The association between genetically elevated telomere length and risk of cancer and non-neoplastic diseases

3

Philip Haycock¹; Stephen Burgess²; Aayah Nounu¹; Jie Zheng¹; George N Okoli³; Jack 4 Bowden^{1,4}; Kaitlin Wade¹; Nicholas Timpson¹; David M. Evans^{1,5}; Peter Willeit^{2,6}; Abraham 5 Aviv⁷; Tom R. Gaunt¹; Gibran Hemani¹; Massimo Mangino^{8,9}; Hayley Patricia Ellis¹⁰; 6 Kathreena Mary Kurian¹⁰; Karen Pooley¹¹ on behalf of the BCAC and OCAC consortia; 7 Rosalind Eeles¹² on behalf of the PRACTICAL consortium; Jeffrey E Lee¹³; Shenying 8 Fang¹³; Wei Chen¹³; Matthew H Law¹⁴, Lisa M Bowdler¹⁵ and Mark M Iles¹⁶ on behalf of the 9 Melanoma meta-analysis consortium; Qiong Yang¹⁷, Bradford B. Worrall¹⁸ and Hugh 10 Stephen Markus¹⁹ on behalf of the METASTROKE project of the ISGC; Rayjean J. Hung^{20,21} 11 and Chris I Amos²² on behalf of the ILCCO consortium; Amanda Spurdle²³, Deborah J 12 Thompson²⁴ and Tracy O'Mara²³ on behalf of the ECAC consortium; Brian Wolpin²⁵, Laufey 13 Amundadottir²⁶ and Rachael Stolzenberg-Solomon²⁷ on behalf of the PanScan consortium; 14 Joanne Elena²⁸; Antonia Trichopoulou^{29,30}, Charlotte Onland-Moret³¹, Eiliv Lund³², Eric 15 Jeffrey Duell³³, Federico Canzian³⁴, Gianluca Severi^{35,36,37,38}, Kim Overvad³⁹, Marc J 16 Gunter⁴⁰, Rosario Tumino⁴¹ and Ulrika Svenson⁴² on behalf of EPIC; Andre van Rij⁴³, 17 Annette F Baas⁴⁴, Matthew J Bown⁴⁵, Nilesh J Samani⁴⁵, Paul IW de Bakker⁴⁴, Femke NG 18 van t'Hof⁴⁴, Gerard Tromp^{46,47}, Gregory T Jones⁴³, Helena Kuivaniemi^{46,47} and James R 19 Elmore⁴⁸ on behalf of the Aneurysm Consortium; Mattias Johansson⁴⁹; James Mckay⁴⁹; 20 Ghislaine Scelo⁴⁹; Robert Carreras-Torres⁴⁹; Valerie Gaborieau⁴⁹; Paul Brennan⁴⁹; Paige M. 21 Bracci⁵⁰, Rachel E Neale¹⁵, Sara H Olson⁵¹, Steven Gallinger²⁰, Donghui Li⁵², Gloria M. 22 Petersen⁵⁴, Harvey Risch⁵⁵, and Alison P. Klein⁵⁶ on behalf of PanC⁴; Jiali Han^{57,58}; Christian 23 C. Abnet⁵⁹; Neal D. Freedman⁵⁹; Philip R. Taylor⁵⁹; John M Maris⁶⁰; Katja K Aben^{61,62}; 24 Lambertus A Kiemeney⁶¹; Sita H Vermeulen⁶¹; John K Wiencke^{63,64}; Kyle M Walsh^{63,64}; 25 Margaret Wrensch^{63,64}; Terri Rice⁶³; Clare Turnbull⁶⁵; Kevin Litchfield⁶⁶; Lavinia 26 Paternoster¹ and Marie Standl⁶⁷ on behalf of the EAGLE consortium; Gonçalo R Abecasis⁶⁸; 27 John Paul SanGiovanni⁶⁹; Lars G Fritsche⁶⁸; Yong Li⁷⁰ and Vladan Mijatovic⁷¹ on behalf of 28 the CKDGen consortium; Yadav Sapkota¹⁵; Siew-Kee Low⁷²; Krina T Zondervan^{73,74}; Grant 29 W Montgomery¹⁵; Dale R. Nyholt^{75,15}; David A van Heel⁷⁶; Karen Hunt⁷⁶; Dan E. Arking⁷⁷, 30 Foram N. Ashar⁷⁷ and Nona Sotoodehnia⁷⁸ on behalf of the CHARGE-Sudden Cardiac Arrest 31 Working Group; Daniel Woo⁷⁹; Jonathan Rosand⁸⁰; Mary Comeau⁸¹; W. Mark Brown⁸²; 32 Edwin K. Silverman⁸³, John E Hokanson⁸⁴ and Michael Cho⁸³ on behalf of COPDGene; 33 Jennie Hui^{85,86,87,88}, Manuel Ferreira¹⁵ and Philip J. Thompson⁸⁹ on behalf of the AAGC 34

consortium; Alanna C. Morrison⁹⁰, Janine F Felix⁹¹ and Nicholas L Smith⁹² on behalf of the 35 CHARGE-Heart Failure Working Group; Angela M Christiano⁹³; Lynn Petukhova⁹⁴; Regina 36 C. Betz⁹⁵; Xing Fan⁹⁶; Xuejun Zhang⁹⁶; Caihong Zhu⁹⁶; Carl Langefeld⁹⁷; 37 Susan D. Thompson⁹⁸; Feijie Wang⁹⁹; Xu Lin^{99,100}; David A. Schwartz¹⁰¹; Tasha Fingerlin¹⁰²; 38 Jerome I. Rotter^{103,104}, Mary Frances Cotch¹⁰⁵ and Richard A Jensen on behalf of the 39 CHARGE-Eye Working Group^{106,107}; Matthias Munz¹⁰⁸, Henrik Dommisch¹⁰⁸ and Arne 40 S Schaefer¹⁰⁸ on behalf of the European Periodontitis Genetics Group; Fang Han¹⁰⁹; Hanna M 41 Ollila¹¹⁰; Ryan P. Hillary¹¹⁰; Omar Albagha¹¹¹; Stuart H. Ralston¹¹²; Chenjie Zeng¹¹³; Wei 42 Zheng¹¹³; Xiao-Ou Shu¹¹³; Andre Reis¹¹⁴; Steffen Uebe¹¹⁴; Ulrike Hüffmeier¹¹⁴; Yoshiya 43 Kawamura¹¹⁵, Takeshi Otowa^{116,117} and Tsukasa Sasaki¹¹⁸ on behalf of the Japanese 44 Collaboration Team for GWAS of Panic Disorder; Martin Lloyd Hibberd¹¹⁹; Michael 45 Levin¹²⁰; Sonia Davila¹²¹; Gang Xie1^{22,20}; Katherine Siminovitch^{122,20}; Jin-Xin Bei¹²³; Yi-Xin 46 Zeng^{123,124}; Asta Försti^{125,126}; Bowang Chen¹²⁵; Stefano Landi¹²⁷; Andre Franke¹²⁸; Annegret 47 Fischer^{128,129}; David Ellinghaus¹²⁸; Carlos Flores^{130,131}; Imre Noth¹³²; Shwu-Fan Ma¹³²; Jia 48 Nee Foo¹³³; Jianjun Liu¹³³; Jong-Won Kim¹³⁴; David G. Cox¹³⁵; Olivier Delattre¹³⁶; Olivier 49 Mirabeau¹³⁶; Christine F. Skibola¹³⁷; Clara S. Tang¹³⁸; Merce Garcia-Barcelo¹³⁸; Paul KH 50 Tam¹³⁸; Kai-Ping Chang¹³⁹; Wen-Hui Su¹⁴⁰; Yu-Sun Chang¹⁴¹; Nicholas G Martin¹⁵; Scott 51 Gordon¹⁵; Tracey Wade¹⁴²; Chaeyoung Lee¹⁴³; Michiaki Kubo¹⁴⁴; Pei-Chieng Cha¹⁴⁵; Yusuke 52 Nakamura¹⁴⁶; Daniel Levy¹⁴⁷; Masayuki Kimura⁷; Shih-Jen Hwang¹⁴⁷; Steven Hunt¹⁴⁸; Tim 53 Spector⁸; Nicole Soranzo¹⁴⁹; Ani W Manichaikul¹⁵⁰; R Graham Barr¹⁵¹; Bratati Kahali¹⁵², 54 Elizabeth Speliotes¹⁵² and Laura M Yerges-Armstrong¹⁵³ on behalf of the GOLD 55 Consortium; Ching-Yu Cheng^{154,155,156}, Jost B. Jonas^{157,158} and Tien Yin Wong^{154,155,156} on 56 behalf of the SEED consortium; Isabella Fogh¹⁵⁹, Kuang Lin¹⁵⁹ and John F. Powell¹⁵⁹ on 57 behalf of the SLAGEN and ALSGEN consortia; Caroline Relton¹; Richard M Martin^{1,3,160}; 58 George Davey Smith¹ 59

60

- ¹ MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- ² Department of Public Health and Primary Care, University of Cambridge
- ³ School of Social and Community Medicine, University of Bristol, Bristol, UK
- ⁴ MRC Biostatistics Unit, Cambridge, UK.
- ⁵ University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
- ⁶ Department of Neurology, Innsbruck Medical University, Austria
- ⁷ Center of Human Development and Aging, Department of Pediatrics, New Jersey Medical School, Rutgers, The State University of New Jersey

- ⁸ Department of Twin Research and Genetic Epidemiology, King's College London, London UK
- ⁹ NIHR Biomedical Research Centre at Guy's and St. Thomas' Foundation Trust, London, UK
- ¹⁰ Brain Tumour Research Group, Institute of Clinical Neuroscience, Learning and Research Building, Southmead Hospital, University of Bristol
- ¹¹ Strangeways Research Laboratory, University of Cambridge, Cambridge, UK
- ¹² The Institute of Cancer Research, London, UK
- ¹³ Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
- ¹⁴ Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- ¹⁵ QIMR Berghofer Medical Research Institute, Brisbane, Australia
- ¹⁶ Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
- ¹⁷ Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America and the Framingham Heart Study, Framingham, Massachusetts, United States of America
- ¹⁸ Departments of Neurology and Public Health Sciences University of Virginia Charlottesville, Virginia 22908
- ¹⁹ Department of Clinical Neurosciences, University of Cambridge, UK
- ²⁰ Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
- ²¹ Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, 60 Murray St. Rm L5-215, Box 18, Toronto, ON M5T 3L9, Canada
- ²² Geisel School of Medicine, Dartmouth College
- ²³ Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- ²⁴ Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, CB1 8RN, UK.
- ²⁵ Dana-Farber Cancer Institute
- ²⁶ Laboratory of Translational Genomics, Division of Cancer Epidemiology & Genetics, National Cancer Institute
- ²⁷ Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS.
- ²⁸ Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville MD USA
- ²⁹ Hellenic Health Foundation, Athens, Greece
- ³⁰ WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Dept. of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Greece
- ³¹ Dept of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht
- ³² Institute of community medicine, UiT The Artcic University of Norway
- ³³ Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), Avda Gran Via 199-203, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- ³⁴ Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- ³⁵ Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France
- ³⁶ Gustave Roussy, F-94805, Villejuif, France
- ³⁷ Human Genetics Foundation (HuGeF), Torino, Italy
- ³⁸ Cancer Council Victoria and University of Melbourne, Australia
- ³⁹ Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus, Denmark
- ⁴⁰ School of Public Health, Imperial College London, London W2 1PG
- ⁴¹ Cancer Registry, Azienda Ospedaliera "Civile M.P.Arezzo", via Dante 109, Ragusa, IT

- ⁴² Department of Medical Biosciences, Umea University, Umea, Sweden
- ⁴³ Surgery Department, University of Otago, Dunedin, New Zealand
- ⁴⁴ Department of Medical Genetics, Center for Molecular Medicine and Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- ⁴⁵ The Department of Cardiovascular Sciences and the NIHR Leicester Cardiovascular Biomedical Research Unit, University of Leicester, Leicester, LE2 7LX, UK.
- ⁴⁶ Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
- ⁴⁷ The Sigfried and Janet Weis Center for Research, Geisinger Health System, Danville, PA, USA
- ⁴⁸ Department of Vascular and Endovascular Surgery, Geisinger Health System, Danville, PA 17822, USA
- ⁴⁹ Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
- ⁵⁰ Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
- ⁵¹ Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
- ⁵² Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- ⁵⁴ Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- ⁵⁵ Yale School of Public Health & Yale School of Medicine & Yale Cancer Center, 60 College St., PO Box 208034, New Haven, CT 06520-8034
- ⁵⁶ Departments of Oncology, Pathology and Epidemiology, Johns Hopkins School of Medicine, Baltimore Maryland 21231
- ⁵⁷ Department of Epidemiology, Fairbanks School of Public Health, Indiana University
- ⁵⁸ Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
- ⁵⁹ Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville MD USA
- ⁶⁰ Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania
- ⁶¹ Radboud university medical center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
- ⁶² Netherlands Comprehensive Cancer Organization, Utrecht, The Netherlands
- ⁶³ Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
- ⁶⁴ Institute of Human Genetics, University of California, San Francisco, San Francisco, CA
- ⁶⁵ William Harvey Research Institute, Queen Mary University, London, UK
- ⁶⁶ Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- ⁶⁷ Institute of Epidemiology I, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- ⁶⁸ Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
- ⁶⁹ National Eye Institute, Division of Epidemiology and Clinical Research Clinical Trials Branch National Institutes of Health, Bethesda, USA
- ⁷⁰ Department of Internal Medicine IV, University Hospital Freiburg
- ⁷¹ Department of Life and Reproduction Sciences, University of Verona
- ⁷² Laboratory of Statistical Analysis, Centre for Integrative Medical Sciences, The Institute of Physical and Chemical Research (RIKEN], Yokohama, Japan
- ⁷³ Genetic and Genomic Epidemiology Unit, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- ⁷⁴ Nuffield Department of Obstetrics and Gynecology, University of Oxford, John Radcliffe Hospital, Oxford, UK
- ⁷⁵ Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia

- ⁷⁶ Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London El 2AT, UK
- ⁷⁷ McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- ⁷⁸ Division of Cardiology and Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington 98101
- ⁷⁹ University of Cincinnati College of Medicin, Department of Neurology, Cincinnati, OH, USA 45267
- ⁸⁰ Massachusetts General Hospital, Neurology, Center for Human Genetic Research, MA, USA
- ⁸¹ Center for Public Health Genomics, Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157
- ⁸² Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157
- ⁸³ Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115
- ⁸³ Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, 02115
- ⁸⁴ Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- ⁸⁵ Busselton Population Medical Research Institute Inc, Sir Charles Gairdner Hospital, Perth, Australia
- ⁸⁶ PathWest Laboratory Medicine of Western Australia (WA), Perth, Australia
- ⁸⁷ School of Pathology and Laboratory Medicine, University of WA, Perth, Australia
- ⁸⁸ School of Population Health, University of WA, Perth, Australia
- ⁸⁹ The Lung Health Clinic and Institute for Respiratory Health, University of Western Australia, Perth, Australia
- ⁹⁰ Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030 USA
- ⁹¹ Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- ⁹² Department of Epidemiology, University of Washington, Seattle WA 98101 USA
- ⁹³ Departments of Dermatology and Genetics & Development, Columbia University, New York, NY, US
- ⁹⁴ Departments of Dermatology and Epidemiology, Columbia University, New York, NY, US
- ⁹⁵ Institute of Human Genetics, University of Bonn, Bonn D-53127, Germany
- ⁹⁶ Institute of Dermatology & Department of Dermatology, First Affiliated Hospital of Anhui Medical University
- ⁹⁷ Director, Center for Public Health Genomics, Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157
- ⁹⁸ Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- ⁹⁹ Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, 200031, PR China
- ¹⁰⁰ Key Laboratory of Nutrition and Metabolism, Chinese Academy of Sciences, Shanghai, 200031, PR China
- ¹⁰¹ University of Colorado, 12631 East 17th Avenue, B178, Aurora, CO 80045
- ¹⁰² Department of Biomedical Research, National Jewish Health Hospital
- ¹⁰³ Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center
- ¹⁰⁴ Departments of Pediatrics and Medicine, 1124 W. Carson Street, Harbor-UCLA Medical Center, Torrance, CA 90502
- ¹⁰⁵ Epidemiology Branch, Division of Epidemiology and Clinical Applications, NIH Intramural Research Program, National Eye Institute, National Institutes of Health, Clinical Research Center 3A2521,
- ¹⁰⁶ Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, USA
- ¹⁰⁷ Department of Medicine, University of Washington, Seattle, Washington, USA
- ¹⁰⁸ Charité University Medicine Berlin, CC 03, Institute of Dental, Oral and Maxillary Medicine, Dept. of Periodontology and Synoptic Dentistry, Aßmannshauser Str. 4-6, 14197 Berlin, Germany

- ¹⁰⁹ Department of Pulmonary Medicine, Peking University People's Hospital, 100044 Beijing, China
- ¹¹⁰ Stanford University, Center for Sleep Sciences, Palo Alto, CA, USA
- ¹¹¹ Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
- ¹¹² Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- ¹¹³ Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- ¹¹⁴ Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- ¹¹⁵ Department of Psychiatry, Shonan Kamakura General Hospital, Kanagawa, Japan
- ¹¹⁶ Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- ¹¹⁷ Graduate School of Clinical Psychology, Teikyo Heisei University Major of Professional Clinical Psychology, Tokyo, Japan
- ¹¹⁸ Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
- ¹¹⁹ Infectious Diseases, Genome Institute of Singapore, Singapore
- ¹²⁰ Division of Infectious diseases, Department of medicine, Imperial College London, UK
- ¹²¹ Human genetics, Genome Institute of Singapore, Singapore
- ¹²² Departments of Medicine, Immunology, Molecular Genetics, University of Toronto
- ¹²³ Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou 510060, P. R. China
- ¹²⁴ Peking Union Medical College, Beijing 100730, P.R. China
- ¹²⁵ Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- ¹²⁶ Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden
- ¹²⁷ Department of Biology, University of Pisa, Pisa, Italy
- ¹²⁸ Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany.
- ¹²⁹ University Hospital Schleswig-Holstein, Kiel, Germany
- ¹³⁰ Research Unit, Hospital Universitario N.S. de Candelaria, Tenerife, Spain
- ¹³¹ CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- ¹³² Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S. Maryland Ave., Chicago IL 60637-6076
- ¹³³ Human Genetics, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore
- ¹³⁴ Dept. of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan, University School of Medicine, Ilwon-dong 50, Gangnam-gu, Seoul, Korea, 135-710
- ¹³⁵ Cancer Research Center of Lyon, INSERM U1052, Lyon, France
- ¹³⁶ Inserm U830, Institut Curie, PSL University, 26 rue d'Ulm, 75248 Paris Cedex 05 France, France.
- ¹³⁷ Department of Epidemiology, University of Alabama at Birmingham. 1665 University Boulevard, Birmingham, AL 35294-0022, USA
- ¹³⁸ Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
- ¹³⁹ Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital at Lin-Kou, Taoyuan, Taiwan,
- ¹⁴⁰ Department of Biomedical Sciences, Graduate Institute of Biomedical Sciences, College of Medicine, Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- ¹⁴¹ Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- ¹⁴² School of Psychology, Flinders University
- ¹⁴³ School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 156-743, Korea
- ¹⁴⁴ RIKEN Center for Integrative Medical Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, JAPAN

- ¹⁴⁵ Division of Molecular Brain Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunokichou, Chuo-ku, Kobe 650-0017, Japan
- ¹⁴⁶ Center for Personalized Therapeutics, The University of Chicago, 900E 57th Street, Chicago IL 60637 USA
- ¹⁴⁷ The NHLBI's Framingham Heart Study, Framingham, MA, Population Sciences Branch of the National Heart, Lung, and Blood Institute, Bethesda, MD.
- ¹⁴⁸ Department of Genetic Medicine, Weill Cornell Medicine in Qatar, Doha, Qatar
- ¹⁴⁹ Human Genetics, Wellcome Trust Sanger Institute, Genome Campus, Hinxton Cambridge
- ¹⁵⁰ Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA USA
- ¹⁵¹ Department of Medicine and Department of Epidemiology, Columbia University Medical Center, New York, NY 10032, USA
- ¹⁵² Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- ¹⁵³ Department of Medicine, University of Maryland, Baltimore, MD 21201, USA
- ¹⁵⁴ Singapore Eye Research Institute, Singapore National Eye Center, Singapore 168751, Singapore
- ¹⁵⁵ Department of Ophthalmology, National University of Singapore and National University Health System, Singapore
- ¹⁵⁶ Duke-National University of Singapore Graduate Medical School, Singapore
- ¹⁵⁷ Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Lab, Beijing, China
- ¹⁵⁸ Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University Heidelberg, Mannheim, Germany
- ¹⁵⁹ Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- ¹⁶⁰ University of Bristol / University Hospitals Bristol NHS Foundation Trust National Institute for Health Research Bristol Nutrition Biomedical Research Unit, Bristol, UK

63	Correspondence:	Philip Haycock
64		MRC Integrative Epidemiology Unit
65		University of Bristol
66		Bristol
67		UK
68		
69		philip.haycock@bristol.ac.uk
70		Tel: +44 1173 310 088

- 71 2993 words
- 3 figures, 2 tables, 138 references; 6 supplementary figures / 4 supplementary tables

73 ABSTRACT 339 WORDS

74 Importance Due to the susceptibility of observational studies to confounding and reverse 75 causation, the causal direction and magnitude of the association between telomere length and 76 incidence of cancer and non-neoplastic diseases is uncertain.

77 **Objective** To appraise the causal relevance of telomere length for risk of cancer and non-

78 neoplastic diseases using germline genetic variants as instrumental variables.

79 **Data Sources** Genome-wide association studies (GWAS) published up to January 15 2015.

80 Study Selection GWAS of non-communicable diseases that assayed germline genetic

81 variation and did not select cohort or control participants on the basis of pre-existing diseases.

82 Of 163 GWAS of non-communicable diseases identified, 103 shared data for our study.

Bata Extraction Summary association statistics for single nucleotide polymorphisms (SNPs)
that are strongly associated with telomere length in the general population.

Main Outcomes Odds ratios (ORs) for disease per 1-SD higher telomere length due to
germline genetic variation.

87 **Results** Summary data were available for 35 cancers and 47 non-neoplastic diseases, 88 corresponding to 409,819 cases (median 2,092 per disease) and 1,404,633 controls (median 89 7,738 per disease). Increased telomere length due to germline genetic variation was generally associated with increased risk for site-specific cancers. The strongest associations were 90 91 observed for (ORs per 1-SD higher genetically estimated telomere length): glioma 5.27 92 (3.15, 8.81), serous low malignant potential ovarian cancer 4.35 (2.39-7.94); lung 93 adenocarcinoma 3.19 (2.40-4.22); neuroblastoma 2.98 (1.92-4.62); bladder cancer 2.19 (1.32-3.66); melanoma 1.97 (1.14-3.41); testicular cancer 1.76 (1.02-3.04); kidney cancer 1.55 94 95 (1.08-2.23); and endometrial cancer 1.31 (1.07-1.61). Associations with cancer were stronger 96 for rarer cancers and tissue sites with lower rates of stem cell division (P<0.05). There was

97	generally little evidence of association between telomere length and risk of psychiatric,	
98	autoimmune, inflammatory, diabetic and other non-neoplastic diseases, except for coronary	
99	heart disease (0.78 [0.67-0.90]), abdominal aortic aneurysm (0.63 [0.49-0.81]), celiac disease	
100	(0.42 [0.28-0.61]) and interstitial lung disease (0.09 [0.05- 0.15]).	
101	Conclusions Genetically longer telomeres are associated with increased risk for several	
102	cancers, but the relative increase in risk is highly heterogeneous across cancer types, and with	
103	reduced risk for some non-neoplastic diseases, including cardiovascular diseases.	
104		
105		
106		
107		
108		
109		
110		
111		
112		
113		
114		
115		
116		
117		

118 INTRODUCTION

119

Telomeres are DNA-protein structures at the end of linear chromosomes that protect the 120 genome from damage; and shorten progressively over time in most somatic tissues.¹ Shorter 121 122 leukocyte telomeres are correlated with older age, male sex and other known risk factors for non-communicable diseases $^{2-4}$ and are generally associated with higher risk of cardiovascular 123 diseases^{5,6}, type 2 diabetes⁷ and non-vascular non-neoplastic causes of mortality.⁶ Whether 124 these associations are causal, however, is unknown. Telomere length has also been implicated 125 126 in risk of cancer but the direction and magnitude of the association is uncertain and contradictory across observational studies.^{8–12} The uncertainty reflects the considerable 127 128 difficulty of designing observational studies of telomere length and cancer incidence that are robust to reverse causation, confounding and measurement error. For example, changes in 129 130 telomere length in people who go on to develop cancer can typically be detected 3-4 years prior to diagnosis¹², meaning that even well designed prospective studies remain susceptible 131 to reverse causation. 132

The aim of the present report was to circumvent these limitations through a Mendelian 133 randomization study, using germline genetic variants as instrumental variables for telomere 134 135 length. The approach, which mimics the random allocation of individuals to the placebo and 136 intervention arms of a randomized controlled trial, allowed us to: (1) estimate the direction 137 and broad magnitude of the association of telomere length with risk of multiple cancer and 138 non-neoplastic diseases; (2) appraise the evidence for causality in the estimated etiological associations; (3) investigate potential sources of heterogeneity in findings for site-specific 139 cancers; and (4) compare genetic estimates to findings based on directly measured telomere 140 length in prospective observational studies. 141

143 **METHODS**

144

145 *Study design*

146 The design of our study, illustrated in Figure S1, had three key components: 1) the identification of genetic variants to serve as proxies for telomere length; 2) the acquisition of 147 148 summary data for the genetic proxies from genome wide association studies (GWASs) of 149 diseases and risk factors; and 3) the classification of diseases and risk factors into primary or secondary outcomes based on a priori statistical power. As a first step, we searched the 150 GWAS catalog^{13,14} on the 15 January 2015, to identify single nucleotide polymorphisms 151 152 (SNPs) associated with telomere length. To supplement the list with additional potential 153 proxies, we also searched the original study reports curated by the GWAS catalog (using a P value threshold of 5×10^{-8}).^{15–23} We acquired summary data for all SNPs identified by our 154 search from a meta-analysis of GWASs of telomere length, involving 9,190 participants of 155 European ancestry.¹⁶ SNPs initially identified as potential proxies for telomere length were 156 subsequently excluded if they lacked strong evidence of association with telomere length. We 157 defined strong evidence of association as a p-value $<5x10^{-8}$ in: i) the discovery stage of at 158 least one published GWAS of telomere length¹⁵⁻²² or ii) a meta-analysis of summary data 159 from Mangino et al¹⁶ and other GWASs of telomere length,^{15,17–22} with any overlapping 160 studies excluded from Mangino et al.¹⁶ We also excluded SNPs with a minor allele frequency 161 162 <0.05 or showing strong evidence of between-study heterogeneity in associations with telomere length ($P \le 0.001$). 163

164 The second key component of our design strategy involved the acquisition of summary data,

165 corresponding to the selected genetic proxies for telomere length, from GWASs of non-

166 communicable diseases and risk factors (Fig. S1). As part of this step, we invited principal

167 investigators of non-communicable disease studies curated by the GWAS catalog 13,14 to share

summary data for our study (see Fig. S1 for further details). We also downloaded summary
data for diseases and risk factors from publically available sources, including study-specific
websites, dbGAP and the GWAS catalog (Fig. S1).

171 The third key component of our design strategy was the classification of diseases and risk factors into either primary or secondary outcomes, which we defined on the basis of a priori 172 statistical power to detect associations with telomere length. Primary outcomes were defined 173 174 as diseases with sufficient cases and controls for >50% power (i.e. moderate-to-high 175 statistical power) and secondary outcomes defined as diseases with $\leq 50\%$ power (i.e. low 176 statistical power) to detect odds ratios ≥ 2.0 per standard deviation increase in telomere length 177 (alpha assumed to be 0.01). All risk factors were defined as secondary outcomes. Risk factors 178 with low statistical power were excluded from all analyses. Further details on the power 179 calculations and the study design are provided in the supplementary methods.

180

181 *Comparison with prospective observational studies*

182 We searched PubMed for prospective observational studies of the association between 183 telomere length and disease (see Tables S3 and S4 for details of the search strategy and 184 inclusion criteria). Study-specific relative risks for disease per unit change or quantile 185 comparison of telomere length were transformed to a standard deviation scale using previously described methods.²⁴ Hazard ratios, risk ratios, and odds ratios were assumed to 186 187 approximate the same measure of relative risk. Where multiple independent studies of the 188 same disease were identified, these were combined by fixed effects meta-analysis, unless 189 there was strong evidence of between-study heterogeneity ($P_{\text{Cochran's O}} < 0.001$), in which case 190 they were kept separate.

192 Statistical analysis

193	We combined summary data across SNPs into a single genetic risk score, using maximum
194	likelihood to estimate the slope of the relationship between β_{GD} and β_{GP} and a variance-
195	covariance matrix to make allowance for linkage disequilibrium between SNPs, ²⁵ where β_{GD}
196	is the change in disease or risk factor per copy of the effect allele and β_{GP} is the standard
197	deviation change in telomere length per copy of the effect allele (see supplementary methods
198	for technical details). The slope from this approach can be interpreted as the log odds ratio for
199	binary outcomes, or the unit change for continuous risk factors, per standard deviation change
200	in genetically increased telomere length. P values for heterogeneity in the estimated
201	associations between telomere length and disease amongst SNPs were estimated by
202	likelihood ratio tests. ²⁵ Associations between genetically increased telomere length and
203	continuous risk factors were transformed into standard deviation units. For six diseases where
204	only a single SNP was available for analysis, we estimated associations using the Wald ratio:
205	β_{GD}/β_{GP} , with standard errors approximated by the delta method. ²⁶
205 206	β_{GD}/β_{GP} , with standard errors approximated by the delta method. ²⁶ Inference of causality in the estimated etiological associations between telomere length and
206	Inference of causality in the estimated etiological associations between telomere length and
206 207	Inference of causality in the estimated etiological associations between telomere length and disease depends on satisfaction of Mendelian randomization assumptions. ^{27,28} The
206 207 208	Inference of causality in the estimated etiological associations between telomere length and disease depends on satisfaction of Mendelian randomization assumptions. ^{27,28} The assumptions are: 1) the genetic proxies must be associated with telomere length; 2) the
206 207 208 209	Inference of causality in the estimated etiological associations between telomere length and disease depends on satisfaction of Mendelian randomization assumptions. ^{27,28} The assumptions are: 1) the genetic proxies must be associated with telomere length; 2) the genetic proxies should not be associated with confounders; and 3) the genetic proxies must be
206 207 208 209 210	Inference of causality in the estimated etiological associations between telomere length and disease depends on satisfaction of Mendelian randomization assumptions. ^{27,28} The assumptions are: 1) the genetic proxies must be associated with telomere length; 2) the genetic proxies should not be associated with confounders; and 3) the genetic proxies must be associated with disease exclusively through their effect on telomere length. When these
206 207 208 209 210 211	Inference of causality in the estimated etiological associations between telomere length and disease depends on satisfaction of Mendelian randomization assumptions. ^{27,28} The assumptions are: 1) the genetic proxies must be associated with telomere length; 2) the genetic proxies should not be associated with confounders; and 3) the genetic proxies must be associated with disease exclusively through their effect on telomere length. When these assumptions are satisfied, genetic proxies are said to be valid instrumental variables. We
206 207 208 209 210 211 212	Inference of causality in the estimated etiological associations between telomere length and disease depends on satisfaction of Mendelian randomization assumptions. ^{27,28} The assumptions are: 1) the genetic proxies must be associated with telomere length; 2) the genetic proxies should not be associated with confounders; and 3) the genetic proxies must be associated with disease exclusively through their effect on telomere length. When these assumptions are satisfied, genetic proxies are said to be valid instrumental variables. We modeled the impact of violations of these assumptions through two sets of sensitivity
206 207 208 209 210 211 212 213	Inference of causality in the estimated etiological associations between telomere length and disease depends on satisfaction of Mendelian randomization assumptions. ^{27,28} The assumptions are: 1) the genetic proxies must be associated with telomere length; 2) the genetic proxies should not be associated with confounders; and 3) the genetic proxies must be associated with disease exclusively through their effect on telomere length. When these assumptions are satisfied, genetic proxies are said to be valid instrumental variables. We modeled the impact of violations of these assumptions through two sets of sensitivity analyses: a weighted median function ²⁹ and MR-Egger regression ²⁷ (see supplementary

218	We used meta-regression to appraise potential sources of clinical heterogeneity in our
219	findings for cancer outcomes. The association of genetically increased telomere length with
220	the log odds of cancer was regressed on cancer incidence, survival time and median age at
221	diagnosis, downloaded from the National Cancer Institute Surveillance, Epidemiology, and
222	End Results (SEER) Program, ³⁰ and tissue-specific rates of stem cell division from Tomasetti
223	and Vogelstein. ³¹ As the downloaded cancer characteristics from SEER correspond to the
224	United States population, 77% of which was of white ancestry in 2015 ³² , the meta-regression
225	analyses excluded genetic studies conducted in East Asian populations.
226	
227	All analyses were performed in R version 3.1.2 ³³ and Stata release 13.1 (StataCorp, College
228	Station, TX). P values were two-sided and evidence of association was declared at $P < 0.05$.
229	Where indicated, Bonferroni corrections were used to make allowance for multiple testing,
230	although this is likely to be overly conservative given the non-independence of many of the
231	outcomes tested.
232	
233	
234	
235	
236	
237	
238	
239	
240	

241 **RESULTS**

242

256

243	We selected 16 SNPs as genetic proxies for telomere length (Fig. S1 & Table 1). The selected
244	SNPs correspond to 10 independent genomic loci that collectively account for 2-3% of the
245	variance in leukocyte telomere length, which is equivalent to an F statistic of ~18. This
246	indicates that the genetic risk score, constructed from these 10 independent genomic loci, is
247	strongly associated with telomere length (see supplementary discussion for a more detailed
248	consideration). ³⁴ Summary data for the genetic proxies for telomere length were available for
249	83 non-communicable diseases and 44 risk factors, corresponding to 409,819 cases (median
250	2,092 per disease) and 1,404,633 controls (median 7,738 per disease) (Fig. S1, Table 2 and
251	Table S1). The median number of SNPs available across disease datasets was 11 (min=1,
252	max=13) and across risk factor datasets was 13 (min=10, max=13). Of the 83 diseases, 55
253	were classified as primary outcomes and 28 as secondary outcomes (Table 2, Fig. S1 and
254	Table S1).
255	The results from primary analyses of non-communicable diseases are presented in Figure 1;

presented in the supplementary materials (Fig. S2, S5 and S6). Genetically increased

results from secondary analyses of risk factors and diseases with low a priori power are

telomere length was associated with higher odds of disease for 9 of 22 primary cancer

259 outcomes, including glioma, endometrial cancer, kidney cancer, testicular germ cell cancer,

260 melanoma, bladder cancer, neuroblastoma, lung adenocarcinoma and serous low malignancy

261 potential ovarian cancer (P<0.05) (Fig. 1). The associations were, however, highly variable

across cancer types, varying from an odds ratio of 0.86 (95% confidence interval: 0.50 to

263 1.48) for head and neck cancer to 5.27 (3.15, 8.81) for glioma. Substantial variability was

also observed within tissue sites. For example, the odds ratio for lung adenocarcinoma was

265 3.19 (2.40 to 4.22) compared to 1.07 (0.82 to 1.39) for squamous cell lung cancer. For serous

266	low malignancy potential ovarian cancer the odds ratio was 4.35 (2.39 to 7.94) compared to
267	odds ratios of 1.21 (0.87 to 1.68) for endometrioid ovarian cancer, 1.12 (0.938 to 1.34) for
268	serous invasive ovarian cancer, 1.04 (0.66 to 1.63) for clear cell ovarian cancer and 1.04
269	(0.732 to 1.47) for mucinous ovarian cancer. The strongest evidence of association was
270	observed for glioma, lung adenocarcinoma, neuroblastoma and serous low malignancy
271	potential ovarian cancer (P _{Bonferroni} <0.05). Results for glioma and bladder cancer showed
272	evidence for replication in independent datasets (independent datasets were not available for
273	other cancers) (Fig. S3).
274	Genetically increased telomere length was associated with reduced odds of disease for 6 of 32
275	primary non-neoplastic diseases, including coronary heart disease, abdominal aortic
276	aneurysm, Alzheimer's disease, celiac disease, interstitial lung disease and type 1 diabetes
277	(P<0.05) (Figure 1). The strongest evidence of association was observed for coronary heart
278	disease, abdominal aortic aneurysm, celiac disease and interstitial lung disease
279	(P _{Bonferroni} <0.05). The associations with coronary heart disease and interstitial lung disease
280	showed evidence for replication in independent datasets (Fig. S3).
281	
282	Our genetic findings were generally similar in direction and magnitude to estimates based on
283	observational prospective studies of leukocyte telomere length and disease (Figure 3). Our
284	genetic estimates for lung adenocarcinoma, melanoma, kidney cancer and glioma, were,
285	however, stronger in comparison to observational estimates.
286	
287	In sensitivity analyses, we appraised the potential impact of confounding by pleiotropic
288	pathways on our results. Associations estimated by the weighted median approach were
289	broadly similar to the main results for glioma, lung adenocarcinoma, serous low malignancy
290	potential ovarian cancer, neuroblastoma, abdominal aortic aneurysm, coronary heart disease,

291	interstitial lung disease and celiac disease (Fig. S4). In the second set of sensitivity analyses,
292	implemented by MR-Egger regression, we found little evidence for the presence of pleiotropy
293	(P≥0.27) (Fig. S4). The MR-Egger analyses were, however, generally underpowered, as
294	reflected by the wide confidence intervals in the estimated odds ratios.
295	
295	
295	In meta-regression analyses, we observed that genetically increased telomere length tended to
	In meta-regression analyses, we observed that genetically increased telomere length tended to be more strongly associated with rarer cancers (P=0.02) and cancers at tissue-sites with lower

varying by percentage survival five years after diagnosis or median age-at-diagnosis (P=0.4).

301 **DISCUSSION**

302

303 *Summary of main findings*

In this report we show that genetically increased telomere length is associated with 304 305 increased risk of several cancers and with reduced risk of some non-neoplastic diseases, 306 including coronary heart disease, abdominal aortic aneurysm, celiac disease and 307 interstitial lung disease. The findings for cancer were, however, subject to substantial 308 variation between and within tissue sites, which our results suggest could be partly 309 attributable to differences in cancer incidence and rates of stem cell division. Given the 310 random distribution of genotypes in the general population with respect to lifestyle and 311 other environmental factors, as well as the fixed nature of germline genotypes, these 312 results should be less susceptible to confounding and reverse causation bias in 313 comparison to observational studies. Nevertheless, although compatible with causality, 314 our results could reflect violations of Mendelian randomization assumptions, such as confounding by pleiotropic pathways, population stratification or ancestry.³⁵ Although we 315 316 cannot entirely rule out this possibility, the majority of our results persisted in sensitivity 317 analyses that made allowance for violations of Mendelian randomization assumptions. 318 Confounding by population stratification or ancestry is also unlikely, given that the 319 disease GWAS results were generally adjusted for both (see supplementary discussion). 320

321 *Comparison with previous studies*

Our findings for cancer are generally contradictory to those based on retrospective studies, which tend to report increased risk for cancer in individuals with shorter telomeres.^{9,10,36–39} The contradictory findings may reflect reverse causation bias in the retrospective studies,

325	whereby shorter telomeres arise as a result of disease, or of confounding effects, e.g. due to
326	cases being slightly older than controls even in age-matched analyses. Our findings for cancer
327	are generally more consistent with those based on prospective observational studies, which
328	tend to report weak or null associations of longer leukocyte telomeres with overall and site-
329	specific risk of cancer. ^{8–11,38,40–59} Our results are also similar to previously reported
330	Mendelian randomization studies of telomere length and risk of melanoma, lung cancer,
331	chronic lymphocytic leukemia and glioma. ^{60–63} The shape of the association with cancer may
332	not, however, be linear over the entire telomere length distribution. For example, individuals
333	with dyskeratosis congenita, a disease caused by germline loss-of-function mutations in the
334	telomerase component genes TERC and TERT, have chronically short telomeres and are at
335	increased risk of some cancers, particularly acute myeloid leukemia and squamous cell
336	carcinomas arising at sites of leukoplakia, ^{64,65} suggesting that the association could be "J" or
337	"U" shaped. ^{41,54} Our results should therefore be interpreted as reflecting the average
338	association at the population level and may not be generalizable to the extreme ends of the
339	distribution.

340

341 *Mechanisms of association*

Our cancer findings are compatible with known biology.⁶⁶ By limiting the proliferative 342 343 potential of cells, telomere shortening may serve as a tumour suppressor; and individuals with longer telomeres may be more likely to acquire somatic mutations owing to increased 344 proliferative potential.⁶⁶ Rates of cell division are, however, highly variable amongst tissues³¹ 345 346 and thus the relative gain in cell proliferative potential, conferred by having longer telomeres, 347 may also be highly variable across tissues. This could explain the almost 9-fold variation in odds ratios observed across cancer types in the present study, as well as the tendency of our 348 results to be stronger at tissue sites with lower rates of stem cell division. For example, the 349

association was strongest for glioma (OR=5.27) and comparatively weak for colorectal 350 351 cancer (OR=1.09) and the rates of stem cell division in the tissues giving rise to these cancers 352 differ by several orders of magnitude. In neural stem cells, which give rise to gliomas, the number of divisions is ~ 270 million and for colorectal stem cells is ~ 1.2 trillion over the 353 average lifetime of an individual.³¹ The observation that genetically increased telomere length 354 was more strongly associated with rarer cancers potentially reflects the same mechanism, 355 since rarer cancers also tend to show lower rates of stem cell division.³¹ For example, the 356 incidence of glioma is 0.4 and for colorectal cancer is 42.4 per 100,000 per year in the United 357 States.³⁰ On the other hand, individuals with chronically short telomeres, such as those with 358 359 dyskeratosis congenita, could be more susceptible to genome instability and chromosomal end-to-end fusions, which could underlie their increased susceptibility to cancer.⁶⁴⁻⁶⁶ 360 361 The inverse associations observed for some non-neoplastic diseases may reflect the impact of 362 telomere shortening on tissue degeneration and an evolutionary trade-off for greater 363 resistance to cancer at the cost of greater susceptibility to degenerative diseases, particularly

364 cardiovascular diseases.^{67,68}

365

366 *Study limitations*

Our study is subject to some limitations, in addition to the Mendelian randomization assumptions already considered above. First, our method assumes that the magnitude of the association between SNPs and telomere length is consistent across tissues. Second, our study assumed a linear shape of association between telomere length and disease risk, whereas the shape could be "J" or "U" shaped.^{41,54,64} Third, our results assume that the samples used to define the genetic proxies for telomere length¹⁶ and the various samples used to estimate the SNP-disease associations are representative of the same general population, practically

defined as being of similar ethnicity, age and sex distribution.⁶⁹ This assumption would, for 374 375 example, not apply in the case of the SNP-disease associations derived from East Asian or pediatric populations. Generally speaking, violation of the aforementioned assumptions 376 377 would potentially bias the magnitude of the estimated association between genetically 378 increased telomere length and disease; but would be unlikely to increase the likelihood of false positives (i.e. incorrectly inferring an association when none exists).⁷⁰ Our results 379 380 should therefore remain informative for the direction and broad magnitude of the average 381 association at the population level, even in the presence of such violations. Fourth, we cannot 382 rule out chance in explaining some of the weaker findings. Fifth, our results may not be fully 383 representative of non-communicable diseases (since not all studies shared data and our 384 analyses were underpowered for the secondary disease outcomes). The diseases represented 385 in our primary analyses probably account for >60% of all causes of death in American adults.⁷¹ 386

387

388 Conclusion

389 Genetically longer telomeres are associated with increased risk for several cancers, but the 390 relative increase in risk is highly heterogeneous across cancer types, and with reduced risk for 391 some non-neoplastic diseases, including cardiovascular diseases.

392

393

394

395

- 396
- 397

398

400 Acknowledgements

- 401 This work was supported by CRUK grant number C18281/A19169 (the Integrative Cancer
- 402 Epidemiology Programme). Dr Haycock is supported by CRUK Population Research
- 403 Postdoctoral Fellowship C52724/A20138. The MRC Integrative Epidemiology Unit is
- supported by grants MC_UU_12013/1 and MC_UU_12013/2. Dr Martin is supported by the
- 405 National Institute for Health Research (NIHR), the Bristol Nutritional Biomedical Research
- 406 Unit and the University of Bristol.
- We gratefully acknowledge the assistance and contributions of Dr Julia Gumy and Ms LisaWright.

409

410

412 **REFERENCES**

- 413 1. Blackburn EH, Epel ES, Lin J. Human telomere biology: A contributory and
 414 interactive factor in aging, disease risks, and protection. Science (80-)
 415 2015;350(6265):1193-8.
- 416 2. Weischer M, Bojesen SE, Nordestgaard BG. Telomere shortening unrelated to
 417 smoking, body weight, physical activity, and alcohol intake: 4,576 general population
 418 individuals with repeat measurements 10 years apart. PLoS Genet
 419 2014;10(3):e1004191.
- 420 3. Houben JMJ, Moonen HJJ, van Schooten FJ, Hageman GJ. Telomere length
 421 assessment: biomarker of chronic oxidative stress? Free Radic Biol Med
 422 2008;44(3):235-46.
- 4. Marchesi V. Risk factors: Short telomeres: association with cancer survival and risk.
 424 Nat Rev Clin Oncol 2013;10(5):247.
- 425 5. Haycock PC, Heydon EE, Kaptoge S, Butterworth a. S, Thompson A, Willeit P.
 426 Leucocyte telomere length and risk of cardiovascular disease: systematic review and 427 meta-analysis. BMJ 2014;349(jul08 3):g4227–g4227.
- 428 6. Rode L, Nordestgaard BG, Bojesen SE. Peripheral blood leukocyte telomere length
 429 and mortality among 64,637 individuals from the general population. J Natl Cancer
 430 Inst 2015;107(6):djv074.
- 431 7. Zhao J, Miao K, Wang H, Ding H, Wang DW. Association between telomere length
 432 and type 2 diabetes mellitus: a meta-analysis. PLoS One 2013;8(11):e79993.
- 8. Weischer M, Nordestgaard BG, Cawthon RM, Freiberg JJ, Tybjærg-Hansen A,
 Bojesen SE. Short telomere length, cancer survival, and cancer risk in 47102
 individuals. J Natl Cancer Inst 2013;105(7):459–68.
- 436 9. Ma H, Zhou Z, Wei S, et al. Shortened telomere length is associated with increased
 437 risk of cancer: a meta-analysis. PLoS One 2011;6(6):e20466.
- Wentzensen IM, Mirabello L, Pfeiffer RM, Savage SA. The association of telomere
 length and cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev
 2011;20(6):1238–50.
- Pooley KA, Sandhu MS, Tyrer J, et al. Telomere length in prospective and retrospective cancer case-control studies. Cancer Res 2010;70(8):3170–6.
- Hou L, Joyce BT, Gao T, et al. Blood Telomere Length Attrition and Cancer
 Development in the Normative Aging Study Cohort. EBioMedicine 2015;2(6):591–6.
- Welter D, MacArthur J, Morales J, et al. The NHGRI GWAS Catalog, a curated
 resource of SNP-trait associations. Nucleic Acids Res 2014;42(Database
 issue):D1001–6.
- Hindorff LA LA, MacArthur J, Morales J, et al. A catalog of published genome-wide
 association studies [Internet]. [cited 2015 Jan 15];Available from:
 www.genome.gov/gwastudies

451 15. Pooley KA, Bojesen SE, Weischer M, et al. A genome-wide association scan (GWAS) for mean telomere length within the COGS project: identified loci show little 452 453 association with hormone-related cancer risk. Hum Mol Genet 2013;22(24):5056-64. 454 16. Mangino M, Hwang S-J, Spector TD, et al. Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans. Hum Mol 455 456 Genet 2012;21(24):5385–94. Prescott J, Kraft P, Chasman DI, et al. Genome-wide association study of relative 457 17. 458 telomere length. PLoS One 2011;6(5):e19635. 459 18. Gu J, Chen M, Shete S, et al. A genome-wide association study identifies a locus on 460 chromosome 14q21 as a predictor of leukocyte telomere length and as a marker of susceptibility for bladder cancer. Cancer Prev Res (Phila) 2011;4(4):514-21. 461 462 19. Codd V, Nelson CP, Albrecht E, et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet 2013;45(4):422-7. 463 Codd V, Mangino M, van der Harst P, et al. Common variants near TERC are 464 20. associated with mean telomere length. Nat Genet 2010;42(3):197-9. 465 Liu Y, Cao L, Li Z, et al. A genome-wide association study identifies a locus on TERT 466 21. for mean telomere length in Han Chinese. PLoS One 2014;9(1):e85043. 467 Saxena R. Bjonnes A, Prescott J, et al. Genome-wide association study identifies 22. 468 469 variants in casein kinase II (CSNK2A2) to be associated with leukocyte telomere length in a Punjabi Sikh diabetic cohort. Circ Cardiovasc Genet 2014;7(3):287-95. 470 Levy D, Neuhausen SL, Hunt SC, et al. Genome-wide association identifies OBFC1 as 471 23. a locus involved in human leukocyte telomere biology. Proc Natl Acad Sci U S A 472 2010;107(20):9293-8. 473 474 24. Chene G, Thompson SG. Methods for Summarizing the Risk Associations of Quantitative Variables in Epidemiologic Studies in a Consistent Form. Am J 475 Epidemiol 1996;144(6):610-21. 476 477 25. Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG, EPIC-InterAct 478 Consortium. Using published data in Mendelian randomization: a blueprint for 479 efficient identification of causal risk factors. Eur J Epidemiol 2015;30(7):543–52. 480 26. Thomas DC, Lawlor DA, Thompson JR. Re: Estimation of bias in nongenetic 481 observational studies using "Mendelian triangulation" by Bautista et al. Ann Epidemiol 2007;17(7):511–3. 482 27. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid 483 instruments: effect estimation and bias detection through Egger regression. Int J 484 Epidemiol 2015;44(2):512–25. 485 486 28. VanderWeele TJ, Tchetgen Tchetgen EJ, Cornelis M, Kraft P. Methodological challenges in mendelian randomization. Epidemiology 2014;25(3):427–35. 487 488 29. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median 489 490 estimator. Genet Epidemiol 30. 491 National Cancer Institute. Surveillance, Epidemiology, and End Results Program

- 492 [Internet]. [cited 2015 Aug 1];Available from: www.seer.cancer.gov
- 493 31. Tomasetti C, Vogelstein B. Variation in cancer risk among tissues can be explained by
 494 the number of stem cell divisions. Science 2015;347(6217):78–81.
- 495 32. U.S. Census Bureau [Internet]. [cited 2016 Jul 11]; Available from: U.S. Census
 496 Bureau
- 497 33. R Core Team. A language and environment for statistical computing. 2013;
- 498 34. Burgess S, Thompson SG. Bias in causal estimates from Mendelian randomization studies with weak instruments. Stat Med 2011;30(11):1312–23.
- 500 35. Davey Smith G, Ebrahim S. What can mendelian randomisation tell us about modifiable behavioural and environmental exposures? BMJ Br Med J 2005;330(7499):1076–9.
- Anic GM, Sondak VK, Messina JL, et al. Telomere length and risk of melanoma,
 squamous cell carcinoma, and basal cell carcinoma. Cancer Epidemiol
 2013;37(4):434–9.
- 37. Pellatt AJ, Wolff RK, Torres-Mejia G, et al. Telomere length, telomere-related genes,
 and breast cancer risk: the breast cancer health disparities study. Genes Chromosomes
 Cancer 2013;52(7):595–609.
- Solution 38. Caini S, Raimondi S, Johansson H, et al. Telomere length and the risk of cutaneous melanoma and non-melanoma skin cancer: a review of the literature and meta-analysis.
 J Dermatol Sci 2015;80(3):168–74.
- 39. Sanchez-Espiridion B, Chen M, Chang JY, et al. Telomere length in peripheral blood
 leukocytes and lung cancer risk: a large case-control study in Caucasians. Cancer Res
 2014;74(9):2476–86.
- 40. Campa D, Mergarten B, De Vivo I, et al. Leukocyte telomere length in relation to
 pancreatic cancer risk: a prospective study. Cancer Epidemiol Biomarkers Prev
 2014;23(11):2447-54.
- 518 41. Cui Y, Cai Q, Qu S, et al. Association of leukocyte telomere length with colorectal cancer risk: nested case-control findings from the Shanghai Women's Health Study.
 520 Cancer Epidemiol Biomarkers Prev 2012;21(10):1807–13.
- 42. De Vivo I, Prescott J, Wong JYY, Kraft P, Hankinson SE, Hunter DJ. A prospective study of relative telomere length and postmenopausal breast cancer risk. Cancer
 Epidemiol Biomarkers Prev 2009;18(4):1152–6.
- Han J, Qureshi AA, Prescott J, et al. A prospective study of telomere length and the risk of skin cancer. J Invest Dermatol 2009;129(2):415–21.
- 44. Hofmann JN, Lan Q, Cawthon R, et al. A prospective study of leukocyte telomere
 length and risk of renal cell carcinoma. Cancer Epidemiol Biomarkers Prev
 2013;22(5):997–1000.
- Julin B, Shui I, Heaphy CM, et al. Circulating leukocyte telomere length and risk of
 overall and aggressive prostate cancer. Br J Cancer 2015;112(4):769–76.
- Kim S, Sandler DP, Carswell G, et al. Telomere length in peripheral blood and breast cancer risk in a prospective case-cohort analysis: results from the Sister Study. Cancer

- 533 Causes Control 2011;22(7):1061–6.
- Lan Q, Cawthon R, Shen M, et al. A prospective study of telomere length measured by
 monochrome multiplex quantitative PCR and risk of non-Hodgkin lymphoma. Clin
 Cancer Res 2009;15(23):7429–33.
- 48. Lee I-M, Lin J, Castonguay AJ, Barton NS, Buring JE, Zee RYL. Mean leukocyte
 telomere length and risk of incident colorectal carcinoma in women: a prospective,
 nested case-control study. Clin Chem Lab Med 2010;48(2):259–62.
- Liang G, Qureshi AA, Guo Q, De Vivo I, Han J. No association between telomere
 length in peripheral blood leukocytes and the risk of nonmelanoma skin cancer. Cancer
 Epidemiol Biomarkers Prev 2011;20(5):1043–5.
- 543 50. Lynch SM, Major JM, Cawthon R, et al. A prospective analysis of telomere length and
 544 pancreatic cancer in the alpha-tocopherol beta-carotene cancer (ATBC) prevention
 545 study. Int J Cancer 2013;133(11):2672–80.
- 546 51. McGrath M, Wong JYY, Michaud D, Hunter DJ, De Vivo I. Telomere length,
 547 cigarette smoking, and bladder cancer risk in men and women. Cancer Epidemiol
 548 Biomarkers Prev 2007;16(4):815–9.
- 549 52. Nan H, Du M, De Vivo I, et al. Shorter telomeres associate with a reduced risk of
 550 melanoma development. Cancer Res 2011;71(21):6758–63.
- 53. Prescott J, McGrath M, Lee I-M, Buring JE, De Vivo I. Telomere length and genetic
 analyses in population-based studies of endometrial cancer risk. Cancer
 2010;116(18):4275–82.
- 54. Qu S, Wen W, Shu X-O, et al. Association of leukocyte telomere length with breast cancer risk: nested case-control findings from the Shanghai Women's Health Study.
 556 Am J Epidemiol 2013;177(7):617–24.
- 557 55. Risques RA, Vaughan TL, Li X, et al. Leukocyte telomere length predicts cancer risk 558 in Barrett's esophagus. Cancer Epidemiol Biomarkers Prev 2007;16(12):2649–55.
- 559 56. Seow WJ, Cawthon RM, Purdue MP, et al. Telomere length in white blood cell DNA
 and lung cancer: a pooled analysis of three prospective cohorts. Cancer Res
 2014;74(15):4090-8.
- 562 57. Shen M, Cawthon R, Rothman N, et al. A prospective study of telomere length
 563 measured by monochrome multiplex quantitative PCR and risk of lung cancer. Lung
 564 Cancer 2011;73(2):133–7.
- 565 58. Walcott F, Rajaraman P, Gadalla SM, et al. Telomere length and risk of glioma.
 566 Cancer Epidemiol 2013;37(6):935–8.
- 567 59. Zee RYL, Castonguay AJ, Barton NS, Buring JE. Mean telomere length and risk of
 568 incident colorectal carcinoma: a prospective, nested case-control approach. Cancer
 569 Epidemiol Biomarkers Prev 2009;18(8):2280–2.
- 570 60. Zhang C, Doherty J a., Burgess S, et al. Genetic determinants of telomere length and
 571 risk of common cancers: a Mendelian randomization study. Hum Mol Genet
 572 2015;24(18):5356–66.
- 573 61. Iles MM, Bishop DT, Taylor JC, et al. The effect on melanoma risk of genes

- 574 previously associated with telomere length. J Natl Cancer Inst 2014;106(10).
- 575 62. Walsh KM, Codd V, Rice T, et al. Longer genotypically-estimated leukocyte telomere
 576 length is associated with increased adult glioma risk. Oncotarget 2015;6(40):42468–
 577 77.
- 63. Ojha J, Codd V, Nelson CP, et al. Genetic Variation Associated with Longer Telomere
 Length Increases Risk of Chronic Lymphocytic Leukemia. Cancer Epidemiol
 Biomarkers Prev 2016;25(7):1043–9.
- 581 64. Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet 2012;13(10):693–704.
- 583 65. Armanios M. Syndromes of telomere shortening. Annu Rev Genomics Hum Genet
 584 2009;10(46):45–61.
- 585 66. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144(5):646–74.
- 587 67. Blasco MA. Telomere length, stem cells and aging. Nat Chem Biol 2007;3(10):640–9.
- 588 68. Stone RC, Horvath K, Kark JD, Susser E, Tishkoff SA, Aviv A. Telomere Length and
 589 the Cancer-Atherosclerosis Trade-Off. PLoS Genet 2016;12(7):e1006144.
- 590 69. Pierce BL, Burgess S. Efficient design for Mendelian randomization studies:
 591 subsample and 2-sample instrumental variable estimators. Am J Epidemiol
 592 2013;178(7):1177–84.
- 593 70. Burgess S, Butterworth AS, Thompson JR. Beyond Mendelian randomization: how to
 594 interpret evidence of shared genetic predictors. J Clin Epidemiol 2015;1–9.
- 595 71. Centers for Disease Control and Prevention [Internet]. [cited 2016 Jul 14];Available
 596 from: http://www.cdc.gov/nchs/fastats/deaths.htm
- 72. Rafnar T, Sulem P, Thorleifsson G, et al. Genome-wide association study yields
 variants at 20p12.2 that associate with urinary bladder cancer. Hum Mol Genet
 2014;23(20):5545-57.
- Michailidou K, Hall P, Gonzalez-Neira A, et al. Large-scale genotyping identifies 41
 new loci associated with breast cancer risk. Nat Genet 2013;45(4):353–61, 361e1–2.
- 502 74. Schumacher FR, Schmit SL, Jiao S, et al. Genome-wide association study of colorectal
 503 cancer identifies six new susceptibility loci. Nat Commun 2015;6:7138.
- Spurdle AB, Thompson DJ, Ahmed S, et al. Genome-wide association study identifies
 a common variant associated with risk of endometrial cancer. Nat Genet
 2011;43(5):451–4.
- Fine-mapping of the HNF1B multicancer locus
 identifies candidate variants that mediate endometrial cancer risk. Hum Mol Genet
 2015;24(5):1478–92.
- Abnet CC, Freedman ND, Hu N, et al. A shared susceptibility locus in PLCE1 at
 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat
 Genet 2010;42(9):764–7.
- 613 78. Wrensch M, Jenkins RB, Chang JS, et al. Variants in the CDKN2B and RTEL1

614 615		regions are associated with high-grade glioma susceptibility. Nat Genet 2009;41(8):905-8.											
616 617 618	79.	McKay JD, Truong T, Gaborieau V, et al. A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium. PLoS Genet 2011;7(3):e1001333.											
619 620 621	80.	Purdue MP, Johansson M, Zelenika D, et al. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat Genet 2010;43(1):60–5.											
622 623	81.	Wang Y, McKay JD, Rafnar T, et al. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat Genet 2014;46(7).											
624 625	82.	Amos CI, Wang L-E, Lee JE, et al. Genome-wide association study identifies novel loci predisposing to cutaneous melanoma. Hum Mol Genet 2011;20(24):5012–23.											
626 627 628	83.	Zhang M, Song F, Liang L, et al. Genome-wide association studies identify several new loci associated with pigmentation traits and skin cancer risk in European Americans. Hum Mol Genet 2013;22(14):2948–59.											
629 630 631	84.	Diskin SJ, Capasso M, Schnepp RW, et al. Common variation at 6q16 within HACE1 and LIN28B influences susceptibility to neuroblastoma. Nat Genet 2012;44(10):1126–30.											
632 633 634	85.	Pharoah PDP, Tsai Y-Y, Ramus SJ, et al. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genet 2013;45(4):362–70, 370e1–2.											
635 636	86.	Wolpin BM, Rizzato C, Kraft P, et al. Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nat Genet 2014;46(9):994–1000.											
637 638 639	87.	Eeles RA, Olama AA Al, Benlloch S, et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat Genet 2013;45(4):385–91, 391e1–2.											
640 641 642	88.	Al Olama AA, Kote-Jarai Z, Berndt SI, et al. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat Genet 2014;46(10):1103–9.											
643 644	89.	Turnbull C, Rapley E a, Seal S, et al. Variants near DMRT1, TERT and ATF7IP are associated with testicular germ cell cancer. Nat Genet 2010;42(7):604–7.											
645 646	90.	Rapley EA, Turnbull C, Al Olama AA, et al. A genome-wide association study of testicular germ cell tumor. Nat Genet 2009;41(7):807–10.											
647 648 649 650 651	91.	EArly Genetics and Lifecourse Epidemiology (EAGLE) Eczema Consortium, Australian Asthma Genetics Consortium(AAGC), Australian Asthma Genetics Consortium AAGC. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat Genet 2015;47(12):1449–56.											
652 653	92.	Dubois PC a, Trynka G, Franke L, et al. Multiple common variants for celiac disease influencing immune gene expression. Nat Genet 2010;42(4):295–302.											
654	93.	Liu JZ, van Sommeren S, Huang H, et al. Association analyses identify 38											

- susceptibility loci for inflammatory bowel disease and highlight shared genetic risk
 across populations. Nat Genet 2015;47(9):979–86.
- 657 94. Thompson SD, Marion MC, Sudman M, et al. Genome-wide association analysis of
 658 juvenile idiopathic arthritis identifies a new susceptibility locus at chromosomal region
 659 3q13. Arthritis Rheum 2012;64(8):2781–91.
- Beecham AH, Patsopoulos NA, Xifara DK, et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 2013;45(11):1353–60.
- 663 96. Schaefer AS, Richter GM, Nothnagel M, et al. A genome-wide association study
 664 identifies GLT6D1 as a susceptibility locus for periodontitis. Hum Mol Genet
 665 2010;19(3):553-62.
- Stahl EA, Raychaudhuri S, Remmers EF, et al. Genome-wide association study metaanalysis identifies seven new rheumatoid arthritis risk loci. Nat Genet 2010;42(6):508–
 14.
- Bown MJ, Jones GT, Harrison SC, et al. Abdominal aortic aneurysm is associated with
 a variant in low-density lipoprotein receptor-related protein 1. Am J Hum Genet
 2011;89(5):619–27.
- 672 99. Gretarsdottir S, Baas AF, Thorleifsson G, et al. Genome-wide association study
 673 identifies a sequence variant within the DAB2IP gene conferring susceptibility to
 674 abdominal aortic aneurysm. Nat Genet 2010;42(8):692–7.
- Iones GT, Bown MJ, Gretarsdottir S, et al. A sequence variant associated with sortilinI (SORT1) on 1p13.3 is independently associated with abdominal aortic aneurysm.
 Hum Mol Genet 2013;22(14):2941–7.
- 101. Harrison SC, Smith AJP, Jones GT, et al. Interleukin-6 receptor pathways in abdominal aortic aneurysm. Eur Heart J 2013;34(48):3707–16.
- Elmore JR, Obmann MA, Kuivaniemi H, et al. Identification of a genetic variant
 associated with abdominal aortic aneurysms on chromosome 3p12.3 by genome wide
 association. J Vasc Surg 2009;49(6):1525–31.
- Borthwick K, Smelser D, Bock J, et al. Ephenotyping for Abdominal Aortic Aneurysm
 in the Electronic Medical Records and Genomics (emerge) Network: Algorithm
 Development and Konstanz Information Miner Workflow. Int J Biomed Data Min
 2015;4(1).
- Schunkert H, König IR, Kathiresan S, et al. Large-scale association analysis identifies
 13 new susceptibility loci for coronary artery disease. Nat Genet 2011;43(4):333–8.
- Smith NL, Felix JF, Morrison AC, et al. Association of genome-wide variation with
 the risk of incident heart failure in adults of European and African ancestry: a
 prospective meta-analysis from the cohorts for heart and aging research in genomic
 epidemiology (CHARGE) consortium. Circ Cardiovasc Genet 2010;3(3):256–66.
- Woo D, Falcone GJ, Devan WJ, et al. Meta-analysis of genome-wide association
 studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. Am J
 Hum Genet 2014;94(4):511–21.
- 696 107. Malik R, Freilinger T, Winsvold BS, et al. Shared genetic basis for migraine and

- 697 ischemic stroke: A genome-wide analysis of common variants. Neurology
 698 2015;84(21):2132–45.
- Traylor M, Farrall M, Holliday EG, et al. Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol 2012;11(11):951–62.
- 109. Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 2009;41(6):703-7.
- Morris ADPDPA, Voight BFB, Teslovich TMT, et al. Large-scale association analysis
 provides insights into the genetic architecture and pathophysiology of type 2 diabetes.
 Nat Genet 2012;44(9):981–90.
- Fritsche LG, Chen W, Schu M, et al. Seven new loci associated with age-related macular degeneration. Nat Genet 2013;45(4):433–9, 439e1–2.
- Jensen RA, Sim X, Li X, et al. Genome-wide association study of retinopathy in individuals without diabetes. PLoS One 2013;8(2):e54232.
- 113. Moffatt MF, Kabesch M, Liang L, et al. Genetic variants regulating ORMDL3
 expression contribute to the risk of childhood asthma. Nature 2007;448(7152):470–3.
- 714 114. Ferreira MAR, Matheson MC, Duffy DL, et al. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet (London, England)
 716 2011;378(9795):1006–14.
- T17 115. Cho MH, McDonald M-LN, Zhou X, et al. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Respir Med 2014;2(3):214–25.
- Fingerlin TE, Murphy E, Zhang W, et al. Genome-wide association study identifies
 multiple susceptibility loci for pulmonary fibrosis. Nat Genet 2013;45(6):613–20.
- Fogh I, Ratti A, Gellera C, et al. A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis. Hum Mol Genet 2014;23(8):2220–31.
- 118. Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals
 identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet
 2013;45(12):1452–8.
- 119. Boraska V, Franklin CS, Floyd JAB, et al. A genome-wide association study of
 anorexia nervosa. Mol Psychiatry 2014;19(10):1085–94.
- Smoller JW, Hospital MG. Identification of risk loci with shared effects on five major
 psychiatric disorders: a genome-wide analysis. Lancet 2013;381(9875):1371–9.
- 121. Sklar P, Ripke S, Scott LJ, et al. Large-scale genome-wide association analysis of
 bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet
 2011;43(10):977-83.
- Ripke S, Wray NR, Lewis CM, et al. A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry 2013;18(4):497–511.
- 737 123. Ripke S, Neale BM, Corvin A, et al. Biological insights from 108 schizophrenia-

- associated genetic loci. Nature 2014;511(7510):421–7.
- 124. Scharf JM, Yu D, Mathews CA, et al. Genome-wide association study of Tourette's syndrome. Mol Psychiatry 2013;18(6):721–8.
- Köttgen A, Pattaro C, Böger C a, et al. New loci associated with kidney function and chronic kidney disease. Nat Genet 2010;42(5):376–84.
- 126. Nyholt DR, Low S-K, Anderson CA, et al. Genome-wide association meta-analysis identifies new endometriosis risk loci. Nat Genet 2012;44(12):1355–9.
- 745

Tables and Figures

Table 1. Single nucleotide polymorphisms used as genetic proxies for telomere length

SNPs	Chr	Pos	Gene	EA	OA	EAF*	Beta*	SE*	P-value*	Phet*	No. studies*	Sample size*	Discovery p-value	% variance explained	Discovery study
rs11125529	2	54248729	ACYP2	А	С	0.16	0.065	0.012	0.000606	0.313	6	9177	8.00E-10	0.080	Codd ¹⁹
rs6772228	3	58390292	PXK	Т	А	0.87	0.041	0.014	0.049721	0.77	6	8630	3.91E-10	0.200	Pooley ¹⁵
rs12696304	3	169763483	TERC	С	G	0.74	0.090	0.011	5.41E-08	0.651	6	9012	4.00E-14	0.319	Codd ²⁰
rs10936599	3	169774313	TERC	С	Т	0.76	0.100	0.011	1.76E-09	0.087	6	9190	3.00E-31	0.319	Codd ¹⁹
rs1317082	3	169779797	TERC	А	G	0.71	0.097	0.011	4.57E-09	0.029	6	9176	1.00E-08	0.319	Mangino ¹⁶
rs10936601	3	169810661	TERC	С	Т	0.74	0.087	0.011	8.64E-08	0.433	6	9150	4.00E-15	0.319	Pooley ¹⁵
rs7675998	4	163086668	NAF1	G	А	0.80	0.048	0.012	0.008912	0.077	6	9161	4.35E-16	0.190	Codd ¹⁹
rs2736100	5	1286401	TERT	С	А	0.52	0.085	0.013	2.14E-05	0.54	4	5756	4.38E-19	0.310	Codd ¹⁹
rs9419958	10	103916188	OBFC1	Т	С	0.13	0.129	0.013	5.26E-11	0.028	6	9190	9.00E-11	0.171	Mangino ¹⁶
rs9420907	10	103916707	OBFC1	С	А	0.14	0.142	0.014	1.14E-11	0.181	6	9190	7.00E-11	0.171	Codd ¹⁹
rs4387287	10	103918139	OBFC1	А	С	0.14	0.120	0.013	1.40E-09	0.044	6	8541	2.00E-11	0.171	Levy ²³
rs3027234	17	8232774	CTC1	С	Т	0.83	0.103	0.012	2.75E-08	0.266	6	9108	2.00E-08	0.292	Mangino ¹⁶
rs8105767	19	22032639	ZNF208	G	А	0.25	0.064	0.011	0.000169	0.412	6	9096	1.11E-09	0.090	Codd ¹⁹
rs412658	19	22176638	ZNF676	Т	С	0.35	0.086	0.010	1.83E-08	0.568	6	9156	1.00E-08	0.484	Mangino ¹⁶
rs6028466	20	39500359	DHX35	А	G	0.17	0.058	0.013	0.003972	0.533	6	9190	2.57E-08†	0.041	Mangino ¹⁶ & Gu ¹⁸
rs755017	20	63790269	ZBTB46	G	А	0.17	0.019	0.0129	0.339611	0.757	5	8026	6.71E-09	0.090	Codd ¹⁹

*Summary data from Mangino et al¹⁶; Chr, chromosome; pos, base-pair position (GRCh38.p3); EA, effect allele, OA, other allele, Beta, standard deviation change in telomere length per copy of the effect allele; SE, standard error; EAF - effect allele frequency; Phet - p value for between-study heterogeneity in association between SNP and telomere length; \dagger from a meta-analysis of Mangino¹⁶ and Gu¹⁸ performed in the present study.

 Table 2. Study characteristics for primary non-communicable diseases

	No.	No.	No.	Statistical	Der	Study / First anth an
Canaan	cases	controls	SNPs	power	Pop.	Study / First author
Cancer Bladder cancer	1601	1819	10	0.62	EUR	NBCS ⁷²
				1.00	EUR	BCAC ^{15,73}
Breast cancer	48155	43612	13			BCAC ^{15,73}
Estrogen receptor –ve	7465	42175	13	1.00	EUR	BCAC ^{15,73}
Estrogen receptor +ve	27074	41749	13	1.00	EUR	CORECT/GECC ^{60,74}
Colorectal cancer	14537	16922	9	1.00	EUR	ECAC ^{75,76}
Endometrial cancer	6608	37925	12 11	1.00	EUR EA	Abnet ⁷⁷
Esophageal SCC Glioma	1942 1130	2111 6300	11	0.64 0.72	EA	Wrensch ⁷⁸ & Walsh ⁶²
Head & neck cancer	2082	3477	12	1.00	EUR	McKay et al ⁷⁹
Kidney cancer	2082 2461	5081	12	0.99	EUR	KIDRISK ⁸⁰
Lung cancer	11348	15861	12	1.00	EUR	ILCCO ⁸¹
Adenocarcinoma	3442	14894	13	1.00	EUR	ILCCO ⁸¹
Squamous cell carcinoma	3442	15038	13	1.00	EUR	ILCCO ⁸¹
Skin cancer	3213	15058	13	1.00	LUK	liceo
Melanoma	1804	1026	12	1.00	EUR	NCCC ⁸²
Basal cell carcinoma	3361	11518	12	1.00	EUR	NHS/HPFS ⁸³
Neuroblastoma	2101	4202	13	0.87	EUR	Diskin ⁸⁴
Ovarian cancer	15397	30816	12	1.00	EUR	OCAC ^{15,85}
Clear cell	1016	30816	13	0.76	EUR	OCAC ^{15,85}
Endometriod	2154	30816	13	0.98	EUR	OCAC ^{15,85}
Mucinous	1643	30816	13	0.90	EUR	OCAC ^{15,85}
Serous invasive	9608	30816	13	1.00	EUR	OCAC ^{15,85}
Serous LMP	972	30816	13	0.73	EUR	OCAC ^{15,85}
Pancreatic cancer	5105	8739	12	1.00	EUR	PANSCAN ⁸⁶
Prostate cancer	22297	22323	11	1.00	EUR	PRACTICAL ^{87,88}
Testicular germ cell cancer	986	4946	11	0.52	EUR	Turnbull ⁸⁹ & Rapley ⁹⁰
Autoimmune/inflammatory dis		1910		0.02	Lon	
Atopic dermatitis	10788	30047	13	1.00	EUR	EAGLE ⁹¹
Celiac disease	4533	10750	3	0.82	EUR	Dubois ⁹²
Inflammatory bowel disease		10,00	U	0.02	Don	2 40010
Crohn's disease	5956	14927	11	1.00	EUR	IIBDGC ⁹³
Ulcerative colitis	6968	20464	12	1.00	EUR	IIBDGC ⁹³
Juvenile idiopathic arthritis†	1866	14786	11	0.87	EUR	Thompson ⁹⁴
Multiple sclerosis	14498	24091	1	0.87	EUR	IMSGC ⁹⁵
Aggressive periodontitis	888	6789	13	0.63	EUR	Schaefer ⁹⁶
Rheumatoid arthritis	5538	20163	11	1.00	EUR	Stahl ⁹⁷
Cardiovascular diseases						
Abdominal aortic aneurysm	4972	99858	13	1.00	EUR	AC^{98-103}
Coronary heart disease	22233	64762	13	1.00	EUR	CARDIoGRAM ¹⁰⁴
Heart failure	2526	20926	13	0.99	EUR	CHARGE-HF ¹⁰⁵
Hemorrhagic stroke	2963	5503	12	0.96	EUR	METASTROKE/ISGC ¹⁰⁶
Ischemic stroke	12389	62004	13	1.00	EUR	METASTROKE/ISGC ^{107,}
large vessel disease	2167	62004	13	0.99	EUR	METASTROKE/ISGC ^{107,}
small vessel disease	1894	62004	13	0.97	EUR	METASTROKE/ISGC ¹⁰⁷
cardioembolic	2365	62004	13	0.99	EUR	METASTROKE/ISGC ¹⁰⁷
Sudden cardiac arrest	3954	21200	13	1.00	EUR	Unpublished
Diabetes						-
Type 1 diabetes	7514	9045	6	0.95	EUR	T1Dbase ¹⁰⁹
Type 2 diabetes	10415	53655	11	1.00	EUR	DIAGRAM ¹¹⁰
Eye disease						
AMD	7473	51177	13	1.00	EUR	AMD Gene ¹¹¹
Retinopathy	1122	18289	12	0.75	EUR	Jensen ¹¹²

Lung diseases						
Asthma	13034	20638	4	1.00	EUR	Ferreira/GABRIEL ^{113,114}
COPD	2812	2534	12	0.85	EUR	COPDGene ¹¹⁵
Interstitial lung disease	1616	4683	9	0.60	EUR	Fingerlin ¹¹⁶
Neurological / psychiatric dise	eases					-
ALS	6100	7125	12	1.00	EUR	SLAGEN/ALSGEN ¹¹⁷
Alzheimer's disease	17008	37154	12	1.00	EUR	IGAP ¹¹⁸
Anorexia nervosa	2907	14860	9	0.93	EUR	GCAN ¹¹⁹
Autism	4949	5314	7	0.82	EUR	PGC^{120}
Bipolar disorder	7481	9250	9	1.00	EUR	PGC ¹²¹
Major depressive disorder	9240	9519	8	0.99	EUR	PGC ¹²²
Schizophrenia	35476	46839	12	1.00	EUR	PGC ¹²³
Tourette syndrome	1177	4955	13	0.74	EUR	Scharf ¹²⁴
Other						
Chronic kidney disease	5807	56430	13	1.00	EUR	CKDGen ¹²⁵
Endometriosis	4604	9393	11	1.00	Mix	Nyholt ¹²⁶

tincludes unpublished data; Study acronyms: AC, the aneurysm consortium; ALSGEN, the International Consortium on Amyotrophic Lateral Sclerosis Genetics; AMD Gene, Age-related Macular Degeneration Gene Consortium; BCAC, Breast Cancer Association Consortium; CARDIOGRAM, Coronary ARtery DIsease Genome wide Replication and Meta-analysis; CHARGE-HF, Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium - Heart Failure Working Group; COPDGene, the genetic epidemiology of COPD; CKDGen, Chronic Kidney Disease; CORECT, ColoRectal Transdisciplinary Study; DIAGRAM, DIAbetes Genetics Replication And Meta-analysis; EAGLE, EArly Genetics & Lifecourse Epidemiology Eczema Consortium (excluding 23andMe); ECAC, Endometrial Cancer Association Consortium; GCAN, Genetic Consortium for Anorexia Nervosa; GECCO, Genetics and Epidemiology of Colorectal Cancer Consortium; IGAP, International Genomics of Alzheimer's Project; HPFS, Health Professionals Follow-Up Study; ILCCO, International Lung Cancer Consortium; IMSGC, International Multiple Sclerosis Genetic Consortium; IIBDGC, International Inflammatory Bowel Disease Genetics Consortium; KIDRISK, Kidney cancer consortium; METASTROKE/ISGC, METASTROKE project of the International Stroke Genetics Consortium; NBCS, Nijmegen Bladder Cancer Study; NHS, Nurses' Health Study; OCAC, Ovarian Cancer Association Consortium; NCCC, Dartmouth-Hitchcock Norris Cotton Cancer Center; PANSCAN, Pancreatic Cancer Cohort Consortium; PGC, Psychiatric Genomics Consortium; PRACTICAL, Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome; SLAGEN, Italian Consortium for the Genetics of Ayotrophic Lateral Sclerosis. Abbreviations: ALS, amyotrophic lateral sclerosis; AMD, age-related macular degeneration; COPD, chronic obstructive pulmonary disease; EUR, European; EA, East Asian; LMP, low malignant potential; No., number; Pop., population; SCC, squamous cell carcinoma; SNP, single nucleotide polymorphism; -ve, negative; +ve, positive.

Legend to Figure 1

*P value for association between genetically increased telomere length and disease from maximum likelihood; [†]the effect estimate for heart failure is a hazard ratio (all others are odds ratios); P_{het} , p value for heterogeneity amongst SNPs in the genetic risk score; SNP, single nucleotide polymorphism; CI, confidence interval; LMP, low malignancy potential; ER, estrogen receptor; -VE, negative; +VE, positive.

Legend to Figure 2

The plotted data show how the strength of the relationship between genetically longer telomeres and cancer varies by the selected characteristic. The R² statistic indicates how much of the variation between cancers can be explained by the selected characteristic. P values are from meta-regression models. Circle sizes are proportional to the inverse of the variance of the log odds ratio. The hashed line indicates the null of no association between telomere length and cancer (i.e. an odds ratio of 1). Data for percentage survival 5 years after diagnosis, cancer incidence and median age-at-diagnosis was downloaded from the Surveillance, Epidemiology, and End Results Program.³⁰ Data for average lifetime number of stem cell divisions was downloaded from Tomasetti and Vogelstein.³¹ SD, standard deviation; OR, Odds ratio. Not all cancers had information available for the selected characteristics (hence the number of cancers varies across the subplots). Information was available for 12 cancers for tissue-specific rates of stem cell division, 18 cancers for percentage surviving 5 years post-diagnosis, 23 cancers for cancer incidence and 18 cancers for median age-at-diagnosis.

Legend to Figure 3

*from fixed-effects meta-analysis of independent observational studies described in Table S3; [†]search strategy and characteristics for observational studies are described in Tables S3 and S4; ‡CCHS and CGPS; +PLCO, ATBC & SWHS (acronyms explained in Table S3); CI, confidence interval

Figure 1. Association between genetically increased telomere length and odds of primary non-communicable diseases

	Tumor/disease	No. of	No. of			
Concor	subtype	cases	SNPs			
Cancer Glioma Ovarian cancer Lung cancer Neuroblastoma Bladder cancer Skin cancer	- Serous LMP Adenocarcinoma - - Melanoma	692 972 3442 2101 1601 15976	10 13 13 12 10 12			
Testicular germ cell cancer Kidney cancer Endometrial cancer Skin cancer Ovarian cancer Breast cancer Ovarian cancer Prostate cancer Colorectal cancer Lung cancer Breast cancer	- Basal cell carcinoma Endometriod ER-ve Serous invasive - Squamous cell carcinoma ER+ve	985 2461 6608 3361 2154 7465 9608 22297 14537 3275 27074	11 12 12 13 13 13 13 13 11 9 13 13			
Ovarian cancer Ovarian cancer Esophageal cancer Pancreatic cancer Head & neck cancer	Clear cell Mucinous Squamous cell carcinoma Adenocarcinoma -	1016 1643 1942 5105 2082	13 13 8 12 12			
Neurological / psychiatric diseases Anorexia Nervosa Bipolar disorder	s - -	2907 7481	9 9			
Amyotrophic lateral sclerosis Tourette syndrome Major depressive disorder Autism Schizophrenia Alzheimer's disease		6100 1177 9240 4949 35476 17008	12 13 8 7 12 12			
Cardiovascular diseases Heart failure Ischaemic stroke Sudden cardiac arrest Hemorrhagic stroke Ischemic stroke Coronary heart disease Ischaemic stroke Abdominal aortic aneurysm	- Small vessel disease - Cardioembolic - Large vessel disease -	2526 1894 3954 2963 2365 22233 2167 4972	13 13 13 12 13 13 13 13			
Autoimmune/inflammatory diseases						
Inflammatory bowel disease Periodontitis Atopic dermatitis Inflammatory bowel disease Multiple sclerosis Rheumatoid arthritis Juvenile idiopathic arthritis Celiac disease	Crohn's disease - - Ulcerative colitis - -	5956 888 10788 6968 14498 5538 1866 4533	11 13 13 12 3 11 11 3			
Other diseases						
Retinopathy Age-related macular degeneration Type 2 diabetes Endometriosis Chronic kidney disease Chronic obstructive pulmonary disease Asthma Type 1 diabetes		1126 7473 10415 4604 5807 2812 13034 7514	12 13 11 11 13 12 4 6			
Interstitial lung disease		1616	9 —			

.12

Odds ratio[†] (95% CI) per standard deviation change in genetically increased telomere length

P*

	-
7.31 $(3.65, 14.63)$ 4.35 $(2.39, 7.94)$ 3.19 $(2.40, 4.22)$ 2.98 $(1.92, 4.62)$ 2.19 $(1.32, 3.66)$ 1.97 $(1.14, 3.41)$ 1.76 $(1.02, 3.04)$ 1.55 $(1.08, 2.23)$ 1.31 $(1.07, 1.61)$ 1.22 $(0.90, 1.65)$ 1.21 $(0.87, 1.68)$ 1.12 $(0.94, 1.34)$ 1.12 $(0.94, 1.34)$ 1.12 $(0.96, 1.30)$ 1.09 $(0.91, 1.31)$ 1.07 $(0.82, 1.39)$ 1.06 $(0.95, 1.17)$ 1.04 $(0.66, 1.63)$ 1.04 $(0.73, 1.47)$ 1.03 $(0.62, 1.72)$ 0.86 $(0.56, 1.32)$ 0.86 $(0.57, 1.30)$	$\begin{array}{c} 1.62 \times 10 \\ 6.66 \times 10 \\ 1.11 \times 10 \\ 0.0026 \\ 0.0157 \\ 0.0423 \\ 0.0164 \\ 0.0091 \\ 0.2030 \\ 0.2499 \\ 0.2543 \\ 0.2089 \\ 0.1533 \\ 0.3436 \\ 0.6212 \\ 0.2912 \\ 0.8676 \\ 0.8396 \\ 0.9055 \\ 0.5009 \end{array}$
1.14 (0.82, 1.58) 1.13 (0.89, 1.44) 1.12 (0.86, 1.47) 1.10 (0.68, 1.78) 1.07 (0.84, 1.37) 1.01 (0.73, 1.39) 1.01 (0.90, 1.12) 0.84 (0.71, 0.98)	0.3150 0.4050 0.6936 0.5646 0.9515 0.9245
1.02 (0.77, 1.35) 0.94 (0.66, 1.33) 0.92 (0.68, 1.26) 0.92 (0.61, 1.37) 0.88 (0.64, 1.22) 0.78 (0.67, 0.90) 0.74 (0.52, 1.04) 0.63 (0.49, 0.81)	0.7141 0.6200 0.6719 0.4464 0.0009 0.0801
1.12 (0.87, 1.45) 1.12 (0.67, 1.87) 1.05 (0.88, 1.24) 1.03 (0.81, 1.29) 0.98 (0.70, 1.36) 0.87 (0.65, 1.15) 0.85 (0.59, 1.21) 0.42 (0.28, 0.61)	0.6702 0.6095 0.8303 0.8885 0.3184 0.3669
1.39 (0.89, 2.16) 1.19 (0.96, 1.48) 1.00 (0.84, 1.20) 0.98 (0.75, 1.27) 0.94 (0.77, 1.16) 0.90 (0.64, 1.27) 0.81 (0.64, 1.02) 0.71 (0.51, 0.98) 0.09 (0.05, 0.15)	0.1206 0.9837 0.8606 0.5859 0.5598 0.0779 0.0378

function of selected characteristics

Figure 3. Comparison of genetic and prospective observational studies^T of the association between telomere length and disease

between telomere len	No. of cases	Odds ratio (99% CI) per standard deviation in telomere length	increase
Breast cancer Genetic study Observational study*	48155 1716	+	1.08 (0.99, 1.19) 1.02 (0.99, 1.05)
Prostate cancer Genetic study Observational study*	22297 1340	*-	1.12 (0.96, 1.30) 1.07 (1.01, 1.14)
Ovarian cancer Genetic study Observational study	15397 96	-	1.09 (0.94, 1.27) 1.13 (0.98, 1.32)
Colorectal cancer Genetic study Observational study*	14537 1447	+	1.09 (0.91, 1.31) 1.04 (0.97, 1.11)
Lung cancer Genetic study Observational study‡ Observational study+	11348 522 847	 ↓ → ↓ → 	1.71 (1.44, 2.04) 0.94 (0.87, 1.02) 1.28 (1.12, 1.46)
Endometrial cancer Genetic study Observational study*	6608 382	↓	1.31 (1.07, 1.61) 1.06 (0.95, 1.19)
Pancreatic cancer Genetic study Observational study*	5105 648		0.86 (0.56, 1.32) 1.05 (0.95, 1.17)
Lung adenocarcinoma Genetic study Observational study	3442 288	→ →	3.19 (2.40, 4.22) 1.44 (1.14, 1.82)
Skin basal cell carcinoma Genetic study Observational study	3361 363	- +	1.22 (0.90, 1.65) 0.96 (0.85, 1.09)
Lung squamous cell carcinoma Genetic study Observational study	3275 163	_ +	1.07 (0.82, 1.39) 1.05 (0.78, 1.42)
Kidney cancer Genetic study Observational study*	2461 268		1.55 (1.08, 2.23) 0.94 (0.81, 1.10)
Head & neck cancer Genetic study Observational study	2082 76		0.86 (0.57, 1.30) 0.89 (0.72, 1.09)
Melanoma Genetic study Observational study*	1804 734	→	1.97 (1.14, 3.41) 1.17 (1.06, 1.29)
Bladder cancer Genetic study Observational study	1601 184		2.19 (1.32, 3.66) 1.28 (1.02, 1.61)
Testicular cancer Genetic study Observational study	986 10	-	1.76 (1.02, 3.04) 0.94 (0.56, 1.55)
Glioma Genetic study Observational study	692 101		7.31 (3.65, 14.63) 0.90 (0.68, 1.18)
Coronary heart disease Genetic study Observational study	22233 2272	★	0.78 (0.67, 0.90) 0.86 (0.78, 0.94)
Ischemic stroke Genetic study Observational study	12389 824	- -	0.85 (0.73, 1.00) 0.94 (0.82, 1.08)
Type 2 diabetes Genetic study Observational study	10415 2011	+	1.00 (0.84, 1.20) 0.90 (0.83, 0.97)
		.5 1 2 4 8 10	6