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Abstract

We formulate a current conserving theory for frequency dependent noise power under dc bias. In
calculating the noise power we explicitly take into account of the displacement current operator. It is
shown that the equilibrium frequency dependent noise satisfies the relation

Seqap(W) = € (W)[Gyp(w) + Gga(w)] where G, 3(w) is the frequency dependent conductance
including both conduction current and displacement current contribution.

1. Introduction

The equilibrium fluctuation—dissipation theorem which relates the linear conductance to equilibrium noise power
is fundamentally important in quantum transport [ 1-3]. Extensive efforts have been made to extend this theorem
to the nonlinear and non-equilibrium regime [4—6]. Fluctuation theorem has been established to relate higher
order response function to fluctuations of the systems. The fluctuation—dissipation theorem in ac regime has also
been discussed. For instance it has been used to calculate dynamic conductance due to the conduction current [7].

It has been realized that in ac regime the current conserving and gauge invariant conditions are two
fundamental requirements for quantum charge transport. It is known that the conduction current alone does
not conserve the current under ac bias due to the charge accumulation in the scattering region which is related to
the displacement current [8]. In another word, denoting G, 3(w) the dynamic conductance due to conduction
current, we have 3~ G 5(w) = 0and 325 G 3(w) = 0. Byaddingaself-consistent Coulomb interaction in the
Hamiltonian it will include the contribution of the displacement current and solve the problem of current
conservation. Using this approach, the problem of current conservation of dynamic conductance has been
solved atlow frequencies [8] and finite frequencies [9]. Under dc bias, there is no charge accumulation and the
current is conserved since the displacement current is not present.

Itis known that in addition to the current, the noise power and higher order moments are needed to
characterize the quantum transport process. In another word, the current operator I, can be used to generate
the current (I,), noise power” S,,3, etc. Ifthe current operator is conserved (3, I, = 0), the current, noise
power, and higher order moments will be conserved automatically, i.e., >, (I,) = 0,3, Su5 = >3 Sap = 0.
Although construction of a current conserving current operator is an unsolved problem, physical insight can be
obtained by looking into the issue of the conservation of noise power in ac regime.

For example, the equilibrium frequency dependent noise power is related to the frequency dependent
conductance due to the conduction current [10],

Seqas(@) = € (W[G5(w) + GEEwW)I, (1)

e/ 41
ow/KT _ ]

gives Seqap = 2kT[Gop + G;ka] where G5 = G;;3(0) and SS% = Seq,a3(0) are dc conductance and dc noise

where € (W) = w is defined in [10]. At zero frequency, the equilibrium fluctuation—dissipation theorem

% The symmetric noise power can be defined as So5(t, t/) = (1/2)[(al, (1) alz(t') + alz(t") AL, (t))] where Al, = I, — <I:1 ).
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power respectively. For current in the linear response regime, we have I, = 35 G, 33 where o and 3 denote the
lead and v3is the bias voltage of lead 3. Current conservation corresponds to ) I, = 0 whichleads to the
current conserving condition ), G,g = 0. Since the bias is defined up to an additive constant which does not
affect the current, i.e., I, = 375 Go3(v3 + 1), this gives rise to the gauge invariant condition 3°; G5 = 0. This
in turn gives conservation condition for the noise power, 3> S5} = -5 5.} = 0. Since the dynamic
conductance G 3(w) due to the conduction current is not conserved, from equation (1) the noise power is not
conserved at finite frequencies.

Clearly there is an inconsistency in the frequency dependent fluctuation—dissipation relation equation (1).
On one hand, we have a current conserving theory for dynamic conductance [8, 9]. On the other hand our
existing theory of frequency dependent equilibrium noise power equation (1) is not conserved. It is the purpose
of this paper to address the issue of noise power conservation.

It turns out that adding the self-consistent Coulomb interaction in the Hamiltonian will not conserve the
noise power. If we want to discuss the fluctuation of the current (noise power), we have to treat the current as an
operator which is a stochastic quantity that can fluctuate and has its distribution. From this point of view, the
current operator under dc bias is not conserved in general and the displacement current operator must play a
role. While it is clear that the average value of the displacement current operator is zero under dc bias, the
fluctuation of the displacement current can not be neglected even under dc bias if the noise power is considered.
As we will show below, the missing of the displacement current operator is responsible for the violation of the
finite frequency noise power conservation.

In this paper, we develop a phenomenological theory for the displacement current operator and show that
the equilibrium noise power is conserved by including the displacement current operator.

2. Theoretical formalism

2.1. Scattering matrix theory

To pave the way for the discussion, we first briefly review the scattering matrix theory (SMT) developed by
Biittiker to calculate the frequency dependent noise power under dc bias. The current operator in frequency
domainin SMTisgivenby(e = land 7z = 1)[11]

ac dE N . A _
fhw = [ S aiBa, @By, E B, )
2m O
where a;; is the creation operator for the electron incident fromlead 3, E = E + w and the matrix A is defined as [11]
Agy(a, E, E) = 64360y — 5 5(E)say (E), (3)

where 5,53 (E) is the scattering matrix from lead 3to lead ov. To distinguish the current in equation (2) from the
displacement current introduced later, we have denoted this current as the conduction current with superscript
c. Using the relation (4} (E)d3(E")) = 8,36 (E — E")f, (E), where (...) denotes the quantum average and f, (E) is
the Fermi distribution function of the lead «, the average current is found to be

R dE
(@) = 5@) [ f;B A B E). )
ol
After the Fourier transform with respect to frequency, we find the time independent current,
. ac dE
= = f =S fy(B)Ags(a, E, B), (5)
which is the well known Landauer—B ittiker formula. Using the relation

> Ap (o, E,E) =0, (6)

valid for any and -y, we verify that the current under dc bias is conserved, i.e., >~ I, = 0.
The fluctuations of the current away from their average value are characterized by the noise power S,.
Under dc bias S, is found to be [12]

Sus@) = [ £3 A B, B)
¥

X A&'y(/g, E’ E)E>5(E) E_)’ (7)

where

Es(E, E) = f(E)(1 — f3(E)) + f(E)(1 — £, (E)). ®)
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We now examine current conservation of equation (7). Since E = E at w = 0, equation (6) gives

Z Saﬁ(o) = Z S(xﬁ(o) =0, 9
« 16}

showing that the zero-frequency noise is conserved. At finite frequencies, however, noise power under dc bias is
not conserved anymore which has been recognized long time ago by Biittiker [10].

The issue of the conservation of noise power is rooted from the current conservation condition of current
operator. From equation (6) we immediately have

SN liw=0=0, (10)

which leads to equation (9). When wis nonzero, ), IA; (w) = 0isnotvalid and therefore the conservation
condition is violated for the finite frequency noise power. As we mentioned previously, the missing component
is the displacement current operator which will be discussed below.

2.2. Displacement current operator

Now we present a phenomenological theory for displacement current operator. To demonstrate this method, we
will treat equilibrium noise power in this paper. The non-equilibrium noise power can be dealt with similarly.
We start with the self-consistent formalism for current operator,

Ih(w) = IS + I w), 1)

where IZ (w) is the current operator for the conduction current defined in equation (2). The displacement

A, . . . . .
current operator I, (w) is the induced current due to Coulomb interaction. On the Hartree level and in the linear
response regime it is assumed to be”.

~d . diig (w, x) ~
I (w) = 1wfdxd—EU(w, x), (12)

where dii, (w, x) /dE is the frequency-dependent emissivity describing the local density of states (DOS) for
electrons exiting to lead o [9], and U (w, x) is the Coulomb potential operator due to quantum fluctuation given
by [10]

O, = [drg, x )N (@, x), (13)

where g (w, x, x') is the Coulomb potential response function or Green’s function and N (w, x) is the number
operator in the scattering region. The Coulomb potential response function g (w, x, x’) satisfies the Poisson-like
equation,

—Vilg (w, x, x') = 4wé(x — x') — 47rfdx”H(w, x, x")g(w, x", x'), (14)

where IT(w, x, x’) is the Lindhard function [8, 9]. The physical meaning of this equation is clear. The first term
on the right-hand side of this equation is the point charge source term and the second term is the induced charge
due to the Coulomb interaction. To find the equation governing the Coulomb potential operator U (w, x), we
express it in terms of 4, and d,, [10]

0w, =Y [Laima,@unE o ), (15)
o v

where the Coulomb potential matrix us, will be discussed later. We now derive an expansion for N (w, x)
similar to equation (15) and the poisson like equation for ug, .

The number operator N (t, x) in time domain is defined as follows
A 1
Nt x)=>)  ——
; 2w [vgvy
the normalization in this equation is defined so as to obtain the familiar result of average number of particle (see
equation (21)). Here

(e, s, %), (16)

(e, ) = [aBe P E, x)a(E), (17)

where ¢$"Y(E, x) is the outgoing wave function for electrons coming from lead 3. After the Fourier
transformation, we have

4. . . . . .
Similar displacement current operator has been proposed for mesoscopic capacitors in [10].
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A dE _
Nwx = [ 2 2 (B, By (B, w, ), (18)
By
where [10]
i By wy %) = — S VU B ) (19)
NACAE

is the frequency dependent partial local DOS associated with electrons entering from lead 3and yand vis the
electron velocity in lead 3. It can be shown in the appendix that the following relation holds (see derivation below
equation (48))

[ (B w, %) = =3 Ay (@, B B) = Noy (B, w), 20)
w «

where Ny, (E, w)is the partial DOS defined in [13]. It describes the DOS for electrons coming from lead Gand .
Note that taking quantum average on N (w, x) we obtain the familiar result

(N, %) = f dE[SS ™ (E, x)Pf5(E) S (w). 1)
From equations (2), (18) and (20) we have the continuity equation for current and number operators’

S W) + iw f dx [N (w, x)] = 0. 22)
We can define another frequency dependent partial local DOS (emissivity) that can be expressed as follows,

1 L .
fig, (B, w, x) = ———*(E, x)9 WV (E, x), (23)
Y Vi, ¥ ‘

where 1/)(;,“) (E, x) is the incoming wave function for electrons coming from lead  (its definition is given in
appendix). A similar relation holds for emissivity,

f dx[7ig, (E, w, x)] = ZAJw(a E, B), (24)

Now the local injectivity dn, (w, x) /dE and the local emissivity dii, (w, x) /dE defined in [9] can be
expressed as

dna(w,x) _ (dEf—f
T f T aa (B, w, %), (25)
and
i (w,x)  (dEf—F_
T = f A (B, w, %), (26)

from which we have local DOS dn(w, x) /dE = Y dn, (w, x) /dE and dii(w, x) /dE = ¥, dfi,(w, x) /dE.
Using equations (13), (15) and (18) we immediately have

g (B, w, x) = f dx'g (W, %, ") 1, (B> w, '), 27)

from which we find the poisson-like equation governing the Coulomb interaction matrix ug,,

—Viuﬂw(E, w, X) + 47Tf dx'TI(w, x, xYugy(E, w, x')
= 4mng, (E, w, x). (28)

The characteristic potential 1, used in [9, 11] can be defined as u,, = f (dE / 2 Uaa(f — f) / w. From
equation (25), we find the familiar poisson-like equation for the characteristic potential u,,

> The continuity equation can also be obtained from the equation of motion showing the consistency of our theory (see equation (65)
of [18]).
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—Viug(w, x) + 47 f dx'TI(w, x, x") e (W, ')

dn, (w, x)
T—
dE

To the linear order the Coulomb potential is related to the characteristic potentialas U = 3" , u, ¥, where v, is
the bias voltage atlead ov. The gauge invariant condition gives [8] > 1, = 1.

To avoid possible confusion, we emphasize that quantities such as 73, and ug, with double subscript depend
on energy E and do not depend on temperature while the quantities dn,, /dE and u,, depend on temperature and
Fermi energy Er.

=4 (29)

2.3. Reciprocity relation

Note that the injectivity and emissivity defined above are the same as those defined in the linear response theory
and obey the reciprocity relation [9], from which we have d7i, (w, x, B) /dE = dn,(w, x, —B)/dE,

II(w, B, x, x") = Il(w, —B, x/, x)and g(w, B, x, x’) = g(w, —B, x', x). The gauge invariant condition in the
linear response theory requires >, t, (w, x, =B) = 1from which we obtain

/
[z, x, x/)% 1, (30)
and
= ’
fdx’%g(w, x', x) = 1. (31)

In the absence of magnetic field, equations (19) and (23) are the same quantity, which shows that injectivity and
emissivity are the same in the absence of magnetic field.

2.4. Current conservation at operator level
We now examine the current conservation condition at operator level. Substituting equation (13) into (12) and
using equation (31) we arrive at

S W) = iw f dx [N (w, 1], (32)

which says that the sum of displacement current equals to the rate of change of total charges in the scattering
region. From the continuity equations (22) and (32) we see that the total current operator conserves the current,
. ac ~d
Le, > (U, (w) + I, (w)) = 0.

With the displacement current operator defined, the total current operator in equation (11) can be written as

N dE R - _
fow = [ S ai®a,@Bas, . E B, (33)
2m 5y
where
- = . d_(} b
Al (a, E, B) = Agy(a, E, B) + iw f dx%um(ﬂ W, x), (34)

where ug, (E, w, x) = f dx'g (w, x, x")ng, (E, w, x’) (see equation (27)).

Now itis easy to confirm explicitly the conservation of current at the operator level by showing
> Af%, (a, E, E) = 0 which is obvious from equations (20) (27), and (31). So by introducing a fluctuating
Coulomb potential, the frequency dependent current operator is conserved to all orders of dc bias. This ensures
that noise power as well as higher order moments satisfy the conservation condition to all orders of dc bias.
Changing wto —w in equation (33) and shifting Eto E + w, we have

— k
Al (a, B, E) = Agy(a, E, E) — iw f dx(%) W(E, w, x). (35)

We canalso show that 3>, A} (v, E, E) = 0.

2.5. Noise power
Now we evaluate the equilibrium state noise spectrum. From [11], we have

dE _
Su@ = [ Y Al E B
~¥6

x As, (B, E, E)Ey(E, E), (36)
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where
Es(E, E) = f(E)(1 — f5(E)) + f;(B)(1 — £, (E)). (37)
In the equilibrium state the Fermi distribution functions of the different leads are the same, i.e.,
f,y (E) = f5(E) = f(E).From equations (34) and (35) the equilibrium noise is given by
Seqap(W) = € (WS 05(w) + S, 5(w)]. (38)

In equation (38) the first term can be expressed in terms of the dynamical frequency dependent conductance
Gup(w)

S sw) = Gap(w) + Gh(w), (39)
with
dEf—f N _
Gop(w) = f_u[éaﬁ — $up(E)sap(E]
2r w ‘
. dii, (w) ]
+ iw Tr| ———uy ) 40
w r[ iE ug(w) (40)
where f= f(E)and f = f(E). The second term Se(czl,)a'{)’(w) is given by

@ (i [AEf—f o
Seq,aﬂ(w) lwf o w %:(5 h,/(E)Saé(E)

d_"( ) * = d_a
x Tr[( = ) u:;,(m] - s£5(5>s,@7(E>Tr[%uwra<w)]

— ES —
i Trl( ST ) uta(w)]"rr[ L) uwé(w)])- (41)

We will show in the appendix that S e(i)a s(w) = 0.Hence the frequency dependent equilibrium noise is
proportional to the dynamical frequency dependent conductance,

Seqap(W) = €(W)[Gap(w) + GHWI, (42)

which is the frequency dependent equilibrium fluctuation—dissipation theorem. As shown in [9] the dynamic
conductance G,3(w) is current conserving and gauge invariant, i.e., 3_ , Gop(w) = 325 Gap(w) = Oleadingtoa
conserved noise power in equation (42).

So far, we have discussed the noise power using the symmetric definition (see footnote 3). Experimentally,
the measurable quantity is usually non-symmetric [ 14, 15] It was derived in [14] that the experimental response
of current—current correlator is given by

S=KI[S: + N,(S; — S)] (43)

with S, (w) = fdt (I (0)f(t)> exp(iwt)and §_ = fdt (I(t)1(0)) exp(iwt), K isa constant, and
N, = 1/[exp(faw/kT) — 1].Itis straightforward to show that our theory also applies to non-symmetric noise
power. We only need to modify the function ¢ (w) in equation (1) or equation (39).

In this work, we used the SMT developed by Buttiker [11] in 1992. Equation (2) is valid provided that the
frequency is much smaller than the Fermi energy. However, when frequency is very large, one could use a more
realistic expression for current operator which is spacial dependent [16].

In this paper, we have included the displacement current operator only in the linear order in bias voltage
which already makes the current operator conserved to all orders in bias voltage. If we want to treat the
displacement current more accurately such as nonlinear terms in current operator, nonlinear displacement
operator should be included. This is a very complicated issue and will be treated in a future publication.

3. Summary

To summarize, we have developed a phenomenological theory for the displacement current operator in the ac
regime. With the inclusion of displacement current operator, the frequency dependent noise power under dc
bias is conserved and the finite frequency equilibrium fluctuation—dissipation theorem is now consistent with
the current conserving dynamic conductance.
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Appendix

There are several relations that we will prove in this supplemental material. It turns out that it is much easier to
use NEGF instead of SMT. We will use the following relation to relate G"and SMT. Decomposing the linewidth
function T}, using its eigenstate | W,,,,) where m labels the mth transmission channel, we have

L, = X,/ Wam) (Waml [17]. The wavefunctions |z[1§f;t)> and |¢g‘,;2> are defined as

W) = o G W) (44)
and
(Wl = Viam (Waml G- (45)
It is easy to see that the following relations hold
21 (Yol = 22100 (Wl (46)
and
[WanB)) (Wi B = e (—B) (Ve (BT, (47)

where B is the magnetic field.
To make the notation simple, we just consider one transmission channel in the following derivation. With
the help of the Fisher—Lee relation s,3(E) = —68,3 + 1{W,|G" (E)|Wj), we will first prove equation (20),
i _
f dxlny, (B, w, )] = =3 A (0, B, E). (48)
«

On the one hand, with the help of definitions in equations (44) and (45), we find

[ axtns, (B, 0, 01 = —— eIy E) (W3 E) ]
Vg Vy
= TH[G'IW,) (WG] = (WAG'GTW,), (49)

where we have used the notation G” = G'(E). On the other hand, we can express the Ag, (o, E, E) in terms of
NEGF using the Fisher—Lee relation,

iZAﬂ"/(a’ E, E) = 52[6@66@7 - S(i‘ﬂ/}(E)S(x'y(E)]

i '. o
- ;Z[éaﬂéay + (6(1'{1 + 1<V\{3|Gu|%>)(—507 + 1<W1|Gr|vv“/>)]
= L(WHiG" — iG* — GTGW,) = (W5 GG'IW,),

w

where we have used i(G" — G%) — G'T'G" = —iwG*G"and " = 3, T;, and therefore equation (20) is proved.
To show S@ 3(w) = 0, we will first prove the following relation,

eq, 0
dEf—T _ | dAfw)
J ;T%WWWI[ R

diij(w, x) dii, (w, x)

= [ dxdx'¢*(w, x, x’ 50
J s, x 02— S (50)
To do that, we express s:[,y (E)s,s(E) in terms of NEGF

Slq/(E)5<y5(E) = 6(%76(16 + <Wy|iGu6a§ - iGr(Sa"y + GaExGr|W§>~ (51)
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Then from equations (19), (23), (26) and (27) we have

df(w, x) :def f GT,G

e
2r W

and
w (w, x) = f dx'g*(w, %, x)[G'[W,) (WH|G L.

Thus

e ld’%(w) E )] fdxdx,dEf f

X [GT3G g (W, x, X)[G'|W,) (W5|G%]yrx.

Combine with equations (51) and (54), we obtain

—
f AR Z (E)sua(E)Tr[d”ﬂ(“)u;(w)]
w dE )

2

/dl’l/ (wa .X) ’ dE
:fdxdxﬂTg*(w,x,x) f f- fz

27TWA§

<x’|G’FW(G’EyG_“ — iG’(S(W + iG%,s + GT,GNTsGx")
dif(w, x) dEf—f _
= | dxdx'——=¢* y X, ! i — Ga]-—‘aGr x/x!
f dE g(wxx)\fZﬂ'w[ ]

dif(w, x) dii (w, x')
dE de

where we have used the relation iG'T'G? = G* — G". Similarly, we can prove

dEf-T diiy (@)
5 Azrtsjsﬂé(E)say(E)T[ T uw(w)]

dit, (w, x) 4715 (W, x)
dE dE

:f dxdx'g*(w, x, x')

:f dxdx'g (w, x, x)

Next we will prove that

f dE f - fZT[ () 57@)]%[%1175(@]

2w S dE dE

dii, (w, x) 475 (w, x")
dE dE
X g*(w, x/l) x’”)[fiH(w, x/) x///) + iH*(w, x/l/, Xl)],

:wfdxdx’dx”dx”’

g (w, x, x')

JYuan etal

(52)

(33)

(54)

(55)

(56)

(57)

where IT(w, x, x') is the Lindhard function (in terms of Green’s function, for details see equations (19) to (21) in

[9]) defined as
(w, x, x') = if g[(fff)G;x/Gf/erfG_;fo; fGr Gl
2w

Using equation (54), we have

dri} i
f dEf fz [ ng:jw) u’gﬂ’,(w)}Tr[Wu“ﬂ’(w)]

21w dE
=w def fodxdx’g(w x, x') 7(1”0‘(% x)
2w ’ dE
daf(w, x")

x [Grl‘/\,&> <‘/VA/,|Gu]x/x/ fdxlldxlllg*(w’ xl/’ x///) TS

X [GIW,) (Wh|G T = w? f diedx’dx "

dii, (w, x) 475 (w, x")
dE dE

X g(w, x, x)g*w, x", x)

f -
x f GG L (GG .

(58)

(59)




I0OP Publishing NewJ. Phys. 20 (2018) 013036 JYuan etal

Itis easyto see
dE = -
J S = DIGCTG) 0 (GT G0
dE A = =
= f E(f— f) [I(Gr — Ga)]x’”x' [](Gr — Ga)]x/x///
= i[~I(w, ¥/, x") + II*(w, x", x")]. (60)
Finally we arrive at

dii(w, x) dii, (w, x')
dE dE
ity (w, x) A7} (w, x')
dE dE
dfiy (w, x) i (w, x)
dE dE
X g*(w’ x//’ x///) [H(W, x/’ x///) _ H*(w’ xl//’ x/)]. (61)

Se(éfnﬂ(w) = iwfdxdx’g*(w, x, x')

— iwf dxdx'g(w, x, x')

—iw [ drdx'dede”

g(w, x, x")

Note that the characteristic potential u,, is defined as

e = [ L

_ fd_Ef;f [ g, % ¥yman @)

2r w
dng (x)
= | dx'¢(w, x, x/)—222, 62
J gt x ) S (©)
In general all the quantities in equations (61) and (62) are defined in the presence of magnetic field B. We now
change the magnetic field from B to —B and combine with the reciprocity relation, we can rewrite S e(fl,)a sw)as

follows

* —_—
S& pw) = iw Trlu;‘(B)M - ua(B)M]

dE dE
— uj(—=B)II(w, —B)uo(—B) + ua(—B)T*(w, —B)uj(—B)

- —;iTr[u;*(—szua(—B) — ua(—B)V2ul(—B)]
* Trlu

_w T (—B) Y (—B) — u¥(— _
‘47rfgds (1o (—~B)Vuf(—B) — wi(—B) Y, (~B)],

where we have used equation (29) and €2 is the boundary of the scattering region. Since deep inside the leads, or
at the boundary of the scattering region, the strength of the electric field is zero, we can conclude that
Viuglo = 0. Thus

Se(i)aﬂ(w):% fQ ds - [ta(—B)Vii(—B)

— uj(—B)Vu,(—B)] = 0. (63)
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