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Abstract
We formulate a current conserving theory for frequency dependent noise power under dc bias. In
calculating the noise power we explicitly take into account of the displacement current operator. It is
shown that the equilibrium frequency dependent noise satisfies the relation
S G Geq, *w w w w= +ab ab ba( ) ( )[ ( ) ( )]where G wab ( ) is the frequency dependent conductance
including both conduction current and displacement current contribution.

1. Introduction

The equilibriumfluctuation–dissipation theoremwhich relates the linear conductance to equilibriumnoise power
is fundamentally important in quantum transport [1–3]. Extensive efforts have beenmade to extend this theorem
to thenonlinear andnon-equilibrium regime [4–6]. Fluctuation theoremhas been established to relate higher
order response function tofluctuations of the systems. Thefluctuation–dissipation theorem in ac regimehas also
beendiscussed. For instance it has been used to calculate dynamic conductance due to the conduction current [7].

It has been realized that in ac regime the current conserving and gauge invariant conditions are two
fundamental requirements for quantum charge transport. It is known that the conduction current alone does
not conserve the current under ac bias due to the charge accumulation in the scattering regionwhich is related to
the displacement current [8]. In another word, denoting Gc wab ( ) the dynamic conductance due to conduction
current, we have G 0c wå ¹a ab ( ) and G 0c wå ¹b ab ( ) . By adding a self-consistent Coulomb interaction in the
Hamiltonian it will include the contribution of the displacement current and solve the problemof current
conservation. Using this approach, the problemof current conservation of dynamic conductance has been
solved at low frequencies [8] andfinite frequencies [9]. Under dc bias, there is no charge accumulation and the
current is conserved since the displacement current is not present.

It is known that in addition to the current, the noise power and higher ordermoments are needed to
characterize the quantum transport process. In another word, the current operator Iâ can be used to generate
the current Iá ñâ , noise power3 Sab, etc. If the current operator is conserved ( I 0å =a â ), the current, noise
power, and higher ordermomentswill be conserved automatically, i.e., I 0å á ñ =a â , S S 0å = å =a ab b ab .
Although construction of a current conserving current operator is an unsolved problem, physical insight can be
obtained by looking into the issue of the conservation of noise power in ac regime.

For example, the equilibrium frequency dependent noise power is related to the frequency dependent
conductance due to the conduction current [10],

S G G , 1c c
eq, *w w w w= +ab ab ba( ) ( )[ ( ) ( )] ( )

where e 1

e 1

kT

kT w w= +
-

w

w( ) is defined in [10]. At zero frequency, the equilibrium fluctuation–dissipation theorem

gives S kT G G2eq, *= +ab ab ba[ ]where G G 0c=ab ab ( ) and S S 0eq
eq,=ab ab ( ) are dc conductance and dc noise
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power respectively. For current in the linear response regime, we have I G v= åa b ab b whereα andβ denote the
lead and vβ is the bias voltage of leadβ. Current conservation corresponds to I 0å =a a which leads to the
current conserving condition G 0å =a ab . Since the bias is defined up to an additive constant which does not
affect the current, i.e., I G v v0= å +a b ab b( ), this gives rise to the gauge invariant condition G 0å =b ab . This
in turn gives conservation condition for the noise power, S S 0eq eqå = å =a ab b ab . Since the dynamic
conductance Gc wab ( ) due to the conduction current is not conserved, from equation (1) the noise power is not
conserved atfinite frequencies.

Clearly there is an inconsistency in the frequency dependent fluctuation–dissipation relation equation (1).
On one hand, we have a current conserving theory for dynamic conductance [8, 9]. On the other hand our
existing theory of frequency dependent equilibriumnoise power equation (1) is not conserved. It is the purpose
of this paper to address the issue of noise power conservation.

It turns out that adding the self-consistent Coulomb interaction in theHamiltonianwill not conserve the
noise power. If wewant to discuss thefluctuation of the current (noise power), we have to treat the current as an
operatorwhich is a stochastic quantity that can fluctuate and has its distribution. From this point of view, the
current operator under dc bias is not conserved in general and the displacement current operatormust play a
role.While it is clear that the average value of the displacement current operator is zero under dc bias, the
fluctuation of the displacement current can not be neglected even under dc bias if the noise power is considered.
Aswewill showbelow, themissing of the displacement current operator is responsible for the violation of the
finite frequency noise power conservation.

In this paper, we develop a phenomenological theory for the displacement current operator and show that
the equilibriumnoise power is conserved by including the displacement current operator.

2. Theoretical formalism

2.1. Scatteringmatrix theory
Topave theway for the discussion, we first briefly review the scatteringmatrix theory (SMT) developed by
Büttiker to calculate the frequency dependent noise power under dc bias. The current operator in frequency
domain in SMT is given by (e = 1 and 1 = ) [11]

I
E

a E a E A E E
d

2
, , , 2

c

ò åw
p

a=a
bg

b g bgˆ ( ) ˆ ( ) ˆ ( ¯) ( ¯) ( )†

where ab
† is the creationoperator for the electron incident from leadβ, E E w= +¯ and thematrixA is definedas [11]

A E E s E s E, , , 3a d d= -bg ab ag ab ag( ¯) ( ) ( ¯) ( )†

where s Eab ( ) is the scatteringmatrix from leadβ to leadα. To distinguish the current in equation (2) from the
displacement current introduced later, we have denoted this current as the conduction current with superscript
c. Using the relation a E a E E E f Ed dá ¢ ñ = - ¢a b ab aˆ ( ) ˆ ( ) ( ) ( )† , where ...á ñdenotes the quantum average and f Ea ( ) is
the Fermi distribution function of the leadα, the average current is found to be

I
E

f E A E E
d

2
, , . 4

c

ò åw d w
p

aá ñ =a
b

b bbˆ ( ) ( ) ( ) ( ) ( )

After the Fourier transformwith respect to frequency, we find the time independent current,

I I
E

f E A E E
d

2
, , , 5c c

ò åp
a= á ñ =a a

b
b bbˆ ( ) ( ) ( )

which is thewell knownLandauer–Büttiker formula. Using the relation

A E E, , 0 , 6å a =
a

bg ( ) ( )

valid for anyβ and γ, we verify that the current under dc bias is conserved, i.e., I 0cå =a a .
Thefluctuations of the current away from their average value are characterized by the noise power Sab .

Under dc bias Sab is found to be [12]

S
E

A E E

A E E F E E

d

2
, ,

, , , , 7

ò åw
p

a

b

=

´

ab
gd

gd

dg gd

( ) ( ¯)

( ¯ ) ( ¯) ( )

where

F E E f E f E f E f E, 1 1 . 8= - + -gd g d d g( ¯) ( )( ( ¯)) ( ¯)( ( )) ( )
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Wenow examine current conservation of equation (7). Since E E=¯ at 0w = , equation (6) gives

S S0 0 0, 9å å= =
a

ab
b

ab( ) ( ) ( )

showing that the zero-frequency noise is conserved. Atfinite frequencies, however, noise power under dc bias is
not conserved anymorewhich has been recognized long time ago by Büttiker [10].

The issue of the conservation of noise power is rooted from the current conservation condition of current
operator. From equation (6)we immediately have

I 0 0, 10
cå w = =

a
â ( ) ( )

which leads to equation (9).Whenω is nonzero, I 0
c
wå =a â ( ) is not valid and therefore the conservation

condition is violated for thefinite frequency noise power. Aswementioned previously, themissing component
is the displacement current operatorwhichwill be discussed below.

2.2.Displacement current operator
Nowwe present a phenomenological theory for displacement current operator. To demonstrate thismethod, we
will treat equilibriumnoise power in this paper. The non-equilibriumnoise power can be dealt with similarly.
We start with the self-consistent formalism for current operator,

I I I , 11
c dw w w= +a a a

ˆ ( ) ˆ ( ) ˆ ( ) ( )

where I
c
wâ ( ) is the current operator for the conduction current defined in equation (2). The displacement

current operator I
d
wâ ( ) is the induced current due toCoulomb interaction. On theHartree level and in the linear

response regime it is assumed to be4.

I x
n x

E
U xi d

d ,

d
, , 12

d

òw w
w

w=a
aˆ ( ) ¯ ( ) ˆ ( ) ( )

where n x Ed , dwa¯ ( ) is the frequency-dependent emissivity describing the local density of states (DOS) for
electrons exiting to leadα [9], andU x,wˆ ( ) is theCoulomb potential operator due to quantum fluctuation given
by [10]

U x x g x x N x, d , , , , 13òw w w= ¢ ¢ ¢ˆ ( ) ( ) ˆ ( ) ( )

where g x x, ,w ¢( ) is the Coulombpotential response function orGreen’s function and N x,wˆ ( ) is the number
operator in the scattering region. TheCoulombpotential response function g x x, ,w ¢( ) satisfies the Poisson-like
equation,

g x x x x x x x g x x, , 4 4 d , , , , , 14x
2 òw pd p w w- ¢ = - ¢ - P   ¢( ) ( ) ( ) ( ) ( )

where x x, ,wP ¢( ) is the Lindhard function [8, 9]. The physicalmeaning of this equation is clear. Thefirst term
on the right-hand side of this equation is the point charge source term and the second term is the induced charge
due to theCoulomb interaction. Tofind the equation governing theCoulombpotential operatorU x,wˆ ( ), we
express it in terms of aaˆ† and aaˆ [10]

U x
E

a E a E E x,
d

2
, , , 15òåw

p
w=

bg
b g bgˆ ( ) ˆ ( ) ˆ ( ¯) ( ) ( )† u

where theCoulomb potentialmatrix bgu will be discussed later.We nowderive an expansion for N x,wˆ ( )
similar to equation (15) and the poisson like equation for bgu .

The number operator N t x,ˆ ( ) in time domain is defined as follows

N t x
v v

t x t x,
1

2
, , , 16å p

= Y Y
bg b g

b gˆ ( ) ˆ ( ) ˆ ( ) ( )†

the normalization in this equation is defined so as to obtain the familiar result of average number of particle (see
equation (21)). Here

t x E E x a E, d e , , 17Eti outò yY =b b b
-ˆ ( ) ( ) ˆ ( ) ( )( )

where E x,outyb ( )( ) is the outgoingwave function for electrons coming from leadβ. After the Fourier
transformation, we have

4
Similar displacement current operator has been proposed formesoscopic capacitors in [10].
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N x
E

a E a E n E x,
d

2
, , , 18ò åw

p
w=

bg
b g bgˆ ( ) ˆ ( ) ˆ ( ¯) ( ) ( )†

where [10]

n E x
v v

E x E x, ,
1

, , , 19out out*w y y=bg
b g

b g( ) ( ) ( ¯ ) ( )( ) ( )

is the frequency dependent partial local DOS associatedwith electrons entering from leadβ and γ and vβ is the
electron velocity in leadβ. It can be shown in the appendix that the following relation holds (see derivation below
equation (48))

x n E x A E E N Ed , ,
i

, , , , 20ò åw
w

a w= =bg
a

bg bg( ) ( ¯) ( ) ( )

where N E, wbg ( ) is the partial DOSdefined in [13]. It describes theDOS for electrons coming from leadβ and γ.

Note that taking quantum average on N x,wˆ ( )we obtain the familiar result

N x
v

E E x f E,
1

d , . 21out 2òåw y d wá ñ =
b b

b b
ˆ ( ) ∣ ( )∣ ( ) ( ) ( )( )

From equations (2), (18) and (20)wehave the continuity equation for current and number operators5

I x N xi d , 0. 22
c

òå w w w+ =
a

â ( ) [ ˆ ( )] ( )

Wecan define another frequency dependent partial local DOS (emissivity) that can be expressed as follows,

n E x
v v

E x E x, ,
1

, , , 23in in*w y y=bg
b g

g b¯ ( ) ( ¯ ) ( ) ( )( ) ( )

where E x,inyg ( )( ) is the incomingwave function for electrons coming from lead γ (its definition is given in
appendix). A similar relation holds for emissivity,

x n E x A E Ed , ,
i

, , , 24ò åw
w

a=bg
a

bg[ ¯ ( )] ( ¯) ( )

Now the local injectivity n x Ed , dwa ( ) and the local emissivity n x Ed , dwa¯ ( ) defined in [9] can be
expressed as

n x

E

E f f
n E x

d ,

d

d

2
, , , 25ò

w
p w

w=
-a

aa
( ) ¯

( ) ( )

and

n x

E

E f f
n E x

d ,

d

d

2
, , , 26ò

w
p w

w=
-a

aa
¯ ( ) ¯

¯ ( ) ( )

fromwhichwe have local DOS n x E n x Ed , d d , dw w= åa a( ) ( ) and n x E n x Ed , d d , dw w= åa a¯ ( ) ¯ ( ) .
Using equations (13), (15) and (18)we immediately have

E x x g x x n E x, , d , , , , , 27òw w w= ¢ ¢ ¢bg bg( ) ( ) ( ) ( )u

fromwhichwe find the poisson-like equation governing theCoulomb interactionmatrix bgu ,

E x x x x E x

n E x

, , 4 d , , , ,

4 , , . 28

x
2 òw p w w

p w

- + ¢P ¢ ¢

=

bg bg

bg

( ) ( ) ( )

( ) ( )

u u

The characteristic potential uα used in [9, 11] can be defined as u E f fd 2ò p w= -a aa( ) ( ¯)u . From
equation (25), wefind the familiar poisson-like equation for the characteristic potential uα,

5
The continuity equation can also be obtained from the equation ofmotion showing the consistency of our theory (see equation (65)

of [18]).
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u x x x x u x

n x

E

, 4 d , , ,

4
d ,

d
. 29

x
2 òw p w w

p
w

- + ¢P ¢ ¢

=

a a

a

( ) ( ) ( )

( ) ( )

To the linear order theCoulomb potential is related to the characteristic potential asU u v= åa a awhere vα is
the bias voltage at leadα. The gauge invariant condition gives [8] u 1å =a a .

To avoid possible confusion, we emphasize that quantities such as nbg and bgu with double subscript depend
on energyE and do not depend on temperature while the quantities n Ed da and uα depend on temperature and
Fermi energy EF.

2.3. Reciprocity relation
Note that the injectivity and emissivity defined above are the same as those defined in the linear response theory
and obey the reciprocity relation [9], fromwhichwe have n x B E n x B Ed , , d d , , dw w= -a a¯ ( ) ( ) ,

B x x B x x, , , , , ,w wP ¢ = P - ¢( ) ( ) and g B x x g B x x, , , , , ,w w¢ = - ¢( ) ( ). The gauge invariant condition in the
linear response theory requires u x B, , 1wå  =a a ( ) fromwhichwe obtain

x g x x
n x

E
d , ,

d ,

d
1, 30ò w

w
¢ ¢

¢
=( ) ( ) ( )

and

x
n x

E
g x xd

d ,

d
, , 1. 31ò

w
w¢

¢
¢ =

¯ ( ) ( ) ( )

In the absence ofmagnetic field, equations (19) and (23) are the same quantity, which shows that injectivity and
emissivity are the same in the absence ofmagnetic field.

2.4. Current conservation at operator level
Wenow examine the current conservation condition at operator level. Substituting equation (13) into (12) and
using equation (31)we arrive at

I x N xi d , , 32
d

òå w w w=
a

â ( ) [ ˆ ( )] ( )

which says that the sumof displacement current equals to the rate of change of total charges in the scattering
region. From the continuity equations (22) and (32)we see that the total current operator conserves the current,
i.e., I I 0

c d
w wå + =a a a( ˆ ( ) ˆ ( )) .

With the displacement current operator defined, the total current operator in equation (11) can bewritten as

I
E

a E a E A E E
d

2
, , , 33tò åw

p
a=a

bg
b g bg

ˆ ( ) ˆ ( ) ˆ ( ¯) ( ¯) ( )†

where

A E E A E E x
n x

E
E x, , , , i d

d ,

d
, , , 34t òa a w

w
w= +bg bg

a
bg( ¯) ( ¯) ¯ ( ) ( ) ( )u

where E x x g x x n E x, , d , , , ,òw w w= ¢ ¢ ¢bg bg( ) ( ) ( )u (see equation (27)).
Now it is easy to confirm explicitly the conservation of current at the operator level by showing
A E E, , 0t aå =a bg ( ¯) which is obvious from equations (20) (27), and (31). So by introducing afluctuating

Coulombpotential, the frequency dependent current operator is conserved to all orders of dc bias. This ensures
that noise power as well as higher ordermoments satisfy the conservation condition to all orders of dc bias.
Changingω to w- in equation (33) and shiftingE to E w+ , we have

A E E A E E x
n x

E
E x, , , , i d

d ,

d
, , . 35t *

*òa a w
w

w= -bg bg
a

gb⎜ ⎟⎛
⎝

⎞
⎠( ¯ ) ( ¯ ) ¯ ( ) ( ) ( )u

Wecan also show that A E E, , 0t aå =a bg ( ¯ ) .

2.5. Noise power
Nowwe evaluate the equilibrium state noise spectrum. From [11], we have

S
E

A E E

A E E F E E

d

2
, ,

, , , , 36

t

t

ò åw
p

a

b

=

´

ab
gd

gd

dg gd

( ) ( ¯)

( ¯ ) ( ¯) ( )
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where

F E E f E f E f E f E, 1 1 . 37= - + -gd g d d g( ¯) ( )( ( ¯)) ( ¯)( ( )) ( )

In the equilibrium state the Fermi distribution functions of the different leads are the same, i.e.,
f E f E f E= =g d( ) ( ) ( ). From equations (34) and (35) the equilibriumnoise is given by

S S S . 38eq, eq,
1

eq,
2w w w w= +ab ab ab( ) ( )[ ( ) ( )] ( )( ) ( )

In equation (38) thefirst term can be expressed in terms of the dynamical frequency dependent conductance
G wab ( )

S G G , 39eq,
1 *w w w= +ab ab ba( ) ( ) ( ) ( )( )

with

G
E f f

s E s E

n

E
u

d

2

i Tr
d

d
, 40

òw
p w

d

w
w

w

=
-

-

+

ab ab ab ab

a
b

⎡
⎣⎢

⎤
⎦⎥

( )
¯

[ ( ) ( ¯]

¯ ( ) ( ) ( )

†

where f f E= ( ) and f f E=¯ ( ¯). The second term Seq,
2 wab( )( ) is given by

S
E f f

s E s E

n

E
s E s E

n

E

n

E

n

E

i
d

2

Tr
d

d
Tr

d

d

i Tr
d

d
Tr

d

d
. 41

eq,
2

*
*

*
*

ò åw w
p w

w
w

w
w

w
w

w
w

w

=
-

´ -

-

ab
gd

ag ad

b
dg bd bg

a
gd

b
gd

a
gd

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )
¯

( ( ) ( ¯)

¯ ( )
( ) ( ¯) ( ) [ ¯ ( ) ( )]

¯ ( )
( ) ¯ ( ) ( ) ) ( )

( ) †

†u u

u u

Wewill show in the appendix that S 0eq,
2 w =ab( )( ) . Hence the frequency dependent equilibriumnoise is

proportional to the dynamical frequency dependent conductance,

S G G , 42eq, *w w w w= +ab ab ba( ) ( )[ ( ) ( )] ( )

which is the frequency dependent equilibrium fluctuation–dissipation theorem. As shown in [9] the dynamic
conductance G wab ( ) is current conserving and gauge invariant, i.e., G G 0w wå = å =a ab b ab( ) ( ) leading to a
conserved noise power in equation (42).

So far, we have discussed the noise power using the symmetric definition (see footnote 3). Experimentally,
themeasurable quantity is usually non-symmetric [14, 15]It was derived in [14] that the experimental response
of current–current correlator is given by

S K S N S S 43= + -w+ + -[ ( )] ( )

with S t I I t td 0 exp iòw w= á ñ+( ) ˆ ( ) ˆ ( ) ( ) and S t I t I td 0 exp iò w= á ñ- ˆ ( ) ˆ ( ) ( ),K is a constant, and
N kT1 exp 1w= -w [ ( ) ]. It is straightforward to show that our theory also applies to non-symmetric noise
power.We only need tomodify the function  w( ) in equation (1) or equation (39).

In this work, we used the SMTdeveloped by Buttiker [11] in 1992. Equation (2) is valid provided that the
frequency ismuch smaller than the Fermi energy.However, when frequency is very large, one could use amore
realistic expression for current operator which is spacial dependent [16].

In this paper, we have included the displacement current operator only in the linear order in bias voltage
which alreadymakes the current operator conserved to all orders in bias voltage. If wewant to treat the
displacement currentmore accurately such as nonlinear terms in current operator, nonlinear displacement
operator should be included. This is a very complicated issue andwill be treated in a future publication.

3. Summary

To summarize, we have developed a phenomenological theory for the displacement current operator in the ac
regime.With the inclusion of displacement current operator, the frequency dependent noise power under dc
bias is conserved and the finite frequency equilibrium fluctuation–dissipation theorem is now consistent with
the current conserving dynamic conductance.
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Appendix

There are several relations that wewill prove in this supplementalmaterial. It turns out that it ismuch easier to
useNEGF instead of SMT.Wewill use the following relation to relateGr and SMT.Decomposing the linewidth
function Ga using its eigenstate W mña∣ wherem labels themth transmission channel, we have

W Wm m mG = å ñáa a a∣ ∣ [17]. Thewavefunctions m
outy ña∣ ( ) and m

iny ña∣ ( ) are defined as

v G W , 44m m
r

m
outy ñ = ña a a∣ ∣ ( )( )

and

v W G . 45m m m
rinyá = áa a a∣ ∣ ( )( )

It is easy to see that the following relations hold

, 46
m

m m
m

m m
in in out outå åy y y yñá = ñá

a
a a

a
a a∣ ∣ ∣ ∣ ( )( ) ( ) ( ) ( )

and

B B B B , 47m m m m
Tin in out outy y y yñá = - ñá -a a a a∣ ( ) ( )∣ [∣ ( ) ( )∣] ( )( ) ( ) ( ) ( )

whereB is themagnetic field.
Tomake the notation simple, we just consider one transmission channel in the following derivation.With

the help of the Fisher–Lee relation s E W G E Wi rd= - + á ñab ab a b( ) ∣ ( )∣ , wewillfirst prove equation (20),

x n E x A E Ed , ,
i

, , . 48ò åw
w

a=bg
a

bg[ ( )] ( ¯) ( )

On the one hand, with the help of definitions in equations (44) and (45), wefind

x n E x
v v

E E

G W W G W G G W

d , ,
1

Tr

Tr , 49r a a r

out outò w y y= ñá

= ñá = á ñ

bg
b g

g b

g b b g

[ ( )] [∣ ( ¯) ( )∣]

[ ¯ ∣ ∣ ] ∣ ¯ ∣ ( )

wherewe have used the notation G G Er r=¯ ( ¯). On the other hand, we can express the A E E, ,abg ( ¯) in terms of
NEGFusing the Fisher–Lee relation,

A E E s E s E
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wherewe have used G G G G G Gi ir a a r a rw- - G = -( ¯ ) ¯ ¯ and G = å Ga a and therefore equation (20) is proved.
To show S 0eq,

2 w =ab( )( ) , wewillfirst prove the following relation,
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Todo that, we express s E s Eag ad( ) ( ¯)† in terms ofNEGF

s E s E W G G G G Wi i . 51a r a rd d d d= + á - + G ñag ad ag ad g ad ag a d( ) ( ¯) ∣ ¯ ¯ ∣ ( )†
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Then from equations (19), (23), (26) and (27)wehave
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Combinewith equations (51) and (54), we obtain
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wherewe have used the relation G G G Gi r a a rG = - . Similarly, we can prove
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Nextwewill prove that
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where x x, ,wP ¢( ) is the Lindhard function (in terms ofGreen’s function, for details see equations (19) to (21) in
[9]) defined as

58x x
E

f f G G f G G fG G, , i
d

2
.xx

r
x x
a

xx
a

x x
a

xx
r

x x
ròw

p
P ¢ = - + -¢ ¢ ¢ ¢ ¢ ¢ ( )( ) [( ¯) ¯ ¯ ¯ ¯ ]

Using equation (54), we have
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It is easy to see
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Note that the characteristic potential uα is defined as
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In general all the quantities in equations (61) and (62) are defined in the presence ofmagnetic fieldB.We now
change themagnetic field fromB to−B and combinewith the reciprocity relation, we can rewrite Seq,

2 wab( )( ) as
follows

S u B
n B

E
u B

n B

E

u B B u B u B B u B

u B u B u B u B

u B u B u B u Bs

i Tr
d

d

d

d

, ,

i

4
Tr

i

4
d ,

eq,
2

2 2

*
*

* * *

* *

* *

 

 ò

w w

w w
w
p

w
p

= -
-

- -
-

- - P - - + - P - -

= - - - - - -

= - - - - -

ab b
a

a
b

b a a b

b a a b

a b b a
W

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( )

[ ( ) ( ) ( ) ( )]

· [ ( ) ( ) ( ) ( )]

( )

wherewe have used equation (29) andΩ is the boundary of the scattering region. Since deep inside the leads, or
at the boundary of the scattering region, the strength of the electric field is zero, we can conclude that
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