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ABSTRACT 339 WORDS   73 
Importance Due to the susceptibility of observational studies to confounding and reverse 74 

causation, the causal direction and magnitude of the association between telomere length and 75 

incidence of cancer and non-neoplastic diseases is uncertain. 76 

Objective To appraise the causal relevance of telomere length for risk of cancer and non-77 

neoplastic diseases using germline genetic variants as instrumental variables.  78 

Data Sources Genome-wide association studies (GWAS) published up to January 15 2015.  79 

Study Selection GWAS of non-communicable diseases that assayed germline genetic 80 

variation and did not select cohort or control participants on the basis of pre-existing diseases. 81 

Of 163 GWAS of non-communicable diseases identified, 103 shared data for our study. 82 

Data Extraction Summary association statistics for single nucleotide polymorphisms (SNPs) 83 

that are strongly associated with telomere length in the general population.     84 

Main Outcomes Odds ratios (ORs) for disease per 1-SD higher telomere length due to 85 

germline genetic variation. 86 

Results Summary data were available for 35 cancers and 47 non-neoplastic diseases, 87 

corresponding to 409,819 cases (median 2,092 per disease) and 1,404,633 controls (median 88 

7,738 per disease). Increased telomere length due to germline genetic variation was generally 89 

associated with increased risk for site-specific cancers. The strongest associations were 90 

observed for (ORs per 1-SD higher genetically estimated telomere length): glioma 5.27  91 

(3.15, 8.81), serous low malignant potential ovarian cancer 4.35 (2.39-7.94); lung 92 

adenocarcinoma 3.19 (2.40-4.22); neuroblastoma 2.98 (1.92-4.62); bladder cancer 2.19 (1.32-93 

3.66); melanoma 1.97 (1.14-3.41); testicular cancer 1.76 (1.02-3.04); kidney cancer 1.55 94 

(1.08-2.23); and endometrial cancer 1.31 (1.07-1.61). Associations with cancer were stronger 95 

for rarer cancers and tissue sites with lower rates of stem cell division (P<0.05). There was 96 



generally little evidence of association between telomere length and risk of psychiatric, 97 

autoimmune, inflammatory, diabetic and other non-neoplastic diseases, except for coronary 98 

heart disease (0.78 [0.67-0.90]), abdominal aortic aneurysm (0.63 [0.49-0.81]), celiac disease 99 

(0.42 [0.28-0.61]) and interstitial lung disease (0.09 [0.05- 0.15]).  100 

Conclusions Genetically longer telomeres are associated with increased risk for several 101 

cancers, but the relative increase in risk is highly heterogeneous across cancer types, and with 102 

reduced risk for some non-neoplastic diseases, including cardiovascular diseases.   103 

 104 
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INTRODUCTION 118 

 119 

Telomeres are DNA-protein structures at the end of linear chromosomes that protect the 120 

genome from damage; and shorten progressively over time in most somatic tissues.1 Shorter 121 

leukocyte telomeres are correlated with older age, male sex and other known risk factors for 122 

non-communicable diseases2–4 and are generally associated with higher risk of cardiovascular 123 

diseases5,6, type 2 diabetes7 and non-vascular non-neoplastic causes of mortality.6 Whether 124 

these associations are causal, however, is unknown. Telomere length has also been implicated 125 

in risk of cancer but the direction and magnitude of the association is uncertain and 126 

contradictory across observational studies.8–12 The uncertainty reflects the considerable 127 

difficulty of designing observational studies of telomere length and cancer incidence that are 128 

robust to reverse causation, confounding and measurement error. For example, changes in 129 

telomere length in people who go on to develop cancer can typically be detected 3-4 years 130 

prior to diagnosis12, meaning that even well designed prospective studies remain susceptible 131 

to reverse causation.  132 

The aim of the present report was to circumvent these limitations through a Mendelian 133 

randomization study, using germline genetic variants as instrumental variables for telomere 134 

length. The approach, which mimics the random allocation of individuals to the placebo and 135 

intervention arms of a randomized controlled trial, allowed us to: (1) estimate the direction 136 

and broad magnitude of the association of telomere length with risk of multiple cancer and 137 

non-neoplastic diseases; (2) appraise the evidence for causality in the estimated etiological 138 

associations; (3) investigate potential sources of heterogeneity in findings for site-specific 139 

cancers; and (4) compare genetic estimates to findings based on directly measured telomere 140 

length in prospective observational studies.    141 

 142 



METHODS 143 

 144 

Study design 145 

The design of our study, illustrated in Figure S1, had three key components: 1) the 146 

identification of genetic variants to serve as proxies for telomere length; 2) the acquisition of 147 

summary data for the genetic proxies from genome wide association studies (GWASs) of 148 

diseases and risk factors; and 3) the classification of diseases and risk factors into primary or 149 

secondary outcomes based on a priori statistical power. As a first step, we searched the 150 

GWAS catalog13,14 on the 15 January 2015, to identify single nucleotide polymorphisms 151 

(SNPs) associated with telomere length. To supplement the list with additional potential 152 

proxies, we also searched the original study reports curated by the GWAS catalog (using a P 153 

value threshold of 5x10-8).15–23 We acquired summary data for all SNPs identified by our 154 

search from a meta-analysis of GWASs of telomere length, involving 9,190 participants of 155 

European ancestry.16 SNPs initially identified as potential proxies for telomere length were 156 

subsequently excluded if they lacked strong evidence of association with telomere length. We 157 

defined strong evidence of association as a p-value <5x10-8 in: i) the discovery stage of at 158 

least one published GWAS of telomere length15–22 or ii) a meta-analysis of summary data 159 

from Mangino et al16 and other GWASs of telomere length,15,17–22 with any overlapping 160 

studies excluded from Mangino et al.16 We also excluded SNPs with a minor allele frequency 161 

<0.05 or showing strong evidence of between-study heterogeneity in associations with 162 

telomere length (P≤0.001). 163 

The second key component of our design strategy involved the acquisition of summary data, 164 

corresponding to the selected genetic proxies for telomere length, from GWASs of non-165 

communicable diseases and risk factors (Fig. S1). As part of this step, we invited principal 166 

investigators of non-communicable disease studies curated by the GWAS catalog13,14 to share 167 



summary data for our study (see Fig. S1 for further details). We also downloaded summary 168 

data for diseases and risk factors from publically available sources, including study-specific 169 

websites, dbGAP and the GWAS catalog (Fig. S1).  170 

The third key component of our design strategy was the classification of diseases and risk 171 

factors into either primary or secondary outcomes, which we defined on the basis of a priori 172 

statistical power to detect associations with telomere length. Primary outcomes were defined 173 

as diseases with sufficient cases and controls for >50% power (i.e. moderate-to-high 174 

statistical power) and secondary outcomes defined as diseases with <50% power (i.e. low 175 

statistical power) to detect odds ratios ≥2.0 per standard deviation increase in telomere length 176 

(alpha assumed to be 0.01). All risk factors were defined as secondary outcomes. Risk factors 177 

with low statistical power were excluded from all analyses. Further details on the power 178 

calculations and the study design are provided in the supplementary methods.  179 

 180 

Comparison with prospective observational studies 181 

We searched PubMed for prospective observational studies of the association between 182 

telomere length and disease (see Tables S3 and S4 for details of the search strategy and 183 

inclusion criteria). Study-specific relative risks for disease per unit change or quantile 184 

comparison of telomere length were transformed to a standard deviation scale using 185 

previously described methods.24 Hazard ratios, risk ratios, and odds ratios were assumed to 186 

approximate the same measure of relative risk. Where multiple independent studies of the 187 

same disease were identified, these were combined by fixed effects meta-analysis, unless 188 

there was strong evidence of between-study heterogeneity (PCochran’s Q<0.001), in which case 189 

they were kept separate.  190 

 191 



Statistical analysis 192 

We combined summary data across SNPs into a single genetic risk score, using maximum 193 

likelihood to estimate the slope of the relationship between βGD and βGP and a variance-194 

covariance matrix to make allowance for linkage disequilibrium between SNPs,25 where βGD 195 

is the change in disease or risk factor per copy of the effect allele and βGP is the standard 196 

deviation change in telomere length per copy of the effect allele (see supplementary methods 197 

for technical details). The slope from this approach can be interpreted as the log odds ratio for 198 

binary outcomes, or the unit change for continuous risk factors, per standard deviation change 199 

in genetically increased telomere length. P values for heterogeneity in the estimated 200 

associations between telomere length and disease amongst SNPs were estimated by 201 

likelihood ratio tests.25 Associations between genetically increased telomere length and 202 

continuous risk factors were transformed into standard deviation units. For six diseases where 203 

only a single SNP was available for analysis, we estimated associations using the Wald ratio: 204 

βGD/βGP, with standard errors approximated by the delta method.26  205 

Inference of causality in the estimated etiological associations between telomere length and 206 

disease depends on satisfaction of Mendelian randomization assumptions.27,28 The 207 

assumptions are: 1) the genetic proxies must be associated with telomere length; 2) the 208 

genetic proxies should not be associated with confounders; and 3) the genetic proxies must be 209 

associated with disease exclusively through their effect on telomere length. When these 210 

assumptions are satisfied, genetic proxies are said to be valid instrumental variables. We 211 

modeled the impact of violations of these assumptions through two sets of sensitivity 212 

analyses: a weighted median function29 and MR-Egger regression27 (see supplementary 213 

methods for technical details). We restricted our sensitivity analyses to diseases showing the 214 

strongest evidence of association with genetically increased telomere length (defined as 215 

PBonferroni<0.05).  216 



 217 

We used meta-regression to appraise potential sources of clinical heterogeneity in our 218 

findings for cancer outcomes. The association of genetically increased telomere length with 219 

the log odds of cancer was regressed on cancer incidence, survival time and median age at 220 

diagnosis, downloaded from the National Cancer Institute Surveillance, Epidemiology, and 221 

End Results (SEER) Program,30 and tissue-specific rates of stem cell division from Tomasetti 222 

and Vogelstein.31 As the downloaded cancer characteristics from SEER correspond to the 223 

United States population, 77% of which was of white ancestry in 201532, the meta-regression 224 

analyses excluded genetic studies conducted in East Asian populations. 225 

 226 

All analyses were performed in R version 3.1.233 and Stata release 13.1 (StataCorp, College 227 

Station, TX). P values were two-sided and evidence of association was declared at P<0.05. 228 

Where indicated, Bonferroni corrections were used to make allowance for multiple testing, 229 

although this is likely to be overly conservative given the non-independence of many of the 230 

outcomes tested.  231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 



RESULTS  241 

 242 

We selected 16 SNPs as genetic proxies for telomere length (Fig. S1 & Table 1). The selected 243 

SNPs correspond to 10 independent genomic loci that collectively account for 2-3% of the 244 

variance in leukocyte telomere length, which is equivalent to an F statistic of ~18. This 245 

indicates that the genetic risk score, constructed from these 10 independent genomic loci, is 246 

strongly associated with telomere length (see supplementary discussion for a more detailed 247 

consideration).34 Summary data for the genetic proxies for telomere length were available for 248 

83 non-communicable diseases and 44 risk factors, corresponding to 409,819 cases (median 249 

2,092 per disease) and 1,404,633 controls (median 7,738 per disease) (Fig. S1, Table 2 and 250 

Table S1). The median number of SNPs available across disease datasets was 11 (min=1, 251 

max=13) and across risk factor datasets was 13 (min=10, max=13). Of the 83 diseases, 55 252 

were classified as primary outcomes and 28 as secondary outcomes (Table 2, Fig. S1 and 253 

Table S1).  254 

The results from primary analyses of non-communicable diseases are presented in Figure 1; 255 

results from secondary analyses of risk factors and diseases with low a priori power are 256 

presented in the supplementary materials (Fig. S2, S5 and S6). Genetically increased 257 

telomere length was associated with higher odds of disease for 9 of 22 primary cancer 258 

outcomes, including glioma, endometrial cancer, kidney cancer, testicular germ cell cancer, 259 

melanoma, bladder cancer, neuroblastoma, lung adenocarcinoma and serous low malignancy 260 

potential ovarian cancer (P<0.05) (Fig. 1). The associations were, however, highly variable 261 

across cancer types, varying from an odds ratio of 0.86 (95% confidence interval: 0.50 to 262 

1.48) for head and neck cancer to 5.27 (3.15, 8.81) for glioma. Substantial variability was 263 

also observed within tissue sites. For example, the odds ratio for lung adenocarcinoma was 264 

3.19 (2.40 to 4.22) compared to 1.07 (0.82 to 1.39) for squamous cell lung cancer. For serous 265 



low malignancy potential ovarian cancer the odds ratio was 4.35 (2.39 to 7.94) compared to 266 

odds ratios of 1.21 (0.87 to 1.68) for endometrioid ovarian cancer, 1.12 (0.938 to 1.34) for 267 

serous invasive ovarian cancer, 1.04 (0.66 to 1.63) for clear cell ovarian cancer and 1.04 268 

(0.732 to 1.47) for mucinous ovarian cancer. The strongest evidence of association was 269 

observed for glioma, lung adenocarcinoma, neuroblastoma and serous low malignancy 270 

potential ovarian cancer (PBonferroni<0.05). Results for glioma and bladder cancer showed 271 

evidence for replication in independent datasets (independent datasets were not available for 272 

other cancers) (Fig. S3). 273 

Genetically increased telomere length was associated with reduced odds of disease for 6 of 32 274 

primary non-neoplastic diseases, including coronary heart disease, abdominal aortic 275 

aneurysm, Alzheimer's disease, celiac disease, interstitial lung disease and type 1 diabetes 276 

(P<0.05) (Figure 1). The strongest evidence of association was observed for coronary heart 277 

disease, abdominal aortic aneurysm, celiac disease and interstitial lung disease 278 

(PBonferroni<0.05). The associations with coronary heart disease and interstitial lung disease 279 

showed evidence for replication in independent datasets (Fig. S3).  280 

 281 

Our genetic findings were generally similar in direction and magnitude to estimates based on 282 

observational prospective studies of leukocyte telomere length and disease (Figure 3). Our 283 

genetic estimates for lung adenocarcinoma, melanoma, kidney cancer and glioma, were, 284 

however, stronger in comparison to observational estimates.  285 

 286 

In sensitivity analyses, we appraised the potential impact of confounding by pleiotropic 287 

pathways on our results. Associations estimated by the weighted median approach were 288 

broadly similar to the main results for glioma, lung adenocarcinoma, serous low malignancy 289 

potential ovarian cancer, neuroblastoma, abdominal aortic aneurysm, coronary heart disease, 290 



interstitial lung disease and celiac disease (Fig. S4). In the second set of sensitivity analyses, 291 

implemented by MR-Egger regression, we found little evidence for the presence of pleiotropy 292 

(P≥0.27) (Fig. S4). The MR-Egger analyses were, however, generally underpowered, as 293 

reflected by the wide confidence intervals in the estimated odds ratios.  294 

 295 

In meta-regression analyses, we observed that genetically increased telomere length tended to 296 

be more strongly associated with rarer cancers (P=0.02) and cancers at tissue-sites with lower 297 

rates of stem cell division (P=0.02) (Figure 2). The associations showed little evidence of 298 

varying by percentage survival five years after diagnosis or median age-at-diagnosis (P=0.4). 299 

 300 



DISCUSSION 301 

 302 

Summary of main findings 303 

In this report we show that genetically increased telomere length is associated with 304 

increased risk of several cancers and with reduced risk of some non-neoplastic diseases, 305 

including coronary heart disease, abdominal aortic aneurysm, celiac disease and 306 

interstitial lung disease. The findings for cancer were, however, subject to substantial 307 

variation between and within tissue sites, which our results suggest could be partly 308 

attributable to differences in cancer incidence and rates of stem cell division. Given the 309 

random distribution of genotypes in the general population with respect to lifestyle and 310 

other environmental factors, as well as the fixed nature of germline genotypes, these 311 

results should be less susceptible to confounding and reverse causation bias in 312 

comparison to observational studies. Nevertheless, although compatible with causality, 313 

our results could reflect violations of Mendelian randomization assumptions, such as 314 

confounding by pleiotropic pathways, population stratification or ancestry.35 Although we 315 

cannot entirely rule out this possibility, the majority of our results persisted in sensitivity 316 

analyses that made allowance for violations of Mendelian randomization assumptions. 317 

Confounding by population stratification or ancestry is also unlikely, given that the 318 

disease GWAS results were generally adjusted for both (see supplementary discussion).  319 

 320 

Comparison with previous studies 321 

Our findings for cancer are generally contradictory to those based on retrospective studies, 322 

which tend to report increased risk for cancer in individuals with shorter telomeres.9,10,36–39 323 

The contradictory findings may reflect reverse causation bias in the retrospective studies, 324 



whereby shorter telomeres arise as a result of disease, or of confounding effects, e.g. due to 325 

cases being slightly older than controls even in age-matched analyses. Our findings for cancer 326 

are generally more consistent with those based on prospective observational studies, which 327 

tend to report weak or null associations of longer leukocyte telomeres with overall and site-328 

specific risk of cancer.8–11,38,40–59 Our results are also similar to previously reported 329 

Mendelian randomization studies of telomere length and risk of melanoma, lung cancer, 330 

chronic lymphocytic leukemia and glioma.60–63 The shape of the association with cancer may 331 

not, however, be linear over the entire telomere length distribution. For example, individuals 332 

with dyskeratosis congenita, a disease caused by germline loss-of-function mutations in the 333 

telomerase component genes TERC and TERT, have chronically short telomeres and are at 334 

increased risk of some cancers, particularly acute myeloid leukemia and squamous cell 335 

carcinomas arising at sites of leukoplakia,64,65 suggesting that the association could be “J” or 336 

“U” shaped.41,54 Our results should therefore be interpreted as reflecting the average 337 

association at the population level and may not be generalizable to the extreme ends of the 338 

distribution.  339 

 340 

Mechanisms of association 341 

Our cancer findings are compatible with known biology.66 By limiting the proliferative 342 

potential of cells, telomere shortening may serve as a tumour suppressor; and individuals with 343 

longer telomeres may be more likely to acquire somatic mutations owing to increased 344 

proliferative potential.66 Rates of cell division are, however, highly variable amongst tissues31 345 

and thus the relative gain in cell proliferative potential, conferred by having longer telomeres, 346 

may also be highly variable across tissues. This could explain the almost 9-fold variation in 347 

odds ratios observed across cancer types in the present study, as well as the tendency of our 348 

results to be stronger at tissue sites with lower rates of stem cell division. For example, the 349 



association was strongest for glioma (OR=5.27) and comparatively weak for colorectal 350 

cancer (OR=1.09) and the rates of stem cell division in the tissues giving rise to these cancers 351 

differ by several orders of magnitude. In neural stem cells, which give rise to gliomas, the 352 

number of divisions is ~270 million and for colorectal stem cells is ~1.2 trillion over the 353 

average lifetime of an individual.31 The observation that genetically increased telomere length 354 

was more strongly associated with rarer cancers potentially reflects the same mechanism, 355 

since rarer cancers also tend to show lower rates of stem cell division.31 For example, the 356 

incidence of glioma is 0.4 and for colorectal cancer is 42.4 per 100,000 per year in the United 357 

States.30 On the other hand, individuals with chronically short telomeres, such as those with 358 

dyskeratosis congenita, could be more susceptible to genome instability and chromosomal 359 

end-to-end fusions, which could underlie their increased susceptibility to cancer.64–66  360 

The inverse associations observed for some non-neoplastic diseases may reflect the impact of 361 

telomere shortening on tissue degeneration and an evolutionary trade-off for greater 362 

resistance to cancer at the cost of greater susceptibility to degenerative diseases, particularly 363 

cardiovascular diseases.67,68  364 

 365 

Study limitations 366 

Our study is subject to some limitations, in addition to the Mendelian randomization 367 

assumptions already considered above. First, our method assumes that the magnitude of the 368 

association between SNPs and telomere length is consistent across tissues. Second, our study 369 

assumed a linear shape of association between telomere length and disease risk, whereas the 370 

shape could be “J” or “U” shaped.41,54,64 Third, our results assume that the samples used to 371 

define the genetic proxies for telomere length16 and the various samples used to estimate the 372 

SNP-disease associations are representative of the same general population, practically 373 



defined as being of similar ethnicity, age and sex distribution.69 This assumption would, for 374 

example, not apply in the case of the SNP-disease associations derived from East Asian or 375 

pediatric populations. Generally speaking, violation of the aforementioned assumptions 376 

would potentially bias the magnitude of the estimated association between genetically 377 

increased telomere length and disease; but would be unlikely to increase the likelihood of 378 

false positives (i.e. incorrectly inferring an association when none exists).70 Our results 379 

should therefore remain informative for the direction and broad magnitude of the average 380 

association at the population level, even in the presence of such violations. Fourth, we cannot 381 

rule out chance in explaining some of the weaker findings. Fifth, our results may not be fully 382 

representative of non-communicable diseases (since not all studies shared data and our 383 

analyses were underpowered for the secondary disease outcomes). The diseases represented 384 

in our primary analyses probably account for >60% of all causes of death in American 385 

adults.71  386 

 387 

Conclusion 388 

Genetically longer telomeres are associated with increased risk for several cancers, but the 389 

relative increase in risk is highly heterogeneous across cancer types, and with reduced risk for 390 

some non-neoplastic diseases, including cardiovascular diseases.  391 

 392 

 393 
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Tables and Figures 
 
 

Table 1. Single nucleotide polymorphisms used as genetic proxies for telomere length 

*Summary data from Mangino et al16; Chr, chromosome; pos, base-pair position (GRCh38.p3); EA, effect allele, OA, other allele, Beta, standard deviation change in telomere length per 
copy of the effect allele; SE, standard error; EAF - effect allele frequency; Phet - p value for between-study heterogeneity in association between SNP and telomere length; †from a meta-
analysis of Mangino16 and Gu18 performed in the present study. 

 

 

SNPs Chr Pos Gene EA OA EAF* Beta* SE* P-value* Phet* 
No. 

studies* 
Sample 
size* 

Discovery 
p-value 

% variance 
explained Discovery study 

rs11125529 2 54248729 ACYP2 A C 0.16 0.065 0.012 0.000606 0.313 6 9177 8.00E-10 0.080 Codd19 
rs6772228 3 58390292 PXK T A 0.87 0.041 0.014 0.049721 0.77 6 8630 3.91E-10 0.200 Pooley15

rs12696304 3 169763483 TERC C G 0.74 0.090 0.011 5.41E-08 0.651 6 9012 4.00E-14 0.319 Codd20

rs10936599 3 169774313 TERC C T 0.76 0.100 0.011 1.76E-09 0.087 6 9190 3.00E-31 0.319 Codd19 
rs1317082 3 169779797 TERC A G 0.71 0.097 0.011 4.57E-09 0.029 6 9176 1.00E-08 0.319 Mangino16 
rs10936601 3 169810661 TERC C T 0.74 0.087 0.011 8.64E-08 0.433 6 9150 4.00E-15 0.319 Pooley15 
rs7675998 4 163086668 NAF1 G A 0.80 0.048 0.012 0.008912 0.077 6 9161 4.35E-16 0.190 Codd19

rs2736100 5 1286401 TERT C A 0.52 0.085 0.013 2.14E-05 0.54 4 5756 4.38E-19 0.310 Codd19 
rs9419958 10 103916188 OBFC1 T C 0.13 0.129 0.013 5.26E-11 0.028 6 9190 9.00E-11 0.171 Mangino16 
rs9420907 10 103916707 OBFC1 C A 0.14 0.142 0.014 1.14E-11 0.181 6 9190 7.00E-11 0.171 Codd19 
rs4387287 10 103918139 OBFC1 A C 0.14 0.120 0.013 1.40E-09 0.044 6 8541 2.00E-11 0.171 Levy23 
rs3027234 17 8232774 CTC1 C T 0.83 0.103 0.012 2.75E-08 0.266 6 9108 2.00E-08 0.292 Mangino16

rs8105767 19 22032639 ZNF208 G A 0.25 0.064 0.011 0.000169 0.412 6 9096 1.11E-09 0.090 Codd19 
rs412658 19 22176638 ZNF676 T C 0.35 0.086 0.010 1.83E-08 0.568 6 9156 1.00E-08 0.484 Mangino16 
rs6028466 20 39500359 DHX35 A G 0.17 0.058 0.013 0.003972 0.533 6 9190 2.57E-08† 0.041 Mangino16 & Gu18 
rs755017 20 63790269 ZBTB46 G A 0.17 0.019 0.0129 0.339611 0.757 5 8026 6.71E-09 0.090 Codd19 



Table 2. Study characteristics for primary non-communicable diseases  

  
No. 

cases 
No. 

controls 
No.  

SNPs 
Statistical 

power Pop. Study / First author 
Cancer   

Bladder cancer 1601 1819 10 0.62 EUR NBCS72 
Breast cancer  48155 43612  13  1.00  EUR  BCAC15,73  

Estrogen receptor –ve 7465 42175 13 1.00 EUR BCAC15,73 
Estrogen receptor +ve 27074 41749 13 1.00 EUR BCAC15,73 

Colorectal cancer 14537 16922 9 1.00 EUR CORECT/GECC60,74

Endometrial cancer 6608 37925 12 1.00 EUR ECAC75,76 
Esophageal SCC 1942 2111 11 0.64 EA Abnet77 
Glioma 1130 6300 12 0.72 EUR Wrensch78 & Walsh62  
Head & neck cancer 2082 3477 12 1.00 EUR McKay et al79 
Kidney cancer 2461 5081 12 0.99 EUR KIDRISK80 
Lung cancer 11348 15861 13 1.00 EUR  ILCCO81  

Adenocarcinoma 3442 14894 13 1.00 EUR ILCCO81 
Squamous cell carcinoma 3275 15038 13 1.00 EUR ILCCO81 

Skin cancer             
Melanoma 1804 1026 12 1.00 EUR NCCC82 
Basal cell carcinoma 3361 11518 13 1.00 EUR NHS/HPFS83  

Neuroblastoma 2101 4202 12 0.87 EUR Diskin84 
Ovarian cancer 15397 30816 13 1.00 EUR  OCAC15,85  

Clear cell 1016 30816 13 0.76 EUR OCAC15,85 
Endometriod 2154 30816 13 0.98 EUR OCAC15,85 
Mucinous 1643 30816 13 0.94 EUR OCAC15,85 
Serous invasive 9608 30816 13 1.00 EUR OCAC15,85 
Serous LMP 972 30816 13 0.73 EUR OCAC15,85 

Pancreatic cancer 5105 8739 12 1.00 EUR PANSCAN86

Prostate cancer 22297 22323 11 1.00 EUR PRACTICAL87,88 
Testicular germ cell cancer 986 4946 11 0.52 EUR Turnbull89 & Rapley90 

Autoimmune/inflammatory diseases  
Atopic dermatitis 10788 30047 13 1.00 EUR EAGLE91 
Celiac disease 4533 10750 3 0.82 EUR Dubois92 
Inflammatory bowel disease   

Crohn's disease 5956 14927 11 1.00 EUR IIBDGC93 
Ulcerative colitis 6968 20464 12 1.00 EUR IIBDGC93 

Juvenile idiopathic arthritis† 1866 14786 11 0.87 EUR Thompson94  
Multiple sclerosis 14498 24091 1 0.87 EUR IMSGC95 
Aggressive periodontitis 888 6789 13 0.63 EUR Schaefer96  
Rheumatoid arthritis 5538 20163 11 1.00 EUR Stahl97 

Cardiovascular diseases             
Abdominal aortic aneurysm 4972 99858 13 1.00 EUR AC98–103 
Coronary heart disease 22233 64762 13 1.00 EUR CARDIoGRAM104 
Heart failure 2526 20926 13 0.99 EUR CHARGE-HF105 
Hemorrhagic stroke 2963 5503 12 0.96 EUR METASTROKE/ISGC106

Ischemic stroke  12389 62004 13 1.00 EUR  METASTROKE/ISGC107,108

large vessel disease 2167 62004 13 0.99 EUR METASTROKE/ISGC107,108 
small vessel disease 1894 62004 13 0.97 EUR METASTROKE/ISGC107 
cardioembolic 2365 62004 13 0.99 EUR METASTROKE/ISGC107 

Sudden cardiac arrest 3954 21200 13 1.00 EUR Unpublished 
Diabetes   

Type 1 diabetes 7514 9045 6 0.95 EUR T1Dbase109 
Type 2 diabetes 10415 53655 11 1.00 EUR DIAGRAM110 

Eye disease             
AMD 7473 51177 13 1.00 EUR AMD Gene111 
Retinopathy 1122 18289 12 0.75 EUR Jensen112  



Lung diseases             
Asthma 13034 20638 4 1.00 EUR Ferreira/GABRIEL113,114 
COPD 2812 2534 12 0.85 EUR COPDGene115 
Interstitial lung disease 1616 4683 9 0.60 EUR Fingerlin116  

Neurological / psychiatric diseases  
ALS 6100 7125 12 1.00 EUR SLAGEN/ALSGEN117 
Alzheimer's disease 17008 37154 12 1.00 EUR IGAP118 
Anorexia nervosa 2907 14860 9 0.93 EUR GCAN119 
Autism 4949 5314 7 0.82 EUR PGC120 
Bipolar disorder 7481 9250 9 1.00 EUR PGC121 
Major depressive disorder 9240 9519 8 0.99 EUR PGC122 
Schizophrenia 35476 46839 12 1.00 EUR PGC123 
Tourette syndrome 1177 4955 13 0.74 EUR Scharf124  

    Other       
Chronic kidney disease 5807 56430 13 1.00 EUR CKDGen125 
Endometriosis 4604 9393 11 1.00 Mix Nyholt126  

†includes unpublished data; Study acronyms: AC, the aneurysm consortium; ALSGEN, the International Consortium on Amyotrophic Lateral 
Sclerosis Genetics; AMD Gene, Age-related Macular Degeneration Gene Consortium; BCAC, Breast Cancer Association Consortium; 
CARDIoGRAM, Coronary ARtery DIsease Genome wide Replication and Meta-analysis; CHARGE-HF, Cohorts for Heart and Aging Research in 
Genomic Epidemiology Consortium – Heart Failure Working Group; COPDGene, the genetic epidemiology of COPD; CKDGen, Chronic Kidney 
Disease; CORECT, ColoRectal Transdisciplinary Study; DIAGRAM, DIAbetes Genetics Replication And Meta-analysis; EAGLE, EArly Genetics & 
Lifecourse Epidemiology Eczema Consortium (excluding 23andMe); ECAC, Endometrial Cancer Association Consortium; GCAN, Genetic 
Consortium for Anorexia Nervosa; GECCO, Genetics and Epidemiology of Colorectal Cancer Consortium; IGAP, International Genomics of 
Alzheimer's Project; HPFS, Health Professionals Follow-Up Study; ILCCO, International Lung Cancer Consortium; IMSGC, International Multiple 
Sclerosis Genetic Consortium; IIBDGC, International Inflammatory Bowel Disease Genetics Consortium; KIDRISK, Kidney cancer consortium; 
METASTROKE/ISGC, METASTROKE project of the International Stroke Genetics Consortium; NBCS, Nijmegen Bladder Cancer Study; NHS, 
Nurses’ Health Study; OCAC, Ovarian Cancer Association Consortium; NCCC, Dartmouth-Hitchcock Norris Cotton Cancer Center; PANSCAN, 
Pancreatic Cancer Cohort Consortium; PGC, Psychiatric Genomics Consortium; PRACTICAL, Prostate Cancer Association Group to Investigate 
Cancer Associated Alterations in the Genome; SLAGEN, Italian Consortium for the Genetics of Ayotrophic Lateral Sclerosis. Abbreviations: ALS, 
amyotrophic lateral sclerosis; AMD, age-related macular degeneration; COPD, chronic obstructive pulmonary disease; EUR, European; EA, East 
Asian; LMP, low malignant potential;  No., number; Pop., population; SCC, squamous cell carcinoma; SNP, single nucleotide polymorphism; -ve, 
negative; +ve, positive.  



Legend to Figure 1 
 
*P value for association between genetically increased telomere length and disease from maximum likelihood; †the effect estimate for heart 
failure is a hazard ratio (all others are odds ratios); Phet, p value for heterogeneity amongst SNPs in the genetic risk score; SNP, single 
nucleotide polymorphism; CI, confidence interval; LMP, low malignancy potential; ER, estrogen receptor; -VE, negative; +VE, positive.  
 
 
 
Legend to Figure 2 
 
The plotted data show how the strength of the relationship between genetically longer telomeres and cancer varies by the selected 
characteristic. The R2 statistic indicates how much of the variation between cancers can be explained by the selected characteristic. P values 
are from meta-regression models. Circle sizes are proportional to the inverse of the variance of the log odds ratio. The hashed line indicates 
the null of no association between telomere length and cancer (i.e. an odds ratio of 1). Data for percentage survival 5 years after diagnosis, 
cancer incidence and median age-at-diagnosis was downloaded from the Surveillance, Epidemiology, and End Results Program.30 Data for 
average lifetime number of stem cell divisions was downloaded from Tomasetti and Vogelstein.31 SD, standard deviation; OR, Odds ratio. 
Not all cancers had information available for the selected characteristics (hence the number of cancers varies across the subplots). 
Information was available for 12 cancers for tissue-specific rates of stem cell division, 18 cancers for percentage surviving 5 years post-
diagnosis, 23 cancers for cancer incidence and 18 cancers for median age-at-diagnosis.   
 
 
Legend to Figure 3 
 
*from fixed-effects meta-analysis of independent observational studies described in Table S3; †search strategy and characteristics for 
observational studies are described in Tables S3 and S4; ‡CCHS and CGPS; +PLCO, ATBC & SWHS (acronyms explained in Table S3); 
CI, confidence interval 
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