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Abstract—This paper presents FPGA based hardware ar-
chitectures for floating point (FP) multipliers. The proposed
multiplier architectures are aimed for single precision (SP),
double precision (DP), double-extended precision (DEP) and
quadruple precision (QP) implementation. This paper follows
the standard computational flow for FP multiplication. The
mantissa multiplications, the most complex unit of the FP
multiplication, are built using efficient use of Karatsuba
methodology integrated with the optimized used of in-built
25x18 DSP48E blocks available on the Xilinx Virtex-5 onward
FPGA devices. It also combined with the other techniques
(radix-4 booth encoding for small multipliers, partial products
reduction using 4:2, 3:2, 2:2 counters; compression of multi-
operands adders) used at places, to improve the design. The
proposed architectures out-performs the available state-of-the-
art, and used only 1-DSP48, 3 DSP-48, 6 DSP48 and 18 DSP48
for SP, DP, DEP, and QP multipliers respectively.

Keywords-Floating Point Arithmetic, Multipliers, Digital
Arithmetic, FPGA, DSP48E.

I. INTRODUCTION

Floating point (FP) multiplication is an essential compo-

nent required in a large set of FPGA based hardware accel-

eration application. So, efficient implementation of FPGA

based floating point multipliers are highly desirable. To meet

this requirement, several literature have focused on the effi-

cient FPGA-based implementation of FP multiplier [1], [2],

[3], [4], [5], [6], [7], for various formats of the floating point

standard: single precision, double precision and quadruple

precision. [6] has shown the large integer implementation

using Karatsuba method [8] (around 18x18 multiplier IPs)

and using tiling method (around the asymmetric size of

DSP48E IP on Xilinx Virtex-5 onward FPGA devices). [1]

has also proposed double precision and quadruple preci-

sion multiplier using tiling method. [3] has presented a

set of FP arithmetic library, and used contemporary block

method for FP mantissa multiplication. [2] has presented

the architecture of quadruple precision FP multiplier using

Karatsuba method around 18x18 multipliers, and has shown

better results than [1] implementation. Similarly, [5] has

used 3-partition Karatsuba method around 18x18 multiplier

IP for a double precision multiplier implementation. All

these methods have either used simple block method, or

tiling method around 25x18 IP or Karatsuba method around

18x18 IP for the FP multiplier implementation, and tried

to improve the multiplier IP usage. However, these methods

still need more DSP48 block and have un-balanced DSP48E-

LUTs utilization which reduces the scope of parallelism.

This work is aimed towards an efficient utilization of

DSP48E for FP multipliers ranging from SP to QP mul-

tiplier, with balanced DSP48E-LUTs requirement. The pro-

posed architectures are build around DSP48E IP with combi-

nation of Karatsuba method, block method, radix-4 Modified

Booth Encoding for small multipliers, tree compression for

partial products, and multi-operands-adder reduction using

4:2, 3:2 and 2:2 counters, and all included with balanced

pipelining of the architectures.

In summary, the main contributions of present work can

be summarized as follows:

• Proposed a set of floating point (SP, DP, DEP, and QP)

multiplier architectures on Xilinx FPGA platform.

• DSP48E efficient mantissa multipliers for these archi-

tectures are designed using combination of several tech-

niques (Karatsuba, Radix-4 Booth, Tree-Compression

using 4:2, 3:2 & 2:2 counters), which results in better

hardware utilization, when compared to the prior state-

of-the-art.

II. PROPOSED ARCHITECTURES

The IEEE-754 [9] defines the standard for the floating

point arithmetic. The standard format for the SP, DP, DEP

and QP floating point numbers are shown in Table-I.

Table I: Floating Point Format

Word Size Sign (1) Exponent (E) Mantissa (F)

SP (32-Bit) [31:0] [31] [30:23] [22:0]
DP (64-Bit) [63:0] [63] [62:52] [52:0]
DEP (80-bit) [79:0] [79] [78:64] [63:0]
QP (128-Bit) [127:0] [127] [126:112] [111:0]

This work is aimed towards the normalized floating point

multiplier architectures, however, sub-normal processing can

be included with similar benefits. The typical processing

of floating point multiplier for normal operands is shown

in Fig. 1. The sign and exponent processing as well as

rounding and normalization are trivial, however, the mantissa

multiplication is most critical component in terms of area

and performance. This paper focuses mostly on this unit.

“Rounding-to-nearest-place” method is used for rounding,

and it consists of ULP (unit at last place) generation (based

on rounding position, round-bit, guard-bit and sticky-bit) and
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Figure 1: Floating Point Multiplier

ULP addition to the mantissa. The rest of this section will

discuss the mantissa multiplier architectures for SP, DP, DEP,

and QP multipliers.

A. Single Precision Mantissa Multiplier

The architecture for SP mantissa multiplier is shown in

Fig. 2. It is a 24x24 bit multiplier, designed around a

DSP48E IP. Its implementation follows the simple block

method computation as below:

y = a[23 : 0]∗b[23 : 0]

= a[23 : 0]∗b[16∗0]+{(a[23 : 0]∗b[23 : 17])<< 17−bit}
(1)

Here, the DSP48E is used as 24x16 unsigned multipli-

cation and its addition to the 17-bit shifted result of 24x7

unsigned multiplication. The 24x7 multiplier is designed

using Radix-4 Modified Booth encoding, which partial prod-

ucts are compressed using 4:2, 3:2 and 2:2 counters, and a

pipelined two-operands final adder. These techniques help in

improving the critical path. The latency of 24x24 multiplier

is 3 cycles.

B. Double Precision Mantissa Multiplier

The double precision multiplier needs a 53x53 bit man-

tissa multiplier. Its architecture is shown in Fig. 3. The

architecture is based on the use of previous 24x24 multiplier,

and its underlying computation is based on following:

b[16:0]a[23:0]a[23:0] b[23:17]

DSP48E

17-bit Left-shift

R0

R1
m24x7

Figure 2: 24x24 Multiplier

y = a[52 : 0]∗b[52 : 0]

= a[45 : 0]∗b[45∗0]

+{(a[45 : 0]∗b[52 : 46]+a[52 : 46]∗b[45 : 0]),46′b0}

+{a[52 : 46]∗b[52 : 46],96′b0} (2)

In eq(2), the 46x7 and 7x7 multipliers are designed

using radix-4 modified booth multiplication method with 2

pipeline stage, as shown in Fig. 3. However, the 46x46 mul-

tiplier is built using two-partition Karatsuba method [8], [1].

Using two-partition Karatsuba method, the multiplication is

obtained as follows:

y = a[45 : 0].b[45 : 0]

= {a1.b1,a0.b0}+{(a10.b10− (a1.b1+a0.b0)),23′b0}
(3)

where, a0,b0,a1 and b1 are as shown in Fig. 3 for m46x46

multiplier. Here, it requires only 3 multiplier blocks (two

23x23 and one 24x24) instead of 4 24x23 using contem-

porary method, however, needs extra adders/subtractor. The

23x23 and 24x24 are done as in Fig. 2, using a DSP48E.

Further, a compressor is used for the combined reduction of

various terms from 46x46 multiplier and, the results of 46x7s

and 7x7 multipliers. Here, the compressor can also be used

at earlier stages, to include the individual terms of 46x7s

and 7x7 multiplier, to reduce the latency, however, with

slower performance. Here, the use of multi-operands-adder

compression helps in overcoming the delay-requirement of

extra adders/subtractors in the Karatsuba method, while

retaining its benefits of reduced multiplier blocks. Thus, as

shown in Fig. 3, the latency of 53x53 is 6 cycles, and it

requires only 3 DSP48E blocks.

C. Double Extended Precision Mantissa Multiplier

The mantissa of DEP multiplier is 64 bits and it needs

65x65 mantissa multiplier. Here, it is designed as 66x66

multiplier and shown in Fig. 4. This architecture is based

on the 3-partition Karatsuba method, which computes as

follows:
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Figure 4: 66x66 Multiplier (m22x22 and m23x23 are 3 stage multipliers designed as m24x24 in Fig 2)

y = a[65 : 0].b[65 : 0]

= {a2.b2,a1.b1,a0.b0}

+{(a21.b21− (a2.b2+a1.b1)),66′b0}

+{(a20.b20− (a2.b2+a0.b0)),44′b0}

+{(a10.b10− (a1.b1+a0.b0)),22′b0} (4)

where, a0, a1, a2, b0, b1, b2, a21, a20, a10, b21, b20 and

b10 are as shown in Fig. 4. This method needs only 6

multiplier blocks (3 of 22x22, and 3 of 23x23), compared

to 9 of 22x22 using general method, while with some extra

adders and subtractors. The 22x22 and 23x23 multipliers

are implemented as 24x24 multiplier (Fig. 2). Further, the

four terms of eq(4) are compressed using a 4:2 compressor
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to produce two operands, which finally added by a two-

stage adder (to meet the critical path). The latency of 66x66

multiplier is 7 cycles and it needs only 6 DSP48E.

D. Quadruple Precision Mantissa Multiplier

The architecture of the quadruple precision mantissa mul-

tiplier is shown in Fig. 5. For QP, it needs a 113x113

multiplier and here it is implemented as 114x114. The im-

plementation is based on the combination of 3-partition and

2-partition Karatsuba method with efficient use of DSP48E.

The 114-bit operand is first partitioned in to three parts of

38-bit and implemented using eq(4) technique, and as shown

in Fig. 5. At this, it requires three 38x38 and three 39x39

multipliers. The 38x38 and 39x39 are further designed using

2-partitioned Karatsuba method. The architecture for 39x39

is shown in Fig. 6, which requires one 20x20, one 19x19,

and one 21x21 multipliers. Similarly, it is done for 38x38

multiplier, which needs two 19x19 and one 20x20 multiplier.

These 19x19, 20x20 and 21x21 multiplier are implemented

as 24x24 (as shown in Fig. 2), but with simple partial prod-

uct generation method (due to small multiplier-operands).

Further, in 114x114 multiplier, all the terms are combined

using multi-level adders. Here, compression technique can

be beneficial for lower latency implementation, however,

with more pipelined implementation of large-size adders are

not beneficial with the compression technique. The latency

of presented 114x114 multiplier is 11 cycles, and it requires

only 18 DSP48E for entire implementation.

III. RESULTS AND COMPARISONS

The proposed architectures of mantissa multipliers and

corresponding floating point multipliers are implemented on

Xilinx Virtex-5 FPGA device. The design metrics are ob-

tained after PAR (placed and route) step of Xilinx ISE 14.6

tool flow. The design metrics of proposed implementations

along with the details on prior state-of-the-art on Virtex-

5 FPGA device (Virtex-5 is selected for implementation as

most of the prior works are reported on Virtex-5 devices)

are shown in Tables-II,III,IV and V, respectively, for single



Table II: Implementation Details and Comparisons for Single

Precision Multiplier

Latency DSP48E LUTs FFs Freq (MHz)

SP Mantissa Multiplier
Proposed 3 1 249 121 331
34x34[2] 4 3 118 172 324

SP FP Multiplier
Proposed 5 1 392 195 331
[3] - 4 127 Slices 178*
[10] 6 3 99 114 410*
[10] 8 2 112 184 410*

[11] 6 3 79 124 462* (on V7)
[11] 8 2 92 164 462* (on V7)
[11] 8 1 238 363 462* (on V7)

*: Synthesis Results

precision, double precision, double extended precision and

quadruple precision architectures. For comparison purpose,

we have included the results of Xilinx floating point operator

V5.0 [10] for Virtex-5 devices, as well as the latest Xilinx

floating point operator V7.1 [11] results for Virtex-7 devices

(as V7.1 results are not reported for older devices like Virtex-

5). The proposed architectures are functionally validated

for an extensive random test cases with round-to-nearest

rounding method.

All the proposed architectures are targeted around 300

MHz speed requirements after PAR processing. Literature

shows that this speed level is suitable for most of the system

level architectures designed around floating point arithmetic.

However, speed can be improved with more pipelining

stages (as we can observe that the latency of proposed

architectures are smaller). To meet critical path, the post

mantissa processing requires 2-cycles for SP and, 3-cycles

for DP, DEP and QP multipliers. From the comparisons,

the proposed architectures are efficient in terms DSP48E

requirements, however, requires more LUTs.

The prime benefit of proposed architectures appears more

towards the high precision computation, ie double precision

onward. For double precision it saves from 3 to 9 DSP48E,

and for quadruple precision the saving is 6 to 16 DSP48E.

Whereas, for single precision Xilinx latest operator does

better than proposed work, but, for double precision and

beyond precision proposed architectures are more hardware

optimum. Further, Xilinx operators support only up to

double precision architectures, and not available for double

precision extended and quadruple precision architectures.

On taking account of LUT equivalent of a DSP48E, a

simple synthesis of (a[23:0]*b[16:0]+c[47:0], in present con-

text) results in to 644 LUTs. Taking this in to consideration,

total equivalent LUTs requirements (LUT + DSP48E*644)

of the proposed architectures are better than the prior related

arts. Moreover, the presented proposals provide a more

balanced utilization of DSP48E and LUTs, and will results in

to more number of floating point multiplier units per device,

and thus, promote more parallelism per device.

Table III: Implementation Details and Comparisons for Dou-

ble Precision Multiplier

Latency DSP48E LUTs FFs Freq (MHz)

DP Mantissa Multiplier
Proposed 6 3 2071 1339 310
[1] 9 9 530 506 407*
[1] 8 6 919 872 407*
[4] 0 12 200 - 111*
[6] 4 8 243 400 369*
Logicore[1] 12 10 229 280 450*

DP FP Multiplier
Proposed 9 3 2219 1301 327
[1] 14 9 804 804 407*
[1] 13 9 1184 1080 407*
[5] 10 6 765 790 390
[3] - 9 375 Slices 149*
[10] 15 9 402 555 369*
[10] 15 10 342 495 359*
[10] 10 13 191 311 404*

[11] 15 9 276 564 462* (on V7)
[11] 15 10 224 503 462* (on V7)
[11] 10 11 199 492 329* (on V7)

*: Synthesis Results

Table IV: Implementation Details and Comparisons Double

Extended Precision Multiplier

Latency DSP48E LUTs FFs Freq
(MHz)

DEP Mantissa Multiplier
Proposed 7 6 2273 1320 331
[2] 8 9 796 1126 310

DEP FP Multiplier
Proposed 10 6 2245 1549 317

*: Synthesis Results

Table V: Implementation Details and Comparisons for

Quadruple Precision Multiplier

Latency DSP48E LUTs FFs Freq
(MHz)

QP Mantissa Multiplier
Proposed 11 18 4506 4301 305
[2] 14 24 3030 3698 310
[1] 13 34 2070 2062 407*
[4] 0 35 1000 - 90*

QP FP Multiplier
Proposed 14 18 4779 4392 305
[1] 20 34 2978 2815 355*
[2] 17 24 3211 3961 310

*: Synthesis Results

IV. CONCLUSIONS

This paper has presented a set of floating point mul-

tiplier architectures on Xilinx FPGA device for Virtex-5

onward series. The architecture for single precision, double

precision, double extended precision and quadruple preci-

sion multiplier are proposed using efficient use of in-built

DSP48E fabric in combination with Karatsuba methodology

of multiplication. Various other techniques, like radix-4

booth encoding for small multipliers, reduction of partial

products using 4:2, 3:2, 2:2 counters, reduction of multi-



operands adders, etc are also used at places, to improve the

design. The proposals lead to a significant improvement in

DSP48E usage, while at expense of more LUTs, however,

have better overall equivalent LUTs requirements. Also, as

shown in results and comparison section, the proposed ar-

chitectures are better in hardware utilization towards higher

precision implementations, ie for double precision and be-

yond architectures.
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