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Abstract  Most theoretical models of non-uniform concrete confinement use empirical equations and thus are applicable 
only to limited ranges of geometric and material parameters. In light of such shortcomings, a novel finite element (FE) 
method is proposed to explicitly compute the non-uniform lateral confining stresses in the concrete section. To determine 
the lateral stresses, the lateral strains are divided into two components: an elastic component and an inelastic component, 
and a 2-dimensional FE analysis of the concrete section with the inelastic laterals strains taken as initial strains is carried 
out. Since the lateral stresses and inelastic lateral strains are inter-related, an iterative process of evaluating the lateral 
stresses from the inelastic lateral strains by FE analysis and then evaluating the inelastic lateral strains from the lateral 
stresses by a lateral strain model is employed until convergent results are obtained. This FE method is herein applied to 
square concrete-filled steel tube columns. 
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1. Introduction 
A concrete-filled steel tube (CFST) has higher strength 

and ductility than traditional reinforced concrete, owing   
to the confinement effect therein. It has become widely 
adopted in bridges, e.g. Hejiang Bosiden Bridge and 
Guangzhou Yajisha Bridge, and tall buildings, e.g. 
Shenzhen KK100. However, the effectiveness of 
confinement in CFST is dependent on the section shape and 
loading type. In theory, a circular CFST column under axial 
loading has uniform confinement over the entire concrete 
section before any local buckling occurs, whereas a 
non-circular (rectangular, elliptical or polygonal) CFST 
column under any loading or a circular CFST under 
eccentric loading has non-uniform and generally less 
effective confinement. 

Many empirical axial strength and stress-strain models of 
confined concrete have been developed by incorporating the 
effects of confinement, whether uniform or non-uniform, in 
terms of empirical factors dependent on the geometric and 
material parameters without explicit consideration of the 
actual distribution of confining stresses [1-7]. In a recent 
study by Yu et al. [8, 9] on concrete confined by 
fibre-reinforced polymer (FRP), the finite element (FE) 
method was employed to analyse the confining stresses. A 
pivotal step was taken to  simulate the interaction between  
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the laterally expanding concrete and the confining FRP by 
making solution-dependent adjustments to the dilation angle 
of the plastic flow potential of the concrete. 

To avoid such complicated adjustments, the authors have 
developed a novel FE model, which allows directly 
computation of the inelastic components of the lateral 
strains, from which the confining stresses can be evaluated 
[10, 11]. This paper presents the key features of the FE 
model and some numerical results obtained for square 
CFST. 

2. Concrete Modelling 
This model simulates the constitutive behaviour of 

concrete under confinement using the lateral stain-axial 
strain relation developed by Dong et al. [12], the triaxial 
failure surface developed by Menétrey and Willam [13] and 
the axial stress-strain relation of confined concrete 
developed by Attard and Setunge [14]. Detailed 
mathematical formulations of the three models are presented 
in Table 1 for reference. 

According to Dong et al. [12], the lateral strains of 
concrete in the two in-plane directions each comprises of two 
components, an elastic component and an inelastic 
component. Based on this postulation, the in-plane principal 
lateral strains ε1 and ε2 in each concrete element can be 
expressed as ε1 = ε1

e  + ε1
p and ε

2
 = ε2

e  + ε2
p, in which ε1

e  and 
ε2

e  are the elastic components, and ε1
p  and ε2

p  are the 
inelastic components. With the inelastic components taken 
as initial strains, the constitutive equation of concrete at 
element level may be expressed as: 
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where Ec and νc are the Young’s modulus and Poisson’s ratio 
of the concrete. The inelastic components in Eq. (1a) are 

dependent on the axial strain in the longitudinal direction ε3, 
the lateral confining stresses σ1 and σ2, and the concrete 
cylinder strength fc, as given by: 

ε1
p = -19.1�ε3 - ε3,1

lim�
1.5
�0.1 + 0.9 �exp �-5.3 �σ1

fc
�

1.1
��� (2a) 

ε2
p = -19.1�ε3 - ε3,2

lim�
1.5
�0.1 + 0.9 �exp �-5.3 �σ2

fc
�

1.1
��� (2b) 

The expressions of ε3,1
lim and ε3,2

lim can be found in Table 1. 
Table 1.  Adopted concrete models 

Authors Model Expressions 

Dong et al. [12] 

ε1
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Menétrey and Willam [13] 
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Attard and Setunge [14] 
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Figure 1.  Procedures for the FE analysis 

Triangular three-noded (T3) elements are used. Hence, the 
axial strain ε3 at the centroid of the T3 element is used in Eqs. 
1 and 2. The stiffness matrix equation of the concrete 
elements in the global coordinate system is derived as: 

F = ∆ �BTATC A B u - BTATCε1,2
p  + BT(λνcε3)�   (3) 

in which ∆ is the area of the T3 element; B is the 
strain-displacement matrix of the T3 element; A is the strain 
transformation matrix converting the global lateral strain 
vector {εx εy γxy}T to the local principal strain vector {ε1 ε2 
γ12}T; u is the nodal displacement vector {u1 υ1 u2 υ2 u3 υ3}T 
for the T3 element; ε1,2

p  is the local inelastic strain vector  
{ε1

p ε2
p 0}T; ε

3
 is the axial strain vector {ε3 ε3 0}T in both local 

and global coordinate systems; and C is the constitutive 
matrix of the concrete. 

The triaxial failure surface developed by Menétrey and 
Willam [13] is given by: 

F (ξ, ρ, θ) = �√1.5 ρ
fc
�

2
 + m � ρ

√6fc
r(θ, e) + ξ

√3fc
�  - c = 0 (4) 

where ξ is the hydrostatic length; ρ is deviatoric length; θ is 
the Lode angle; m is the friction parameter; e is the 
out-of-roundness parameter; and c is the cohesion parameter. 
The uniaxial tensile strength ft is assumed as -0.1fc. When 
Eq. (4) is only describing the failure surface, c should be 
equal to 1. The value of e can be derived by putting σ1 = 0 
and σ2 = σ2 = 1.5∙fc

0.925 into Eq. (4): 

e = 
44.55∙fc

-0.075 + 6.75∙fc
-0.15 - 3

89.1∙fc
-0.075 - 6.75∙fc

-0.15 + 3
         (5) 

Begin 

Apply prescribed axial strain ε3 incrementally over the section 

Calculate inelastic lateral strains in each concrete element 
from axial strain, confining stresses and cylinder strength. 

Solve the nonlinear FE equation for nodal displacements 

Member failure? 

End 

Yes 

Yes 

No 

Calculate ultimate strength and axial stress in 
each concrete element 

Convergent? No 

Re-evaluate confining stresses in each concrete element 

Determine axial load P 
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as per the suggestion by Papanikolaou and Kappos [15] that 
the biaxial-to-uniaxial compressive strength ratio of concrete 
should be given by 1.5∙fc

-0.075. As far as the failure surface is 
concerned, the compressive strength of confined concrete fcc 
is equivalent to σ3 in Eq. (4) and can be calculated from the 
lateral confining stresses σ1 and σ2 at each iteration step.  

The relation between the axial strain ε3 and the axial stress 
σ3 (different from σ3 in Eq. (4)) of each concrete element 
may be determined by Attard and Setunge’s model [14]. The 
mathematical expression of this model is given by: 

σ3
fcc 

 = 
a1�

ε3
εcc
� + a2�

ε3
εcc
�2

1 + a3�
ε3
εcc
� + a4�

ε3
εcc
�2

            (6) 

where εcc is axial strain at peak stress corresponding to fcc, 
and a1, a2, a3 and a4 are coefficients governing the shape of 
the stress-strain curve. It should be stressed that Attard and 
Setunge’s original mathematical expressions for fcc is only 
applicable to the cases in which the confining stresses along 
the two principal axes have the same magnitude, i.e. σ1 = σ2 
= fr, and is replaced by Menétrey and Willam’s triaxial 
failure surface since the latter is more suitable for anisotropic 
cases. fr is also used to determine other parameters in Attard 
and Setunge’s model. When σ1 and σ2 are not equal to each 
other, fr is assumed to be the minimum of σ1 and σ2, as a 
compromised approach. 

3. Nonlinear FE Analysis of Square 
CFST 

The analysis procedure for axially loaded square CFST 

columns is illustrated in Fig. 1. 
The axial strain ε3 of each concrete is the prescribed input, 

the inelastic lateral strain vector ε1,2
p  of concrete in Eq. (3) 

can be determined by Dong et al.’s [12] lateral strain-axial 
strain relation. Likewise, the plastic strain vectors εp and ε3

p 
of steel can be determined by von-Mises yield criterion and 
the associated plastic flow. Subsequently, the global stiffness 
matrix equation can be assembled as: 

K∙u =  Fp{ε1,2
p [σ(u),ε3], εp} - F3(ε3, ε3

p)    (7) 

where Fp and F3 are load vectors related to the residual 
strains (inelastic lateral strains of concrete and plastic strains 
of steel) and axial strains in the concrete elements and steel 
elements. In Eq. (7), the residual strain vector on the right 
hand side is dependent on the nodal displacement vector on 
the left hand side. An iteration process is adopted to calculate 
the approximate solutions to Eq. (7) in each loading step. 
More specifically, a nodal displacement vector ui can be 
calculated using the current values of axial strains and 
confining stresses in Step i: 

K ∙ ui =  Fp{ε1,2
p [σi,ε3], εp} - F3(ε3, ε3

p)     (8) 

Then the new nodal displacement vector can be used to 
produce a new stress vector σi', which is used to compute the 
confining stresses for the i+1th iteration: 

σi+1 = r ∙ σi + (1 - r) ∙ σi'(ui), (0 < r < 1)   (9) 
where r is the relaxation factor. Normally the value of r is set 
between 0.3 and 0.7 to maintain the convergence rate during 
the iteration process. 

 

Figure 2.  Load-strain curves 
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After the principal lateral stresses σ1 and σ2 of each 
concrete element are converging to steady values, i.e. their 
approximate solutions are found, they can be used to 
evaluate fcc via Menétrey and Willam’s triaxial failure 
surface. With the input of ε3, fcc, fr = min{σ1, σ2}, and the use 
of Attard and Setunge axial stress-strain relation, the axial 
stress σ3 of each concrete element can be evaluated. 
Meanwhile, the axial stress σ3 of each steel element is 
determined also by von-Mises yield criterion and the 
associated plastic flow. The force P can be calculated by 
integrating σ3 over the whole CFST section.  

If there is flexural behaviour involved other than axial 
compression, an extra level of iteration involving member 
analysis should also be added to the procedure. 

4. Applications 
The FE model is verified against the experimental results 

of 3 axially loaded square CFST columns from Sakino et 
al.’s publication [16]. The sectional edge length for the 
columns CR4-A-4-1, CR4-C-4-1 and CR4-D-4-1 are 148 
mm, 215 mm and 323 mm respectively; the steel tubes for all 
three have yield strength of 262 MPa and thickness of 4.38 
mm; the cylinder strengths of concrete are 40.5 MPa for 
CR4-A-4-1 and 41.1 MPa for the other two. In Fig. 2, the 
peak loads of CR4-A-4-1, CR4-C-4-1 and CR4-D-4-1 
predicted by the FE model are 0.94, 1.02 and 0.98 times their 
respective experimental results; as far as the residual strength 
at ε3 = 4.0% is concerned, those multiples will become 0.94, 
0.90 and 0.86. Overall, the predictions by the FE model agree 
quite well with the test results. 

 

 
 (a) r = 0.05D (b) r = 0.15D 

 
(c) r = 0.25D 

Figure 3.  Concrete axial stress contour at ε3 = 4.0% 

y 
(m

m
) 

x (mm) 
0 20 40 60 80 100

0

20

40

60

80

100

y 
(m

m
) 

y 
(m

m
) 

x (mm) x (mm) 
0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100
0

20

40

60

80

100

       σ3/fc: 
0.0 0.4 0.6 0.8 1.0 1.2 ∞ 1.4 



62 A. K. H. Kwan et al.:  A Novel Finite Element Method for Analysing  
the Confinement Effect in Concrete-Filled Steel Tubes 

 

The corner effect is also studied with the help of the FE 
model. Fig. 3 shows the simulated distributions of axial 
stress for a series of axially loaded square CFST columns 
with edge length of 200 mm, tube thickness of 4 mm, S355 
steel, Grade 80 concrete and corner radii of 10, 30 and 50 
mm. It is discovered that the confinement effect is better at 
the corners and centre of the section. As the corner radius 
increases, the effectively confined concrete areas at ε3 =  
4.0% will increase, hence the residual strength of the column 
will be maintained at a higher level. 

5. Conclusions 
This paper has presented a novel FE method that utilizes 

Dong et al.’s lateral strain-axial strain model, Menétrey and 
Willam’s triaxial failure surface and Attard and Setunge’s 
axial stress-strain model under confined condition to analyse 
the passive confinement effect induced by the lateral 
expansion of concrete within CFST. The use of initial strains 
in the formulation of the global stiffness matrix equation is 
the key to compute passive confining stresses in the FE 
analysis. Owing to this new tool, the load-strain relation and 
the axial stress contour of CFST can be simulated, thus 
enabling further exploration on various phenomena in CFST, 
such as the corner effect. 
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