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Abstract The multifluid Lyon-Fedder-Mobarry (MFLFM) global magnetosphere model is used to study
the interactions between solar wind and rapidly rotating, internally driven Jupiter magnetosphere. The
MFLFM model is the first global simulation of Jupiter magnetosphere that captures the Kelvin-Helmholtz
instability (KHI) in the critically important subsolar region. Observations indicate that Kelvin-Helmholtz
vortices are found predominantly in the dusk sector. Our simulations explain that this distribution is driven
by the growth of KHI modes in the prenoon and subsolar region (e.g., >10 local time) that are advected by
magnetospheric flows to the dusk sector. The period of density fluctuations at the dusk terminator flank
(18 magnetic local time, MLT) is roughly 1.4 h compared with 7.2 h at the dawn flank (6 MLT). Although
the simulations are only performed using parameters of the Jupiter's magnetosphere, the results may also
have implications for solar wind-magnetosphere interactions at other corotation-dominated systems such
as Saturn. For instance, the simulated average azimuthal speed of magnetosheath flows exhibit significant
dawn-dusk asymmetry, consistent with recent observations at Saturn. The results are particularly relevant
for the ongoing Juno mission and the analysis of dawnside magnetopause boundary crossings for other
planetary missions.

1. Introduction

Magnetic local time asymmetries are ubiquitous in planetary magnetospheres. Dawn-dusk asymmetries are
particularly evident in the rapidly rotating giant magnetospheres; the solar wind interaction must, fundamen-
tally, play an important role (Hill et al., 1983; Khurana, 2001). There has been considerable debate regarding
the nature of the solar wind interaction with the giant planet magnetospheres. Following the observations
of Jupiter's magnetotail from 150 R, to >2500 R, made by the New Horizons spacecraft in the spring of 2007,
there has been considerable debate regarding the role of the solar wind in the dynamics of Jupiter's magneto-
sphere (Cowley et al., 2008; McComas & Bagenal, 2007, 2008). Much of the subsequent debate is summarized
by Delamere (2015) and compares the relative importance of large-scale reconnection (Dungey, 1961), a
viscous-like interaction (Axford & Hines, 1961), with the internally driven Vasyliunas cycle (Vasyliunas, 1983).
Delamere and Bagenal (2010, 2013) argued that a viscous-like interaction, generating tangential drag, may
play adominant role in the solar wind interaction due to the large sheared flows (maximum on the dawn flank
and minimum on the dusk flank) that exist on the dayside magnetopause boundaries. A consequence of large
flow shears is a Kelvin-Helmholtz (KH) unstable magnetopause boundary.

Nonlinear KH waves can efficiently transport momentum, plasma, and energy as either a large-scale dif-
fusion process (e.g., Ma et al., 2017; Miura, 1984), or a small-scale turbulent process (e.g., Nakamura et al.,
2017). For a two-dimensional geometry, theoretical analysis (Miura, 1984), numerical magnetohydrodynamics
(MHD) simulations (Nykyri & Otto, 2001, 2004), and hybrid simulations (Cowee et al., 2009, 2010) showed that
the transport rate of the Kelvin-Helmholtz instability (KHI) (i.e., diffusion coefficient) is close to the canoni-
cal diffusivity required to populate the low-latitude boundary layer (Sonnerup, 1980). Delamere et al. (2011)
demonstrated that the diffusion coefficient due to 2-D KH plasma mixing is expected to be more than
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1x10'% m?/s at Saturn’s magnetopause, which can play a significant role in driving magnetospheric dynamics.
Recently, Ma et al. (2017) used a 3-D MHD simulation to show that the diffusion coefficient caused by a 3-D
nonlinear KH wave is 1 order of magnitude higher than a 2-D nonlinear KH wave. The faster-growing KH mode
leads to a higher diffusion coefficient, which consequently forms a wider boundary.

There is abundant evidence that the KHI is active at Saturn’s magnetopause boundary (Delamere et al., 2013;
Masters et al., 2009, 2010, 2012; Wilson et al., 2012). An initially surprising result was evidence for more KH
activity in the postnoon sector where the sheared flow is minimized (i.e., magnetodisc corotation and sheath
flows are both tailward). However, Ma et al. (2015), using a two-dimensional (2-D) MHD simulation of Saturn’s
dayside magnetopause, showed that KH vortices originating in the subsolar region (roughly from 11 to 14
local times) are transported to the postnoon sector and the wavelength is enlarged due to the gradient of
sheared flow. To validate the simulation results, Ma et al. (2015) conducted a comprehensive boundary nor-
mal analysis (minimum variance analysis, MVA) of Cassini data and found that indeed the boundary normal
directions fluctuate in a systematic manner consistent with the 2-D simulation results. Meanwhile, KH vor-
tices formed in the prenoon sector (<10 MLT) tend to diffuse rapidly and form a boundary layer, precluding
the existence of well-defined vortex structures. As a result, vortex structures are more likely to be observed
in the postnoon sector. Recently, Burkholder et al. (2017) showed a significant dawn-dusk flow asymmetry
in Saturn’s magnetosheath. The dawnside flows in the vicinity of the magnetopause boundary were reduced
by roughly 75 km/s with respect to the expected asymptotic flank value of 200 km/s (Desroche et al., 2013).
Burkholder et al. (2017) argued that tangential drag generated by small-scale and intermittent reconnection
associated with the KH instability can account for the flow reduction (Ma et al., 2017).

In this paper, we present results from the multifluid Lyon-Fedder-Mobarry (MFLFM) global magnetosphere
model of corotation-dominated magnetospheres using Jupiter as an example. The results are particularly
relevant for the ongoing Juno mission and the analysis of dawnside magnetopause boundary crossings
(e.g., Gershman et al. (2017)). This is the first global simulation of the giant magnetospheres that captures
the local time asymmetry of the KH instability including the development of vortices in the subsolar region.
Previous models (e.g., Fukazawa et al., 2007; Walker et al., 2011) capture KH activity on the dawn and dusk
flanks but not in the critically important subsolar region. The results may also have implications for other
corotation-dominated magnetospheres such as Saturn; therefore, qualitative comparisons with observations
at Saturn are also discussed.

2. Simulation Information

The global Jupiter magnetosphere model is adapted from the multifluid version of the Lyon-Fedder-Mobarry
(MFLFM) global magnetosphere model, which has been used extensively to study the solar wind-
magnetosphere interactions (e.g., Brambles et al., 2010, 201 1; Wiltberger et al., 2010). The basic finite volume
(FV) numerical methods of solving the ideal magnetohydrodynamics (MHD) equations are described in Lyon
et al. (2004). The multifluid version of the code, which builds on the same numerical techniques used in the
single fluid LFM, allows each ion species to move under its own force balance. The FV techniques enables
calculations on a nonorthogonal, curvilinear grid adapted to the Jupiter magnetospheric boundary layer sim-
ulations; that is, the grid cells are approximately aligned with the shape of the Jupiter magnetopause with cells
smaller across the nominal bow shock than parallel to it. The computational kernel of the LFM code uses an
eighth-order spatial reconstruction scheme together with the Partial Donor Cell limiter (Hain, 1987) such that
the code maintains nonoscillatory solutions with minimum amount of numerical diffusion. Combined with
the adapted grid, the MFLFM schemes can resolve a shear layer near the magnetopause boundary within two
or three cells, which is suitable for KHI simulations with moderate grid resolution. The magnetic reconnection
in the MFLFM code is controlled by the conditions external to the reconnection zone through the conserva-
tion of mass, momentum, and magnetic flux. The rate of reconnection is constrained by a Petschek-like inflow
condition to be a fraction (x0.1) of the Alfvén speed in the inflow. Details about the properties of magnetic
reconnection in the code can be found in Ouellette et al. (2014) and in the supporting information of Zhang
etal. (2017).

For the simulations of Jupiter's magnetosphere, the stretched spherical grid extends 100 Jupiter radii (R)) in
the sunward direction, —1000 R, in the antisunward direction, and +300 R, in the directions perpendicular
to the Sun-Jupiter axis. The highest grid resolution for the MFLFM model is used for the Jupiter simulations.
The grid resolution is nonuniform, with 0.2 R, near the magnetopause and approximately 0.25 R, near the
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SIMULATION SETUP

SIMULATION PERIOD
g <z >
£ MASS LOADING
8
= SW SW + IMF
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w/o IMF w/ IMF
, DAY1  DAY2 = DAY3 , DAY4 , DAY5 , DAY6
-48 24 0 24 48 72 9 120 144
Simulation Time (Hour)
# of Species | SW speed IMF Corotation | Mass loading | Dipole tilt
H*(SW) O*(10)| 387 km/s | IBI=0.2nT | 9.25 hour 1000 kg/s No

Figure 1. The time history of the test simulations and a summary of the simulation setups.

inner region. The low-altitude computational boundary is set to be at 6 R, where the orbit of lo is in order to
simplify the implementation of mass loading from lo.

The test simulations were performed using two ion species, namely, H* from upstream solar wind (SW) and
Ot from lo. The 1,000 kg/s mass loading from lo is introduced at the equator of the inner boundary. The
mass loading module performs an extra step after the hydrodynamic update but before the Lorentz force and
magnetic field updates (Varney et al., 2016). The extra O mass fluxes, momentum fluxes, and energy fluxes
through the inner interface are calculated from the mass loading parameters, and the active cells adjacent to
the inner interface are updated according to these extra fluxes. This procedure ensures that the rate at which
plasma enters Jupiter's magnetosphere exactly equals the rate at which it is specified using the lo parameters
without creating numerical mass loading through the MHD solver.

The simulations were driven by idealized solar wind (SW) and interplanetary magnetic field (IMF) conditions.
The time history of the driving conditions and other simulation setups are summarized in Figure 1. Three test
simulations were performed, driven by northward (B, = +0.2 nT), southward (B, = —0.2 nT), and westward
(B, = +0.2 nT) IMF with the same magnitude, respectively. In each simulation, after the rotating magneto-
sphere was preconditioned by upstream, supersonic H* solar wind for 24 h, both O* mass loading with a fixed
rate of 1,000 kg/s and IMF condition were introduced for another 24 h. After the 48 h precondition, the test
simulations were run for another 144 h (six Earth days) driven by the corresponding IMF orientations. The IMF
B, component were set to 0 and the SW V, = —378 km/s, V, = V, = 0. The upstream SW fluid has a number
density of 0.2 cm~3 and a sound speed of 30 km/s, respectively. These solar wind parameters are consistent
with the average solar wind dynamic pressure at Jupiter (Jackman & Arridge, 2011). The dipole tilt angle of
the Jupiter magnetosphere was set to 0 in order to remove hemispheric asymmetries and simplify the analy-
sis. The 9.25 h corotation of the Jupiter magnetosphere is implemented through imposing a time-stationary
corotation potential to the ionospheric potential, which is a function of magnetic latitude.

3. Simulation Results

Figures 2a-2c show the instantaneous distributions of H* number density in the equatorial plane derived
from the three test simulations driven by the same solar wind conditions with different IMF orientations:
B, = +0.2nT, B, = —0.2nT,and B, = +0.2 nT, respectively. The simulation time for the snapshots of equatorial
H* density is 18:00 simulation time (ST). The number density of H* in the simulated Jupiter inner magneto-
sphere is relatively small during the whole simulation period (less than 0.1 cm~3) regardless of the orientation
of the upstream IMF, suggesting that the solar wind entry is less sensitive to the orientation of the driving IMF.
In other words, the effect of the Dungey cycle is not evident in the idealized Jupiter magnetosphere simula-
tions, especially for the B, = +0.2 nT case in which dayside reconnection is enabled efficiently (Jupiter’s dipole
moment is in the opposite direction compared to the Earth). However, the average locations of the bow shock
in the simulations shown in Figures 2a and 2b are approximately 2 R, sunward compared to the simulation
driven by B, = 0.2 nT (Figure 2c), which is approximately 3% change, suggesting that the IMF orientation does
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c)By=+0.2nT

a)Bz=+02nT b) Bz=-0.2nT

Day 1, 18:00 UT
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Figure 2. Instantaneous distributions of KH instability in the equatorial plane driven by (a) B, = +0.2 nT,
(b) B, = —0.2 nT, and (c) By = +0.2 nT. The snapshots are taken at 18:00 ST in each test simulation.

affect the interaction between solar wind and the Jupiter’s magnetosphere. Note that the simulated magne-
topause boundary is dynamic at all local time sectors due to the presence of KH activity. The 144 h averaged
subsolar magnetopause locations calculated from the three simulations are approximately 47.5, 48.6, and
48.8 R, suggesting that the effects of IMF orientation on the location of Jupiter's magnetopause are relatively
small compared to the Earth’s magnetosphere due, in part, to the internal plasma pressure that contributes
to the magnetopause location.

The simulated shape of Jupiter's magnetosheath is asymmetric in the equatorial plane due to the fast coro-
tation of Jupiter's magnetosphere. In the test simulation driven by IMF B, the average bow shock location at
the y axis is —105.5 R, on the dawnside and +100.4 R, on the duskside. The magnetopause boundary is quite
dynamic but also asymmetric in an average sense. In the simulation driven by IMF B, the 144 h averaged
magnetopause location (through tracing the last closed magnetic field lines using average simulated mag-
netic fields) is not adequate for capturing nonadiabatic heating processes known to occur within Jupiter’s
magnetodisc (Bagenal & Delamere, 2011). This difference will be investigated in future studies, and this
paper focuses on the interaction between the solar wind and Jupiter’s magnetosphere rather than nonideal
internal processes.

The Kelvin-Helmholtz vortices along the magnetopause boundary are evident in the spatial distributions
of the simulated magnetosheath density throughout the whole simulation. As an example, Figures 2a-2c
show snapshots from the three test simulations driven by different IMF orientations at 18:00 ST. It is found
that in the three simulations with |B| = 0.2 nT, both the evolution and spatial extension of the KH vortices
at the magnetopause are not sensitive to the IMF orientations, possibly due to the fact that the simulated
Jupiter's magnetosheath is hydrodynamically dominated rather than magnetohydrodynamically dominated
(with sheath plasma g >> 1). Thus, KHI may be triggered at high latitudes away from the equatorial plane
(e.g., Hwang et al,, 2012). The dawn-dusk asymmetry in the spatial distribution of the KH vortices is evi-
dent in each simulation. It is clear that the spatial extension of the KH vortices is smaller along the duskside
magnetopause compared to those on the dawnside magnetopause regardless of the orientation of the IMF,
suggesting that the influence of magnetic tension force on the growth rate of KHI is relatively small. This is
consistent with the results by Desroche et al. (2012, 2013). At the Earth’s magnetopause, global MHD simula-
tions have shown that the large-scale vortices move along the magnetopause without significant dawn-dusk
asymmetries in spatial extensions during pure northward IMF (Guo et al., 2010; Merkin et al., 2013). The tem-
poral evolution of the KH vortices also exhibits significant dawn-dusk asymmetry as shown in Figure 3b. As an
example, in the test simulation between 18:00 and 19:40 ST, KH vortices are generated in the subsolar region
between 10 and 12 MLT and then advected toward the duskside. Previous global simulations capture the KH
vortices on the dawn/dusk flank region but not the subsolar sector, which is critically important for the gener-
ation of dawn-dusk asymmetry in the distribution of KH vortices along the magnetopause. Between 18:00 and
19:40 ST, the vortices travel at an average azimuthal speed around 237 km/s on the duskside, with spatial sep-
arations approximately 10-20 R, in the postnoon sector. On the dawnside, the traveling speed of the vortices
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Figure 3. The KH instability: (left) a snapshot of Ht number density in the equatorial plane at 19:40 ST; (right) temporal
evolution of the KH vortices between 18:00 and 19:40 ST.

is much lower than that on the duskside, suggesting that the simulated KH structure is almost stagnant on
magnetopause boundary in the morning sector between 7 and 10 MLT. The reason for the stagnant structure
on the dawnside is mainly the fast rotation of the Jupiter magnetosphere. On the dawnside, the magne-
tosheath velocity is antiparallel to the rotation of the magnetospheric flow. Thus, the large shear flow is sat-
isfied with the KH unstable condition (Chandrasekhar, 1961). However, the net tangential (i.e., perpendicular
to the boundary normal direction) momentum is relatively small on the dawnside, leading to stationary
vortices because the KH wave propagates at a speed of

Vigy = PmVm + PsVs’ 1)

Pm T+ Ps

where p,, and v, are defined as the magnetospheric total mass density and bulk flow velocity, while ps and v;
are defined as the magnetosheath density and velocity, respectively. It is also interesting to note that Masters
etal.(2010) observed a long-lived (few hours) KH vortex at 10 LT, which is consistent with our simulation result.
In the simulated evolution of KHI shown in Figure 3, the contribution of magnetospheric O* to the total mass
density near the magnetopause is essentially 0 compared to H*. Future studies with much longer simulation
periods and mass loading rates are needed to investigate possible influences of internal processes associated
with the transport of O* on the boundary layer dynamics at Jupiter's magnetopause.

The dawn-dusk asymmetry is also evident in the temporal variations of plasma density near the magne-
topause boundary layer. Figure 4 shows the simulated plasma density on the duskside and dawnside as a
function of time, respectively, derived from the test simulation driven by

0.4 H

-3
W cm

IMF B,,. Similar results were also found in the other two test simulations
driven by IMF B, (not shown). The time series of the duskside density
shownin Figure 4 is recorded at (0, 66 R)) on the equatorial plane (indicated
as point “A” in Figure 3, left), and the dawnside density variation shown
in Figure 4a is recorded at (0, —66 R)) on the equatorial plane (indicated

e h e e & as point “B” in Figure 3, left). On the duskside, the temporal variation of
plasma number density has a period of approximately 1.4 h, while on

the dawnside, the corresponding period in the plasma density variation is
around 7.2 h, which is a consequence of the simulated dawn-dusk asym-
metry in the spatial extension and the azimuthal speed of the KH vortices.
This simulated dawn-dusk asymmetry in the density structures of the
KH vortices is qualitatively consistent with in situ Cassini data analyses

Simulation Time, hour

36 42 48 54 60 66 72 (Maetal., 2015).

The simulated flow speed within Jupiter's magnetosheath also exhibits

Figure 4. Time series of H* number density taken from the dusk and dawn  significant dawn-dusk asymmetry. Figure 5a shows the average azimuthal
flanks (points A and B in Figure 3, respectively). magnetosheath flow speed (v,) in the equatorial plane calculated from
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the test simulation driven by IMF B,. It is evident that magnetic local
time asymmetry is also seen in the average shape of the magnetopause
J boundary. Near the magnetopause boundary on the dawnside (06— 12 MLT),
the magnitude of average v,, in the magnetosheath is less than 100 km/s,
while near the duskside magnetopause boundary (12-18 MLT), the mag-
, nitude of average v, in the magnetosheath is greater than 150 km/s.
Figure 5b shows the corresponding MLT distribution of average magne-
tosheath flow speed v, calculated within the magnetosheath. The average
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IN THE SHEATH

Although the numerical experiments are developed based on parameters
of Jupiter's magnetosphere, the asymmetric distribution of magnetosheath
- flow is in qualitative agreement with recent observed flow asymmetry in
Saturn’s magnetosheath (Burkholder et al., 2017). Future analysis is needed
to quantify, in detail, the stresses leading to tangential drag at the magne-
topause boundary, and future observational studies are needed to verify the

10 11

Figure 5. The local time asymmetry of the azimuthal component (v) of

sheath flows.
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4, Summary and Discussion

Using the multifluid Lyon-Fedder-Mobarry model, we have conducted the

first global simulation of the giant planet magnetospheres that captures the
observed dawn-dusk asymmetries associated with the growth and evolution of Kelvin-Helmholtz vortices on
the magnetopause boundary. The growth of KH modes in the subsolar region is critical for understanding
the prevalence of KH vortices found along the dusk flank where flow shears are minimized and in some cases
may render the magnetopause boundary stable. Magnetospheric (sub)corotational flows advect these vor-
tices through the subsolar region and into the dusk sector. The temporal signature of density variations on
the dusk terminator flank has a much shorter period (1.4 h) compared with the dawn flank (7.2 h). Interest-
ingly, 1.4 hiis similar to the 60 to 70 min quasi periodicity (QP-60) found in multiple instruments predominantly
in Saturn’s dusk sector magnetodisc (Palmaerts et al., 2016; Roussos et al., 2016). It remains unclear whether
these modulations are associated with KH vortices directly or whether KH modes may be responsible for excit-
ing magnetospheric eigenoscillations (Glassmeier, 1995). Evidence of a shorter period (QP-15 and QP-40) at
Jupiter might suggest the latter (see review by Delamere, 2016).

We have also performed simulations driven by the same SW/IMF with grid resolutions that are twice as coarse
in each direction compared to the grid resolution used in the above sections. In the lower-resolution sim-
ulations, although the growth rate of KHI is lower, the simulated dawn-dusk asymmetry and the local time
extensions of KHI vortices along the magnetopause remain approximately the same. In future studies we will
investigate the sensitivity of model results to grid resolutions that are higher than the current resolution used
in this study, analyze stresses and transport at the magnetopause boundary, explore the effect of varying
solar wind parameters, and provide a detailed analysis of the internal plasma and magnetic flux transport to
understand the role of the solar wind interaction for the giant, internally driven magnetospheres. The results
of such studies will be particularly relevant for the ongoing Juno mission at Jupiter as well as the analysis of
Cassini data at Saturn.
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