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Pressure loss in channel flow resulting from a sudden change in boundary
condition from no-slip to partial-slip
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A semi-analytical model is presented for pressure-driven flow through a channel, where local pressure
loss is incurred at a sudden change in the boundary condition: from no-slip to partial-slip. Assuming
low-Reynolds-number incompressible flow and periodic stick–slip wall patterning, the problems for
parallel-plate and circular channels are solved using the methods of eigenfunction expansion and point
match. The present study aims to examine in detail how the flow will evolve, on passing through the
cross section at which the change in the slip condition occurs, from a no-slip parabolic profile to a less
sheared profile with a boundary slip. The present problem is germane to, among other applications,
flow through a channel bounded by superhydrophobic surfaces, which intrinsically comprise an array
of no-slip and partial-slip segments. Results are presented to show that the sudden change in the
boundary condition will result in additional resistance to the flow. Near the point on the wall where
a slip change occurs is a region of steep pressure gradient and intensive vorticity. The acceleration
of near-wall fluid particles in combination with the no-slip boundary condition leads to a very steep
velocity gradient at the wall, thereby a sharp increase in the wall shear stress, shortly before the fluid
enters the channel with a slippery wall. Results are also presented to show the development of flow
in the entrance region in the slippery channel. The additional pressure loss can be represented by a
dimensionless loss parameter, which is a pure function of the slip length for channels much longer
than the entrance length. Published by AIP Publishing. https://doi.org/10.1063/1.4986268

I. INTRODUCTION

Pressure or head loss in pipe flow can be classified into
friction and minor losses. Friction loss arises from wall skin
friction, stemming from fluid’s viscosity and the condition of
no-slip on the wall. It is linearly proportional to the length of
the pipe, and hence in long pipe systems, it is usually the major
cause of pressure loss. Minor losses are local pressure drops
incurred at changes in the cross sections, bends, valves, fittings,
and so on. In pipe systems with short runs of a straight pipe,
the total minor loss may outweigh the friction loss. Therefore,
the effect of a minor loss is not necessarily minor. Minor loss
is also called additional loss.1

In this paper, we look into a kind of additional loss that
has not received much attention thus far. This kind of loss
is not due to a change in the channel geometry but due to a
change in the slip condition on the boundary. Our problem
is to consider a low-Reynolds-number flow through a long
and straight channel with a uniform cross section, where at a
certain axial position the channel wall undergoes a step change
in the slip condition, from being no-slip to partial-slip. We shall
show that there is a pressure drop associated with such a step
change in the slip condition. The problem is of relevance to
flow in channels of typical dimensions on the order of microns
or smaller.

Many controlled experiments have demonstrated an
apparent violation of the no-slip boundary condition for flow
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of a liquid over a solid surface in micro-channels.2 This has
prompted many studies to investigate velocity slip in the con-
text of microfluidics. The velocity slip can be an intrinsic
slip due to chemical coating on a surface (e.g., Ref. 3) or
an effective slip due to micro-patterning on a superhydropho-
bic surface (e.g., Refs. 4–9) or lubricant-impregnated surface
(e.g., Refs. 10 and 11). A superhydrophobic surface is a micro-
textured surface with trapped gas as the lubricating phase, for
which the liquid–gas interface is often modeled as a perfect
slip boundary (e.g., Ref. 12).

Experimental evidence has pointed to the possibility of
changing the slip condition by ion adsorption for pressure-
driven flow of liquids in capillaries. For example, Kiseleva
et al.13 discovered an increase in the solution flow rate when
they measured the viscosity of cetyltrimethylammonium bro-
mide (CTAB) solutions in micron-sized quartz capillaries.
They explained that such an increase in the flow rate might
be attributed to slippage of the aqueous CTAB solution over
the capillary surface that was hydrophobized as a result of
adsorption of the CTA+ ions from the solution. They also found
that similar slippage would occur for flow over methylated
quartz surfaces. These findings have led Zhu and Granick14

to look into if the flow boundary condition could be effec-
tively controlled by the physisorption of surfactant. They con-
ducted experiments to show that dissolving surfactants at dilute
concentration in oils could change the hydrodynamic bound-
ary condition of the fluid flow from “stick” to “partial slip.”
These authors argued that slip effects could arise from the
adsorption on solid surfaces of adventitious small amounts of
contaminants existing in a fluid.

1070-6631/2017/29(10)/103603/13/$30.00 29, 103603-1 Published by AIP Publishing.

https://doi.org/10.1063/1.4986268
https://doi.org/10.1063/1.4986268
https://doi.org/10.1063/1.4986268
mailto:cong@hku.hk
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4986268&domain=pdf&date_stamp=2017-10-09


103603-2 C.-O. Ng and R. Sun Phys. Fluids 29, 103603 (2017)

As discussed above, the no-slip boundary condition may
switch to a partial-slip condition when certain chemical condi-
tions prevailing in the liquid and on the surface are met. While
there exist many studies on various aspects (e.g., drag reduc-
tion) about wall slippage, the hydrodynamics of flow on the
onset of entering a channel bounded by a slippery wall has
received little attention in the literature. Davies et al.15 have
made an attempt to describe how the near-wall velocity will
change in response to the change in the boundary condition in a
microchannel with superhydrophobic walls exhibiting ribs and
cavities. They postulated that a boundary layer would develop
for flow over a no-slip rib, and the growth of the boundary
layer would even extend to flow over a partial-slip cavity. This
scenario portrayed by Davies et al.15 is, however, not neces-
sarily valid since flow in a microchannel is typically of a low
Reynolds number, for which a boundary layer is out of the
question. In fact, the problem of flow past a no-slip surface
(e.g., a liquid–solid interface at the top of a rib) changing sud-
denly to flow past a slip surface (e.g., a liquid–vapor interface
over a cavity) is not as trivial as it looks. The problem con-
tains elements, such as local stress concentration and sharp
pressure gradient, that have not been fully documented in the
literature.

In classical hydraulics, the so-called entrance region is
well understood. This is a region where the velocity profile
evolves from a uniform profile to a parabolic profile (for lam-
inar flow) as the boundary layers develop and extend across
the whole channel section. In this classical case, the near-wall
fluid particles are retarded as they travel down the channel.
The flow is increasingly sheared until it is fully developed.
In the present problem, the arrangement is reversed, and in
some sense, features show up in the opposite manner. Here,
we consider fluid leaving a channel with a no-slip wall for a
channel with a partial-slip wall. Therefore, the velocity profile
will evolve to a less sheared profile as the flow becomes more
uniform under the effect of slip. In this connection, the near-
wall fluid particles will accelerate as they traverse the entrance
length. In addition, for a low-Reynolds-number flow, the veloc-
ity slip will affect fluid particles not only after but also before
they enter the slippery channel. The passing of fluid through
the cross section where the change in slip occurs (which is a
specific axial location termed the slip-change cross section)
is at the cost of an additional pressure drop. An objective of
this study is to examine how flow is locally disturbed by the
sudden change in the slip condition in order to understand the
cause of the associated pressure loss.

In previous experiments, data were analyzed many times
based on the assumption of a fully developed flow, with the end
effect ignored. Many have overlooked the fact that neglecting
the end loss can result in appreciable errors when interpreting
the data, especially for flow entering a low-friction channel.16

Another objective of the present study is to obtain results for the
local loss, which is expressed in terms of a dimensionless loss
parameter that can be readily used to estimate the additional
pressure drop incurred by flow crossing a slip-change location.
In this paper, the terms “additional loss” and “local loss” are
used interchangeably, as either of them refers to the loss of
pressure that occurs locally, and in addition to friction loss,
owing to the change in the boundary condition. The total loss,

FIG. 1. Flow through a slit channel bounded by walls that are periodically
patterned with no-slip alternating with partial-slip transverse stripes. The
boundary condition changes from no-slip to partial-slip of slip length λ at
x = σL, known as the slip-change cross section. All quantities of length
dimension are normalized by half the channel height.

which amounts to the applied pressure difference between the
two ends of a channel, is the sum of friction and local losses.
Specifically, the additional loss under consideration is relative
to the pressure drops due to a no-slip channel of lengthσL and a
partial-slip channel of length (1�σ)L; see Fig. 1. Nevertheless,
our dimensionless loss parameter is independent of these two
lengths when these lengths are sufficiently large.

We shall further describe the present problems and provide
their mathematical formulation and solutions in Sec. II. Two
kinds of channels, namely, parallel-plate and circular chan-
nels, are considered. Following the Navier slip condition, we
assume that the slip velocity is linearly proportional to the near-
wall velocity gradient, where the constant of proportionality
is known as the slip length. Further assuming Stokes flow and
periodic wall patterning, we may solve the problems using the
method of eigenfunction expansions, where the unknown coef-
ficients in the series solutions can be determined by imposing
the mixed no-slip and partial-slip conditions at discrete points
on the boundary. Results are then presented and discussed in
Sec. III, where details of the flow field in terms of pressure, wall
stress, and vorticity are examined. Velocity profiles at various
axial positions are also presented in order to show the exis-
tence of an entrance region downstream from the slip-change
cross section. The entrance length, which is defined in terms
of the attainment of the fully developed momentum correc-
tion factor, is found to vary only weakly with the slip length.
A dimensionless loss parameter can be used to represent the
associated pressure loss. We shall show that this loss parameter
depends solely on the slip length if the length of the channel
is longer than the entrance length.

II. PROBLEMS AND SOLUTIONS
A. Slit channel

We first consider the pressure-driven flow through a
parallel-plate channel, which is made up of two slit channels of
the same geometry but different slip conditions joined together.
The objective is to find out how the flow will be locally affected
by the sudden change in the boundary condition from being
no-slip to partial-slip on the walls. We shall refer to the specific
axial location where the sudden change in the slip condition
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occurs as the slip-change cross section and the point on the
wall where the slip change occurs as the slip-change point.
Our aim is to determine the pressure loss undergone by the
flow on passing through the slip-change cross section.

While the actual channel has two segments and one slip-
change cross section, we consider, for the sake of analysis,
an extended channel where these segments repeat themselves
periodically. Such periodicity will simplify the expression for
the solution, as given below. As shown in Fig. 1, we assume
in our model that the channel is infinitely long, and its walls
are periodically patterned, with no-slip walls alternating with
partial-slip walls. Hence, there are infinitely many slip-change
cross sections in the channel. Nevertheless, when the period is
progressively lengthened, the mutual influence of neighboring
units will vanish progressively. The head loss due to the sudden
change in the wall slip occurring within a long enough period
will be essentially the same as that in the actual non-periodic
channel. A similar approach of using a periodic structure to
model a non-periodic structure has been used by Laplace and
Arquis.17

Figure 1 shows one period of the channel, where half the
channel height, h, is used as the length scale to normalize all
length quantities. The normalized length of a period is 2L, of
which a fraction of 0 ≤ σ ≤ 1 is a region of no-slip wall,
and a fraction of 1 � σ is a region of a partial-slip wall of
slip length λ. The x-axis is along the centerline of the chan-
nel, and the y-axis is positioned at the center of the no-slip
region. The axial and transverse velocities, denoted by (u, v),
are normalized by Kxh2/µ, while the pressure p is normalized
by Kxh, in which−Kx < 0 is the applied pressure gradient, h is
half the channel height, and µ is the dynamic viscosity of the
fluid.

By virtue of periodicity and symmetry, it suffices for us
to consider the flow in a domain of half period: 0 ≤ x ≤ L,
in which the length of the no-slip channel is LNS = σL and
that of the partial-slip channel is LPS = (1 − σ)L. The model
in principle admits any value of L > 0 and 0 ≤ σ ≤ 1. How-
ever, we shall consider only cases where LNS = σL ≥ 1 for
negligible mutual influence of neighboring units, as remarked
above. Typically, it is desired that the no-slip and partial-slip
channels are both long enough for a fully developed flow to
be established in the middle of each of them, for which L > 1
and an intermediate value of σ not too close to 0 or 1 should
be considered.

Assuming the incompressible Stokes flow, the governing
equations in a dimensionless form are

∂u
∂x

+
∂v

∂y
= 0, (1)

∂2u

∂x2
+
∂2u

∂y2
= −1 +

∂pi

∂x
, (2)

∂2v

∂x2
+
∂2v

∂y2
=
∂pi

∂y
, (3)

where pi is the internally induced pressure.
Using eigenfunction expansion, the velocities and pres-

sure satisfying the equations above and periodicity in the
x-direction are expressible as follows:18

u(x, y) =
1
2

(
1 − y2

)
+ A0 +

∞∑
n=1

An
cos(αnx)
cosh(αn)

[
cosh(αny)

− tanh(αn)

(
cosh(αny)

αn
+ y sinh(αny)

)]
, (4)

v(x, y) =
∞∑

n=1

An
sin(αnx)
cosh(αn)

[
sinh(αny) − y tanh(αn) cosh(αny)

]
,

(5)

p(x, y) = − x + pi(x, y)

= − x − 2
∞∑

n=1

An
sin(αnx)
cosh(αn)

tanh(αn) cosh(αny), (6)

where αn = nπ/L (n = 1, 2, · · · ) are the eigenvalues and
A0,1,2,· · · are undetermined coefficients. These expressions are
derived based on the following considerations and steps. First,
the present linear problem is solvable by the finite Fourier
transform method,19 and the solution to the differential equa-
tions is termed an eigenfunction expansion. By virtue of the
symmetry in geometry, the axial velocity u is an even func-
tion of both x and y, while the transverse velocity v is an odd
function of both x and y. It then follows from the momen-
tum equations that the pressure p is an odd function of x
but an even function of y. The periodicity then enables us
to use either sine or cosine eigenfunction of x to represent
the axial variations of the velocities and pressure, where the
eigenvalues αn are determined by the condition of vanishing
v at x = 0, L. Finally, the components that are functions of y
can be determined after some algebra upon substituting these
eigenfunction expansions into the continuity and momentum
equations. On deriving the above expressions, the no-flux con-
dition at the walls, v = 0 at y = ±1, is also used. If the
entire channel is non-slippery (i.e., λ = 0 or σ = 1), the coeffi-
cients A0,1,2,· · · will be identically zero, leaving behind only the
parabolic axial velocity and linear pressure distribution given
by the first terms in Eqs. (4) and (6).

The flow is to further satisfy mixed boundary conditions
on the wall. At y = 1,

u =

{
0 0 ≤ x < σL
−λ ∂u

∂y σL < x ≤ L, (7)

which on substituting Eq. (4) gives

A0 +
M∑

n=1

An cos(αnx)
[
sech2(αn) − α−1

n tanh(αn)
]

=

{
0 0 ≤ x < σL
λ + 2λ

∑M
n=1 An cos(αnx) tanh2(αn) σL < x ≤ L,

(8)

where the coefficients An are truncated to M terms. The
M + 1 unknown coefficients A0,1,· · · ,M can be determined using
the method of point matching. The domain 0 ≤ x ≤ L is
equally divided into M intervals with M + 1 grid points located
at xi = (i � 1)L/M where i = 1, · · · , M +1. We then enforce the
mixed boundary conditions, Eq. (8), to be satisfied at these
grid points. In other words, the no-slip condition is to be
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satisfied at the first integer [σ(M + 1)] points, while the partial-
slip condition is to be satisfied at the following integer [(1 �σ)
(M + 1)] points. The number of points in either the no-slip or
the partial-slip part of the domain has to be sufficiently large
for an accurate solution to the problem. The point match then
forms a system of M + 1 equations, which can be readily solved
using a standard routine for the M + 1 coefficients. Typically,
for σ not too close to 0 or 1, M ∼ 100 is sufficient to secure
good accuracy of the solution.

The rate of flow per unit width of the channel and the
section-mean pressure are then found as

Q = 2
∫ 1

0
udy =

2
3

+ 2A0, (9)

p̄(x) =
∫ 1

0
pdy = −x − 2

M∑
n=1

Anα
−1
n sin(αnx) tanh2(αn). (10)

The pressure loss from x = 0 (center of the no-slip region)
to x = L (center of the partial-slip region) is equal to ∆p = p̄(0)
− p̄(L) = L. Over this length of the channel, the pressure loss
can be deemed as the sum of three losses: ∆p = ∆pNS +∆pPS +
∆pSS, where∆pNS and∆pPS are, respectively, the friction losses
over the no-slip and partial-slip parts of the channel, and ∆pSS

is the additional loss due to the change in the slip condition.
To deduce the friction losses, let us recall the following well-
known relationships (in terms of the present dimensionless
variables) between velocity, flow rate, and pressure gradient
for the fully developed Poiseuille flow in a uniform slit channel
with wall slip length λ:

u(y) = −
dp
dx

1
2

(
1 − y2 + 2λ

)
⇒ Q = −

dp
dx

2
3

(1 + 3λ) .

(11)

Since the friction loss is linearly proportional to the length of
channel, and Q is independent of the axial position, we may
infer from the equation above (λ = 0 for the no-slip channel)
that

Q =
2
3
∆pNS

LNS
=

2
3

(1 + 3λ)
∆pPS

LPS
. (12)

From these relations, we may get the two friction losses as
follows:

∆pNS =
3LNSQ

2
=

3σLQ
2

(13)

and

∆pPS =
3LPSQ

2(1 + 3λ)
=

3(1 − σ)LQ
2(1 + 3λ)

, (14)

where Q is found using Eq. (9). By the decomposition of the
pressure loss into three components, the additional loss can be
determined as

∆pSS = L − ∆pNS − ∆pPS. (15)

A loss parameter, defined as the additional pressure loss per
unit flow rate, is introduced here

S ≡
∆pSS

Q
. (16)

Note that if physical quantities (distinguished by a tilde) are
used for the pressure drop and flow rate, the loss parameter is
a dimensionless parameter given by

S ≡
h2∆p̃SS

µQ̃
, (17)

where h is half the channel height and µ is the dynamic
viscosity of the fluid.

B. Circular channel

We next consider a problem similar to that described above
but for a channel of circular cross section. The domain of
analysis is shown in Fig. 2, where all the length quantities
are normalized by the radius of the channel a. In one period of
normalized length 2L, a fraction of 0 ≤ σ ≤ 1 is a region of
no-slip wall, and a fraction of 1 � σ is a region of partial-slip
wall of slip length λ. By virtue of periodicity and symme-
try, it suffices for us to consider the flow in a domain of
half period: 0 ≤ z ≤ L, in which the length of the no-slip
channel is LNS = σL and that of the partial-slip channel is
LPS = (1 − σ)L.

Assuming the axisymmetric incompressible Stokes flow,
the governing equations in the dimensionless form are as
follows:

1
r
∂(ru)
∂r

+
∂w

∂z
= 0, (18)

∂

∂r

[
1
r
∂(ru)
∂r

]
+
∂2u

∂z2
=
∂pi

∂r
, (19)

1
r
∂

∂r

(
r
∂w

∂r

)
+
∂2w

∂z2
= −1 +

∂pi

∂z
, (20)

where (r, z) are the radial and axial coordinates, (u, 4) are the
radial and axial components of the velocity, and pi is the inter-
nally induced pressure. Note that the velocities and pressure
are normalized by Kza2/µ and Ka, respectively, where Kz is
the applied pressure gradient, a is the radius of the channel,
and µ is the dynamic viscosity of the fluid.

Using eigenfunction expansion, we may express the
solution for the velocities and pressure as follows:20

FIG. 2. Flow through a circular channel bounded by a wall that is period-
ically patterned with no-slip alternating with partial-slip transverse stripes.
The boundary condition changes from no-slip to partial-slip of slip length λ
at z = σL, known as the slip-change cross section. All quantities of length
dimension are normalized by the radius of the channel.
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u(r, z) =
∞∑

n=1

An sin(αnz)

[
I1(αnr)
I0(αn)

− r
I1(αn)
I0(αn)

I0(αnr)
I0(αn)

]
, (21)

w(r, z) =
1
4

(
1 − r2

)
+ A0 +

∞∑
n=1

An cos(αnz)

×

[(
1 −

2I1(αn)
αnI0(αn)

)
I0(αnr)
I0(αn)

− r
I1(αn)
I0(αn)

I1(αnr)
I0(αn)

]
,

(22)

p(r, z) = −z + pi(r, z)

= −z − 2
∞∑

n=1

An sin(αnz)
I1(αn)
I0(αn)

I0(αnr)
I0(αn)

, (23)

where αn = nπ/L (n = 1, 2, · · · ) are the eigenvalues, In are
modified Bessel functions of the first kind of order n, and
A0,1,· · · are undetermined coefficients. Note that the solution
above satisfies the zero-flux condition at the wall u = 0 at
r = 1. These analytical expressions are derived based on steps
similar to those outlined above for the preceding problem.

The flow is to further satisfy the mixed no-slip/partial-slip
conditions at the wall. At r = 1,

w =

{
0 0 ≤ z < σL
−λ ∂w∂r σL < z ≤ L

(24)

or

A0 +
M∑

n=1

An cos(αnz)

1 −

2I1(αn)
αnI0(αn)

−
I2
1 (αn)

I2
0 (αn)



=



0 0 ≤ z < σL
λ
2 + 2λ

∑M
n=1 An cos(αnz)

I2
1 (αn)

I2
0 (αn)

σL < z ≤ L,
(25)

where the coefficients An are truncated to M terms. Again,
the M + 1 unknown coefficients A0,1,· · · ,M can be determined
using the method of point matching, as has been described in
Sec. II A. Also, all the coefficients will vanish, A0,1,· · · = 0,
when λ = 0.

After finding the coefficients, we may then evaluate the
rate of flow through the channel and the section-mean pressure
as

Q = 2π
∫ 1

0
wrdr = π

(
1
8

+ A0

)
, (26)

p̄(z) = 2
∫ 1

0
prdr = −z − 4

M∑
n=1

An
sin(αnz)
αn

I2
1 (αn)

I2
0 (αn)

. (27)

The pressure drop from z = 0 (center of the no-slip region)
to z = L (center of the partial-slip region) is equal to ∆p =
p̄(0) − p̄(L) = L. As in the preceding problem, we may
consider this pressure loss to be composed of three losses:
∆p = ∆pNS + ∆pPS + ∆pSS, where ∆pNS and ∆pPS are, respec-
tively, the friction losses over the no-slip and partial-slip parts
of the channel, and ∆pSS is the additional loss due to the sud-
den change in the slip condition. To deduce the friction losses,
let us recall the following well-known relationships (in terms
of the present dimensionless variables) between velocity, flow

rate, and pressure gradient for the fully developed Poiseuille
flow in a uniform circular channel with wall slip length λ:

w(r) = −
dp
dz

1
4

(
1 − r2 + 2λ

)
⇒ Q = −

dp
dz

π

8
(1 + 4λ),

(28)

from which we may infer that (see the counterpart in
Sec. II A)

∆pNS =
8σLQ
π

(29)

and

∆pPS =
8(1 − σ)LQ
π(1 + 4λ)

, (30)

where Q is found from Eq. (26). The additional loss is then
determined by subtracting the friction losses from the total
pressure loss,

∆pSS = L − ∆pNS − ∆pPS. (31)

Again, a loss parameter, or the additional loss per unit flow
rate, can be defined as follows:

S ≡
∆pSS

Q
. (32)

Note that if physical quantities (distinguished by a tilde) are
used for the pressure drop and flow rate, the loss parameter is
a dimensionless parameter given by

S ≡
a3∆p̃SS

µQ̃
, (33)

where a is the radius of the circular channel and µ is the
dynamic viscosity of the fluid.

III. RESULTS AND DISCUSSION

To gain insight into how pressure varies along the channel,
we first show in Figs. 3 and 4 the section-mean pressure p̄ as a
function of the axial coordinate for the slit and circular chan-
nels, respectively, where λ = 0, 0.1, 1, 10, L = 2, and σ = 0.5.
The slip-change cross section, located at the axial positionσL,
is at the midpoint, x = 1 or z = 1. In these figures, the actual
pressure distributions (solid lines) are shown together with
the constructed linear pressure distributions (dashed lines).
A constructed pressure distribution is essentially an idealized
distribution that is composed of segments of linear pressure
distribution as if the flow were everywhere the fully developed
Poiseuille flow, with a jump at the location of the slip change.
Hence, the segmented linear pressure distribution, which can
be obtained by using Eqs. (11) and (28) subject to the boundary
conditions p̄(0) = 0 and p̄(L) = −L, is given by

p̄(x) =



−
3Qx

2 0 ≤ x < σL
−L + 3Q(L−x)

2(1+3λ) σL < x ≤ L
(34)

for the slit channel and

p̄(z) =



−
8Qz
π 0 ≤ z < σL

−L + 8Q(L−z)
π(1+4λ) σL < z ≤ L

(35)
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FIG. 3. Axial distributions of the
section-mean pressure p̄(x) for flow
through a slit channel, where L = 2,σ =
0.5, and (a) λ = 0, (b) λ = 0.1, (c) λ = 1,
(d) λ = 10. The solid lines are the actual
pressure distributions. The dashed
lines comprise two linear distributions,
given by Eq. (34), accounting for the
friction loss, and an abrupt drop at
x = 1, corresponding to the additional
loss resulting from the sudden change
in the boundary condition at this axial
position.

for the circular channel. These two-segment linear distribu-
tions would account for the friction losses if fully developed
Poiseuille flows could develop from start to end in the no/
partial-slip parts of the channel. One can readily check that
∆pNS ≡ p̄(0) − p̄(σL)− and ∆pPS ≡ p̄(σL)+ − p̄(L) agree with
Eqs. (13) and (14) for the slit channel and Eqs. (29) and (30)
for the circular channel, respectively. These linear distribu-
tions are not continuous at the slip-change cross section for
λ > 0: p̄(σL)− , p̄(σL)+. The jump (in the idealized linear
pressure distribution) at this location corresponds to the addi-
tional pressure loss ∆pSS, as has been given by either Eq. (15)
or (31): ∆pSS ≡ p̄(σL)− − p̄(σL)+ = L − ∆pNS − ∆pPS.

The disturbing effect due to the sudden change in the
wall slip is clearly seen in Figs. 3 and 4. The actual pres-
sure distribution will virtually follow the linear distributions
(i.e., the flow approximates fully developed Poiseuille flow) at
a distance sufficiently far from the slip-change cross section.
The pressure will appreciably deviate from the Poiseuille flow
pressure only within a finite region before and after the slip-
change cross section. This region of pressure deviation, or the
extent of local effect, will increase in size, subject to an upper

bound, as the slip length increases. The results shown in the
figures suggest that, as λ � 1, the local effect arising from the
sudden change in the wall slip is largely confined to a distance
of ±0.5 from the point where the slip change takes place. We
may say that, in terms of physical dimensions, a distance of
±0.5h (for slit channel) or ±0.5a (for circular channel) from
the slip-change cross section is a range of dominant influence
of the change in the slip condition, as far as the section-mean
pressure distribution is concerned. The entrance length, which
is based on a more precise definition for the development of
velocity profile in the slippery channel, is comparable to this
distance; see our discussion below.

For λ > 0, a flow will experience an abrupt change in the
axial pressure gradient (dp̄/dx or dp̄/dz), from steep to mild, as
fluid particles pass through the slip-change cross section; see,
e.g., the change in slope of the solid line about x = 1 or z = 1 in
Figs. 3(d) and 4(d). It is remarkable that the pressure gradient
becomes very steep as the flow approaches the slip-change
cross section. This means that a strong pressure gradient is
needed to drive flow approaching a cross section where the
slip change occurs.
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FIG. 4. Axial distributions of the
section-mean pressure p̄(z) for flow
through a circular channel, where L =
2, σ = 0.5, and (a) λ = 0, (b) λ = 0.1,
(c) λ = 1, (d) λ = 10. The solid lines
denote the actual distributions. The
dashed lines comprise two linear distri-
butions, given by Eq. (35), accounting
for the friction loss, and an abrupt drop
at z = 1, corresponding to the additional
loss resulting from the sudden change
in the boundary condition at this axial
position.

We also show in Figs. 3 and 4 the values of∆pNS,∆pSS, and
∆pPS, corresponding to the friction loss in the no-slip channel,
the additional loss at the slip-section cross section, and the fric-
tion loss in the partial-slip channel, respectively. These values
help us find out how the total loss (∆p = L) is actually split into
the friction and local losses, depending on the slip length λ. It
is clearly seen that ∆pSS ∼ ∆pPS when λ = 1 and ∆pSS � ∆pPS

when λ = 10. This means that the local loss arising from the
end effect can be comparable to or even much larger than the
friction loss for flow through a low-friction channel.

We next show in Fig. 5 the axial distribution of the wall
stress τ4 for the same cases as those shown in Figs. 3 and 4. The
wall stress is evaluated by τw = ∂u/∂y|y=1 for a slit channel
or τw = ∂w/∂r |r=1 for a circular channel. Again, sufficiently
far from the slip-change cross section, the wall stress should
tend to that of the fully developed Poiseuille flow. Based on
the Poiseuille velocity profiles given in Eqs. (11) and (28), the
limiting wall stresses can be found as

τw =



−
3Q
2 (no-slip wall)

−
3Q

2(1+3λ) (partial-slip wall)
(36)

for the slit channel and

τw =



−
4Q
π (no-slip wall)

−
4Q

π(1+4λ) (partial-slip wall)
(37)

for the circular channel. Connecting these limiting values is
not a smooth stress distribution. Instead, in transition, the wall
stress attains a sharp peak slightly upstream of the slip-change
cross section. In other words, a flow will experience a sharp
increase in the wall stress immediately before it goes past
the point where slip change occurs. Inserted in Fig. 5 are
the values of the two limiting wall stress magnitudes |τw |NS

and |τw |PS, and the peak wall stress magnitude |τw |max for the
cases shown in the figure. It turns out that, for any λ > 0,
|τw |max > |τw |NS > |τw |PS. The peak wall stress can be several
times larger in magnitude than the limiting wall stresses. It is
remarkable that increasing λ will result in larger |τw |max but
smaller |τw |PS. As a result, for sufficiently large slip lengths,
say λ ≥ 1, |τw |max � |τw |PS or a highly concentrated shear
stress near the slip-change point. This is another manifesta-
tion of the local increase in the resistance to flow associated
with the slip change.
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FIG. 5. Axial distributions of the wall
shear stress τ4 for flow through a (a) slit
channel and (b) circular channel, where
L = 2, σ = 0.5, and λ = 0, 0.1, 1, 10.
The boundary condition changes from
no-slip to partial-slip at x = 1 or z = 1.
Far upstream and downstream, the wall
stress tends to the limiting values given
by Eq. (36) for a slit channel and
Eq. (37) for a circular channel.

To better understand what causes the local pressure loss,
we show in Fig. 6 some further details about the flow through
a slit channel for the particular case of λ = 10. Again, the flow
is under the no-slip condition in x < 1 and partial-slip con-
dition in x > 1. The flow pattern, shown in Fig. 6(a), reveals
how a near-wall streamline is displaced toward the wall in the
vicinity of x = 1. On adjusting itself to satisfy the boundary
condition changing from no-slip to partial-slip, the near-wall
flow has to undergo acceleration some distance before x = 1.
This acceleration is not only to increase the axial velocity
(a narrower streamtube) but also to induce a transverse flow
(a non-parallel streamline) in the neighborhood of (x, y)

= (1, 1), which we shall refer to as the slip-change point (i.e.,
the boundary point of the slip-change cross section). In other
words, a fluid particle traveling along this near-wall stream-
line is not only to gain speed but also to change its direction of
motion, when it goes past the slip-change point. To cause such
local increase in flow speed, the pressure gradient has to be
locally steepened. This explains why the pressure has a sharp
dip about the point (1, 1), as is seen in Fig. 6(b). The near-wall
flow will be subjected to a very strong pressure gradient on
reaching the slip-change point. This strong pressure gradient
is to be balanced by a sharp rise in the wall stress, which we
have already seen from Fig. 5.

FIG. 6. Two-dimensional plots of (a)
streamlines (contour lines of the stream-
function ψ(x, y) = ∫

y
0 udy), (b) pres-

sure field p(x, y), (c) vorticity field
ζ (x, y) = ∂v/∂x − ∂u/∂y for flow
through a slit channel, where L = 2,
σ = 0.5, and λ = 10. The boundary con-
dition changes from no-slip to partial-
slip at x = 1. A three-dimensional view
of the pressure field is also shown in (b).
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It is also of interest to inspect what happens to the pressure
and flow fields downstream from the slip-change cross section,
say in the region 1 < x < 2. Figure 6(b) shows that the iso-
bars are mostly non-perpendicular to the x-axis in this region.
There exists a pressure gradient in the y-direction that tends to
drive flow toward the wall. This transverse flow, albeit small
compared with the axial flow, is needed in order to achieve
the slip velocity at the wall. A closer inspection of Fig. 6(a)
will find that indeed the near-wall streamtube keeps narrowing,
while the near-center streamtube keeps widening for x > 1.
In other words, after crossing the slip-change location, the
velocity increases near the wall but decreases near the center
as the fluid travels down the channel. This two-dimensional
flow structure will persist until the fully developed profile is
established; see Fig. 7.

The increase in flow speed, in combination with the
induced transverse flow, is to enhance the vorticity as well. As
is shown in Fig. 6(c), the vorticity field ζ(x, y) = ∂v/∂x−∂u/∂y
also exhibits a sharp peak near the slip-change point. The
flow is strongly rotational in the neighborhood of this point.
Figure 6(c) also reveals how vorticity decreases when fluid
enters the channel with the partial-slip wall. Here, for λ = 10,
the wall is nearly a no-shear boundary, and hence the flow
should be nearly irrotational when fully developed in this
part of the channel. From Fig. 6(c), we can see that the vor-
ticity will not diminish to low values until some distance

downstream from the slip-change cross section. There are two
ways in which we may understand the cause of the local pres-
sure loss. First, a higher pressure gradient than that for the
Poiseuille flow is required to drive flow through this region in
order that near-wall fluid particles can speed up in response
to the change in the boundary condition. Second, maintain-
ing flow in this transition region, which carries more vorticity
than the corresponding Poiseuille flow does, is at the cost of
an additional pressure drop.

Axial velocity profiles u(y) at axial positions x = 0.5, 1,
1.5, 2 for the case of a slit channel are shown in Fig. 7, where
the slip-change cross section is located at x = 1. As the fluid
flows down the channel, the axial velocity will evolve from one
limiting profile into another limiting profile, corresponding to
the fully developed Poiseuille flow profiles, as given earlier in
Eq. (11),

u(y) =



3(1−y2)Q
4 for no-slip wall

3(1−y2+2λ)Q
4(1+3λ) for partial-slip wall,

(38)

which are shown by dashed lines in Fig. 7. We can infer from
these profiles that the shear rate is always zero at y = 0 and
maximum at y = 1. Hence, much of the viscous diffusion takes
place at the wall. Let us assume a sufficiently large slip length,
say λ ≥ 1, in the following discussion. As noted above, the
near-wall fluid accelerates when approaching the slip-change

FIG. 7. Profiles of the axial velocity
u(y) at x = 0.5, 1, 1.5, 2 for flow through
a slit channel, where L = 2,σ = 0.5, and
(a) λ = 0, (b) λ = 0.1, (c) λ = 1, (d) λ = 10.
The slip-change cross section is at x = 1.
The dashed lines denote the two limiting
fully developed velocity profiles given
by Eq. (38).
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cross section, but this happens while the flow has still to satisfy
the no-slip condition at the wall. The consequence is to steepen
the velocity gradient at the wall. Figure 7(d) shows that, for
λ = 10, the velocity gradient ∂u/∂y|x=1,y=1 is indeed very steep.
Such a steep velocity gradient amounts to a large shear stress
or a large vorticity. This concurs with what we have already
seen from earlier figures: fluid particles on getting close to
the slip-change point (1, 1) will be subjected to large shear
stress and vorticity. The large stress and vorticity, however,
cannot be sustained further down beyond this point. Under the
slip condition, the slip velocity is in direct proportion to the
near-wall velocity gradient. As the slip velocity at the outset
is small, the velocity gradient at the wall must therefore drop
abruptly to a small magnitude shortly after the fluid passes by
the point (1, 1). From x = 1 onward, the flow will gradually
develop an increasingly uniform velocity profile or a profile
of decreasing rotationality. Figures 7(c) and 7(d) reveal that,
after entering the partial-slip channel, the fluid has to traverse
a certain distance before the final velocity slip at the wall is
achieved.

It is noteworthy that in the course of transitioning from the
no-slip to the partial-slip profile, a point of inflection may show
up in the middle of the velocity profile; see, e.g., the profile at
x = 1.5 shown in Fig. 7(d). This can be explained as follows.
First, the velocity gradient is zero at the center because of sym-
metry about the centerline. Second, a large slip length leads to
a very small wall shear stress or a very small velocity gradient
at the wall. As a consequence, the velocity gradient is very
small near both y = 0 and y = 1, and the velocity gradient may
attain a maximum (in magnitude) at an intermediate y. This
point of the maximum velocity gradient is of course a point of
inflection in the velocity profile. This point of inflection also
corresponds to a point of maximum shear rate, maximum shear
stress, or maximum vorticity over the particular cross section.
For fully developed flow, the maximum stress and maximum
vorticity are always located at the wall. In contrast, for flow just
entering a partial-slip channel, it is possible that the maximum
stress and maximum vorticity are located at a point between
the wall and the centerline.

We further show in Fig. 8 how the velocity profile develops
as a function of x′ = x �σL, which measures the distance down-
stream from the slip-change cross section. The cases shown in
this figure are for λ = 10, L = 10, and (a) σ = 0.5 (LPS = 5),
(b) σ = 0.95 (LPS = 0.5), where LPS = (1 − σ)L is the length
of the channel with the slippery wall. The axial coordinate
is re-defined such that the origin x′ = 0 is positioned at the
slip-change cross section. Here, the slippery channel is long
enough in case (a), but too short in case (b), for the flow to
attain the fully developed profile in this channel. The leftmost
and rightmost profiles in the figure are the profiles given by
Eq. (38) for the fully developed flow in the no-slip and partial-
slip parts of the channel, respectively. Provided in the figure
are also the percentage values of the slip velocity relative to
the final slip velocity. From these values, we can estimate how
long a distance from the slip-change cross section is needed
for the final profile to be practically attained. Note that the
farthest point (i.e., the midpoint of the partial-slip channel at
x = L or z = L; see Figs. 1 and 2) where the flow can develop
to approach the limiting Poiseuille flow is x′ = 5 in case (a)
and x′ = 0.5 in case (b). In case (a), more than 99% of the slip
velocity is already established at x′ = 2, and virtually 100%
of the limiting velocity profile is attained before the farthest
point x′ = 5 is reached. In case (b), the slippery channel is
too short for the limiting velocity profile to be established. At
the farthest point x′ = 0.5, only some 60% of the limiting slip
velocity can be achieved.

In addition to velocity flow, let us also briefly look into the
momentum flow. The momentum flux is equal to (momentum
correction factor)×density× (section-mean velocity)2× area.1

The momentum correction factor β, which accounts for non-
uniformity of velocity over a cross section, is the only variable
depending on the axial position in this equation. It can be found
as follows:

β =




∫ 1

0
u2dy/ū2 for slit channel

2
∫ 1

0
w2rdr/w̄2 for circular channel,

(39)

FIG. 8. Profiles of the axial velocity
u(y) at various axial positions for flow
through a slit channel, where L = 10,
λ = 10, and (a) σ = 0.5 (Lps = 5), (b)
σ = 0.95 (Lps = 0.5). The axial coordi-
nate x′ = x � σL measures the distance
downstream from the slip-change cross
section. The leftmost and rightmost pro-
files are the two limiting fully developed
velocity profiles given by Eq. (38). The
values in percentage are the ratios of the
slip velocity to the final slip velocity.
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FIG. 9. Axial distributions of the
momentum correction factor β for
flow through a (a) slit channel and (b)
circular channel, where L = 10, σ =
0.5, and λ = 0.1, 0.2, 0.5, 1, 10. The
axial coordinate x′ = x � σL or z′ = z �
σL measures the distance downstream
from the slip-change cross section.
Far upstream and downstream, the
momentum correction factor tends to
the limiting values given by Eq. (40)
for a slit channel and Eq. (41) for a
circular channel.

where ū and w̄ are the section-mean velocities. Substituting
the Poiseuille velocity profiles given in Eqs. (11) and (28), we
can determine the limiting momentum correction factors to be

βNS = 6/5, βPS = 9
(
λ

2 + 2λ/3 + 2/15
)
/ (1 + 3λ)2 (40)

for the no-slip and partial-slip parts of the slit channel and

βNS = 4/3, βPS = 16
(
λ

2 + λ/2 + 1/12
)
/ (1 + 4λ)2 (41)

for the no-slip and partial-slip parts of the circular channel.
The momentum correction factor β as a function of the axial
coordinate x′ or z′ = 0 and slip length λ is shown in Fig. 9. This
factor is identically equal to 1 for a uniform velocity profile,
and for any non-uniform profile, it is always greater than 1.
For λ > 0, it is always true that βNS > βPS > 1 as the boundary
slip is to result in a more uniform velocity profile. One can
readily check that βPS → 1 as λ → ∞. Unlike the wall stress,
the transition of the momentum correction factor (an integral
quantity) from βNS to βPS happens in a smooth manner. Even
a slip length as small as λ = 0.1 can appreciably decrease the
momentum correction factor by some 10%.

FIG. 10. The entrance length LE as a function of the slip length λ for flow
through a slit or circular channel, where L = 10 and σ = 0.5.

If we regard the flow as fully developed when the momen-
tum correction factor is within 1% of its ultimate value, the
“entrance length” LE can be defined to be the distance from
the origin x′ = 0 or z′ = 0 to the point where the difference
of β and βPS is equal to 1% of βPS. The entrance length LE

defined this way is shown in Fig. 10 as a function of the slip
length λ. One can note that over a wide range of slip lengths,
from λ = 0.1 to λ � 1, the entrance length varies only mod-
estly, approximately in the range 0.5 < LE < 0.8 for either the
slit or circular channel. We may infer from the figure that, for
a finite slip length, the fully developed velocity profile with
the boundary slip is largely attained within a dimensionless
distance of ∼0.5 from the entry cross section. In this so-called
entrance region, the flow re-organizes itself in order to recover
a balance between the axial pressure gradient and lateral vis-
cous momentum diffusion. As seen above, in this transition
region, the flow will change to become less sheared or less
rotational, as dictated by the boundary slip.

We next show in Fig. 11 the loss parameter, S, which is
defined in Eqs. (16) and (32), as a function of the slip length λ,

FIG. 11. The loss parameter S as a function of the slip length λ for flow
through a slit or circular channel, where L = 10 andσ = 0.5. The dashed lines
denote the asymptotic values for very large slip lengths, λ � 1.
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FIG. 12. The loss parameter S as a
function of the length of the channel
with the slippery wall Lps = (1 − σ)L
for flow through a slit or circular chan-
nel, where L = 10 and (a) λ = 0.5, (b)
λ = 1, (c) λ = 10, (d) λ = 100.

where L = 10 and σ = 0.5. The channel is long enough for the
fully developed flow to be established in both the no-slip and
partial-slip parts of the channel. Hence, the loss parameter is
essentially unaffected by other parameters than the slip length
λ. The loss parameter is found to increase monotonically with
the slip length, which is expected since the additional pressure
loss is caused by a sudden change of the slip condition on
the wall. The increase of S with λ is quite sharp when λ is
small, say 0 < λ < 1. This signifies that even a modest value
of the slip length can lead to an appreciable additional loss
of pressure. For larger λ, S can only increase mildly with λ.
The loss parameter will asymptotically tend to an upper limit
for λ � 1. The limiting values, denoted by dashed lines, are
provided in Fig. 11. In general, with the same slip length, the
loss parameter for flow through a slit channel is smaller than
that through a circular channel. This is probably due to the fact
that flow in a slit channel is not wall-bounded laterally, while
flow in a circular channel is wall-bounded in all directions.
Hence, the former is not as susceptible to the wall slip change
as the latter.

We finally show in Fig. 12, for various values of λ, the
loss parameter S as a function of the length of the channel
with the slippery wall Lps = (1 − σ)L, where L = 10. The
figure confirms that the loss parameter will not attain its full
value until the channel is long enough. In a very short channel,
say Lps < 0.1, the additional loss can be much reduced. In a

sufficiently long channel, say Lps > 1, the loss parameter is
virtually independent of the length of the channel.

IV. CONCLUDING REMARKS

We have shown that for pressure-driven flow in a slit or
circular channel, in addition to the friction loss, there is a pres-
sure drop associated with a sudden change in the boundary
condition from no-slip to partial-slip. This additional loss can
be represented by a dimensionless loss parameter, defined in
Eq. (17) or (33), which is a function of the slip length and
does not depend on other physical properties if the channel is
longer than the entrance length. One may make use of this loss
parameter to evaluate how much additional resistance will be
encountered by a flow on entering a channel with a bound-
ary slip. This loss can thus be called an entrance loss. Since
the flow under consideration is the Stokes flow, where iner-
tia is neglected, the flow pattern happening at the entrance is
exactly the same as that at the exit, with the flow direction
being reversed. Hence, the same pressure loss will happen to
fluid exiting from the slippery channel. The loss can equally be
called an exit loss. In other words, whether it is a change from
no-slip to partial-slip or the other way around, the associated
pressure loss is the same.

We may extend the present problem to flow entering a
slippery channel from a larger reservoir, i.e., flow undergoing
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a sudden change in both cross section geometry and slip con-
dition. Sisan and Lichter16 have studied the end-effects for
flow through a low-friction nano-channel. They found that the
end losses can have a significant effect on the evaluation of the
effective slip length based on the experimental measurement of
flow rate and pressure drop. We may look into similar problems
of flow in nano-channels and determine how the entrance loss
will depend on the slip length, geometrical configurations, and
other physical properties. It is also of interest to look into the
effect due to inertia at a larger Reynolds number, which may
lead to phenomena or features that are dramatically different
from those reported in this paper. The problem then becomes
nonlinear and has to be solved numerically.
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