

After stage-3 computation:

[a−2
1 .a2

2]exact = [a−1
1 .a2]

2
exact +EM1−3

= a−2
1 .a2

2 +2.a−1
1 .a2.EM1−22 +E2

M1−22 +EM1−3

≈ a−2
1 .a2

2 +2.a−1
1 .a2.EM1−22 +EM1−3

(by ignoring second order error term)

On stage-4 computation:

[a−4
1 .a4

2]exact = [a−2
1 .a2

2]
2
exact

≈ a−4
1 .a4

2 +4.a−3
1 .a3

2.EM1−22 +2.a−2
1 .a2

2.EM1−3

[a−1
1 .a2 −a−2

1 .a2
2]exact = (a−1

1 .a2 −a−2
1 .a2

2)+EM1−22

−2.a−1
1 .a2.EM1−22 −EM1−3

On stage-5 computation:

[α]exact ≈ 1+a−2
1 .a2

2 +a−4
1 .a4

2 +2.a−1
1 .a2.EM1−22 +EM1−3

(on ignoring higher order error terms)
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After stage-6 computation:

[β]exact = [α]exact .[a
−1
1 .a2 −a−2

1 .a2
2]exact +EM1−6

≈ (1+a−2
1 .a2

2 +a−4
1 .a4

2).(a
−1
1 .a2 −a−2

1 .a2
2)+Eβ

≈ β+Eβ

where,

Eβ ≈ (a−1
1 .a2 −a−2

1 .a2
2).(2.a

−1
1 .a2.EM1−22 +EM1−3)

+(EM1−22 −2.a−1
1 .a2.EM1−22 −EM1−3).

(1+a−2
1 .a2

2 +a−4
1 .a4

2)+EM1−6

≈ EM1−22 −EM1−3 +EM1−6

≤ 1.00 E −17, (on ignoring very small error terms

and taking (1+a−2
1 .a2

2 +a−4
1 .a4

2)≈ 1)

On stage-7 computation:

[x.a−1
1 .β]exact ≈ x.a−1

1 .β+EM1−21.β+ x.a−1
1 .Eβ (14)

And finally, after stage-8 computation:

[x.a−1
1 − x.a−1

1 .β]exact ≈ (x.a−1
1 − x.a−1

1 .β)

+EM1−21−EM1−21.β− x.a−1
1 .Eβ

Thus, the mantissa computation error for case 1, EME1 ET 1, will be

EME1 = EM1−21 −EM1−21.β− x.a−1
1 .Eβ (15)

and total error can given by the sum of mantissa error (EME1) and EN=7 (eq.(5)) as

follows,

ET 1 = EM1−21 −EM1−21.β− x.a−1
1 .Eβ +a7

2 (16)

In eq.(16), β has format of 0.8′h00 < Signi f icant bits >, thus the error term

EM1−21.β will have the order of 2−61, is well beyond the double precision require-

ment. However, EM1−21 can contribute up to 2−53 (≈ 0.5 ulp), and x.a−1
1 .Eβ can also

contribute up to 1 ulp. And, EN=7 contribution is much below the 2−53. Further, nor-

malization and rounding can contribute another 0.5 ulp. Thus, the absolute error can

range from 0.5 to 2 ulp and final mantissa output.

4.4 Total Error in Case:2 (m = 13 bits)

Similar to first case, the total error in mantissa computation can be approximated as

follows,

ET 2 = EM2−21 −EM2−21.β− x.a−1
1 .Eβ +a5

2 (17)

Here, again, the maximum error will be dominated by EM2−21 and x.a−1
1 .Eβ, and the

final absolute error can range from 0.5 ulp to 2 ulp after rounding and normalization.
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5 Implementation Results

In this section we present the complete implementation details of the proposed ar-

chitectures for double precision floating point division. We have used Virtex2-Pro,

Virtex-4 and Virtex-5 FPGA platforms for our implementations. The hardware im-

plementation details are shown in Table [3]. All the results reported are based on the

post-PAR analysis of the Xilinx tool.

All the proposed design architectures are fully pipelined, with a throughput of

one clock cycle. The design with m = 9 bits, on Virtex-II pro FPGA, initially has

been implemented for a latency of 29 with a frequency of 210 MHz. This can easily

be pipelined even more for better performance metric. So, it has also been targeted

with a latency of 36, which achieves a frequency of 275 MHz. This design has also

been explored for higher-end FPGAs (Virtex-4 & Virtex-5) to take the benefit of their

in-built IPs (DSP48) for area (and possible performance) improvement. It is clearly

seen from the Table [3] that, on Virtex-4 and Virtex-5 FPGAs, the design uses less

components compared to Virtex-II pro design (with latency 29), with much better

frequency of operations. The frequency that can be realized are 285 MHz (on V4) &

315 MHz (on V5), with a latency of 31 clock cycles. Like in the Virtex-II pro case, the

performance on higher-end FPGAs can be easily improved with further pipelining.

Design with m = 9 bits uses 28 Multiplier Block and 1-BRAM (RAM18k). Further,

if we use 24x17 feature of DSP48 on Virtex-5, as discussed in 3.3, the number of

DSP48 IPs can be reduced by 4 numbers on Virtex-5 FPGA.

Similarly, the implementation result of the architecture with m = 13 bits are

shown in Table [3]. This architecture has been implemented for a latency of 26 on

all FPGA platforms and displays clear benefits of higher-end FPGAs. The design

performance can be further improved with more pipelining. The trade-off between

implementation results of the m = 9 bits and m = 13 bits is the requirement of hard-

ware resources. The hardware requirement with m = 13 bits in terms of slices and

multiplier block is less, whereas it needs more memory to store the initial approxima-

tion. Performance, however, can be easily maintained with proper pipelining. Thus,

depending on the nature of the platform in terms of available resources, user can go

for any one of the designs, as the accuracy achieved is the similar.

The accuracy of a floating point arithmetic operation is a general metric to be con-

sidered. In theoretical error analysis, error found to be at maximum 2 ulp. In a similar

context, the proposed designs has been validated over 5-million unique random test

cases. In all cases, the average error was found to be less than 1.0 E − 16, which is

less than 0.5 ulp, whereas bound on maximum error is found to be 2 ulp. According

to the literature this level of accuracy is suitable for a large set of applications [20].

6 Comparisons and Discussion

In this section we present comparison of our proposed designs with the best state-

of-the-art designs available in the literature. The comparison is based on the var-

ious design metric (area in terms of slices, Multiplier IP cores, and BRAM, and

frequency of operation) and accuracy of the designs. Comparison is mainly based
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Table 3: Implementation details of Proposed FP Division Architectures

Virtex-2Pro Virtex-4 Virtex-5

For m = 9−bit

Latency 29 36 31 31

Slices 1661 2097 1287 567

LUTs 1702 1974 1148 1468

FFs 2661 3502 1595 1365

MULT18x18/DSP48 28 28 28 28

BRAM (18k) 1 1 1 1

Freq (MHz) 210 275 285 315

For m = 13−bit

Latency 26 26 26

Slices 1491 950 484

LUTs 1733 1173 1134

FFs 2339 1154 1117

MULT18x18/DSP48 25 25 25

BRAM (18k) 12 12 12

Freq (MHz) 217 245 290

around the Xilinx hardware resources. Even on this platform, various division archi-

tectures are available with different speed-area-latency-precision trade-offs. By using

different instances we can obtain suitable trade-offs. Also, several previous designs

have not reported the number of used multipliers and BRAMs. Also, some of them

have shown their implementation fully combinational or with very small latency. For

them we have tried to approximate the hardware resources in terms of BRAM and

DSP48/MULT8x18. We have tried to include most of the available related work for a

comprehensive comparison.

Table [4] contains the comparison of our proposed design with the best available

literature work. Based on the different available method in literature we categories

our comparison in different subsections.

6.1 Comparison with Digit Recurrence Method

Thakkar et. al. [28] have used digit recurrence method for the implementation of

division architecture. It has shown the fully pipelined implementation with a latency

of 60 clock cycles, with a very small speed of 102 MHz, with approximately 3000

Slices. It has used Virtex-IIpro FPGA platform for their implementation. The average

accuracy loss was reported to be 0.5 ulp.

A SRT based implementation is shown in Hemmert et. al. [13] with a large latency

of 62 clock cycles and 4100 slices on Viretx-4 platform, with a promising frequency.

These type of algorithms are generally resource efficient, however, it needs much

larger latency, in clock cycles, for computation. Further, Xilinx floating-point (v2.0 on

Virtex-IIpro and v5.0 on Virtex-4 & Virtex-5) core also has a relatively low frequency

with a large latency of 55 clock cycles.
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Table 4: Comparison with other available designs

Method Latency DSP48/ BRAM Slices / Freq Avg E Max E

MULT18x18 (18k) LUTs,FFs (MHz) (ulp) (ulp)

Virtex-IIPro

[5, 21](NR-2) - 29 28 - - - 5

Wang03 [34] (SRT, S.P.) 47 - 2 3245 166.6 - -

Thakkar06 [28](DR) 60 - - 2920 102 0.5 -

Venishetti08 [31] (DC) 32 32 - 2653 216 - -

Daga04 [6] 32 16+ 24 4041 100 - -

Govindu05 [10](NR) 68 N.A. N.A. 4243 140 - -

Govindu05 [10](NR) 60 N.A. N.A. 3625 140 - -

Govindu05 [10](NR) 58 N.A. N.A. 3213 140 - -

Wang10 [33] (10,29) (SE) 15 8 62 617 125 0.5 1

Xilinx [35] 55 - - 3721 173 - -

Proposed (m=9-bit) 36 28 1 2097 275 0.5 2

Proposed (m=13-bit) 26 25 12 1491 217 0.5 2

Virtex-4

Hemmert07 [13] (SRT) 62 - - 4100 250 - -

Venishetti08 [31] (DC) 32 32 - 3448, 256 - -

3672

Xilinx [35] 55 - - 3721 223 - -

Proposed (m=9-bit) 31 28 1 1287 285 0.5 2

Proposed (m=13-bit) 26 25 12 950 245 0.5 2

Virtex-5

Daniel10 (GS) [7] - 29 1 1256, 78 14 26

527

Daniel10 (NR) [7] - 40 1 1114, 70 10 26

468

Xilinx [35] 55 - - 3220, 258 - -

5997

Proposed (m=9-bit) 31 28 1 1468, 315 0.5 2

1365

Proposed (m=13-bit) 26 25 12 1134, 290 0.5 2

1117

6.2 Comparison with Newton-Raphson (NR) Method

One of the most popular methods used for computing division is the Newton Raphson

two-iterative (NR-2) procedure [5, 21]. For double-precision it requires one look-up

table in 15-bit address space, two 15× 30 multiplications, two 30× 60 multiplica-

tion and one 53× 53 multiplication (equivalently 28 BRAM and 29 MULT18x18).

The error performance of NR method with two iterations is discussed in [21], with

minimum error of 1.99× 2−55 and maximum error of 1.28× 2−49 (4 ulp), which

is more than the proposed method. Govindu et. al. [10] has presented a Newton-

Raphson (NR) Decomposition based floating-point division implementation for var-

ious latency as mentioned in Table [3]. The utilized BRAM and multiplier blocks

has not been mentioned in the paper (the basic ingredients for NR method), however,

it has used a large number of slices with relatively less frequency. As, discussed in

other literature, this approach has got errors in precision (up to several ulps, based on

number of iterations).
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Pasca [24] have proposed a recent implementation of double precision division

on a Altera Stratix V FPGA platform, a higher end FPGA platform. A combina-

tion of polynomial approximation and Newton-Raphson method has been used for

implementation. An interesting error analysis has been presented to achieve faith-

ful rounding result (1-ULP), however the error cost of inherent truncated multipliers

have not been included, which will increase the total error. It is proposed for two la-

tency, 18 and 25 clock cycles. With latency of 18 clock cycles (268 MHz), it reports

887 ALUTs, 823 REGs, 2 M20K block memory, and 9 (27x27) DSP IPs. And, with

latency of 25 clock cycles (400 MHz), it needs 947 ALUTs, 1296 REGs, and same

amount of block memories & DSP IPs. Further, it needs 4 extra 27x27 DSPs and

some extra logic to achieve faithful rounding, which additionally requires extra clock

cycles and probable speed & area overhead. The memory block requirement is equiv-

alent to 4 number of 18k BRAMs on Xilinx FPGAs. ALUTs can be configured for

up to 7-input functions and are more functionally strong than Xilinx LUTs, and thus

requires lower in count for any logic. From multiplier IPs point of view, inherently,

the method requires one 14x15, one 23x25 multiplier, one 28-bit squarer, two 56x53

truncated block multipliers, and one 54x54 full multiplier. All of these, in Xilinx

17x17 IPs equivalent, needs at least 35 IPs (one for 14x15, 4 for 23x25, 3 for 28-bit

squarer, 9 for each 56x53 truncated block multiplier, and 9+some logic for 54x54 full

multiplier), with some additional clock cycles. Thus, this design, with almost similar

precision (after including truncated multipliers error), with similar performance and

latency (can be managed on either side easily), needs 4 BRAM (18k), and 35 17x17

multiplier IPs. Thus, based on appropriate equivalent hardware analysis, area require-

ment of this design is more compared to our proposed design. Further, Stratix V is

based on 28nm technology, and Virtex 5 is based on 65 nm technology, so direct per-

formance comparison will not be fair, even though we are approaching almost similar

performance.

6.3 Comparison with Digit Convergence (DC) Method

A low latency (32 clock cycles) pipelined implementation, using digit convergence

method, has been reported in Venishetti et. al. [31] on Virtex-IIpro and Virtex-4 FP-

GAs. The reported hardware results were not explained clearly, with no indication of

amount of BRAM, an explicit component for the method. Authors have mentioned to

use 6-steps for generating mantissa division result. Each step used two multipliers. It

has been mentioned that, the last step has used full 54x54 bit multipliers (which needs

at least 2x9 = 18 MULT18x18). Other steps have not used full multiplication. So, it is

not very clear that, how the paper achieves the total of 32 MULT18x18 in all 6-steps,

given that a minimum of 18 is being used in the last step only. Also, the existence of

error is mentioned in the paper, but it has not been quantified. Goldberg et. al. [8] have

proposed division of double precision floating point number using Goldschmidts al-

gorithm, implemented on a Altera STRATIX-II FPGA platform. The area reported is

large in comparison to our proposed design (about 3500 ALMs, equivalent to about

4600 slices on a Virtex II [3], however it has less performance and throughput.
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Daniel et. al. [7] have explored the division implementation on a Virtex-5 plat-

form using two methods, Goldsmith (GS) and Newton-Raphson (NR) methods. The

latency of the designs were not mentioned, however, with a five iteration of GS and

NR, it has very low frequency of operation and a high error cost. The maximum error

was reported to be 1.90E-08 (≈ 26 ulp), which is slightly better that single precision

accuracy requirements.

6.4 Comparison with Series Expansion (SE) Method

Hung et. al. [16] have presented a single precision floating point division architec-

ture. However, later on [19] have proved that the Hung’s method is not feasible for

double precision computation, because of its huge memory requirement. Jeong et.

al. [19] have presented an improved version of Hung’s method for double precision

implementation. Algorithm is based on first computing an initial quotient using the

two terms of series expansion. Then compute a correction quotient using remainder

(obtained using initial quotient), and then add both quotients. Their architecture has

been reported for ASIC platform. It needs three 53x28 multipliers, one 58x58 multi-

plier and 16Kx28 look-up table memory. In FPGAs equivalent, one 53x28 multiplier

needs 6 multiplier IPs, a 58x58 multiplier needs 16 multiplier IPs, and 16Kx28 look-

up table needs 32 (18k) BRAMs. Thus, in total it requires 34 multiplier IP blocks

and 32 BRAMs. The hardware requirement would be more than that of proposed

architecture, however, the maximum error is within 1 ulp and average error is 0.5 ulp.

In Daga et. al. [6], the implementation is based on reciprocation followed by a

multiplier. This is similar to using only one term of series expansion. Thus, with a

look-up table with 213 address space (equivalent to 24 BRAM (RAM18k)) with only

one term, it will have a lot of precision loss (as per Table 1. The reported result has

a latency of 32 clock cycles, with 4041 slices and 100 MHz clock speed. It also

needs at least 16 multiplier IP blocks. Wang et. al. [32] have presented a library for

single precision floating-point operations. The division implementation is based on

Hung’s [16] method. By extending it to double-precision, it requires 227 × 56− bit

storage in BRAM (impractical in available FPGA platforms) look-up table and 25

MULT18x18 IPs, which is indeed a huge hardware requirement for the design. Wang

et. al. [33], based on Hung’s [16] approach, has reported a custom precision floating-

point division on a Virtex-IIPro FPGA for a 41-bit (10-bit exp and 29-bit mantissa)

floating point format. The area complexity is quite large, with a requirement of 62

BRAMs with 125 MHz frequency, and is further reported to have precision loss.

With an estimation for double precision (based on the proposed method), it needs

more than 11 multiplier IPs and BRAM for 227 × 29 table look-up, which is indeed

impractical.

In summary, the comparison results show that the proposed module is able to

give the best performance, with lower required latency and area. Proposed approach

is also using lower number of DSP48/MULT18x18 and BRAM blocks. Accuracy of

the proposed designs lags behind some methods, however, it is equivalent to the most

of the earlier reported literature.
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7 Conclusions

This paper has presented efficient architectures for the double precision floating point

division on FPGA platform. The proposed designs are based on the Taylor series ex-

pansion method, with selective number of terms based on the accuracy requirements

of the double precision. A trade-off between the required resources and selected terms

has been shown. Along with this, based on the precision limit, the size of the multi-

pliers have been determined in its partial block format, PBM, to reduce the amount

of hardware. The proposed modules achieve higher performance and area reduction,

mainly in terms of number of multiplier blocks, number of block memory with less

slices, when compared to other previously reported modules in the literature. The pro-

posed designs are fully pipelined with a throughput of one clock cycle, with relatively

lower latency. The performance can be improved with further pipelining, and one ex-

ample of such an instance has been shown on Virtex-II pro platform. On Virtex-4

and Virtex-5 it could be even more optimized. The designs have been explored on

different FPGA platforms, to explore their inherent capability. And, implementation

on Virtex-4 and Virtex-5 leads to much saving on slices compared to Virtex-IIpro

implementation, which can be further improved as discussed in subsection 3.3. The

accuracy metric has also been theoretically estimated and also tested over a large set

of the random test cases. The average error found with such testing is only 0.5 ulp

with a maximum bound of 2 ulp, which is reasonable for a large set of applications.
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