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3-D Free Vibration Analysis of Doubly-Curved Shells 

 

 

 

Abstract 

The vibration analysis is presented for determining the natural frequencies and mode 

shapes of a class of doubly-curved shells with different boundary conditions, which 

can be considered to be a panel taking from the hollow torus with annular 

cross-section. The small strain, three-dimensional (3-D), linear elasticity theory is 

used to describe the governing equations of the problem, which is associated with the 

toroidal coordinate system (r,θ,φ) composed of the usual polar coordinates (r,θ) 

originating at sectorial cross-section center and an angle coordinate φ originating at 

the toroidal center. The Chebyshev-Ritz method is used to derive the eigenvalue 

equation: each displacement is taken as the triplicate product of the Chebyshev 

polynomials in r, θ and φ directions, multiplied by a boundary function along with a 

set of generalized coefficients, thus yielding upper bound values of natural 

frequencies. As the degree of the Chebyshev polynomials increases, frequencies 

converge monotonically to the exact values. The accuracy is demonstrated by 

convergence and comparison studies. The effects of thickness ratio, radius ratio, angle 

in φ direction, initial angle and subtended angle in θ direction on natural frequencies 

and mode shapes are discussed in detail. 

 

Keywords: Three-dimensional elasticity; doubly curved shell; vibration analysis; 

natural frequency; Chebyshev-Ritz method 
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1. Introduction 

Shells are widely used components in engineering such as aerospace, marine, nuclear 

and building. It is well known that the scopes of shell study are rather extensive and 

the configuration of shells is very varied. Therefore, they have particular attraction for 

architectural designers. In most cases, a shell structure takes on both the visual 

function and the practical function, such as the domes in churches, stadiums and 

museums. Melaragno [1] summarized the shell art in building design. 

 Various shell theories from thin shells to thick shells were developed by 

introducing different assumptions for approximation, e.g. Love [2], Donnell [3], 

Reissner [4] and Flügge [5]. A lot of researchers studied the vibrations of shells by 

analytical methods and numerical methods. Chaudhuri and Kabir [6] presented the 

Navier-type solution for cross-ply doubly curved panels using the shallow shell 

theories. Reddy [7] presented the exact solution for simply supported cross-ply 

spherical shell panels using the modified Sanders shell theory. Furthermore, Reddy 

and Liu [8] presented the Navier-type solutions for spherical shells using the 

higher-order shear deformation theory. Biglari and Jafari [9] studied the simply 

supported spherical sandwich panels using a refined sandwich theory. 

Hosseini-Hashemi and Fadaee [10] presented the closed-form solution for free 

vibration of moderately thick spherical shell panels. It is known that most of the 

analytical solutions for shell panels were limited to simply supported boundary 

conditions.  

For the general cases, numerical methods should be used to analyze the 

mechanical properties of shells, such as finite element method [11], differential 

quadrature method [12] and meshless method [13] etc. It should be mentioned that the 

Ritz method has the excellent advantage of high accuracy and small computational 
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cost in vibration analysis of structure elements, which is especially suitable for the 

parameterizing study. Liew et al. [14] summarized the study on vibrations of shallow 

shells. Lim et al. [15] made a detailed study on the applicable range of shallow shell 

theory for single curve cylindrical panels using the two-dimensional simple 

polynomials as admissible functions. Quta and Leissa [16,17] studied the free 

vibration of shallow shells with two adjacent edges clamped and examined the effect 

of edge constraints on frequencies of shallow shells using the algebraic polynomials 

as admissible functions. Furthermore, Narita and Liessa [18] studied the vibration of 

completely free shallow shells with curvilinear planform. Based on the 

Kirchhoff-Love theory, the vibration characteristics of shells from cylindrical shells 

[19,20] to doubly-curved shells [21-23] were analyzed. However, with the increase of 

shell thickness, the shear deformable effect becomes significant. In such a case, 

refined theories, e.g. first-order deformable theory [24] or higher-order theory [25], 

should be taken. Liew and Lim [26-28] made a systematic study on the vibration 

characteristics of doubly-curved thick shallow shells using the two-dimensional 

polynomials as admissible functions in the Ritz method. 

It is well known that the exact elasticity theory does not reply on any hypotheses 

involving the kinematics of deformation. Using the three-dimensional (3-D) elasticity 

theory, a complete set of frequency spectrum without missing any modes could be 

obtained, which cannot otherwise be predicted by the approximate theories. Such an 

analysis not only provides the realistic results but also allows overall physical insights. 

Compared with the works based on various shell theories as mentioned above, those 

developed directly from the exact three-dimensional linear elasticity are 

comparatively far fewer. Leissa and Kang [29,30] studied the 3-D vibration of thick 

shells of revolution and Paraboloidal shells using the algebraic polynomials as 

admissible functions. Also Kang and Leissa [31,32] studied the 3-D vibrations of 
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thick hyperboloidal shells of revolution and thick spherical shell segments with 

variable thickness. Young [33] studied the 3-D vibration of doubly-curved shells with 

arbitrarily deep in one direction. McGee and Spry [34] studied the 3-D vibration of 

spherical shells of revolution. Liew et al. [35] used the one- and two-dimensional 

orthogonal polynomials as admissible functions to study 3-D vibrations of spherical 

shell panels. Lim et al. [36] studied the 3-D vibration of open cylindrical panels. Liew 

et al. [37] verified the accuracy of the Ritz solutions through the comparison with the 

finite element solutions.  

It is clear that 3-D Ritz solutions are referred to the eigen-value matrices with 

large size. The accuracy and convergence greatly depend on the admissible functions 

chosen. Unsuitable admissible functions could result in bad convergence and/or 

instable numerical computations. As is well known, the Chebyshev polynomials [38] 

are a set of orthogonal polynomials with a lot of excellent mathematical properties. 

Using such polynomials as admissible functions can speed up the convergence of 

results and guarantee the numerical stability in the 3-D vibration analysis of structural 

components [39]. Zhou and his co-workers [40-42] studied 3-D vibrations of 

cylinders, annular sector plates and circular plates with varying thickness by using the 

Chebyshev-Ritz method. Excellent convergence and high accuracy of the method 

have been demonstrated. For solid/hollow rings with circular or sectorial cross-section 

[43-45] and circularly-curved beams with circular cross-section [46], using a set of 

toroidal coordinate system displays the technical convenience in 3-D vibration 

analysis. Under the toroidal coordinates developed, all the boundaries of the problems 

aforementioned are described by the constant coordinate values. In the present study, 

this coordinate system will be used to analyze the three-dimensional vibration of a 

variety of doubly-curved thick shells based on the exact small strain linear elasticity 

theory, combining with the Chebyshev-Ritz method. 
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2. Formulation 

Firstly, we consider a hollow ring torus with annular cross-section as shown in Figure 

1. The outer radius of the cross-section is r1 and the inner radius is r0. The toroidal 

radius (the distance from the center of the torus to the center of the cross-section) is R. 

A combination of the two-dimensional polar coordinates (r,θ) with the original at the 

center of the cross-section and the one-dimensional angle coordinate φ with the 

original at the center of the torus is chosen to describe the strains and stresses. The 

angle θ is measured from the torus plane. Now, we take a panel from the torus in such 

a way that φ is from 0 to φ0 (called toroidal angle) and θ is from θ0 (called initial angle) 

to θ1+θ0 (θ1 is called subtended angle) as shown in Figure 1. It can be seen from 

Figure 1 that various shaped shell panels can be described by taking different θ0 and 

θ1. Three typical shell panels are given in Figure 2, in which (a) is taken from the 

outer part of the torus, (b) is taken from the inner part of the torus while (c) is taken 

from the lateral part of the torus. It is obvious that R=0 means spherical shell panels 

and ∞=R  means cylindrical shell panels. The three-dimensional coordinates (r,θ,ϕ) 

form an orthogonal set, the position vector indicated in Figure 1 defines a typical 

elastic point P on the torus mathematically represented parametrically as  
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The determinant of the Jacobian matrix [J] defining a ratio of volumetric changes in 

Cartesian coordinates to those in toroidal coordinates, as follows: 

( cos )dxdydz J r R r
drd d
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= = +            (2b) 

Let u, v and w, respectively, be the displacements in the r, θ and ϕ directions, the 

relations between three-dimensional tensor strains and displacement components in 

the present coordinate system are given by 
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Therefore, the strain energy V and the kinetic energy T of the shell panel undergoing 

free vibration are  

∫ ∫ ∫
+

++++++= 0 10

0

1

00

22 )2(22)2[()2/1(
ϕ θθ

θ θϕθ ελελεελεελ
r

r rrr GGV  

ϕθγγγελελε ϕθϕθϕϕθ ddrdJGG rr )]()2(2 2222 +++++ , 

ϕθρ
ϕ θθ

θ
ddrdJwvuT

r

r∫ ∫ ∫
+

++= 0 10

0

1

00

222 )()2/( &&&        (4) 

where ρ is the constant mass per unit volume; u& , v&  and w&  are the velocity 

components. The parameters λ and G are the Lamé constants for a homogeneous and 

isotropic material, which are expressed in terms of Young’s modulus E and Poisson’s 

ratio ν by 
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7 
 

In the free vibrations, the displacement components may be expressed as 

tierUu ωϕθ ),,(=  , tierVv ωϕθ ),,(= , tierWw ωϕθ ),,(=      (6)  

where ω is the circular eigenfrequency of the shell panel and 1−=i .  

Defining the following dimensionless coordinates: 
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Substituting equations (6) and (7) into equation (4) gives the maximums of strain and 
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The Lagrangian energy functional Π  of the shell panel is given by 

maxmax VT −=Π              (10) 

The displacement functions ),,( ϕθrU , ),,( ϕθrV  and ),,( ϕθrW  are expressed in 

terms of finite series as 
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where )(θuC , )(θvC  and )(θwC  are the boundary functions in the θ direction, 

which describe the boundary conditions of the panel at edges 0θθ =  and 10 θθθ += . 

)(ϕuD , )(ϕvD  and )(ϕwD  are the boundary functions in the φ direction, which 

describe the boundary conditions of the panel at edges 0=ϕ  and 0ϕϕ = . ijkA , 

lmnB  and pqsC  are the undetermined coefficients and I,J,K,L,M,N,P,Q,S are the 

truncated orders of their corresponding series. )(rFi , )(rFl , )(rFp , )(θjH , 
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)(θmH , )(θqH  and )(ϕkF , )(ϕnF , )(ϕsF  are the Chebyshev polynomials of 

first kind, which can be uniformly expressed as: 

)]12arccos()1cos[()( −−= χχ iFi ,    i=1,2,3,…,   ϕθχ ,,r=    (12) 

It is noted that in using the Ritz method, the stress boundary conditions of the panels 

need not be satisfied in advance, but the geometric boundary conditions should be 

satisfied exactly. There is no displacement restraint on the curved surfaces of the 

panels at r=r0 and r=r1. Therefore, the boundary functions )(θuC , )(θvC , )(θwC  

and )(ϕuD , )(ϕvD , )(ϕwD  are sufficient to enable the displacement components u, 

v and w satisfying the geometric boundary conditions at boundaries 0θθ = , 

10 θθθ += , and 0=ϕ , 0ϕϕ =  respectively, which are listed in Table 1. 

It should be mentioned that the Chebyshev polynomials has two distinct 

advantages. One is that )(χiF  (i=1,2,3,…) is a set of complete and orthogonal series 

in the interval [-1,1], which is more stable in numerical computations than other 

admissible functions such as the simple algebraic polynomials [38,39]. The other 

advantage is that )(χiF  (i=1,2,3,…) can be expressed in a simple and unified form 

of cosine functions, which is easier for coding than the orthogonal recurrent 

polynomials constructed from the Schmidt process. It is obvious that the completeness 

and orthogonality of the admissible functions in θ and/or φ directions have been 

destroyed by the boundary functions, except for the complete free panels. However, 

the boundary functions used here always take positive values in the panel domain. 

This means that the boundary functions are ineffective to the zero point distributions 

of the admissible functions within the panel domain, which are completely determined 

by the Chebyshev polynomials. Namely, the boundary functions can only adjust the 

amplitude of the Chebyshev polynomials in the panel domain. Therefore, the main 

properties of the Chebyshev polynomials are still reserved in the admissible functions. 
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We can conclude that there is no frequency lost in the present analysis if enough terms 

of the admissible functions are used. 

Minimizing functional (10) with respect to the coefficients of displacement functions, 

i.e. 
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we have the following eigenfrequency equation: 
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where Ga /ρω=Ω , and  
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Each elements in matrices ][ ijK  and ][ ijM  (i,j=u,v,w) can be numerically evaluated 

by the Gaussian quadrature. Solving equation (14), total I×J×K+L×M×N+P×Q×R 

eigenvalues and the corresponding modes can be obtained. 

 

3. Convergence and Comparison 

In order to validate the reliability of the proposed approach described above, it is 

necessary to conduct the convergence studies to determine the number of terms of 
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Chebyshev polynomial series used in equation (25). The convergence study is based 

upon the fact that all the frequencies obtained by the Ritz method should converge to 

their exact values in an upper bound manner. It is obvious that improper or very slow 

convergence means that the displacement functions chosen are poor ones. Two typical 

shell panels with completely free boundaries are considered firstly. One is taken from 

the convex part of the hollow torus, which is a cap-shaped shell panel. The other is 

taken from the concave part of the hollow torus, which is a saddle-shaped shell panel. 

The radius ratio of these two shell panels is R/r1 =1.2, the thickness ratio is r0/r1=0.8, 

the toroidal angle of the shell panels is φ0=90o and the subtended angle of the 

cross-section is θ1=90o. For the cap-shaped shell panel, the initial angle of the 

cross-section is θ0=-45o and for the saddle-shaped shell panel, the initial angle of the 

cross-section is θ0=135o. The Poisson’ ratio is ν=0.3. From these shells configurations, 

the vibration modes can be classified into the AA, AS, SA and SS ones where the 

capital letter “A” means antisymmetric while “S” means symmetric. The first capital 

letter is with respect to the φ plane and the second is with respect to the r-θ plane. 

Table 2 and Table 3 give the first eight dimensionless frequencies of every mode 

classifications for these two shell panels where six zero frequencies for completely 

free shell panel are not included. To make the convergence study simplified, equal 

numbers of Chebyshev polynomial terms in every coordinates were taken for all the 

three displacement functions U, V and W, although using unequal numbers of 

Chebyshev polynomial terms could provide the optimal computations. Five groups of 

different terms were checked. It is seen from Table 2 and Table 3 that with the 

increase of the number of terms, all of the frequencies monotonically decrease. Using 

9×9×9 terms of the Chebyshev polynomials give the same frequencies with five 

significant figures as those using 10×10×10 terms of the Chebyshev polynomials. 

Even only using 5×5×5 terms still guarantee a satisfied accuracy. 
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A comparison study of the present 3-D Chebyshev-Ritz solutions with 

previously published 2-D and 3-D solutions is given in Table 4 for spherical shells 

panels with square planform from thin shells to thick shells. In order to be in keeping 

with the references, the dimensionless frequency  is taken with a new set of 

size parameters: the mean radius rm, the shell thickness h and the side length of the 

square planform a. The Poisson’s ratio is ν=0.3. Two kinds of boundary conditions are 

considered: completely free (FFFF) and fully clamped (CCCC). The available results 

are from the first-order theory [26], the third-order theory [8], the higher-order theory 

[7] and the exact 3-D theory [35], respectively. It is observed from Table 4 that in 

general the present Chebyshev-Ritz solutions are in good agreement with those from 

different theories, however closer to the orthogonal polynomial-Ritz solutions which 

are also from the exact 3-D elasticity [35]. It is seen that with the increase of the shell 

thickness, the differences between the 3-D solutions and the 2-D solutions increase, 

especially for the fully clamped (CCCC) spherical shell panels. 

 It is well known that the finite element solutions can provide reliable results with 

large computational cost. The comparative study of the present solutions with those 

obtained by the finite element (FE) method is summarized in Tables 5-7 for three shell 

panels: two cap-shaped shell panels and a saddle-shaped shell panel. The shells are 

made of concrete with the elastic modulus E=3.25×1010 Pa, per unit volume ρ=2600 

kg/m3 and the Poisson’s ratio ν=0.2. The tetrahedral solid elements with four nodes in 

software package ANSYS, 38424 elements with 212658 degree of freedom, were 

used for the numerical computations. In Table 5 and Table 7, the sizes of the shell 

panels are R=80m, r0=40m and r1=50m while in Table 6, the sizes of the shell panel 

are R=18m, r0=40m and r1=50m. These three shell panels have the different toroidal 

angles, subtended angles and initial angles. Three kinds of boundary conditions are 

considered: completely free (FFFF), fully clamped (CCCC) and clamped at two 
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edges in φ direction but free at two edges at θ direction (CFCF). It is seen from 

Tables 5-7 that the present solutions are in good agreement with the finite element 

solutions. Looking through the data, one can find that the present results are always 

lower than the corresponding ones from finite element. This means that the present 

solutions have higher accuracy than the finite element solutions because both the 

methods provide the upper bound values of the exact solutions. Moreover, it is seen 

that for thick shell panels, the frequencies tend to huddle together. Therefore, in some 

cases a large number of vibration modes could be required when a thick shell is 

subjected to broadband excitations. For example, when the thick panel is subjected to 

a shock load, it is necessary to use a large number of vibration modes to make a 

realistic prediction of the dynamic response. The present method just satisfies such a 

requirement because the numerical stability can be guaranteed when a large number 

of Chebyshev polynomials are used in the computations. 

 

4. Numerical Results 

Having verified the convergence and accuracy of the present method, the effects 

of various size parameters such as the radius ratio R/ r1, thickness ratio r0/r1, toroidal 

angle φ0 initial angle θ0 and subtended angle θ1 on frequencies were discussed. In the 

following study, the radius ratio R/ r1=1.5 and the Poisson’ ratio ν=0.3 are fixed. 

Tables 8-11 study the effect of thickness ratio r0/r1 on frequencies of shell panels with 

toroidal angle φ0=90o and subtended angle θ1=90o. Two kinds of shell panels are 

considered: a cap-shaped shell panel with the initial angle θ0=-45o and a 

saddle-shaped shell panel with the initial angle θ0=135o. Two boundary conditions are 

checked: completely free (FFFF) and clamped at φ direction but free at θ direction 

(CFCF). It is seen from Tables 8-11 that in most cases, with the increase of the 

thickness ratio r0/r1 frequencies decrease. This means that the frequencies of thick 
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shells are higher than those of thin shells. However, we can find exceptional cases for 

some very thick shell panels, e.g. the eighth AS mode for r0/r1=0.6 in Table 10, the 

eighth AS and SS modes for r0/r1=0.6, 0.7 and the eighth AA mode for r0/r1=0.6 in 

Table 11. Moreover, we can see that the effect of the shell thickness on frequencies of 

thin shell panels is higher than that on frequencies of thick shell panels. 

Figures 4-16 study the effect of initial angle θ0 on firstsix non-zero frequencies of 

shell panels with different toroidal angle φ0 and subtended angle θ1. The thickness 

ratio is fixed at r0/r1=0.8. Due to the varying initial angle no symmetry can be 

guaranteed in the θ direction, only the symmetry about φ can be classified if the 

panels have symmetric boundary conditions in the toroidal direction. It is seen from 

Figures 4-7, 9-12 and 14-16 that as a whole, the frequencies increase with the increase 

of the initial angle θ0. However, for the FFFF panels with θ1=180o and φ0=90o such a 

trend is not clear as shown in Figure 8. Especially, in Figure 13 we see the contrary 

trend for the panels with θ1=360o and φ0=180o. It should be noted that Figures 10-15 

correspond to the toroidal shells with a crack along the meridian while Figure 16 

correspond to the complete toroidal shells with two cracks: one is along the meridian 

and the other cuts off the cross-section. 

The first two or four mode shapes of various mode classifications for three typical 

doubly-curved shell panels with toroidal angle φ0=180 and subtended angle θ1=180o 

are plotted in Figures 17-19. All the panels have the CFCF boundary conditions. 

Three different initial angles θ1=-90o, 900 and 0o are checked. Figure 17 is the mode 

shapes for a cap-shaped shell panel, Figure 18 is those for a saddle-shaped shell panel 

and Figure 19 is those for a sectorial-shaped shell panels. It is seen that each modes 

are generally a combination of flexural, extensional, shear and torsional deformations. 

 

5. Conclusion 
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The Chebyshev-Ritz approach is developed for the three-dimensional vibration 

analysis of doubly-curved shell panels. The present shell panel model describes a lot 

of commonly used shell-structural components. The analysis is based on the small 

strain linear elasticity theory. Convergence and comparison studies verify the 

advantage of the present method in accuracy and computational cost. When a large 

number of frequencies need to be obtained the computational robustness can be 

guaranteed by using the Chebyshev polynomials as admissible functions due to the 

excellent properties of Chebyshev polynomials in numerical computations. The 

method is straightforward, but it is capable of determining a large number of 

frequencies with high accuracy as desired. Therefore the data presented in the analysis 

may be regarded as benchmark results against which 3-D results obtained by other 

methods, such as finite elements and finite differences, and 2-D shell theories may be 

compared to determine the accuracy of the latter. The effect of various size parameters, 

such as the radius ratio, thickness ratio, toroidal angle, subtended and initial angles on 

frequencies of shell panels are discussed in detail. Mode shapes show a combination 

of the flexural, extensional, shear and torsional deformations. 
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Table 1 The common boundary functions 

B. C.       

C-C       

F-F 1 1 1 1 1 1 

C-F       

F-C       

Note: B. C. means the boundary conditions in two opposite edges; C means the clamped edge; F means 

the free edge. The first capital letter is for the boundary condition at θ=θ0 and for that at φ=0. The 

second capital letter is for the boundary condition at θ=θ0+θ1 and for that at φ=φ0. 
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Table 2  The convergence study of the first eight non-zero dimensionless frequencies 

 of various mode classifications for a cap-shaped shell panel with the size 

parameters: R/ r1=1.2, r0/r1=0.8, φ0=90o, θ0=-45o, θ1=90o 

Terms Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 

AA mode 

5×5×5 0.28105 1.0281 1.7731 2.1965 2.5767 2.6997 3.2336 3.8521

6×6×6 0.28100 1.0276 1.7731 2.1844 2.5735 2.6996 3.2298 3.8234

7×7×7 0.28098 1.0274 1.7731 2.1840 2.5733 2.6996 3.2291 3.7535

8×8×8 0.28098 1.0274 1.7731 2.1840 2.5732 2.6996 3.2290 3.7487

9×9×9 0.28098 1.0274 1.7731 2.1839 2.5732 2.6996 3.2289 3.7486

10×10×10 0.28098 1.0274 1.7731 2.1839 2.5732 2.6996 3.2289 3.7486

AS mode 

5×5×5 0.68236 1.1582 1.9192 2.0108 3.0234 3.1494 3.6005 4.0807

6×6×6 0.68234 1.1579 1.9124 2.0054 3.0224 3.1354 3.4925 3.5993

7×7×7 0.68234 1.1578 1.9122 2.0051 3.0224 3.1350 3.4189 3.5991

8×8×8 0.68234 1.1578 1.9122 2.0050 3.0224 3.1348 3.4140 3.5990

9×9×9 0.68234 1.1578 1.9122 2.0050 3.0224 3.1348 3.4139 3.5990

10×10×10 0.68234 1.1578 1.9122 2.0050 3.0224 3.1348 3.4139 3.5990

SA mode 

5×5×5 0.59626 1.1234 1.5622 2.4928 2.6529 2.8184 3.2289 3.5502

6×6×6 0.59579 1.1233 1.5592 2.4900 2.6527 2.8037 2.9974 3.5451

7×7×7 0.59568 1.1233 1.5588 2.4896 2.6526 2.8014 2.9797 3.5449

8×8×8 0.59566 1.1233 1.5587 2.4896 2.6526 2.8012 2.9791 3.5449

9×9×9 0.59565 1.1233 1.5587 2.4896 2.6526 2.8012 2.9791 3.5449

10×10×10 0.59565 1.1233 1.5587 2.4896 2.6526 2.8012 2.9791 3.5449

SS mode         

5×5×5 0.26227 1.0273 1.3108 1.5264 1.7613 2.5286 2.8912 3.5355

6×6×6 0.26227 1.0271 1.3098 1.5251 1.7613 2.5221 2.6656 3.5314

7×7×7 0.26227 1.0270 1.3098 1.5249 1.7613 2.5212 2.6495 3.5310

8×8×8 0.26226 1.0270 1.3098 1.5248 1.7613 2.5210 2.6490 3.5310

9×9×9 0.26226 1.0270 1.3098 1.5248 1.7613 2.5210 2.6490 3.5310

10×10×10 0.26226 1.0270 1.3098 1.5248 1.7613 2.5210 2.6490 3.5310
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Table 3  The convergence study of the first eight non-zero dimensionless frequencies 

 of various mode classifications for a saddle-shaped shell panel with the 

size parameters: R/r1=1.2, r0/r1=0.8, φ0=90o, θ0=135o, θ1=90o  

Terms Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 

AA mode 

5×5×5 0.94170 3.0243 4.2650 6.1973 6.5624 7.4153 8.9198 9.3255

6×6×6 0.94163 3.0239 4.2647 6.1930 6.5592 7.3810 8.8906 9.3237

7×7×7 0.94162 3.0239 4.2647 6.1928 6.5590 7.3796 8.8882 9.3235

8×8×8 0.94162 3.0238 4.2647 6.1928 6.5590 7.3794 8.8881 9.3235

9×9×9 0.94162 3.0238 4.2647 6.1928 6.5590 7.3794 8.8881 9.3235

10×10×10 0.94162 3.0238 4.2647 6.1928 6.5590 7.3794 8.8881 9.3235

AS mode 

5×5×5 1.4435 3.0861 5.0080 5.8091 6.7904 7.7243 9.7483 10.086

6×6×6 1.4434 3.0859 5.0020 5.8074 6.7822 7.7087 9.2440 9.9925

7×7×7 1.4434 3.0858 5.0018 5.8073 6.7817 7.7077 9.2001 9.9842

8×8×8 1.4434 3.0858 5.0017 5.8073 6.7816 7.7077 9.1983 9.9837

9×9×9 1.4434 3.0858 5.0017 5.8073 6.7816 7.7077 9.1982 9.9837

10×10×10 1.4434 3.0858 5.0017 5.8073 6.7816 7.7077 9.1982 9.9837

SA mode 

5×5×5 2.3202 3.4383 5.8373 6.4253 6.5956 7.7489 8.2973 9.3983

6×6×6 2.3199 3.4376 5.8353 6.3727 6.5941 7.7457 8.2897 9.3666

7×7×7 2.3199 3.4376 5.8352 6.3693 6.5940 7.7454 8.2888 9.3618

8×8×8 2.3199 3.4376 5.8352 6.3692 6.5940 7.7454 8.2888 9.3615

9×9×9 2.3199 3.4376 5.8352 6.3692 6.5940 7.7454 8.2888 9.3614

10×10×10 2.3199 3.4376 5.8352 6.3692 6.5940 7.7454 8.2888 9.3614

SS mode         

5×5×5 0.84570 3.2513 3.5837 4.3456 5.7994 7.1231 7.4558 8.5158

6×6×6 0.84568 3.2508 3.5834 4.3371 5.7974 7.1191 7.4494 8.4167

7×7×7 0.84568 3.2507 3.5834 4.3368 5.7972 7.1188 7.4488 8.3899

8×8×8 0.84568 3.2507 3.5834 4.3368 5.7971 7.1187 7.4488 8.3882

9×9×9 0.84568 3.2507 3.5833 4.3368 5.7971 7.1187 7.4488 8.3881

10×10×10 0.84568 3.2507 3.5833 4.3368 5.7971 7.1187 7.4488 8.3881
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Table 4  The comparison study of the first three dimensionless frequencies  

of various mode classifications for spherical shell panels with square planform 

(a/rm=0.5, ν=0.3) 

h/a Ref. SS-1 SS-2 SS-3 AS-1 AS-2 AS-3 AA-1 AA-2 AA-3 

FFFF spherical shell panels 
0.01 [35] 0.060346 0.1503 0.4132 0.1126 0.2610 0.4695 0.041287 0.2136 0.3157

 Present 0.060344 0.1502 0.4130 0.1125 0.2607 0.4690 0.041225 0.2134 0.3153

0.1 [26] 0.57042 0.7841 1.7244 0.9654 1.7084 2.6277 0.38434 1.8309 2.0684

 [8] 0.56635 0.7799 1.7210 0.9621 1.7025 2.6283 0.38299 1.8272 2.0631

 [35] 0.56477 0.7688 1.7153 0.9726 1.6719 2.6202 0.38566 1.8324 2.0605

 Present 0.56477 0.7688 1.7152 0.9725 1.6719 2.6201 0.38565 1.8324 2.0604

0.2 [35] 1.0393 1.2984 2.7458 1.6751 2.6179 2.7158 0.70868 2.4336 2.9204

 Present 1.0393 1.2984 2.7456 1.6751 2.6179 2.7155 0.70867 2.4336 2.9203

0.5 [26] 1.8691 2.2768 2.7555 2.5575 2.6627 3.4526 1.3089 2.4434 3.2452

 [8] 1.8689 2.2706 2.7499 2.5500 2.7059 3.4492 1.3216 2.4367 3.2554

 [7] 1.8759 2.2875 2.7524 2.5545 2.6794 3.4701 1.3142 2.4441 3.2577

 [35] 1.8665 2.2390 2.7317 2.5254 2.6792 3.4627 1.3191 2.4199 3.2979

 Present 1.8641 2.2347 2.7315 2.5231 2.6738 3.4529 1.3176 2.4198 3.2944

CCCC spherical shell panels 
0.01 [35] 0.59165 0.6481 0.7754 0.5764 0.7268 0.8068 0.63061 0.8857 0.8996

 Present 0.59125 0.6474 0.7748 0.5763 0.7258 0.8055 0.63032 0.8837 0.8981

0.1 [26] 1.2106 3.1471 3.1915 1.9447 3.7149 3.8243 2.6888 4.4380 5.1226

 [8] 1.2005 3.1331 1.1782 1.9314 3.7025 3.8114 2.6749 4.4281 5.1086

 [35] 1.1881 3.1075 3.1560 1.9150 3.6824 3.8029 2.6610 4.3726 5.1028

 Present 1.1879 3.1067 3.1552 1.9146 3.6819 3.7900 2.6604 4.3726 5.1015

0.2 [26] 1.7638 4.3337 4.4078 2.8281 3.7653 5.1442 3.8062 4.4359 5.4412

 [8] 1.7454 4.3091 4.3861 2.8046 3.7546 5.1212 3.7827 4.4243 5.4329

 [35] 1.7358 4.3197 4.3994 2.8061 3.7392 5.1465 3.8044 4.3662 5.4149

 Present 1.7353 4.3181 4.3977 2.8106 3.7387 5.1447 3.8030 4.3662 5.4141

0.5 [26] 2.3853 5.2157 5.2940 3.4958 3.7688 5.5703 4.3724 4.6591 5.3267

 [8] 2.4717 5.6115 5.7153 3.6005 3.9270 5.5368 4.4137 4.9816 5.4175

 [7] 2.4916 5.6523 5.7427 3.6173 3.9000 5.5959 4.3672 5.0286 5.3185

 [35] 2.3880 5.2207 5.3021 3.4662 3.7772 5.5791 4.2762 4.6901 5.2486

 Present 2.3855 5.2165 5.2971 3.4638 3.7750 5.5782 4.2761 4.6861 5.2460
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Table 5  The comparison study of the first forty frequencies (Hz) fi (i=1,2,…,40) of 

the present 3-D solutions with the 3-D finite element solutions for a cap-shaped shell 

panel with the size parameters: R/r1=1.6, r0/r1=0.8, θ0=-45o, θ1=90o, φ0=45o 

i FE Present FE Present FE Present 

 FFFF CCCC CFCF 
1 0 0 14.015 13.958SS 6.2608 6.2293SS 

2 0 0 16.581 16.418SA 6.6338 6.5731SA 

3 0 0 16.589 16.481AS 10.270 10.232SA 

4 0  0 21.638 21.429AA 10.792  10.669SS 

5 0  0 22.545 22.345SS 10.905  10.805AS 

6 0  0 23.793 23.778AS 12.364  12.216AA 

7 3.502  3.441AA 28.143 27.882SA 17.379  17.175AS 

8 4.936  4.880SS 28.962 28.894SA 19.158  19.073SS 

9 7.431  7.357SS 29.469 29.153SS 19.184  19.144AS 

10 7.942  7.819SA 30.365 30.063AS 19.263  19.174AA 

11 8.842  8.708AS 31.767 31.746AA 19.654  19.426SA 

12 12.300  12.195AS 32.853 32.488AS 20.703  20.463SA 

13 14.303  14.112AA 36.087 35.712AA 25.190  24.882AA 

14 14.359  14.358SA 37.550 37.226SS 25.406  25.101SS 

15 14.579  14.384SS 38.379 38.356AA 27.225  27.203AA 

16 17.224  17.023SA 38.645 38.348SS 28.170  27.908AS 

17 17.873  17.864AA 39.734 39.715SA 28.600  28.598SS 

18 18.732  18.730SS 40.318 40.104SS 30.251  29.929AA 

19 18.945  18.717AA 43.124 42.672SA 30.506  30.469AS 

20 20.392  20.197SS 44.877 44.391AS 31.351  31.328SA 

21 21.354  21.088AS 45.015 44.537SA 32.191  31.850SS 

22 22.524  22.250SA 45.856 45.375AA 32.669  32.272SA 

23 23.827  23.530SA 48.211 48.129AS 34.388  33.980AS 

24 24.935  24.920SS 48.980 48.874AS 36.247  36.035AS 

25 25.035  25.020AS 49.315 48.668SA 36.451  36.227SS 

26 27.909  27.900SA 50.092 50.086AA 37.520  37.206SS 

27 28.459  28.442AS 50.722 50.695SS 39.237  39.234AS 

28 28.865  28.837SS 51.349 51.108SA 39.964  39.787SA 

29 29.063  28.857SS 52.851 52.483SS 40.181  39.868SS 

30 29.206  28.968AA 53.058 52.834AS 41.214  40.708AA 

31 29.792  29.496AS 54.470 54.081AA 41.358  41.307SA 

32 30.277  29.973AA 54.665 54.387SS 42.753  42.245SS 

33 30.667  30.361SS 56.023 55.428AA 43.514  43.485AA 

34 31.717  31.368AS 57.825 57.318SS 44.208  43.693SS 

35 32.509  32.159AA 58.611 58.285AS 46.435  45.980SA 

36 35.492  35.075SS 59.700 59.064SS 46.919  46.846AS 

37 36.931  36.762SA 60.408 60.123AS 47.648  47.648AA 

38 37.083  36.912SS 60.910 60.886SA 48.479  47.994AS 

39 37.656  37.390AS 62.141 61.480AS 49.848  49.332AA 

40 38.273  38.076AS 62.459 62.094SS 50.474  49.858AS 



26 
 

Table 6  The comparison study of the first forty frequencies (Hz) fi (i=1,2,…,40) of 

the present 3-D solutions with the 3-D finite element solutions for a cap-shaped shell 

panel with the size parameters: R/r1=0.36, r0/r1=0.8, θ0=-30o, θ1=60o, φ0=60o 

i FE Present FE Present FE Present 

 FFFF CCCC CFCF 
1 0  0 21.197 21.082SS 11.266  11.208SS 

2 0  0 26.418 26.225AS 12.971  12.872SA 

3 0  0 31.425 31.188SA 15.247  15.226SA 

4 0  0 35.973 35.949AS 18.431  18.267AS 

5 0  0 38.009 37.687SS 21.531  21.331SS 

6 0  0 39.316 38.995AA 22.372  22.152AA 
7 7.234  7.1254AA 42.694 42.636SA 28.954  28.921AS 

8 8.491  8.4005SS 46.972 46.949AA 29.179  29.131AA 

9 15.406  15.262SA 49.950 49.512SA 32.427  32.091AS 

10 15.461  15.274SS 51.749 51.307AS 33.333  33.033SS 

11 18.360  18.139AS 52.509 52.079SS 36.879  36.509SA 

12 21.542  21.362AS 57.145 57.135AA 38.094  37.783SA 

13 22.064  22.049SA 57.921 57.559AS 40.257  40.236AA 

14 26.365  26.268AA 58.062 57.893SS 40.569  40.553SS 

15 27.379  27.164AA 58.850 58.855SA 43.662  43.626AS 

16 27.943  27.880SS 62.562 62.018AA 45.534  45.065SS 

17 28.850  28.582SS 66.193 65.615SS 46.616  46.225AA 

18 34.146  33.879SA 67.208 66.651SS 46.701  46.565SA 

19 35.224  35.222AS 71.690 71.723AS 48.905  48.495AS 

20 35.432  35.409SS 73.341 73.022SA 52.507  52.008AA 

21 36.275  35.991SS 74.023 74.054AA 53.233  53.178SS 

22 36.847  36.521AA 74.781 74.465SA 57.444  57.302AS 

23 40.236  39.778AS 75.269 75.256SS 57.578  57.535SS 

24 40.938  40.931SS 76.671 76.071SA 58.289  57.700SA 

25 41.241  40.961SA 77.137 76.492AS 59.230  58.838SS 

26 41.361  41.341AS 78.378 78.030AA 60.322  59.834AS 
27 41.374  41.230SA 78.662 78.332AS 60.711  60.676SA 

28 43.348  43.328AA 81.073 81.070SS 64.114  64.002AA 

29 44.999  44,548SA 82.469 81.839AS 64.952  64.433SS 

30 52.346  51.976AS 85.752 85.026SA 65.509  64.990AS 

31 52.586  52.017SS 87.591 87.642AS 68.689  68.069SA 

32 54.201  54.147SS 89.814 89.008SS 69.213  69.091AS 

33 54.780  54.243AA 90.181 90.270SA 70.282  70.254AA 

34 56.063  56.043AS 91.152 90.528AA 71.905  71.220AA 

35 56.450  56.398SS 92.152 91.972AA 73.696  73.334SS 

36 56.763  56.391SA 93.259 93.256AS 74.732  74.032SS 

37 57.114  57.097AS 93.457 93.453SS 74.884  74.915SA 

38 57.565  57.129AA 95.218 94.483AA 76.353  75.955SS 

39 58.088  57.894AS 96.644 95.959SS 77.546  77.567AA 

40 58.297  57.955AA 97.152 97.147AA 79.022  79.004SA 
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Table 7 The comparison study of the first forty frequencies (Hz) fi (i=1,2,…,40) of 

the present 3-D solutions with the 3-D finite element solutions for a saddle-shaped 

shell panel with the size parameters: R/r1=1.6, r0/r1=0.8, θ0=-135o, θ1=90o, φ0=90o 

i FE Present FE Present FE Present 

 FFFF CCCC CFCF 
1 0.000  0.000 19.992 19.922SS 11.505  11.458SA 

2 0.000  0.000 22.041 21.913SA 13.026  12.966SS 

3 0.000 0.000 25.653 25.495AS 16.700  16.634SS 

4 0.000  0.000 29.673 29.468AA 17.333  17.186AA 

5 0.000  0.000 32.972 32.744SS 17.660  17.518AS 

6 0.000 0.000 34.895 34.868SA 19.043  19.027SA 
7 4.572  4.508AA 37.165 37.045AS 23.118  22.967AS 

8 7.116  7.059SS 39.623 39.426AS 23.409  23.259SA 

9 9.266  9.165AS 41.509 41.198SS 28.723  28.593AA 

10 10.121  10.009SA 43.113 42.790SA 30.280  30.260SS 

11 10.215  10.150SS 44.857 44.818AA 30.401  30.234AS 

12 16.532  16.375SS 46.001 45.685SA 30.653  30.380SA 

13 17.877  17.745SA 47.908 47.798AA 30.950  30.801SS 

14 18.577  18.427AA 49.782 49.432SS 31.942  31.855AA 

15 20.321  20.162AS 52.109 51.841AA 35.007  34.782SS 

16 20.878  20.752AA 53.773 53.716SS 36.126  36.040AA 

17 21.544  21.410AA 56.231 56.148AS 38.804  38.736AS 

18 21.866  21.805AS 57.761 57.372AS 40.352  40.080SS 

19 24.547  24.392SA 58.331 57.890AA 41.233  40.979AS 

20 25.201  25.194SS 59.338 58.941SA 42.649  42.383SA 

21 27.861  27.776SA 60.089 59.689SS 44.219  43.841AS 

22 29.889  29.816AS 62.242 61.995AS 44.369  43.976AA 
23 30.032  29.758SS 63.647 63.622SA 46.729  46.635AS 

24 31.500  31.368SS 63.676 63.664SS 48.542  48.254SA 

25 32.007  31.963SS 64.714 64.256AS 50.682  50.496SS 

26 32.563  32.279AS 67.098 66.854AS 51.060  50.944SA 

27 33.814  33.522SA 67.206 67.146SA 51.721  51.687SA 

28 34.061  33.773SS 69.937 69.815AA 52.786  52.625AA 

29 34.084  33.907AA 70.816 70.739SS 53.277  53.110SS 

30 35.515  35.454AS 71.843 71.350SS 54.455  54.242SS 

31 35.740  35.645SA 72.577 72.201AA 55.432  55.361SA 

32 38.619  38.290SS 73.798 73.460SS 55.644  55.367AA 
33 41.567  41.353AA 73.974 73.264SA 57.261  56.907AS 

34 43.528  43.386AS 74.369 73.863SA 57.361  57.136AA 

35 44.669  44.486SA 77.702 77.692SA 58.822  58.436SA 

36 45.860  45.621SS 77.938 77.449AA 58.893  58.342SS 

37 45.973  45.745SA 79.946 79.636SS 63.224  62.858SS 

38 46.161  45.778AA 81.703 81.244AS 63.756  63.537SA 

39 47.732  47.332AS 81.933 81.832AA 63.988  63.612AA 

40 47.919  47.761SS 83.260 82.917SS 64.365  64.085AS 
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Table 8 The first eight non-zero dimensionless frequencies  of various 

mode classifications for a FFFF cap-shaped shell panel with the size parameters: 

R/r1=1.5, φ0=90o, θ0=-45o, θ1=90o 

r0/r1 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 

AA mode 

0.6 0.48588 1.4747 1.6943 2.7146 2.9461 3.4903 4.2472 4.3688

0.7 0.36612 1.2344 1.5622 2.4311 2.6168 3.4191 3.5424 3.9634

0.8 0.24172 0.86187 1.5239 1.7897 2.5072 2.5393 2.9941 3.1080

0.9 0.11870 0.45899 1.0138 1.3434 1.4979 1.6991 1.8233 2.3006

0.95 0.059081 0.25652 0.57800 0.74004 1.0177 1.0963 1.3897 1.4868

0.99 0.011868 0.064738 0.13659 0.19300 0.31773 0.43933 0.51000 0.67273

AS mode 

0.6 0.84297 2.1241 2.3930 2.8242 3.0227 3.8102 4.1743 4.3730

0.7 0.69580 1.6191 1.9961 2.4248 2.7926 3.5141 3.5877 3.7850

0.8 0.54286 1.0980 1.5564 1.7761 2.6982 2.7489 2.7731 3.5541

0.9 0.34283 0.60031 1.0369 1.1111 1.7005 1.7766 2.3541 2.4485

0.95 0.18831 0.33106 0.64144 0.87642 1.0807 1.2926 1.3433 1.5000

0.99 0.042373 0.077760 0.17497 0.27061 0.33930 0.48517 0.63785 0.68334

SA mode 

0.6 0.81916 1.1237 2.2008 2.4130 3.3915 3.8796 4.3685 4.6259

0.7 0.71773 0.98240 1.7985 2.3430 3.1385 3.2852 3.5254 3.7949

0.8 0.50631 0.93448 1.2960 2.3015 2.3482 2.5121 2.7495 3.1965

0.9 0.26044 0.71082 0.91861 1.2851 1.4085 1.5147 1.9813 2.2642

0.95 0.13736 0.40973 0.68567 0.85760 0.89171 0.92654 1.1938 1.3491

0.99 0.031294 0.10569 0.15692 0.25072 0.38651 0.46814 0.58433 0.60815

SS mode         

0.6 0.32076 1.5185 1.5902 2.1053 2.5264 3.3710 3.5305 3.7604

0.7 0.26174 1.2603 1.5491 1.5968 1.9743 2.7331 2.9665 3.6446

0.8 0.20490 0.93470 1.1230 1.3940 1.5416 2.1244 2.2313 3.2594

0.9 0.13377 0.50702 0.75093 0.85369 1.3720 1.4187 1.5118 2.0184

0.95 0.076864 0.26390 0.46043 0.67606 0.85085 1.1227 1.2617 1.3619

0.99 0.018060 0.056751 0.12087 0.23054 0.29639 0.40685 0.56727 0.60446
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Table 9 The first eight dimensionless frequencies  of various mode 

classifications for a CFCF cap-shaped shell panel with the size parameters: R/r1=1.5, 

φ0=90o, θ0=-45o, θ1=90o 

r0/r1 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 

AA mode 

0.6 1.1542 1.4084 2.5536 2.9159 3.1823 4.1795 4.6812 4.7041

0.7 1.0100 1.3025 2.1908 2.8032 3.0902 3.6597 3.8593 4.5945

0.8 0.77496 1.2572 1.6580 2.7107 2.8165 2.8832 3.0209 3.5931

0.9 0.52185 0.97960 1.2369 1.5761 1.7411 2.1089 2.6259 2.7049

0.95 0.39225 0.63568 0.97065 1.0408 1.2283 1.2998 1.5958 1.7191

0.99 0.15394 0.28354 0.41874 0.52548 0.65699 0.68464 0.75394 0.83842

AS mode 

0.6 0.7426 1.5460 2.2051 2.6398 3.7709 3.7955 3.9251 4.4984

0.7 0.62578 1.4860 1.9287 2.0965 3.1975 3.3231 3.7890 4.3637

0.8 0.49923 1.3425 1.5263 1.6453 2.4463 2.6745 3.5885 3.6628

0.9 0.35898 0.93177 0.98581 1.4510 1.5965 1.7681 2.2422 2.6108

0.95 0.26248 0.59561 0.77688 1.0375 1.2175 1.4418 1.4779 1.6107

0.99 0.11470 0.24041 0.36266 0.49415 0.65623 0.66105 0.72632 0.81774

SA mode 

0.6 0.60360 0.85013 1.8426 2.1570 3.3401 3.7777 4.1475 4.4569

0.7 0.59876 0.75722 1.5650 2.0773 2.8990 3.6239 3.6751 4.0450

0.8 0.58312 0.66618 1.1761 2.0384 2.2398 2.5947 3.1581 3.5421

0.9 0.48227 0.60267 0.78297 1.3407 1.4219 1.8114 2.0088 2.1960

0.95 0.32289 0.58483 0.63760 0.85511 0.87456 1.11184 1.3113 1.5005

0.99 0.12041 0.24099 0.38062 0.53994 0.56162 0.61436 0.66952 0.72508

SS mode         

0.6 0.66648 1.4655 2.2701 2.8111 3.0357 3.1741 4.2738 4.4281

0.7 0.62627 1.2578 1.7375 2.5331 2.6050 2.8814 3.8546 4.0903

0.8 0.58225 1.0194 1.2254 1.9439 2.0426 2.7887 2.9995 3.3337

0.9 0.49563 0.76718 0.78704 1.2583 1.3413 1.8884 2,1433 2.4927

0.95 0.35682 0.61849 0.65596 0.84246 1.0306 1.3178 1.3643 1.4472

0.99 0.15005 0.26700 0.39427 0.54250 0.57705 0.65252 0.65871 0.74141
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Table 10 The first eight dimensionless frequencies  of various mode 

classifications for a FFFF saddle-shaped shell panel with the size parameters: 

R/r1=1.5, φ0=90o, θ0=135o, θ1=90o 

r0/r1 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 

AA mode 

0.6 1.2877 3.0622 4.1476 4.8669 5.6752 6.9662 7.1526 7.6842

0.7 0.99611 3.0454 3.6811 4.2736 5.4905 6.7931 7.4639 7.6048

0.8 0.68612 2.6981 3.1511 3.5384 5.1786 6.1769 6.6304 7.3458

0.9 0.35463 1.5674 2.2909 3.1058 4.0005 4.1310 5.2863 5.7693

0.95 0.18061 0.88207 1.3969 2.3479 2.4336 3.1209 3.5126 3.8059

0.99 0.036559 0.22856 0.42907 0.80368 0.97050 1.07372 1.1990 1.3255

AS mode 

0.6 2.4286 3.5524 4.3761 5.0720 6.1122 6.7177 6.9329 7.7360

0.7 1.9011 3.3070 4.0958 4.9821 5.8285 6.0219 6.8410 7.9567

0.8 1.3492 2.9868 3.4899 4.6408 4.8793 5.3541 6.5644 7.5486

0.9 0.73106 2.2551 2.6886 2.7869 3.7436 4.8879 5.0551 5.5713

0.95 0.39251 1.3883 1.5574 2.3526 2.6389 3.0248 3.2611 3.5671

0.99 0.092176 0.34862 0.61857 0.87822 0.98878 1.1049 1.4298 1.4876

SA mode 

0.6 2.4240 3.8423 4.2395 4.9510 5.8996 6.5190 7.0311 7.7516

0.7 2.1118 3.4722 4.0136 4.6635 5.5936 6.3151 6.9572 7.6767

0.8 1.6820 2.5595 3.7287 4.4402 5.3514 5.6290 6.4634 6.9789

0.9 1.0418 1.6253 2.4139 3.8312 4.0584 4.5263 4.9883 5.3557

0.95 0.58091 1.2646 1.3811 2.3232 2.4816 2.9481 3.9027 4.3298

0.99 0.13659 0.29412 0.62571 0.82832 1.1495 1.1668 1.3005 1.3755

SS mode         

0.6 1.9748 2.2247 3.4583 3.8137 4.6887 5.1173 6.3689 6.8035

0.7 1.5025 2.0203 3.1470 3.7500 4.8337 4.9232 5.7668 6.2829

0.8 1.0351 1.6964 2.7072 3.5994 4.3628 4.7714 5.1446 5.4338

0.9 0.58640 1.1727 1.8904 2.6949 3.4066 3.5548 3.9428 4.7161

0.95 0.33385 0.73534 1.4092 1.8017 2.0975 2.3467 3.3226 3.3259

0.99 0.077925 0.17410 0.45756 0.71709 1.0539 1.1297 1.2520 1.3515
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Table 11 The first eight dimensionless frequencies  of various mode 

classifications for a CFCF saddle-shaped shell panel with the size parameters: 

R/r1=1.5, φ0=90o, θ0=135o, θ1=90o 

r0/r1 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 

AA mode 

0.6 3.2992 4.6710 5.0488 6.3832 7.7728 8.2371 8.6840 9.2223

0.7 3.1942 4.6229 5.1826 5.9622 7.6763 8.0878 8.8582 9.4913

0.8 2.8764 4.4294 5.1499 5.7068 7.1703 7.7380 8.3512 8.9620

0.9 2.0317 3.4158 4.8696 5.5296 5.6544 5.8106 7.6662 8.0917

0.95 1.3076 2.2105 3.3576 3.5157 4.9008 5.3675 5.3953 5.9008

0.99 0.74408 0.89355 1.2044 1.3567 1.6548 1.7427 1.8711 2.0050

AS mode 

0.6 3.2890 4.0962 4.7566 6.1631 6.9826 7.8304 8.2080 8.7367

0.7 3.2491 3.9748 4.8578 6.0960 6.8781 7.6200 7.7443 9.1164

0.8 2.9346 3.8162 4.9066 5.9866 6.3082 7.1382 7.3068 9.2102

0.9 2.0639 3.1170 4.4086 4.8698 5.5224 5.9433 7.0564 7.2591

0.95 1.3314 2.1472 2.8199 3.3584 4.3748 4.8791 5.3789 5.8428

0.99 0.74313 0.93633 1.2141 1.3711 1.5659 1.6719 1.7420 2.0500

SA mode 

0.6 2.0818 2.8962 5.1166 5.6595 6.8371 7.5284 8.1710 8.4114

0.7 2.0429 2.9552 4.4555 5.5043 6.8719 7.8302 8.2509 8.2821

0.8 1.9023 3.0573 3.6546 5.0193 6.7511 7.1207 7.7614 8.1593

0.9 1.6303 2.6952 3.2082 3.6575 4.7000 5.5606 7.3423 7.3859

0.95 1.4301 2.1586 2.3377 3.1270 3.2725 3.7237 4.7351 4.7936

0.99 0.73328 1.0804 1.2473 1.3615 1.5608 1.7969 1.8489 2.0940

SS mode         

0.6 2.5222 3.2717 4.7513 5.7488 6.5440 7.2741 7.7570 8.1678
0.7 2.3699 3.0422 4.6670 5.5358 6.4735 6.7492 7.9378 8.3116
0.8 2.0832 2.8734 4.5600 5.0206 5.2462 6.7296 7.9142 8.3634
0.9 1.7007 2.5930 3.5264 3.6757 4.4564 5.5553 6.1408 6.5221
0.95 1.4663 2.2179 2.3785 2.6775 3.6666 3.8978 4.3997 4.4492
0.99 0.74424 1.0341 1.2564 1.5276 1.5465 1.5949 1.8213 2.0967
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Figure 1 The shell panel from a hollow ring torus with annular cross-section as well 
as its coordinate system and sizes. 
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(a) Cap-shaped panel (b) Saddle-shaped panel  (c) Sectorial-shaped panel 

  

Figure 2 Three typical doubly-curved shell panels. 
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Figure 3 The first five terms of Chebyshev polynomials )(xTn  (n=1,2,3,4,5). 
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(a) Antisymmetric modes 
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(b) Symmetric modes 

Figure 4 The first six non-zero dimensionless frequencies of antisymmetric and 

symmetric modes in the toroidal direction for FFFF shell panels with the size 

parameters: R/r1=1.5, r0/r1=0.8, , . 
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(a) Antisymmetric modes 
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(b) Symmetric modes 

Figure 5 The first six dimensionless frequencies of antisymmetric and symmetric 

modes in the toroidal direction for CCCC shell panels with the size parameters: 

R/r1=1.5, r0/r1=0.8, , . 
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(a) Antisymmetric modes 
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(b) Symmetric modes 

Figure 6 The first six non-zero dimensionless frequencies of antisymmetric and 

symmetric modes in the toroidal direction for FFFF shell panels with the size 

parameters: R/r1=1.5, r0/r1=0.8, , . 
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(c) Antisymmetric modes 
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(d) Symmetric modes 

Figure 7 The first six dimensionless frequencies of antisymmetric and symmetric 

modes in the toroidal direction for CCCC shell panels with the size parameters: 

R/r1=1.5, r0/r1=0.8, , . 
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(a) Antisymmetric modes 
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(b) Symmetric modes 

Figure 8 The first six non-zero dimensionless frequencies of antisymmetric and 

symmetric modes in the toroidal direction for FFFF shell panels with the size 

parameters: R/r1=1.5, r0/r1=0.8, , . 
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(a) Antisymmetric modes 
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(b) Symmetric modes 

Figure 9 The first six dimensionless frequencies of antisymmetric and symmetric 

modes in the toroidal direction for CCCC shell panels with the size parameters: 

R/r1=1.5, r0/r1=0.8, ,  
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(a) Antisymmetric modes 
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(b) Symmetric modes 

Figure 10 The first six non-zero dimensionless frequencies of antisymmetric and 

symmetric modes in the toroidal direction for FFFF shell panels with the size 

parameters: R/r1=1.5, r0/r1=0.8, , . 
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(a) Antisymmetric modes 
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(b) Symmetric modes 

Figure 11 The first six dimensionless frequencies of antisymmetric and symmetric 

modes in the toroidal direction for CFCF shell panels with the size parameters: 

R/r1=1.5, r0/r1=0.8, , . 
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(a) Antisymmetric modes 
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(b) Symmetric modes 

Figure 12 The first six non-zero dimensionless frequencies of antisymmetric and 

symmetric modes in the toroidal direction for FFFF shell panels with the size 

parameters: R/r1=1.5, r0/r1=0.8, , . 
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(a) Antisymmetric modes 
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(b) Symmetric modes 

Figure 13 The first six dimensionless frequencies of antisymmetric and symmetric 

modes in the toroidal direction for CFCF shell panels with the size parameters: 

R/r1=1.5, r0/r1=0.8, , . 
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(a) Antisymmetric modes 
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(b) Symmetric modes 

Figure 14 The first six non-zero dimensionless frequencies of antisymmetric and 

symmetric modes in the toroidal direction for FFFF shell panels with the size 

parameters: R/r1=1.5, r0/r1=0.8, , . 
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(a) Antisymmetric modes 
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(b) Symmetric modes 

Figure 15 The first six dimensionless frequencies of antisymmetric and symmetric 

modes in the toroidal direction for CFCF shell panels with the size parameters: 

R/r1=1.5, r0/r1=0.8, , . 

 

 



47 
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 30 60 90 120 150 180

θ0

Ω

Ω1
Ω2
Ω3
Ω4
Ω5
Ω5

 
(a) Antisymmetric modes 
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(b) Symmetric modes 

Figure 16 The first six non-zero dimensionless frequencies of antisymmetric and 

symmetric modes in the toroidal direction for FFFF shell panels with the size 

parameters: R/r1=1.5, r0/r1=0.8, , . 
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(a) First AA mode, Ω1=0.51231   (b) Second AA mode, Ω2=0.57738  

 

(c) First AS mode, Ω1=0.28927        (d) Second AS mode, Ω2=0.61332  

 

(e) First SA mode, Ω1=0.25156        (f) Second AS mode, Ω2=0.52713  
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(g) First SS mode, Ω1=0.48125          (h) Second SS mode, Ω2=0.49840  

Figure 17 The first two modes of various mode classifications of CFCF shell panel 

with the size parameters:  R/r1=1.5, r0/r1=0.8, , , 
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(a) First AA mode, Ω1=0.49001             (b) Second AA mode, Ω2=1.0030  

  

(c) First AS mode, Ω1=0.52317             (d) Second AS mode, Ω2=0.88040  

  

(e) First SA mode, Ω1=0.49408             (f) Second SA mode, Ω2=0.80461  
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(g) First SS mode, Ω1=0.54681        (h) Second SS mode, Ω2=0.80782  

Figure 18 The first two modes of various mode classifications of CFCF shell panel 

with the size parameters: R/r1=1.5, r0/r1=0.8, , , . 
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(a) First A mode, Ω1=0.21581  (b)  Second A mode Ω2=0.44956 

  

(c) Third A mode, Ω3=0.56877  (d)  Fourth A mode Ω4=0.79684 

 

(e) First S mode, Ω1=0.16076  (f)  Second S mode Ω2=0.35009 
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(g) Third S mode, Ω1=0.57096  (h)  Fourth S mode Ω2=0.67727 

Figure 19 The first two modes of various mode classifications of CFCF shell panel 

with the size parameters: R/r1=1.5, r0/r1=0.8, , , . 

 

 


