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Abstract 

 

Introduction: Roles of autophagy/mitophagy activation in ischemic stroke remain 

controversial. To elucidate potential reasons, we analyze the factors responsible for 

divergent results in literatures. Reactive nitrogen species (RNS) are important 

cytotoxic factors in ischemic stroke. Herein, we particularly discuss the roles played 

by RNS in autophagy/mitophagy and ischemic brain injury.   

Areas covered: Following factors should be considered in the studies on 

autophagy/mitophagy in ischemic stroke: (1) Protocols for administration of 

autophagy regulators including administration time points, routes and doses, etc.; (2) 

Specificity of autophagy regulators; (3) Animal models of cerebral ischemia with or 

without reperfusion. In the underlying mechanisms of autophagy/mitophagy, we 

particularly discuss the potential roles of RNS in mediating excessive 

autophagy/mitophagy during cerebral ischemia/reperfusion injury.  

Expert opinion: Emphasis should be given to the following aspects in future studies: 

(1) Targeting RNS and related cellular signaling pathways in the regulation of  

autophagy/mitophagy might be a promising strategy for developing novel drugs as 

well as combined therapy for thrombolytic treatment to reach better outcomes for 

ischemic stroke; (2) Developing circulating plasma biomarkers linking RNS-mediated 

autophagy/mitophagy to the magnitude of ischemic brain injury will benefit for stroke 

treatment. Subsequently, RNS could be dominant therapeutic targets to regulate 

autophagy/mitophagy for ischemic stroke.   
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1. Introduction   

Autophagy is a sophisticated catabolic process in which cytosolic contents and 

organelles are transported to lysosomes for degradation.[1] Autophagic process is 

commonly sub-typed into microautophagy, chaperone-mediated autophagy and 

marcoautophagy. In this article, we mainly discuss macroautophagy (hereafter 

referred to as autophagy), a major autophagic type for cellular self-regulation. 

Autophagy was firstly defined by C de Duve in 1960s, nearly ten years after his 

discovery of “lysosome” in rat livers.[2] Distinct from microautophagy and 

chaperone-mediated autophagy, autophagy is characterized as an evolutionary 

conserved process of ‘self-eating’ to digest defective or aggregated proteins and 

organelles via the formation of an autophagosome and its fusion with a lysosome.[3] 

Furthermore, autophagy also serves as a recycling process to support cell survival by 

reserving biosynthetic materials derived from degradation as ‘building block’ under 

energy shortage and nutrient starvation.[4] Autophagic process is a sophisticated 

intracellular regulating mechanism depending on a complex network of different 

autophagy-related (Atg) proteins. These Atg proteins participate in different phases of 

autophagy.[2] Clearly, autophagy is an ancient but sophisticated self-regulation to 

keep physiological function and defense unexpected stress and stimulus. 

Autophagy is a critical player in various physiological progress including cellular 
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growth, differentiation and homeostasis through continually turnover of dysfunctional 

proteins and organelles. Autophagic process involves initiation/induction, 

autophagosome formation and maturation/recycle.[5] Briefly, a complete autophagic 

process can be summarized into several steps: (1) Sequestration: formation of 

phagophors and sequestrating cytoplasmic constituents into autophagosomes; (2) 

Maturation: fusion of autophagosomes with lysosomes; (3) Degradation: degradation 

of autophagosomes by lysosomal hydrolases; (4) Recycle: reusing degraded 

cytoplasmic materials. With the ‘self-eating’ process, the damaged cellular 

components are degraded for cell survival under various stress conditions like 

oxidative stress, endoplasmic reticulum (ER) stress and starvation, etc.  

Central nerve system (CNS) is comparatively more vulnerable to microenvironment 

disruption than other organs. Emphasis is given to autophagy as a wise sweeper in the 

brain to maintain CNS’s physiological function.[6] Thus, CNS requires more rigorous 

quality control system including blood brain barrier (BBB) and autophagy for 

maintaining chemical hemostasis and quickly removing waste products as well as 

adapting its high demand of energy.[5] Emerging evidences point out the important 

roles of autophagy in neurodegenerative diseases (NDDs), including Alzheimer's 

disease [7], Parkinson's disease [8], Huntington's disease [9], and amyotrophic lateral 

sclerosis [10]. Dysregulation of autophagy in NDDs has been intensively studied and 

reviewed in literatures [11, 12] and targeting autophagy becomes a promising strategy 

for seeking therapeutic drug candidates for NDDs [13]. Obviously, autophagy 

becomes a hot research field in NDDs. 
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Autophagy is also an important pathophysiological process in stroke. The roles of 

autophagy-lysosomal system in hemorrhagic stroke have been discussed in a recent 

review article.[14] Herein, we mainly discuss the roles and underlying mechanisms of 

autophagy in ischemic stroke. Autophagic flux can be triggered by ischemia stress, 

but its roles in ischemic stroke is still controversial.[15] Autophagy can be classified 

into basal and induced autophagy: Basal autophagy is a ‘housekeeping’ process in 

neurons [16] whereas induced autophagy possesses double-edged effects on neurons 

[17]. Multiple autophagic protein markers such as Beclin 1 

and LC3-phosphatidylethanolamine conjugate (LC3-II) were found to be robustly 

increased in cerebral ischemia animal models.[18] Also, autophagososmes and 

autolysosomes were directly found in ischemic areas by transmission electron 

microscopy.[19, 20] However, the roles of autophagy in ischemic brain injury remain 

controversial. Series of investigations indicate that autophagy like a double-edged 

sword, possesses both beneficial and detrimental effects to the brain after ischemia 

stimulus.[21]  

Recent progress draws an attention to the roles of free radicals in regulating 

autophagy in ischemic stroke. Redox homeostasis is essential for maintaining 

physiological functions through an equilibrium between antioxidant and oxidant 

levels. Imbalance of redox often results in oxidative/nitrosative stress which mediates 

dysregulation of autophagy, leading to pathological process in neurodegeneration.[22] 

Free radicals including reactive oxygen species (ROS) and reactive nitrogen species 

(RNS) are major pro-oxidants during oxidative/nitrosative stress. Among them, 
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superoxide anions (O2
•−) is a precursor for other types of ROS, including hydrogen 

peroxide, hydroxyl radical, hypochlorous acid, and hydroperoxyl radical. Besides, 

nitric oxide (NO) and peroxynitrite anion (ONOO
-
) are two representative species of 

RNS. NO is mainly produced from L-arginine and oxygen catalyzed by various nitric 

oxide synthases (NOS). In presence of O2
•−, NO can rapidly react with O2

•− to 

generate ONOO
-
.[23, 24] Ischemia insults initiate to produce a large amount of free 

radicals and result in neuronal cell death, BBB disruption and neurological 

deficits.[25] Growing evidences suggest that ROS can mediate autophagy via 

posttranslational modification of biomolecules including proteins, lipids and DNA in 

ischemic stroke.[26, 27] However, the roles and underlying mechanisms of 

RNS-mediated autophagy in ischemic stroke have yet received enough attention.  

In this article, we review current progress regarding the roles of autophagy in the 

pathological process of cerebral ischemia/reperfusion (I/R) injury. In particular, we 

emphasize on the roles of RNS in regulating autophagy and their potential impacts on 

developing novel therapeutic approaches for ischemic stroke.  

 

2. Autophagy in ischemic stroke 

2.1 Detection of autophagy activation in ischemic brain 

Autophagy can be evaluated through the detection of multiple autophagic markers in 

each step or direct morphology observation of autolysosomes.[20] Increased 

expression of Beclin 1 and LC3-II often serve as useful markers to indicate 

autophagosomes formation. Especially, labeling LC3 is commonly applied to track 
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autophagosomes by observing its distribution change from uniform residence to 

punctate dots.[28] Moreover, p62/SQSTM1 has multiple domains mediating its 

interaction with relevant binding partners and functions as an autophagy receptor for 

selective degradation of ubiqutinated substrates.[29] Accompanying with the 

degradation of substrates, p62/SQSTM1 is also digested within autolysosomes. Thus, 

decreased p62/SQSTM1 level could be an indicator for autophagy maturation and 

degradation.[30] LC3 and p62/SQSTM1 have been documented to be specific and 

reliable autophagy markers in formalin fixed and paraffin embedded human tissues 

for immunohistochemistry.[31] With the progress of the mechanisms, we believe that 

more and more specific autophagy biomarkers would be discovered in future.  

The activation of autophagy in ischemic stroke has been intensively studied. 

Autophagic flux was not only reported in ischemic brains of experimental stroke 

rodent models with morphological evidences and changes of autophagic markers [32], 

but also in the brains of ischemic stroke patients with increased levels of Beclin 1 and 

LC3 in cerebrospinal fluid and serum [33]. The appearance of autophagic vesicles has 

been also found in human post-mortem brain tissue after stroke.[34] After ischemic 

insults, autophagic flux not only occurs in neurons [35], but also astrocytes [36] and 

endothelial cells [37]. Thus, autophagy could be a critical player in the pathological 

process of ischemic brain injury which involves multiple cells at different stages of 

ischemic stroke. 

2.2 Controversial roles of activated autophagy in ischemic brain injury 

No consensus about the roles of activated autophagy in ischemic stroke is documented 
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in current stage of the investigations. Yet, two things are irrefutable. One is that 

increased autophagy occurs in the brain in response to ischemic injury; the other is 

that basal level autophagy is indispensable for keeping brain function. Since these 

opinions are widely discussed elsewhere, we will not further elaborate here.[21, 38] It 

has been an intractable thematic since last decades whether the induction of 

autophagy benefits for cell survival or promotes cell death in cerebral ischemia injury. 

Existing divergent data, like ‘muddied the water’, bring the complexity and challenge 

to evaluate the roles of activated autophagy in the pathological process of ischemic 

stroke. However, like pieces of the puzzle, they also provide clues to objectively 

understand these opposite outcomes. Growing evidences suggest that the final cell 

fate partly depends on the game between autophagy demand for substrate removal 

with cell affordability (autophagy is a adenosine triphosphate (ATP)-dependent 

process).[39] Thus, it is understandable that many controversial results about the roles 

of autophagy have been reported in the experiments with different protocols. For 

better understanding those divergent results, we should consider following factors in 

data interpretation about the effects played by activated autophagy in ischemic stroke.  

2.3 Potential factors responsible for divergent roles of autophagy 

Table 1 shows controversial results about the effects of autophagy on ischemic brain 

in literatures with different protocols. Those results appear to be confusing, but 

opportunity often disguises as challenge. Stark contrast studies described in the Table 

1 bring a big challenge to understand the real roles of autophagy in ischemic stroke. 

On the other hand, they also pave the way for finding the potential factors and 
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developing therapeutic strategies for improving outcomes. In the light of this point, 

herein, we carefully review detail protocols, experimental results and conclusions 

about the roles of autophagy in those animal models. Following factors should be 

considered in the experimental designs and results interpretation.  
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Table1: Dual roles of autophagy in ischemic brain injury in current literatures 

Role of autophagy Model Treatment Dose Timing  Route Reference  

Detrimental 
SD rats MCAO 

I30min/R24h 
3-MA 600nmol at the onset of reperfusion i.c.v. [40] 

Detrimental 
SD rats MCAO 

 I2h/R24h 
3-MA 400nmol 

40min before the onset of 

reperfusion 
i.c.v. [41] 

Detrimental 
SD rats MCAO  

I2h/R24h 
3-MA 600nmol at the onset of reperfusion i.c.v. [42] 

Detrimental 
SD rats MCAO 

I2h/R72h 
Tat–Beclin-1 15mg 24 and 48h after MCAO i.p. [43] 

Detrimental SD rats pMCAO 3-MA 300/600nmol 10min after pMCAO i.c.v. [44] 

Detrimental SD rats pMCAO 

3-MA  

BFA 

Z-FA-fmk 

150-600nmoL 

4nmol 

13-26nmol 

after the onset of pMCAO i.c.v. [45] 

Detrimental 
C57BL/6 mice 

pMCAO 

3-MA 

Rapa 

60μg 

100μg 
10min after pMCAO i.c.v [46] 

Detrimental 
C57BL/6 mice 

pMCAO 
3-MA 60μg after the onset of pMCAO i.c.v. [47] 

Detrimental 

SD rats 

20min global 

ischemia 

3-MA 600nmol 
30 min/60min before ischemia 

60min after reperfusion 
i.c.v. [48] 

Detrimental 
SD rats MCAO 

I2h/R24h 
3-MA 50nM before MCAO 

stereotaxic 

injections 
[49] 
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Role of autophagy Model Treatment Dose Timing  Route Reference  

Detrimental 
SD rats MCAO 

 I90min/R24h 

PcDNA plenti6.3-Bec 

LY294002 

- 

10mg/kg 
30min before MCAO 

i.c.v. 

i.p. 
[18] 

Detrimental 
SD rats MCAO 

I1h/R 
3-MA 600nmol 1h before MCAO i.c.v. [50] 

Beneficial  
SD rats MCAO 

I90min/R72h 
LY294002 15μM 30min before MCAO i.c.v. [51] 

Beneficial 
SD rats MCAO 

I2h/R22h 
LY294002 15μM 30min before MCAO i.c.v. [52] 

Beneficial 
SD rats MCAO 

I2h/R22h 

3-MA 

Rapa 

Li2CO3 

0.15mg/kg 

150μg/kg 

20mg/kg 

0.5h before MCAO i.v. [53] 

Beneficial 
SD rats  

pMCAO 
3-MA 200nmol 24h before pMCAO i.c.v. [54, 55] 

Beneficial 
SD rats  

pMCAO 

3-MA 

BFA 

Rapa 

100-400nmol 

4nmol 

8.8-35pmol 

24h before pMCAO i.c.v. [56] 

Beneficial 
Mice 

pMCAO 
3-MA 60μg 30min before MCAO i.c.v. [57] 

Beneficial 

C57BL/6 J mice 

MCAL 

eMCAO 

Rapa 

chloroquine 

0.625-2.5mg/kg 

30-90mg/kg 

after the onset of ischemia; 

24h post-stroke 
i.p. [58] 

(p)MCAO: (permanent) middle cerebral artery occlusion; I: ischemia; R: reperfusion; 3-MA: 3-Methyladenine; i.c.v.: intracerebroventricular; i.p.: intraperitoneal; BFA: 

 bafilomycin A; Rapa: rapamycin; eMCAO: embolic MCAO; MCAL: middle cerebral artery ligation. 

http://stroke.ahajournals.org/content/27/9/1616.full
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2.3.1 Therapeutic timing of autophagy regulators  

Autophagy is a dynamic regulatory process and its roles depend on different phases of 

ischemia. Thus, we screen and analyze relevant studies with similar experimental 

protocols and pay special attention on the intervening time points of autophagy 

regulators in both rat models [44, 45, 54-56] and mouse models [46, 47, 57]. It is 

obvious that administration timing of autophagy regulators could be a critical factor to 

different outcomes. In other words, therapeutic time points could determine the 

outcomes of autophagy regulation. Interestingly, the claimed beneficial effects of 

autophagy on ischemic brain were commonly reported in the literatures with the 

administration of autophagy inhibitors or activators prior to ischemic insults.[51-57] 

In contrast, evidences supporting the detrimental roles of autophagy in ischemic brain 

were often obtained from the literatures using autophagy regulators after the onset of 

ischemic insults or at the phase of reperfusion.[40-47] Those studies indicate that 

autophagy activation could be an attempt for survival at early stage of cerebral 

ischemia, but those self-defensive functions might be pinned down by serious 

damages attributed by ischemia plus reperfusion. In another word, reperfusion after 

ischemia might be a turning point transferring autophagic roles from protective to 

destructive. Importance of intervening timing inspires to select proper therapeutic 

time point for better outcomes. 

2.3.2 Autophagy inhibitor or activator  

To date, efforts have been made for searching a single silver bullet for autophagy 

regulation, like finding a fitting shoe for Cinderella.[59] But, no one is perfect yet. For 
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autophagy inhibition, it could be executed by pharmacologic inhibitors or 

knockdown/knockout of specific proteins like Beclin 1, LC3, Atgs of autophagy 

pathways.[59, 60] It appears that genetic mutation animal models might not be ideal 

choices for autophagy studies because autophagy is a dynamic process. The mutation 

for specific genes in autophagy signal pathways would be far beyond the clinical 

scenario. Actually, PI3K inhibitors, like 3-methyladenine (3-MA), LY294002 and 

wortmannin could be good tools for autophagy suppression because those agents 

could inhibit the formation of autophagosomes.[59] Besides, the other common used 

inhibitors such as bafilomycin A1 [61] and chloroquine [62] were revealed to prevent 

autophagosome-lysosome fusion to impede autophagy at the later phase. Nevertheless, 

there is still no an ideal autophagy inhibitor. Let us take 3-MA as an example. As the 

first generation of autophagy inhibitor, 3-MA has been widely used for autophagy 

study.[63] However, a recent report claimed that nutrition state had great impacts on 

the effects of 3-MA. Under nutrient-rich condition, the prolonged treatment of 3-MA 

(up to 9 h) promoted cellular autophagic flux whereas 3-MA reversely inhibited 

autophagy under nutrient starvation.[64] The dual roles of 3-MA in autophagy might 

be due to its different temporal effects on class I and class III PI3K. Moreover, 3-MA 

was also reported to modulate non-autophagic pathway including activation of PKA 

[65] and inhibition of NF-kB pathway [49]. Therefore, great cautions should be noted 

in data interpretation when these inhibitors are used for autophagy studies. As for 

autophagy induction, rapamycin and RAD001 (a rapamycin-derivative), are 

commonly used to enhance autophagy via inhibiting mTOR.[66] Yet, mTOR 
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inhibitors lack specificity which only partially affect mTOR signaling. The mTOR 

inhibitors could also activate AKT whilst repressing mTOR.[67, 68] Thus, we should 

be very cautious in data interpretation when those autophagy regulators are used in 

the experiments.  

2.3.3 Drug dose, therapeutic route and others 

Besides, drug dose and therapeutic route could also lead to controversial results. For 

example, 3-MA is typically used as an autophagy inhibitor at a working concentration 

at 5mM. However, a recent study reported that 3-MA at 2.5mM did not show 

inhibitory effects on basal level of autophagy, but reversely triggered autophagic 

flux.[69] Thus, we should pay attention to the concentrations or doses of autophagy 

regulators used in those studies. With the same drug, the outcomes could be different 

when different doses are designed for autophagic regulation. It is necessary to further 

evaluate the roles of autophagy in ischemic stroke experiments with the concentration 

of 3-MA at 50nM or lower.[49] Besides the drug concentration, administration route 

might be another factor should be concerned. In most cases, pharmacologic agents 

were directly injected into cerebral lateral ventricle in order to minimize the side 

effects and improve the bioavailability. Meanwhile, some cases applied intraperitoneal 

or intravenous injection for agent administration.[18, 43, 58] Naturally, the effects of 

drugs on peripheral system must be taken into consideration. Pharmacokinetics and 

pharmacodynamics of the drugs may also create the potential problems. Thus, it is 

understandable that regulating autophagy with the same agents could yield different 

outcomes.[18, 51] Moreover, different cerebral ischemia models with or without 
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reperfusion could also induce divergent results.[50, 54, 55] In short, divergent data 

about the roles of autophagy in ischemic stroke might depend on multiple factors 

including intervening time point, specificity of autophagy regulators, and 

administration dose and route, etc.   

2.4 Autophagy and cell death 

It is self-evident that autophagy activation can play different roles in specific ischemia 

scenarios. Beyond this, knowledge is still limited on how autophagy alters cell fate to 

“blind alley”. Herein, we review the progress of autophagy-induced cell death, 

providing insights to develop novel therapeutic strategies for ischemic stroke.   

Autophagy can induce different forms of cell death under intensive stress condition 

like cerebral I/R injury. Merely the presence of autophagy in a dying cell does not 

equate to autophagic cell death.[70] To avoid confusion, the term of ‘autophagic cell 

death’ has been redefined by the Nomenclature Committee on Cell Death (NCCD). It 

was described to be inhibited by genetic mutating at least two molecules of autophagy 

pathways.[71] Autosis, a novel form of autophagy-dependent and non-apoptotic cell 

death has been identified, which is characterized by dilated and fragmented ER, ER 

disappearance, nuclear membrane convolution and focal swelling of the perinuclear 

space.[72] Furthermore, this type cell death highly depends on Na+, K+-ATPase.[73] It 

was revealed that autotic cell death occurred in neurons of hippocampal CA3 area in 

the absence of apoptosis and necrosis during cerebral hypoxia-ischemia.[73] 

Presumably, autosis paves the way for us to understand that autophagy has a causative 

link with cell death instead of only presence in dying cells. 



 16 

It appears to be that unfavorable effects of autophagy on ischemic brain are partially 

attributed by triggering programmed cell death (PCD) to passive cell death.[74] 

Ischemic stroke is characterized with the interruption of cerebral blood flow to induce 

brain damage including cell death. Indeed, necrosis and PCD such as apoptosis have 

been intensively investigated under ischemic insult.[75] Necrosis predominates in the 

ischemic core of prompt blood flow blockage. It often occurs within several minutes 

triggered by abrupt ATP depletion. Morphologically, it is distinguished by the features 

of vacuolation in cytoplasm, plasma membrane breakdown and induction of 

inflammation.[76] In general, necrosis is considered as an irreversible and 

uncontrolled form of cell death like “a falling knife”. However, the cells in the 

penumbra of blood flow reduction often initiate PCD in order to minimize cerebral 

injury.[77] PCD could be interpreted as last attempt for survival in dying cells, which 

at least provides therapeutic time window to intervene.[78] With the development of 

new techniques and high-resolution tools, new types of PCD including necroptosis 

[79], pyroptosis [80] and ferroptosis [81] have been observed and identified. Next, we 

discuss how autophagy alters cell fate through changing the types of cell death. It is 

widely accepted that necrosis, apoptosis and activated autophagy often coexist in the 

penumbral region. Intracellular ATP level plays a determining role in switching cell 

death phenotypes from apoptosis to necrosis.[82] Of note, autophagy activation 

aggravates ATP depletion by excessive removal of damaged but still functional 

mitochondria and its own consumption.[83, 84] Especially, neurons are vulnerable to 

ATP depletion due to its high energy demand. Thus, autophagy might be a switch in 

javascript:void(0)
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the decision between apoptosis and necrosis via ATP consumption in ischemic brain.  

 

3. Mitophagy in ischemic stroke 

3.1 Activation of mitophagy-a selective autophagy in ischemic brain   

Mitochondrial autophagy, also termed mitophagy, is identified by autophagosomes 

around mitochondria, recruiting LC3-II to degrade the depolarized mitochondria.[85] 

Besides generating more than 60% of cellular ATP via oxidative phosphorylation, 

mitochondria are also widely involved in regulating redox signaling and PCD 

pathways. Therefore, quality control of mitochondria is critical for cellular 

homeostasis of brain. Under cerebral I/R injury, damaged mitochondria can be 

divided into functionally uneven two parts. Then, the daughter mitochondria with 

decreased membrane potential are removed by autophagy.[86] As it turns out, 

mitophagy is of importance to neurons because of their high dependence on 

mitochondrial function. Multiple signaling pathways and molecules are involved in 

recognizing damaged mitochondria for selective degradation. Mitophagy could be 

majorly mediated by PINK1/Parkin pathway in ischemic stroke.[38] In detail, once 

mitochondrial potential dramatically decreases, PINK1 as a sensor of potential, will 

translocate from inner mitochondrial membrane to outer mitochondrial membrane 

(OMM). Subsequently, PINK1 in OMM will further recruit Parkin from cytosol to 

damaged mitochondria, initiating autophagic machinery. In addition to 

Parkin-dependent pathway, receptors located in OMM including NIX [87], BNIP3 [88] 

and FUNDC1 [89], have also been reported to trigger mitochondrial removal by 
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autophagosomes via interaction with LIR motif of LC3 under hypoxia condition. 

Recent studies also indicate that Ambra1, Cardiolipin and SMURF1 could participate 

in mitophagy through serving as novel receptors to recruit the phagophores expanding 

to mitochondria.[90-92] Thus, mitophagy is a complex regulatory system to monitor 

mitochondrial quality for cell survival. 

3.2 Dual roles of mitophagy in cerebral ischemia injury 

Like autophagy, the roles of mitophagy in ischemic brain still remain obscure. 

Mitophagy activation has been reported in different experimental conditions including 

middle cerebral artery occlusion (MCAO) animal models and oxygen-glucose 

deprived (OGD) neuronal and endothelial cell models.[53, 93] It is noteworthy that 

activated mitophagy is mainly evident in neurons undergoing ischemia [93, 94], 

although astrocytes are also documented [95]. Mitophagy is essential to brain function 

via timely eliminating damaged mitochondria, which produce lots of free radicals, 

release cytochrome c and activate apoptosis pathway.[96, 97] In cerebral ischemia 

model, rapamycin attenuated cellular dysfunction via activating mitophagy, which 

was reversed by 3-MA.[98] However, a contrary opinion claimed that mitophagy 

might exacerbate brain damage under intensive ischemia stress.[38] Like autophagy, 

activated mitophagy also possesses dual roles in ischemic stroke: physiological level 

is indispensable for cell survival and excessive level contributes to cell death.[99, 100] 

Mitophagy must be balanced by mitochondrial biogenesis to meet brain energy 

demand, or it will be fatal to the brain, at least partly induced by intracellular ATP 

depletion. To date, the precise roles and regulation of mitophagy in ischemic stroke 
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still remain to be further clarified.  

There is still no consensus about the roles of mitophagy in cerebral I/R injury. The 

major limitations of current studies could be attributed to the lack of reliable and 

specific methods to assess mitophagy and pharmacologic modulators to specifically 

regulate mitophagy. A recent study revealed that rapamycin treatment before transient 

MCAO (tMCAO with 2h ischemia plus 22h reperfusion) attenuated cerebral I/R 

injury via enhancing mitophagy.[98] However, our unpublished data indicated 

administration of 3-MA and Mdivi-1 (an inhibitor of Drp1) at the reperfusion onset 

obviously protected brain against ischemia injury in a similar MCAO model through 

inhibiting mitophagy. These contrary results suggest reperfusion might be a turning 

point for switching the roles of mitophagy in ischemic brain. More intriguingly, 

different ischemia periods followed by reperfusion might also induce different 

mitophagic outcomes. For example, suppression of mitophagy at the onset of 

reperfusion reinforced neuronal injury in tMCAO model with 1 h ischemia plus 23 h 

reperfusion.[93] Conversely, in another tMCAO model with 6 h ischemia plus 18 h 

reperfusion, treatment of carnosine at the onset of reperfusion attenuated mitophagy, 

accompanying with the improved brain function.[100] Actually, with the critical 

importance of mitochondria in brain function, the roles of activated mitophagy in 

ischemic stroke have gained widespread attention. In the meantime, the big void in 

precise roles of mitophagy has sparked intensive interests to deeply understand 

mitophagic process and seek for intervening strategies for therapeutic benefit. 

Therefore, it is warranted to design series of studies using different cerebral I/R 
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protocols and pharmacological/genomic modulation to figure out the turning points 

and the factors switching beneficial effects to detrimental actions of mitophagy.  

 

4. Reactive nitrogen species (RNS) and autophagy 

4.1 Roles of RNS during cerebral I/R injury 

Undoubtedly, modulating autophagy/mitophagy in ischemic stroke will have a 

potential therapeutic prospect in clinical practice. Reperfusion after ischemia might be 

a switch to determine different autophagic/mitophagic outcomes. Thus, it is a wise 

choice to search and regulate key upstream signaling molecules, which majorly form 

or perform functions during reperfusion to mediate autophagy/mitophagy. 

I/R insults induce the generation of ROS and RNS, triggering numerous molecular 

cascades and resulting in brain damage.[25, 101] Thrombolytic therapy is still the 

most effective therapeutic strategy to rescue the neurons in penumbra.[102] However, 

reperfusion after ischemia alters microenvironment abruptly, inducing a large number 

of free radicals and aggravating brain injury.[103] Free radicals are mainly from the 

dysfunction of mitochondrial oxidative phosphorylation. Damaged but still functional 

mitochondria generate NADH-supported hydrogen peroxide at a rate up to 10-fold 

higher than that of intact mitochondria.[104] It is well known that mitochondria are 

not only the pools of free radicals, but major targets of oxidative/nitrosative stress. 

Once oxidative/nitrosative stress overloads cellular antioxidant capacities, it will 

induce mitochondrial dysfunction.[24] Under physiological level, ROS can serve as 

important cellular redox signals for preforming various biological functions. However, 
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excessive ROS would activate inflammation and trigger over-oxidation to induce 

brain damage. In autophagy/mitophagy, oxidative stress was thought to decline the 

mitochondrial membrane potential (ΔΨm) and trigger mitochondrial fission via 

activating Drp1, playing a critical role in PINK1/Parkin-mediated mitophagy during 

cerebral I/R injury.[105, 106] Also, ROS were reported to regulate PINK1/Parkin 

pathway to mediate cadmium-induced mitophagy.[107] The roles of ROS and their 

underlying regulatory mechanisms during autophagy/mitophagy have been 

systemically discussed in a recent review article.[108] Thus, in following session, we 

focus on the roles and regulatory mechanisms of RNS in autophagy/mitophagy during 

cerebral I/R injury.  

As representative RNS, NO and ONOO
-
 play critical roles in cell death and BBB 

disruption during cerebral I/R injury. In most cases, NO is produced from L-arginine 

and oxygen via enzymatic catalysis by three types of NOS including neuronal NOS 

(nNOS, type 1), inducible NOS (iNOS, type2), and endothelial NOS (eNOS, type 3). 

All three NOS subtypes are expressed in the brain. NO at low concentration generated 

by eNOS and nNOS acts as an indispensable messenger to regulate post- or 

pre-synaptic activities [109], cerebral blood flow [110] and inflammatory response 

[111]. Yet, excessive NO derived from iNOS and nNOS could trigger cell death and 

BBB leakage during I/R injury.[25] Our group has made great efforts to study the 

roles and mechanisms of NO in neurological deficits, neuronal cell death and BBB 

disruption in ischemic stroke. In our early study, by using electron paramagnetic 

resonance spin trapping technology and molecular biology approaches, we found that 
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NO generation had two phases in ischemic brain: The first phase of NO was generated 

from the eNOS activation at ischemia phase but the second phase of NO generation 

was from the activation and upregulation of iNOS and nNOS at the stage of 

reperfusion. At reperfusion stage, a large amount of NO was found in both ischemic 

core and penumbra of the ischemic brain. Besides, non-selective NOS inhibitor 

N  G-nitro-l-arginine methyl ester, nNOS selective inhibitor 7-nitroindazole and iNOS 

selective inhibitor l-N6-(1-iminoethyl)-lysine remarkably reduced infarction volume 

and brain damage during cerebral I/R injury.[112] Further studies indicate that 

caveolin-1, a 22 kDa integral membrane protein located at the caveolae, could be 

critical molecular target of NO.[113] In our recent studies, caveolin-1 was 

demonstrated to attenuate matrix metalloproteinases (MMPs) activity, prevent tight 

junction proteins degradation and protect the brain against ischemic injury by 

inhibiting RNS production.[114-116] Therefore, we propose that 

RNS/caveolin-1/MMPs signaling cascades could be important molecular mechanisms 

and therapeutic targets for ischemic stroke.[128-130] Accordingly, selective nNOS 

inhibitors like tirilazad [117], ARL-17477 [118] and selective iNOS inhibitors such as 

1400W [119] and aminoguanidine [120] have the potentials to be drug candidates for 

ischemic stroke treatment. Nevertheless, it is worthy to mention that NO derived from 

eNOS contributes to reduce cerebral ischemia injury, at least attributed by maintaining 

vascular physiological functions.[121, 122] Therefore, the roles of NO in the 

pathological process of ischemic stroke depend on the level of NO and its different 

sources.  
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Interestingly, O2
•− and NO are simultaneously produced during cerebral I/R injury. 

The reaction of NO and O2
•− is extremely fast to generate ONOO

- 
at the 

diffusion-limited rate (1.6×1010 (mol/L)-1 s-1).[23] ONOO
-
, another representative type 

of RNS, is a crucial cytotoxic mechanism of O2
•− and NO in cerebral I/R injury. 

ONOO
-
 can diffuse across biomembranes and even possess higher diffusion 

capability than O2
•−.[123] Akin to NO, ONOO

- at physiological level possesses 

significant biological functions.[124] But, excessive ONOO
-
 triggers inflammation, 

lipid membrane peroxidation and induces mitochondrial dysfunction [125], 

subsequently exacerbating BBB disruption and brain dysfunction [126]. To date, 

detection of ONOO
-
 is still a challenging task due to the limitation of its short 

half-life. Thus, 3-nitrotyrosine (3-NT) is often used as the footprint of ONOO
-
, which 

is produced from the nitration of free tyrosine or protein tyrosine.[127, 128] Actually, 

plasma 3-NT level was revealed to have positive correlation with the magnitude of 

ischemic brain injury in stroke patients.[129] Developing effective tools to monitor 

the production of ONOO- is critical. Recently, we have successfully developed 

several novel fluorescent probes for detecting ONOO
- 

with high sensitivity and 

reliability.[130, 131] With those fluorescent probes, we directly visualized ONOO- 

production in the ischemic brain tissues and proved the capacities of several natural 

compounds to scavenge ONOO- against I/R injury.[132, 133] Targeting ONOO- could 

be an important and novel strategy for drug development for ischemic stroke. Recent 

studies by us and others indicated that peroxynitrite decomposition catalysts such as 

FeTMPyP [134, 135] and peroxynitrite scavengers like uric acid [136] could attenuate 
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infarct volume, reduce brain edema, prevent BBB leakage and decrease the risk of 

hemorrhagic transformation in experimental stroke models. Therefore, NO and 

ONOO
-
 could be critical factors contributing to cerebral I/R injury. 

4.2 Roles of RNS in autophagy/mitophagy 

As mentioned above, reperfusion might be a decision time point to determine 

different outcomes of autophagy/mitophagy. Coincidentally, a large amount of RNS 

often trigger series of cascades after reperfusion, contributing to cerebral I/R injury. 

Further evidences reveal that RNS play a role in regulating autophagy/mitophagy.[137] 

Thus, we summarize current investigations about the roles of RNS in 

autophagy/mitophagy.  

NO plays its dual roles in autophagy/mitophagy, varying with different cellular 

context. NO, as an important cellular messenger, serves as regulatory effects via 

S-nitrosylated proteins (SNO-proteins).[138] Although lots of proteins possess 

multiple cysteine residues, only specific cysteine residues could be S-nitrosylated. 

The selectivity of cysteine residues for S-nitrosylation is determined by several 

molecular factors and mechanisms, like proximal priority.[139] Besides, 

protein-to-protein transnitrosylation may be another major mechanism to generate 

SNO-proteins in vivo, during which a NO group is transferred from a donor protein to 

a selective acceptor protein.[138] Accumulating evidences suggest NO plays a role in 

modulating autophagy. Nevertheless, there still exists controversy about how NO 

affects autophagy/mitophagy.[140] One view is that NO activates 

autophagy/mitophagy, supported by emerging findings. Exposure to 
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4-hydroxytamoxifen, NO was proved to be involved in the completion of pro-survival 

autophagy including autophagic vesicle formation and maturation.[141] Besides, NO 

participated in physalin A-triggered autophagy in A375-S2 cells via inhibiting mTOR 

expression.[142] This phenomenon was also observed by another investigation. NO 

caused nitrosative stress which engaged ATM/LKB1/AMPK/TSC2 signaling cascades 

to repress mTORC1 and further activate autophagy.[143] In addition, multiple 

signaling molecules like ERK [141, 144] and AMPK [145, 146] were demonstrated to 

involve in NO-induced autophagy. Intriguingly, NO also plays a critical role in 

mitochondrial fission and removal of damaged mitochondria by autophagy. One study 

illustrated that the interaction of full-length PINK1 and nNOS triggered Parkin 

translocation then induced mitophagy. Moreover, it was shown that optimum levels of 

NO were sufficient for the recruitment of Parkin to the damaged mitochondria, even 

in PINK1 deficiency.[147]  

Of note, there also exist opposite evidences to support that NO suppresses autophagy 

instead of activating. David C. Rubinsztein’s group found NO inhibited autophagy by 

suppressing the activity of S-nitrosylation substrates, like JNK1 and IKKβ. 

Overexpression of nNOS, iNOS, or eNOS also blocked autophagosome formation via 

the JNK1–Bcl-2 pathway.[148] Indeed, growing data support the inhibitory effects of 

NO in autophagy. NO affects at least two proautophagic pathways: 

JNK1/Bcl-2/Beclin 1 and IKKβ/AMPK/mTORC1 to impair autophagy via 

SNO-proteins.[140] For examples, NO was revealed to inhibit autophagy through 

mTOR activation in lipopolysaccharide-stimulated macrophages.[149] Additionally, 
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series of studies indicated that NO served as inhibitory effects on autophagy through 

suppressing JNK1 activity.[150, 151] Nitrosylated Bcl-2 triggered by NO was also 

reported to inhibit autophagic flux via stabilizing the interaction of Bcl-2 with 

Beclin-1 in lung epithelial cells.[152] Above data indicate the complex and conflictual 

effects of NO on autophagy/mitophagy. However, it should be mentioned that a 

majority of S-nitrosylated target proteins are widely involved in multiple biological 

activities under NO condition. Moreover, autophagic process often shares molecules 

with other signaling pathways like apoptosis. Thus, it is not surprising to learn that the 

effects of NO on autophagy are likely to vary with different cells and models.  

As another important component of RNS, ONOO
- 

has also been reported to regulate 

autophagy/mitophagy. ONOO
- 

modifies target proteins by the interaction of a nitro 

group (-NO2) with protein tyrosines, which leads to the change of protein 

functions.[153] Increased levels of both autophagy and 3-NT were observed in the 

hepatocytes of old rats following the heat stress, with aggravated mitochondria 

damage and reduced the expression of heat shock proteins.[154, 155] Alternatively, it 

was reported that endogenous nitrated nucleotide 8-nitro-cGMP promoted autophagic 

flux to play a crucial role in cytoprotection against bacteria.[156] Exposure to 

3-morpholinosydnonimine (SIN-1), a peroxynitrite donor, increased autophagosome 

formation and Nrf2 activation contributed to cytoprotection in human umbilical vein 

endothelial cells.[157] 

Overall, above exciting data implicate a causal link between RNS and 

autophagy/mitophagy regulation. Therefore, it promises a new therapeutic opportunity 
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in ischemic stroke via targeting RNS to modulate autophagy/mitophagy. 

4.3 RNS-mediated autophagy/mitophagy under ischemia insult 

Autophagy/mitophagy can be mediated by free radicals via posttranslational 

modification of biomolecules including proteins, lipids and DNA in ischemic 

stroke.[158, 159] With growing knowledge about the roles of ROS in initiating 

autophagy/mitophagy, emphasis has been given to the ROS-induced 

autophagy/mitophagy in ischemic brain injury.[36, 108] On the contrary, the 

importance of RNS-mediated autophagy/mitophagy in ischemic brain has yet received 

enough attention.  

At physiological level, NO functions as a ubiquitous second messenger to modulate 

signal transduction pathways and maintain normal biological activities via protein 

S-nitrosylation modification in CNS. However, under pathological condition, aberrant 

SNO-proteins induced by excessive NO often lead to protein misfolding, 

mitochondrial fragmentation and apoptosis.[139] Current advances suggest that 

aberrant protein S-nitrosylation is involved in many neurodegenerative diseases.[160] 

For example, NO induced mitochondrial fission via S-nitrosylation of Drp1, resulting 

in excessive mitophagy and neuronal cell death.[161-163] In response to nitrosative 

stress, mitochondrial fission and the autophagosomes engulfing injured mitochondria 

were observed in young neurons.[163] Alternatively, under prolonged ischemic 

condition, NO acted as an activator to induce caveolin-1-mediated claudin-5 

degradation by triggering autophagy. Moreover, NO scavenger C-PTIO and iNOS 

inhibitor 1400W obviously suppressed the delivery of claudin-5 for degradation.[164] 



 28 

Moreover, iNOS activation also participated in upregulating autophagy of vascular 

endothelial cells, accompanying with increased apoptosis during I/R injury.[165]  

Of note, nitration of tyrosine residues is a chemically distinct redox reaction from 

S-nitrosylation of cysteine thiol, representing another protein modification via the 

reaction of tyrosine with ONOO
-
. Proteomic analysis revealed that nitration-related 

proteins included metabolism proteins, cytoskeleton proteins, chaperones and carrier 

proteins in the samples from hypoxia/reoxygenated brain tissues.[166] About 23 

proteins tyrosine nitration were identified in I/R heart and 10 of them were from 

mitochondria.[167] Interestingly, mitochondrial proteins appear to be more 

susceptible to nitration stress.[168] Then, nitrated mitochondrial proteins like 

voltage-dependent anion channels [169], electron transport chain protein subunit 

complexes I–V and heat shock protein-90 further trigger mitochondrial dysfunction 

and energy metabolism disorder.[170, 171] Besides, emerging evidence showed that 

ischemia stress induced tight junction proteins degradation and the underlying 

mechanism was at least partially contributed by ONOO
-
-mediated autophagy.[172] 

Taken together, RNS-mediated autophagy/mitophagy may play an indispensable role 

in cerebral I/R injury. Targeting RNS and its signaling pathways could bring 

therapeutic benefits for ischemic stroke. 

5. Conclusion  

As elaborated above, growing evidences support that RNS-mediated excessive 

autophagy/mitophagy contributes to cerebral I/R injury. Indeed, autophagy/mitophagy 

activation in ischemic stroke has been widely accepted in last decade. Nevertheless, 

javascript:void(0)
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there still remains controversy about the beneficial or detrimental roles of activated 

autophagy/mitophagy in ischemic brain. Accumulating in vivo evidences convey an 

important message that reperfusion after ischemia may become a critical factor 

determining autophagy/mitophagy roles from neuroprotection to neurotoxicity. In 

another word, activated autophagy/mitophagy may aggravate cerebral ischemia injury 

after reperfusion. In regard to this, modulating autophagy/mitophagy after reperfusion 

could become a potential therapeutic strategy for ischemic stroke. Strikingly, a large 

amount of RNS predominate after reperfusion, leading to autophagic/mitophagic flux 

via S-nitrosylation or nitration modification of macromolecules in ischemic brain.  

Therefore, RNS would be therapeutic targets to modulate autophagy/mitopahgy in 

ischemic stroke (Figure1). Without doubt, there is still a long way to go before 

shedding this new light to clinical practice, yet it shows a potential for future ischemic 

stroke therapy. 

6. Expert opinion 

Autophagy/mitophagy activation during reperfusion after ischemia contributes to 

brain damages including neuronal cell death, BBB disruption and neurological 

deficits. Autophagy/mitophagy activation in ischemic brain has been intensively 

investigated in numerous studies. Nevertheless, existing contrary results increase the 

challenge to evaluate real roles of autophagy/mitophagy in ischemic stroke. It is 

necessary to comprehensively understand autophagy/mitophagy at first. Under strict 

inclusion criteria, we firstly screen and analyze some reports, in which either 

pharmacologic or genetic modulation of autophagy/mitophagy has been applied. 
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Excitingly, reperfusion after ischemia appears to be a turning point to determine final 

cell fate. This finding provides a potential to explain these controversial data. In 

particular, autophagy/mitophagy after reperfusion may shorten the therapeutic time 

window via accelerating intracellular ATP consumption to induce necrosis. In details, 

ATP depletion triggers transferring from ‘proactive apoptosis’ to ‘passive necrosis’, 

which exacerbates neuronal injury because of its high dependence on energy 

supply.[82]  Recently, detrimental roles of autophagy in ischemic stroke have got 

somewhat attention.[21] However, the destructive roles of mitophagy during cerebral 

I/R injury have not been adequately emphasized. Indeed, damaged mitochondria play 

a key role in metabolism disorders, energy deficiency and cell death. Correspondingly, 

mitophagy often occupies a dominant position of autophagy.[97] Thus, it is worthy to 

pay more attention on the roles of mitophagy in ischemic stroke.  

Regard to the importance of autophagic/mitophagic flux in ischemic stroke, it 

becomes a hot field to seek for critical upstream signal molecules as therapeutic 

targets. RNS might be critical in cerebral I/R injury through triggering a series of 

cellular signaling cascades and mediating excessive autophagy/mitophagy. RNS can 

act as upstream modulators to regulate autophagy/mitophagy via S-nitrosylation or 

nitration modification of specific proteins.[139, 154] Thus, it is potential to take RNS 

as novel therapeutic targets for protecting ischemic brain via regulating 

autophagy/mitophagy. Especially, ONOO
- 

is considered as a critical cytotoxic factor 

with stronger lipid membrane permeability than its parent free radicals and ONOO
- 

production could be a critical marker reflecting both oxidative and nitrosative 
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stress.[125, 126] Further investigations on the roles of ONOO
-
 and its signaling 

cascades in autophagy/mitophagy will broaden the understanding of mechanisms 

about cerebral I/R injury. With our recent breakthrough in developing the advanced 

and highly sensitive fluorescent probes for ONOO
-
 detection [130, 131], we are able 

to screen active compounds with the properties of scavenging ONOO
-
 and regulating 

autophagy/mitophagy. Targeting RNS-mediated autophagy/mitophagy and related 

signaling cascades as therapeutic strategies should be drawn great attention and 

received high priority in future researches. As analyzed in this review, autophagic 

intervening time point, specificity of autophagy regulators and so on can affect the 

results of experimental studies about the effects of autophagy/mitophagy in ischemic 

stroke. Further investigations with more restrictive protocols are desirable. 

Importantly, considering the potential inconsistence of human subjects and animal 

models, great attention should be paid to the clinical investigations on stroke patients. 

Presumably, screening circulating plasma biomarkers linking RNS-mediated 

autophagy/mitophagy with the magnitude of ischemic brain injury will bring a new 

light for clinical practice.     

Developing novel therapeutic strategies to reverse the ischemic brain injury should 

enjoy high priority in future studies. Although many neuroprotective agents have been 

reported to be effective for ischemic brain in animal experiments, no single drug is 

approved by FDA with proved clinical efficacy for neuroprotection except t-PA for 

recanalization. With enormous frustration, attentions have been moved to develop 

novel therapeutic strategies for brain repair like stem cell therapy. Although emerging 
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stem cell-based therapy has been proposed to improve neurological functions in 

pre-clinical studies [173], yet meta-analysis shows no significant effects in clinical 

practice [174]. To date, recanalization is still the most effective strategy to rescue 

neurons and improve clinical outcomes including surgical embolectomy and chemical 

thrombolysis.[175] Noteworthy, thrombolytic agent t-PA for recanalization has restrict 

therapeutic time window and the subsequent cerebral I/R injury would worsen brain 

damage, neurological deficits, and increase hemorrhagic transformation even 

mortality.[176] Recent studies by us and others provide accumulating evidences to 

support the roles of RNS in cerebral I/R injury.[126-129, 132, 134-136] 

RNS-mediated excessive autophagy/mitophagy could be an important mechanism in 

this pathological process. Thus, targeting RNS to regulate autophagy/mitophagy 

might be a promising combined therapeutic strategy for thrombolytic treatment to 

extend the therapeutic time window, improve outcomes and reduce the side effects of 

t-PA in stroke treatment. Therefore, further investigations on RNS-mediated 

autophagy/mitophagy would not only bring novel insights into the underlying 

mechanisms of cerebral I/R injury but also have a bright prospect to develop 

therapeutic strategies for ischemic stroke. 
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Article highlights 

1. Activated autophagy has double-edged roles in ischemic stroke. The beneficial or 

detrimental effects of activated autophagy on ischemic brain appear to be 

dependent on the experimental protocols with different intervening time points of 

autophagy, administration routes and doses of autophagy regulators and so forth. 

2. Reperfusion after ischemia appears to act as a critical turning point determining 

the roles of autophagy from neuroprotection to neurotoxicity via affecting 

programmed cell death. 

3. Mitophagy, as a selective autophagy, predominates in ischemic brain and also 

plays dual roles in ischemic stroke.  

4. RNS-mediated excessive autophagy/mitophagy could be an important cellular 

event contributing to cerebral I/R injury. Targeting RNS to regulate 

autophagy/mitophagy might shed new light on the therapies of ischemic stroke.  
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Table1: Dual roles of autophagy in ischemic brain injury in current literatures 

Role of autophagy Model Treatment Dose Timing  Route Reference  

Detrimental 
SD rats MCAO 

I30min/R24h 
3-MA 600nmol at the onset of reperfusion i.c.v. [40] 

Detrimental 
SD rats MCAO 

 I2h/R24h 
3-MA 400nmol 

40min before the onset of 

reperfusion 
i.c.v. [41] 

Detrimental 
SD rats MCAO  

I2h/R24h 
3-MA 600nmol at the onset of reperfusion i.c.v. [42] 

Detrimental 
SD rats MCAO 

I2h/R72h 
Tat–Beclin-1 15mg 24 and 48h after MCAO i.p. [43] 

Detrimental SD rats pMCAO 3-MA 300/600nmol 10min after pMCAO i.c.v. [44] 

Detrimental SD rats pMCAO 

3-MA  

BFA 

Z-FA-fmk 

150-600nmoL 

4nmol 

13-26nmol 

after the onset of pMCAO i.c.v. [45] 

Detrimental 
C57BL/6 mice 

pMCAO 

3-MA 

Rapa 

60μg 

100μg 
10min after pMCAO i.c.v [46] 

Detrimental 
C57BL/6 mice 

pMCAO 
3-MA 60μg after the onset of pMCAO i.c.v. [47] 

Detrimental 

SD rats 

20min global 

ischemia 

3-MA 600nmol 
30 min/60min before ischemia 

60min after reperfusion 
i.c.v. [48] 

Detrimental 
SD rats MCAO 

I2h/R24h 
3-MA 50nM before MCAO 

stereotaxic 

injections 
[49] 
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Role of autophagy Model Treatment Dose Timing  Route Reference  

Detrimental 
SD rats MCAO 

 I90min/R24h 

PcDNA plenti6.3-Bec 

LY294002 

- 

10mg/kg 
30min before MCAO 

i.c.v. 

i.p. 
[18] 

Detrimental 
SD rats MCAO 

I1h/R 
3-MA 600nmol 1h before MCAO i.c.v. [50] 

Beneficial  
SD rats MCAO 

I90min/R72h 
LY294002 15μM 30min before MCAO i.c.v. [51] 

Beneficial 
SD rats MCAO 

I2h/R22h 
LY294002 15μM 30min before MCAO i.c.v. [52] 

Beneficial 
SD rats MCAO 

I2h/R22h 

3-MA 

Rapa 

Li2CO3 

0.15mg/kg 

150μg/kg 

20mg/kg 

0.5h before MCAO i.v. [53] 

Beneficial 
SD rats  

pMCAO 
3-MA 200nmol 24h before pMCAO i.c.v. [54, 55] 

Beneficial 
SD rats  

pMCAO 

3-MA 

BFA 

Rapa 

100-400nmol 

4nmol 

8.8-35pmol 

24h before pMCAO i.c.v. [56] 

Beneficial 
Mice 

pMCAO 
3-MA 60μg 30min before MCAO i.c.v. [57] 

Beneficial 

C57BL/6 J mice 

MCAL 

eMCAO 

Rapa 

chloroquine 

0.625-2.5mg/kg 

30-90mg/kg 

after the onset of ischemia; 

24h post-stroke 
i.p. [58] 

(p)MCAO: (permanent) middle cerebral artery occlusion; I: ischemia; R: reperfusion; 3-MA: 3-Methyladenine; i.c.v.: intracerebroventricular; i.p.: intraperitoneal; BFA: 

bafilomycin A; Rapa: rapamycin; eMCAO: embolic MCAO; MCAL: middle cerebral artery ligation.
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Legend 

Figure 1. The roles of RNS-mediated autophagy/mitophagy activation in ischemic 

stroke. A large amount of RNS generate during the reperfusion following cerebral 

ischemia, triggering numerous molecular cascades and leading to cerebral I/R injury. 

RNS play critical roles in autophagy/mitophagy activation via protein 

nitrosylation/nitration modification. In detail, RNS inhibit mTOR expression to 

activate autophagy through modulating multiple signaling molecules like AMPK and 

ERK. Moreover, RNS can also trigger autophagy/mitophagy through 

nitrosylation/nitration modification of related proteins such as Drp1, PINK1 and 

8-nitro-cGMP. Activated autophagy/mitophagy has double-edged roles in ischemic 

stroke. Intriguingly, reperfusion appears to be a decision time point to transfer the 

roles of activated autophagy/mitophagy from beneficial to detrimental effects. 


