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Abstract

A flux of cosmic rays (CRs) propagating through a diffuse ionized gas can excite MHD waves, thus generating
magnetic disturbances. We propose a generic model of CR penetration into molecular clouds through their diffuse
envelopes, and identify the leading physical processes controlling their transport on the way from a highly ionized
interstellar medium to the dense interior of the cloud. The model allows us to describe a transition between a free
streaming of CRs and their diffusive propagation, determined by the scattering on the self-generated disturbances.
A self-consistent set of equations, governing the diffusive transport regime in an envelope and the MHD turbulence
generated by the modulated CR flux, is characterized by two dimensionless numbers. We demonstrate a
remarkable mutual complementarity of different mechanisms leading to the onset of the diffusive regime, which
results in a universal energy spectrum of the modulated CRs. In conclusion, we briefly discuss implications of our
results for several fundamental astrophysical problems, such as the spatial distribution of CRs in the Galaxy as well
as the ionization, heating, and chemistry in dense molecular clouds.
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1. Introduction

Cosmic rays (CRs) represent a crucial ingredient in the
dynamical and chemical evolution of interstellar clouds.
Interaction of CRs with molecular clouds is accompanied by
various processes generating observable radiation signatures,
such as ionization of molecular hydrogen (see, e.g., Oka
et al. 2005; Dalgarno 2006; Indriolo & McCall 2012) and iron
(e.g., Dogiel et al. 1998, 2011; Tatischeff et al. 2012; Yusef-
Zadeh et al. 2013; Nobukawa et al. 2015; Krivonos et al. 2017),
as well as production of neutral pions whose decay generates
gamma-rays in the GeV (e.g., Yang et al. 2014, 2015; Tibaldo
et al. 2015) and TeV (e.g., Aharonian et al. 2006; Abramowski
et al. 2016; Abdalla et al. 2017) energy ranges. Being a unique
source of ionization in dark clouds, where the interstellar
radiation cannot penetrate, CRs provide a partial coupling of
the gas to magnetic field lines, which could slow down or
prevent further contraction of the cloud (e.g., Shu et al. 1987).
CRs are fundamental to the beginning of astrochemistry
because they promote the formation of +H3 ions, which can
easily donate a proton to elements such as C and O, and thus
eventually form molecules containing elements heavier than H
(e.g., Yamamoto 2017). Through the ionization of H2

molecules and the consequent production of secondary
electrons, CRs are an important heating source of dark regions
(e.g., Goldsmith 2001). Their interaction with H2 can also
result in molecular excitation, followed by fluorescence
producing a tenuous UV field within dark clouds and dense
cores (Cecchi-Pestellini & Aiello 1992; Shen et al. 2004; Ivlev
et al. 2015a); this UV field can photodesorb molecules from the
icy dust mantles and help to maintain a non-negligible amount
of heavy molecules (such as water) in the gas phase (e.g.,
Caselli et al. 2012). Furthermore, CRs can directly impinge on
dust grains and heat up the icy mantles, causing catastrophic

explosions of these mantles (Léger et al. 1985; Ivlev et al.
2015b) and activating the chemistry in solids (Shingledecker
et al. 2017). Finally, CRs play a fundamental role in the
charging of dust grains and the consequent coagulation of dust
(Okuzumi 2009; Ivlev et al. 2015a, 2016), which is particularly
important for the formation of circumstellar disks (e.g., Zhao
et al. 2016) and of planets in more evolved protoplanetary disks
(e.g., Testi et al. 2014).
One of the fundamental questions is how interstellar (IS)

CRs penetrate into molecular clouds, i.e., what mechanisms
govern this process and how do they affect the CR spectrum
inside the clouds. The crucial point here is that the IS spectrum
may be significantly modified while traversing the outer diffuse
envelope of a cloud, before reaching its interior.
There are at least three important factors that may critically

affect the CR spectra inside the clouds:

1. The cloud structure is strongly nonuniform. Dense cloud
cores with gas density ng=104–107 cm−3 are surrounded
by low-density envelopes with ng=10–103 cm−3 (see Lis
& Goldsmith 1990; Protheroe et al. 2008). In the central
molecular zone these envelopes occupy up to 30% of the
space (see Oka et al. 2005; Indriolo & McCall 2012).

2. It has long been known (see Lerche 1967; Kulsrud &
Pearce 1969) that a CR flux propagating through a
plasma can excite MHD waves and thus create magnetic
disturbances. A linear analysis (e.g., Dogel &
Sharov 1985) suggests that the waves are expected to
be excited near most molecular clouds. However, it is still
an open question as to whether the resulting disturbances
are essential (see Skilling & Strong 1976; Cesarsky &
Völk 1978) or not (see Morlino & Gabici 2015) for the
penetration of CRs into the clouds.

3. CR energy losses in the envelope are determined by
ionization, proton–proton collisions, and MHD-wave
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excitation (see Skilling & Strong 1976; Padovani
et al. 2009, 2013; Ivlev et al. 2015a; Schlickeiser et al.
2016). The relative importance of these processes also
needs to be carefully analyzed.

Attempts to analyze a system of nonlinear equations
describing the CR–wave interaction in molecular clouds have
been undertaken in several publications (see, e.g., Skilling &
Strong 1976; Cesarsky & Völk 1978; Morlino & Gabici 2015).
We notice however, that in all these cases the analysis was
based on relatively simple estimates rather than on the exact
solution of the equations. Nevertheless, Skilling & Strong
(1976) showed that interactions of CRs with waves should lead
to depletion of their density inside the clouds at energies below
∼100MeV. Later, Cesarsky & Völk (1978) demonstrated that
the depletion can be even stronger if the effect of magnetic field
compression is taken into account. In a recent paper, Morlino &
Gabici (2015) estimated the flux velocity of CRs penetrating
into a cloud to be about the Alfvén speed for all energies.
(Below we will see that this estimate is correct only for
relatively low energies.) For the sake of completeness, one
should also mention analysis of the CR–wave interaction
undertaken by Dogiel et al. (1994) for processes of CR escape
from the Galaxy, and by Recchia et al. (2016a, 2016b)
to describe the spatial distribution of Galactic CRs and the
CR-driven Galactic winds. These problems, however, are
clearly beyond the scope of our paper.

The principal goal of the present paper is an attempt to
formulate a self-consistent generic model of CR penetration
into molecular clouds through their diffuse envelopes. We
identify the leading physical processes controlling the CR
propagation on the way from a highly ionized interstellar
medium to the dense interior of the cloud. In our analysis we do
not presume a regime of CR propagation in the envelope, but
instead derive it from the model. This allows us to reveal the
mutual interplay of the factors mentioned above, and thus to
address a number of important specific questions, such as:

1. What is the regime of CR propagation in molecular cloud
envelopes—do CRs freely cross the envelope, or do they
experience significant scattering by the self-generated
MHD turbulence?

2. What characteristics of the interstellar CR spectrum and
parameters of a diffuse envelope determine the propaga-
tion regime?

3. Do CRs lose a significant part of their energy by MHD-
wave excitation in the envelope, or do regular losses due
to interaction with gas dominate?

4. Can (some of) the above processes cause a strong self-
modulation of the CR flux penetrating into a dense core?

The paper is organized as follows. In Section 2 we present a
self-consistent set of equations, governing the diffusive regime
of CR transport in a molecular cloud envelope and the MHD
turbulence generated by the modulated CR flux. In Section 3
we write the governing equations in dimensionless form and
show that the diffusive regime is described by a single
dimensionless number ν (wave damping rate), while a
transition to the free-streaming regime is characterized by the
small parameter ò (ratio of the Alfvén velocity to the speed of
light). In Section 4 we consider an idealized problem setup,
where CRs propagate toward an “absorbing wall” and the
energy losses due to their interaction with gas are negligible.
This allows us to determine basic conditions for the onset of the

diffusion zone in the cloud envelope, and to identify generic
properties of nonlinear CR diffusion. In Section 5 we study the
effect of gas losses on the diffusion, and in particular on the
magnitude of the modulated CR flux penetrating into the cloud.
Finally, in Section 6 we point out a remarkable mutual
complementarity of different mechanisms leading to the onset
of the diffusive regime, which results in a universal energy
spectrum of the modulated CRs. Implications of our results for
several fundamental astrophysical problems are briefly
discussed.

2. Governing Equations

In weakly ionized cloud envelopes, where the gas density ng
typically does not exceed ∼103 cm−3, the strength of the
magnetic field B is practically independent of ng (and is of the
order of 10 μG, see Crutcher 2012). For this reason, we do not
consider effects of large-scale variations of B, which may be
crucial for CR propagation in dense cloud cores (e.g., Cesarsky
& Völk 1978; Schlickeiser & Shalchi 2008). Also, since the
Larmor radius of CRs with energies relevant to our problem is
much smaller than the spatial extent of a typical envelope, a
stream of such rapidly gyrating CRs is parallel to the magnetic
field. Hence, the problem can be considered as one-dimensional,
with the coordinate z measured along the field line.
A CR flux can effectively excite Alfvén and fast magneto-

sonic waves in a cold magnetized plasma. Low-frequency
disturbances of the magnetic field associated with these waves
can, in turn, effectively scatter CRs. The maximum growth rate
is achieved for waves propagating along the magnetic field in
the direction of the CR flux. The growth rate is then the same
for both wave modes (Kulsrud & Pearce 1969), propagating
with the Alfvén phase velocity,

p
=v

B

m n4
,A

i i

where ni and mi are the ion density and mean ion mass,
respectively.
Let us introduce steady-state local distribution functions of

CRs in the momentum and energy space, averaged over pitch
angle and denoted as F(p, z) and N(E, z), respectively. They are
related to each other via

p p= º( ) ( ) ( )p F p z vN E z j E z4 , , 4 , ,2

where j(E, z) is the so-called CR energy spectrum. The particle
momentum as a function of the kinetic energy is

= +-( ) ( ) ( )p E c E E m c2 ; 11
p

2

the physical velocity is = +( ) ( ) ( )v E p E c E m c2
p

2 . The local
flux of CRs through a unit area and per unit energy interval is
defined as6

-
¶
¶

+
⎧⎨⎩

⎫⎬⎭( ) ( )S E z D
N

z
v N S, min , . 2A free

In such a definition, the flux continuously changes between the
diffusive regime (first term; in what follows it is referred to as
the modulated flux), where the mean free path of CRs due to

6 The CR flux and hence the excited MHD waves propagate from right to left,
as sketched in Figure 1. Therefore, the minus sign is added in front of Sfree and
vAN (note also that ∂N/∂z�0 in this case).
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pitch-angle scattering on MHD turbulence is sufficiently small,
and the free-streaming regime (second term), where the
scattering is negligible. For the former regime, where the
pitch-angle distribution is quasi-isotropic, the flux consists of
the diffusion and advection parts (see, e.g., Wentzel 1974),
with D(E, z) being the spatial diffusion coefficient of CRs. In
turn, the magnitude of the free-streaming flux,

m= á ñ( ) ( )S E z vN, , 3free

is determined by average pitch angle of CRs in this regime, má ñ,
which is generally not small. A discussion of different free-
streaming zones and estimates for the corresponding má ñ is
presented in Appendix A.

The steady-state CR flux is governed by the transport
equation (see, e.g., Skilling & Strong 1976; Berezinskii et al.
1990)

¶
¶

= -
¶ ( ˙ ) ( )S

z dE
E N , 4g

where ˙ ( )E Eg describes energy losses due to collisions with gas
(“gas losses”). Here, we omit on purpose “wave losses,” i.e., the
term due to the adiabatic expansion of the magnetic disturbances
associated with MHD waves. The role of this term is discussed in
Section 2.1, where we show that the wave losses are generally
unimportant for our problem. Furthermore, for waves propagating
in one direction the mechanism of momentum diffusion (Fermi
acceleration) does not operate (see, e.g., Berezinskii et al. 1990),
and therefore the corresponding term is also not included in
Equation (4).

The diffusion coefficient of CRs (Kulsrud & Pearce 1969;
Berezinskii et al. 1990),

ò m
m

n
=

-( ) ( )D E z
v

d,
2

1
, 5

2

0

1 2

w

is determined by diffusion of their pitch angle μ. The latter is
characterized by the effective frequency of CR scattering by
MHD waves,

n m p= W( ) ( ) ( )
E z E

k W k z

B
, , 2

,
,Bw

2 res res
2

where W(k, z) is the total spectral energy density of MHD
waves, as discussed below, and ΩB=(mpv/p)Ω is the
gyrofrequency of a proton, expressed via the gyrofrequency
scale

W =
eB

m c
.

p

The wavenumber kres at a given energy is related to μ by a
condition of the first-harmonic cyclotron resonance,

m = W∣ ∣ ( )vk , 6Bres

or equivalently m = W∣ ∣pk mres p . This condition assumes that v

is much larger than vA, which sets a lower bound of ~ m v1

2 p A
2

for the kinetic energy of CRs in our consideration.
To identify generic effects of self-generated turbulence in

weakly ionized envelopes, we assume no other sources of
turbulence and therefore no pre-existing MHD waves. The
latter assumption is reasonable since, in the absence of internal
sources, such waves in a typical envelope experience relatively

strong damping and therefore can be neglected compared to the
self-excited waves. The spectral energy density W(k, z) for each
wave mode is governed by a wave equation, including the
dominant processes of excitation, damping, transport, as well
as nonlinear wave interaction. We employ the following
steady-state equation (Lagage & Cesarsky 1983; Norman &
Ferrara 1996; Ptuskin et al. 2006):

g n
¶
¶

+
¶
¶

= -
⎛
⎝⎜

⎞
⎠⎟ ( ) ( )v

W

z k

kW

T
W2 . 7A

NL
CR damp

A nonlinear interaction of waves, leading to their cascading
to larger k, is described in Equation (7) with the simplest
phenomenological model characterized by the cascade time-
scale TNL (Ptuskin et al. 2006). For the Iroshnikov–Kraichnan
cascade7 (Iroshnikov 1964; Kraichnan 1965) of acoustic MHD
waves in an incompressible plasma, the timescale can be
evaluated as the characteristic time of “collisions” between
oppositely traveling wave packets, ~ -( )kvA

1, multiplied by the
number of collisions needed to accumulate a large distortion of
the packets, ~ ( )m n v kWi i A

2 (Goldreich & Sridhar 1997). This
yields

=- ( ) ( ) ( )T k C
k W k

m n v
, 8NL

1
NL

2

i i A

where CNL∼1 is an unknown constant. We assume TNL to be
the same for the excited MHD modes (Goldreich & Sridhar
1997), and then Equation (7) can be employed to describe the
total spectral density of MHD waves.
The wave damping rate νdamp due to ion collisions with gas

is proportional to the ratio mg/mi of the mean mass of a gas
particle to the mean ion mass,

n n
m

m

1

2
.damp

g

i
g

It is determined by the momentum-transfer cross section of
ion–gas collisions (averaged over velocities), n s= á ñv ng ig g.
We recall that waves can only be sustained when their
frequency exceeds the damping rate, so for MHD waves the
wavenumber should exceed the value of ∼νdamp/vA (Kulsrud
& Pearce 1969). With the resonance condition(6), this implies
the upper limit on the energy of CRs that can contribute to the
wave excitation, EeBvA/νdamp. For typical conditions in
diffuse envelopes (ng∼100 cm−3, B∼10–100 μG) we obtain
an energy limit of ∼1–100 TeV. This limitation does not affect
the results presented below, as the relevant energies turn out to
be much smaller.
Finally, γCR is the (amplitude) growth rate of MHD waves

excited by streaming CRs. These waves propagate along the
magnetic field in the same direction as the CR flux, and their
growth rate is given by the following general formula, for both
clockwise and counter-clockwise polarization (Wentzel 1974;

7 In the following we demonstrate that the modulated CR flux is insensitive to
the particular model of cascade.
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Skilling 1975; Berezinskii et al. 1990):

ò

ò

g p m m

d m
m

= - -

´ - W
¶
¶

-
¶
¶

-

¥ ⎛
⎝⎜

⎞
⎠⎟

( ) ( )

(∣ ∣ ) ( )

k z
e v

c
d

dp p v pk m
f v

v
p

f

p

, 1

, 9

CR
3

2
A

2 1

1
2

0

2
p

A

where v?vA is assumed. Here, f (p, z, μ)≡F(p, z)+δf(p, z, μ)
is the anisotropic distribution of CRs in the momentum space,
with dá ñ =mf 0, and δ(x) is the Dirac delta function. In the
diffusive regime and for a weak anisotropy, d ∣ ∣f F , the
combination of derivatives in Equation (9) is approximately
equal to n- ¶ ¶( )v F zw (the contribution of the gas losses is
normally negligible here). Taking into account Equation (5), we
see that in this case γCR is determined by the diffusion part of the
modulated CR flux. In Sections 4 and 5 we discuss mechanisms
leading to the occurrence of gradients in the CR density.

Following Skilling (1975), we introduce an effective cosine
of the pitch angle, μ=μ* (>0), in resonance condition (6).
This provides a one-to-one relation between kres and E,
reducing Equation (6) to

*
m

=
W

( )
( )

( )k E
m

p E
. 10res

p

With this approximation, elemental integration in Equation (5)
yields a simple expression for the diffusion coefficient,

*
p m

( ) ( )D E z
vB

k W
,

1

6
, 11

2

2

2

with k2W evaluated for k(E) from Equation (10). Similarly, by
substituting

*
m m=∣ ∣ in the delta function in Equation (9) and

performing the integration, we derive

g p
W

¶
¶

( ) ( )k z
e v

m c
pvD

N

z
, , 12CR

2
2

A

p
2

where the (energy-dependent) right-hand side (rhs) is evaluated
for E(k) from Equation (10). Thus, with approximation(10) the
growth rate is exactly proportional to the diffusion part of
the modulated flux. Equation (12) remains applicable also in
the free-streaming regime, after replacing D∂N/∂z with the
difference Sfree – vAN.

It is noteworthy that, generally, from Equations (5) and (9) it
follows that D is a functional of W−1, and γCR is a functional of

¶ ¶-W N z1 . Effectively, this implies dependence of μ* on k,
which can only be deduced by solving the resulting set of
integral Equations (4) and (7). However, this fact may only
slightly change energy scalings of the results derived below
with approximation(10), and therefore should not affect our
principal conclusions.

2.1. Role of Wave Losses

In Equation (4) we omitted wave losses—a term representing
the conventional adiabatic contribution, proportional to the
velocity gradient of MHD disturbances (see, e.g., Berezinskii
et al. 1990). After simple algebra, this term (to be added under
the energy derivative on the rhs) can be written as

= -Ė N
du

dz
pvN

1

3
,w

where u=−vA is the velocity of the disturbances in the
diffusive regime. We see that for our problem the adiabatic
losses only operate at the border between the diffusion zone
and the free-streaming zone, changing the CR flux by a value
of ∼vAN, i.e., of the order of the advection part in Equation (2).
Thus, the wave losses merely lead to a renormalization of the
advection.
In Sections 4 and 5 we demonstrate that the advection part of

the modulated flux can usually be neglected for realistic
conditions. Therefore, the wave losses are not expected to
noticeably modify our results.

3. Dimensionless Units and Dependence
on Physical Parameters

To write governing Equations (4) and (7) in a dimensionless
form, we use the following normalization of E, k, and p:

*
m= =

W
= =

+
˜ ˜

˜ ˜( ˜ )
( )E

E

m c
k

ck

p E E
,

1 1

2
, 13

p
2

which naturally follows from Equations (1) and (10). In some
cases it is also practical to utilize the normalized physical
velocity,

=
+

+
˜

˜( ˜ )
˜v

E E

E

2

1
.

For brevity, we may use either of these variables to present
results below.
Next, we introduce the dimensionless CR spectrum,

*
p

=j̃
vN

j4
,

normalized by the characteristic value of the IS spectrum,

*
= =( )j j E m cIS p

2 . Now, in order to eliminate coefficients in
CR flux(2) for the diffusive regime and simultaneously in the
wave Equation (7), we introduce the dimensionless wave
energy density *=W̃ W W and coordinate *=z̃ z z , normal-
ized by

* * *p m
=

W
W

C

m c v j2 2 2

NL

p
2 3

A

and

*
* *

p m
=

W
( )z

C m n

m j3
. 14NL

3
i i

p
2

Then Equations (4) and (7) are reduced to

¶
¶

= -
¶
¶

˜

˜ ˜
( ˜ ˜) ( )S

z p
L j , 15g

n
¶
¶

=
¶
¶

-˜
˜ ( ˜ ˜ )

˜
˜

˜
˜

( )k
k

k W
D

k

j

z2
, 163 2 3 2

where L̃g and ν are the dimensionless gas loss function and gas
damping rate, respectively (both defined later in this section),
while

=˜ ˜ ˜
˜ ( )D

vp

W
, 17

2
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is the normalized diffusion coefficient. The dimensionless CR
flux,

*
p= -˜ ˜ ( )S vS j4 , becomes

=
¶
¶

+
⎧⎨⎩

⎫⎬⎭
˜ ˜ ˜

˜
˜ ˜ ( )S D

j

z
j Smin , , 18free

where the free-streaming term is



m
=

á ñ˜ ˜ ˜ ( )S vj . 19free

With the normalization used, the flux of free-streaming CRs is
inversely proportional to the small parameter

 = ( )v

c
, 20A

which is a measure of the contrast between the characteristic
flux velocities in the two regimes (typically,  ~ - -–10 103 4).
Note that in the transport Equation (16) we dropped the term
~ ¶ ¶-˜ ˜ ˜W W z1 representing advection: based on results of

Section 4.1, it is of the order of òν and therefore is negligible
compared to the rhs.

The gas losses can be conveniently expressed in terms of the
loss function = -( ) ˙L E E n vg g g , which is a universal function
of energy only (for a given gas composition). In the normalized
form, it is

*


=˜ ( )L
n z L

m c

1
. 21g

g g

p
2

In the free-streaming regime, where W;0, the small
parameter ò cancels out in Equation (15) and CR transport
naturally becomes independent of vA. Upon transition to the
diffusive regime, the effective loss rate is increased by a factor
of ò−1, reflecting the corresponding increase in the distance
traversed by self-trapped CRs.

Thus, with the normalization used, the only dimensionless
number entering governing Equations (15) and (16) (for a
given loss function Lg) is the damping rate

* *n
pm n

= ( )
C

m z

m c

3

4
, 22

NL

g g

i

while the small parameter ò characterizes a transition between
the diffusive and free-streaming regimes.8

The scaling dependence of ν and ò on the physical
parameters is given by the following general expressions:

*n =

´
´
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To give results in absolute units, we also use the normalization
length,
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The illustrative numerical results presented in Sections 4 and 5
are obtained by varying the density of gas ng. For simplicity,
it is assumed that hydrogen is in molecular form, and carbon
photoionization by the IS radiation field is the main source of
charged species (see, e.g., Oka 2006). Hence, m m 2.3g p ,

=m m 12i p , and ´ -n n 4 10i g
4, adopting the solar

chemical composition with ionized carbon. The magnetic field
is set to B=100 μG, in order to increase the magnitude of ò
(which improves convergence of the numerical scheme). For the
ion–gas collisions we use sá ñ ´ -v 2.1 10ig

9 cm3 s−1,
corresponding to molecular hydrogen at a temperature of
100K (see, e.g., Kulsrud & Pearce 1969). Finally, we set
CNL=μ*=1 and employ the following model spectrum for
interstellar CRs (Ivlev et al. 2015a):

=
´

+

- -
- - - -( )

˜
( ˜)

( )j E
E

E

1.4 10

0.55
eV cm s sr . 25IS

9 0.8

1.9
1 2 1 1

With these physical parameters, ν and ò are related via

n = ´ -1.7 10 ,1 4 3

and below we indicate only the value of ν.
In Appendix B we describe the algorithm to solve

Equations (15) and (16) numerically, and also give the gas
loss function Lg(E) used to obtain the numerical results
presented in Section 5.

4. A Model Problem: Absorbing Wall

We start with an idealized problem setup sketched in
Figure 1, and consider propagation of CRs toward an
“absorbing wall” (which mimics the dense interior of a
molecular cloud). The CR flux generates MHD turbulence
upstream from the wall (located at z= 0), implying the
diffusive regime for CR propagation. Therefore, one can set
N(E, 0)=0 as the standard boundary condition for the
diffusion equation at an absorbing wall.9 At the outer envelope
boundary (located at z=H) the CR density is given by the
interstellar value, N(E, H)=NIS(E). The principal aim of this
simplified consideration is to identify generic properties of
nonlinear CR propagation, self-consistently described by the
transport and wave equations discussed above.
We start with a case where the gas losses are unimportant, so

the rhs of Equation (15) can be set equal to zero. Then the
transport equation in the diffusive regime has a straightforward
solution,

= =
-
-

h

h

-

-

( )
( )

( )
( )

( )
( )

( )
j E z

j E

N E z

N E

e

e

, , 1

1
, 26

E z

E H
IS IS

,

,

8 For simplicity, the tilde sign over the dimensionless parameters ν and ò is
omitted.

9 In fact, the CR density remains finite in the diffusive regime: it is
determined from the equality of the modulated and free-streaming fluxes in
Equation (2), i.e., from the condition = -S Sfree.
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determined by “diffusion depth”

ò òh = º( ) ˜( ) ( )
( )

˜
E z

dx

D E x
v

dx

D E x
,

, ,
. 27

z z

0
A

0

The magnitude of the resulting modulated flux(2) is

=
- h-

( ) ( ) ( )( )S E
v N E

e1
28

E H
A IS

,

(hereafter, we omit the minus sign in front of S). By virtue of
Equation (13) the solution can also be presented as a function
of k. One can see that η is a measure of the relative importance
of diffusion and advection in the modulated CR flux. For
η=1 Equation (26) is reduced to the solution of the standard
diffusion equation (vA cancels out); for η?1 the CR density
becomes constant and the flux(28) saturates at vANIS.

Below we show that the diffusive regime for given E does
not necessarily extend up to the outer envelope boundary, but
may terminate at the outer border of the diffusion zone
z0(E)<H, where W→0. In this case, the free-streaming
regime with N(E, z)=NIS(E) operates at z>z0, and the
solution does not depend on H.

By substituting Equation (26) into (16) we derive the
following wave equation for the self-consistent turbulent field
in the diffusive regime:

n
¶
¶

=
-

-
h

h

-

-
˜

˜ ( ˜ ˜ )
˜ ( )

˜ ( )
( )

( )k
k

k W
j k

k

e

e2 1
, 29

k z

k

3 2 3 2 IS
,

0

where η(k, z) is given by Equation (27) with E(k) from
Equation (13),

òh = +( ) ˜ ˜ ˜ ( )
˜

k z k k dx W k x, 1 , ,
z

2 2

0

and η0(k)=η(k, z0). We recall that the excitation term in
Equation (29) is proportional to the diffusion part of the
modulated flux, which, in turn, cannot exceed the flux of free-
streaming CRs. Then from Equations (18) and (19) it follows
that in the diffusive regime, with j(E, z) from Equation (26), the
condition η0vA/v must always be fulfilled. This lower
bound of η0 (which is a small number, since v?vA is
assumed) represents the necessary condition of applicability for
the diffusion approximation.

We notice that the requirement

h ( )v

v
30A

coincides with the condition that the mean free path of CRs,
∼D/v, is smaller than the scale length of inhomogeneity,
~ ¶ ¶∣ ∣N N z , as one can easily derive from Equations (26) and
(27); simultaneously, this ensures that the velocity of the CR
flux does not exceed the physical velocity. Therefore, we shall
consider inequality(30) as a sufficient condition for the
applicability of the diffusion approach. The resulting inner
border of the diffusion zone zmin(E) is determined from the
condition η(E, zmin)∼vA/v.
The threshold energy Eex, below which CRs excite waves,

can be readily derived from the balance of the growth rate in
the free-streaming regime and the damping rate. By replacing
the diffusion flux on the rhs of Equation (16) with the free-
streaming expression from Equation (19), we obtain the
following equation:

n
m

+
+

=
á ñ

˜
˜

˜ ˜ ( ) ( )E

E
E j E

2

1

2
, 31ex

ex
ex IS ex

where má ñ is the average pitch angle in the free-streaming zone I
(see Appendix A and Figure 8). For sufficiently steep,
monotonic energy spectra, e.g., = a-˜ ˜j EIS with α>1, waves
are excited if E<Eex; the threshold energy scales as

*
µ

- a-⎛
⎝⎜

⎞
⎠⎟E

m n

j

n

m
.ex

g g i

i

1
1

Equation (31) also shows that CRs with jIS∝E−1 represent a
critical case, where the excitation occurs when the flux
magnitude matches the damping threshold.
Numerical analysis shows that the magnitude of W in the

turbulent zone is typically high enough for the condition of the
diffusion approximation to be well fulfilled. Thus, it is
reasonable to solve wave Equation (29) for > º ( )k k k Eex ex
with the condition W(kex, z)=0. The solution in (k, z) space is
applicable for η(k, z)vA/v, while the outer turbulent border
z0(k) is obtained from W(k, z0)=0.

4.1. Approximate Solution

One can obtain a simple approximate solution of
Equation (29), providing a fairly accurate and general
description of the turbulent regime. From the numerical
integration performed for different values of ν we found that,
as long as η01 and ν is not too small, the turbulent field can
be reasonably approximated by a decreasing linear function of
coordinate (see Appendix C and the figure therein),

+ ¢˜ ( ) ( ) ( ) ˜ ( )W k z w k w k z, , 32

with w′<0, so the outer border of the diffusion zone is
= - ¢˜ ( ) ( ) ( )z k w k w k0 . Equation (32) breaks down close to kex,

but this does not affect properties of the whole diffusion zone.
We first study the case of small diffusion depth, η01,

which allows us to expand the exponentials on the rhs of
Equation (29). We retain only linear terms in the resulting
z-polynomial and equate to zero the corresponding coefficients,
which gives us two equations for w(k) and w′(k). One equation
yields

h
n

=( )
˜ ( )

˜ ( )k
j k

k2
, 330

IS

Figure 1. Idealized problem setup with no gas losses. An absorbing wall is
located at z=0, where the CR density is set equal to zero. The incident IS flux
propagates to the left; the CR density at the outer boundary z = H is equal to
the IS value.
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which is simply a balance of the excitation and damping on the
rhs of Equation (29), written for small η; the left-hand side
(lhs), i.e., the cascade term for w(k), is neglected here compared
to ν—this assumption is confirmed a posteriori. The other
equation leads to

n¢ = + ¢˜ ( ˜ ) ˜( ˜ ) ˜d

dk
k w k k w z1 ,3 2 2

0

showing that the cascade is essential for w′(k). By combining

Equation (33) with the relation h = - + ¢( ) ˜ ˜ ˜k k k w z10
1

2

2 2
0
2

and setting ¢ =( )w k 0ex , we get a solution that can be
conveniently written as

òn
- ¢

=
+˜ ( ) ˜ ( )

( )
˜

˜k w k
dx

x j x

x
2

1
. 34

k

k3 2 2
IS

7 2
ex

Then ˜ ( )z k0 is readily obtained by employing the above relation
for η0(k), and = - ¢( ) ˜ ( ) ( )w k z k w k0 . We note that a realistic IS
spectrum, such as Equation (25), is a rather steeply increasing
(decreasing) function at small k̃ (large Ẽ). Therefore, if k̃ 1ex ,
the integral in Equation (34) is dominated by larger k, i.e., the
contribution of k;kex vanishes asymptotically.

With this solution we can verify the simplifications/
assumptions made to obtain it: first, we recall that the advection
term ~ ¶ ¶-˜ ˜ ˜W W z1 was dropped in Equation (16). For k?kex
we get  ¶ ¶-˜ ∣ ˜ ˜∣/W W z1 ; n¢ ~ +∣ ∣ ˜/w w k1 2 , which is
indeed small compared to ν. Second, by substituting the solution

~( ) ˜ ( ) ˜/w k j k kIS
3 into the cascade term in the lhs of

Equation (29) we conclude that the latter is small compared to
ν too, as long as η01.

The condition η01 implies a certain upper limit on k,
since η0(k) is an increasing function (for realistic IS spectra).
For larger η0 (and k), numerical results indicate that spatial
nonlinearity of the turbulent field becomes significant (see
Appendix C). Nevertheless, Equation (32) still provides a
useful qualitative description of the diffusion zone. For
η0?1, the term h-e 0 in Equation (29) can be neglected. In
this case, to determine w(k) and w′(k) we write the resulting
wave equation for z=0 and z=z0. The former gives

n= -˜
˜ ( ˜ )

˜ ( )
˜ ( )k

d

dk
k w

j k

k2
, 353 2 3 2 IS

showing that excitation exceeds damping at larger k, so that
now the cascade plays a crucial role. In the latter equation, we
neglect the term µ h-e 0, and after simple transformation we
obtain the following equation for z0(k):

n
= -˜ ˜ ( )

( )d z

dk k w k

ln
. 360

3

Equation (35) allows straightforward integration for given
jIS(k), and the derived w(k) has to be matched with that
obtained from Equation (34). By substituting the result in
Equation (36) and integrating it, we get z0(k) for large η0.

4.2. Diffusion Zone

Figure 2 illustrates the characteristic form of the diffusion
zone in the (E, z) plane. The numerically calculated diffusion
border is plotted for several values of ν (solid lines). The right
branch of each contour is the outer border of the zone z0(E),
approximately derived in Section 4.1, while the left branch
corresponds to inner border zmin(E), determined by condi-
tion(30). The branches cross at the highest “critical” point
E;Eex(ν), determined by Equation (31). The analytical
curves z0(E) and zmin(E), obtained from solution(34) (dotted
lines), demonstrate a good overall agreement with the
numerical results. A stronger deviation is observed toward
the critical point, where the approximate solution breaks down.
Also, at lower energies analytical z0(E) deviates increasingly
from the numerical curve when ν is small.
Using solution(34), one can deduce how the shape of the

diffusion zone depends on the form of the IS spectrum and the
main physical parameters. For = a-˜ ( ) ˜j E EIS with α(E) deter-
mined by a model spectrum, Equation (25) or an analogous one
(Ivlev et al. 2015a), it is practical to consider two limiting cases—
the ultra-relativistic limit, where = ˜ ˜k E1 1, and the non-
relativistic case, where = ˜ ˜k E1 2 1. Equation (34) yields
the outer border, n~˜ ( )z E 10 for Ẽ 1 and n~˜ ( ) ˜z E E0
for Ẽ 1. Substituting a solution for w(k) in the condition

h ~( ) ˜E z v, min , we obtain the inner border, ~ a-˜ ( ) ˜z E Emin
1

for Ẽ 1 and ~ a-˜ ( ) ˜z E Emin
1 2 for Ẽ 1. In absolute units,

this gives the following dependence on the physical parameters:

*
µ µ ( )z

m n

j
z

m

n
, . 37min

i i
0

i

g

If η01, which corresponds to large k and/or small ν,
solution(34) is no longer applicable and the turbulent field is
qualitatively described by Equations (35) and (36). The former
yields ~˜ ( ) ˜ ( )k w k j k3

IS for large k, and then from the latter
equation we invoke that z0(k) tends asymptotically to a constant
value. This explains the behavior of numerically calculated
z0(E) at lower E and small ν, seen in Figure 2 for ν=0.3
and 3.5.

Figure 2. CR diffusion zones: regions in the (E, z) plane within which the CR
propagation is diffusive. The solid lines are the numerically calculated borders,
plotted for different values of ν (indicated) and ò∝ν−1/4 (see Section 3 for
details). The dotted lines show analytical inner (left) and outer (right) borders,
zmin(E) and z0(E), respectively, derived from solution(34) for given ν.
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The diffusion zone is formed when zmin(E)z0(E). Using
the above estimates for the inner and outer borders, we then
arrive at a simple criterion for the diffusive regime, valid for all
energies where η0(E)1:

 n a-˜ ( )E 1. 381

As expected, this criterion is essentially equivalent to the
excitation criterion(31) in the free-streaming regime.
Equation (38) shows that if α>1 for any E, the diffusion
zone shrinks monotonically with ν toward lower energies, until
the basic resonance condition(6) becomes inapplicable at
vvA. Current models of the IS spectra, such as
Equation (25), suggest α<1 for non-relativistic CRs. Then
the diffusion zone for sufficiently large ν becomes an isolated
“island,” and eventually disappears when the product òν
exceeds a certain maximum value (òν)max∼1. The exact
value of (òν)max is derived from Equation (31) and corresponds
to the maximum of its lhs; e.g., for IS spectrum(25) the
maximum is at E;60MeV, and (òν)max∼1. Then from
Equations (23) and (24) we obtain the maximum gas density

~ ´n 3 10g
4 cm−3, above which no turbulence can be excited

by CRs with such an energy spectrum.10 In Figure 2, the
diffusion zone completely disappears at ν∼3×103.

Figure 2 also indicates that, for very small ν, the derived
outer border z0(E) at higher energies may be larger than the
envelope size H. Then the diffusion zone is bound between
zmin(E) and H, and the solution obtained in Section 4.1 forW(k, z)
is modified. Nevertheless, as long as the resulting h hº( )k H, H
is small, its value is determined from the same excitation-
damping balance that leads to Equation (33), and therefore ηH is
equal to the derived η0. In this case, the condition for the
diffusion regime to operate is simply zmin(E)H.

4.3. CR Flux

From Equation (28) it follows that the value of the diffusion
depth η0 (or ηH) completely determines the CR flux penetrating
the cloud. Figure 3 illustrates the dependence η0(E; ν). For

η01 it is well described by Equation (33) with subtracted
“inner border” value  ṽ , as determined by condition(30). For
large η0, the exact dependence becomes unimportant for
calculating S(E), since the exponential in Equation (28) can
be safely neglected.
Let us summarize the behavior of S(E). At sufficiently high

energies, the CR flux is not affected by turbulence and is equal
to the free-streaming value,

p m> = á ñ( ) ( ) ( )E E S E j E: 4 . 39ex free IS

A continuous transition to the modulated flux occurs at
E=Eex(ν), determined by Equation (31). For smaller E, from
Equations (28) and (33) we obtain the following general
formula:
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. 410
IS

For η01, where the exponential in the denominator of
Equation (40) can be expanded, the resulting leading term does
not depend on jIS(E). In this case we obtain “diffusion-
dominated” flux,

*
p n
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+

⎛
⎝⎜
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⎠⎟( )

˜
˜ ˜ ( )S E
E

E

j

E
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8
, 42DD

where advection is unimportant, and therefore its magnitude is
governed by a balance of the excitation and damping in wave
Equation (29). This is the reason why it obeys a universal
energy dependence, scaling as ∝E−1 both in the non-relativistic
and ultra-relativistic limits (or, equivalently, as ∝(pv)−1).
Furthermore, from Equations (23) and (24) it follows that

µ ( )S m n
n

m
, 43DD g g

i

i

i.e., the flux does not depend on j* and thus is solely
determined by the physical parameters of the envelope. We
want to emphasize that this expression can be deduced from a
theoretical analysis by Skilling & Strong (1976), by substitut-
ing their Equation (6) into the second term of their
Equation (8).
At even lower energies, η0 exceeds unity for smaller ν, as is

evident from Figure 3. Then advection dominates and the flux
tends to vANIS(E), which is

p=
+

+
( )

˜
˜( ˜ )

( ) ( )S E
E

E E
j E

1

2
4 . 44AD IS

The analysis performed by Morlino & Gabici (2015)
corresponds to our case η0∼1, and therefore their conclusion
that the velocity of the CR flux penetrating into a cloud is of the
order of vA represents a crossover to the advection-domi-
nated flux.
Figure 4 shows the modulated CR flux obtained analytically,

from Equation (40) for IS spectrum(25), and compared with
the numerically calculated flux. One can see that the analytical
results provide a fairly accurate description of S(E) over the
whole energy range; only for very small ν is a slight deviation

Figure 3. “Diffusion depth” η0(E), numerically calculated (solid lines) for the
values of ν in Figure 2. The analytical dependence (dotted lines) given by
Equation (33) provides a good description for η01. Each curve tends to zero
at E=Eex(ν) determined by Equation (31).

10 We note that the maximum gas density obtained is about the average
density inside dense cores (e.g., Benson & Myers 1989).
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(about 50%) observed at intermediate energies, where
η0(E)∼1 (as one can see from Figure 3).

Both panels of the figure clearly demonstrate a transition
from free streaming to the diffusive regime, occurring at
E=Eex(ν) and manifested by a kink in each curve. In the left
panel the curves are normalized by SDD(E), and hence at
E<Eex they collapse into the horizontal line at the unity level
as long as η0(E)1 (for E>Eex they approximately scale as

nµ ˜ ( )Ej EIS
3 4). In the right panel S(E) is normalized by

SAD(E), and thus a crossover to the advection-dominated flux
occurs if the curves approach the unity level (for E>Eex the
curves tend to  nµ-1 1 4). The crossover takes place only for
small ν, otherwise the flux remains diffusion-dominated at all
energies shown.

We point out that Equation (40) is insensitive to the
particular model of nonlinear wave cascade. As shown in
Section 4.1, the cascade term in Equation (29) is negligible for
small η0 (where S;SDD), whereas for large η0 the CR flux
tends to the advection asymptote vANIS, i.e., the cascade term
may affect the flux only near the crossover point η0(E)∼1.
This has been verified with numerical calculations performed
for the Kolmogorov cascade (with TNL taken from Ptuskin
et al. 2006), indeed showing minor deviations from the
presented results in the crossover energy range.

5. Effect of Energy Losses

In the previous section we derived intrinsic properties of the
turbulent diffusion zone generated under idealized conditions,
where CRs propagate toward an absorbing wall, and the energy
losses due to interaction with gas are unimportant. This
approach presumes the intrinsic spatial scale of the diffusion
zone, z0(E), to be much smaller than the CR loss length at a
given energy. For realistic parameters of diffuse envelopes, the
latter assumption is not always justified, especially in the non-
relativistic case.

For this reason, let us now move away from the initial
assumption that CRs propagate freely through the envelope
until they reach the turbulent zone near the absorbing wall, to
see what impact the gas losses may have on the diffusion, and
most importantly how the flux self-modulation is affected by
the losses.

The principal difference introduced to the problem by the gas
losses is that the CR flux is no longer conserved, as follows

from Equation (15). Therefore, the losses naturally generate a
CR density gradient and hence stimulate wave excitation across
the whole envelope, starting from its outer boundary (whereas
previously the gradient was present only near the absorbing
wall). For this reason it is more convenient to analyze results in
the frame of reference where z=0 is located at the outer
boundary, as shown in Figure 5. Thus, now ∣ ∣z0 is referred to as
the inner (“downstream”) border of the diffusion zone and

<∣ ∣ ( ∣ ∣)z zmin 0 is the outer (“upstream”) border.

5.1. Solution for the Excitation-damping Balance

The general excitation criterion(31) does not depend on a
particular problem setup and hence can also be used when the
losses are present. Turbulence sets in (and the diffusive
approximation is thereby justified, as pointed out in Section 4)
when the excitation term on the rhs of Equation (16) becomes
equal to damping. Furthermore, the role of the cascade term on
the lhs remains largely negligible at kkex: as we demonstrate
below in this section, the condition of applicability of the
excitation-damping balance is relaxed compared to the loss-free
case (where the cascade term can be neglected for η01).
Therefore, from Equation (16) we obtain

n
¶
¶


˜
˜

˜
˜

( )D

k

j

z2
. 45

We see that ¶ ¶˜ ˜ ˜/D j z , the diffusion part of the flux(18), does
not depend on coordinates (for given ν) and therefore does not
contribute to the transport Equation (15). The latter is then
reduced to

¶
¶

= -
¶
¶

˜
˜ ˜

( ˜ ˜) ( )j

z p
L j , 46g

giving the local CR spectrum, i.e., the advection part of the
flux(18).
Equation (46) has a general solution in (p, z) space,

ò= F -
⎛
⎝⎜

⎞
⎠⎟

˜ ( ) ˜ ( ) ˜ ˜
˜ ( ˜ )

( )L p j p z z
dp

L p
, , 47g

g

where the function Φ(x) is determined by the boundary
condition =˜ ( ) ˜ ( )j p j p, 0 IS . To illustrate the overall behavior
and obtain useful closed-form expressions, let us again

Figure 4. Self-modulation of CRs. The solid lines show the numerically calculated energy dependence of CR flux, S(E), modulated by the self-generated turbulence,
and the dotted lines are analytical results obtained with Equation (40); the curves correspond to the values of ν in Figure 2. To demonstrate the asymptotic behavior at
higher and lower energies, the left panel presents S(E) divided by SDD(E), Equation (42), while in the right panel S(E) is normalized by SAD(E), Equation (44).
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consider a power-law IS energy spectrum, = a-˜ ( ) ˜j E EIS , and
treat the non-relativistic and ultra-relativistic cases separately.

For Ẽ 1 the gas losses are dominated by ionization
(Hayakawa 1969). The loss function can be approximated by

-˜ ( ) ˜L E A E b
g ion , with the exponent in the range 0b1.

The solution resulting from Equation (47) is

= + +
- a+

+⎛
⎝⎜

⎞
⎠⎟

˜ ( ) ˜ ( ) ( )
˜ ( )

˜
∣˜∣ ( )

( )

j E z j E b
L E

E
z, 1 2 1

2
. 48IS

g

b
b

2
2 1

The standard expression for non-relativistic ionization losses
with b=1 is determined by (Ginzburg 1979)

*


s
=

L
A

m

m

n z3

8

ln
,ion

e

p

g T

where Λ is the argument of the Coulomb logarithm for the
ionization losses (for hydrogen, Λ;20), σT=6.6×10

−25 cm−2

is the Thomson cross section of the electron, and me/mp=1/1836
is the electron-to-proton mass ratio.

In the relativistic case, the pion production occurring in
proton–proton collisions above the threshold energy of
;280MeV is the main mechanism for the energy losses
(Hayakawa 1969). The loss function can be approximated by

p˜ ( ) ˜L E A Eg , where (Mannheim & Schlickeiser 1994)

*


s
=p

p
A

n z
0.65

g

is proportional to the effective cross section σπ;3×
10−26 cm−2 (neglecting a weak logarithmic energy dependence).
Then Equation (47) yields

= a- - p˜ ( ) ˜ ( ) ( )( ) ∣ ˜∣j E z j E e, . 49A z
IS

1

The derived results also allow us to verify the (initially
assumed) excitation-damping balance, Equation (45), i.e., to
identify conditions when the cascade term in Equation (16) is
negligible. Since the relative contribution of the cascade term
increases with k (i.e., with decreasing E), it is sufficient to
consider the non-relativistic case. Substituting Equation (48)
into Equation (45) and taking into account Equation (17) gives
an estimate for W(k), to be inserted into the lhs of
Equation (16). We obtain that the latter is small compared to
ν when n a- +( ) ˜ ( )A E 1ion

2 1 2 , which can be equivalently
rewritten as h nẼ A0 ion with η0 from Equation (33).
Comparing this with the condition η01 for the loss-free
case, we conclude that for  nẼ Aion ( n-10 4 1 4 for
the presented results, i.e., for all energies shown) the

excitation-damping balance is indeed more easily satisfied in
the presence of losses.

5.2. Onset of the Diffusion Zone

A condition of applicability of the diffusive regime is that the
CR mean free path, ∼D/v, is smaller than the characteristic
spatial scale. In dimensionless form, the mean free path
~ ˜ ˜D v should be smaller than the relevant scale of the present

problem, ~∣ ˜∣z . By employing Equation (45), the condition is
reduced to

 n
+
+

¶
¶

˜
˜

˜∣˜∣
˜
˜

( )E

E
E z

j

z

2

1
2 , 50

where ˜ ( )j E z, is a solution of Equation (46).
Equation (50) is the necessary condition for applicability of

the diffusive regime in the presence of losses. For given E, its
lhs is a function of z, whose maximum is of the order of
~ ˜˜ ( ˜)Ej EIS . Hence, for = a-˜ ( ) ˜j E EIS condition(50) essentially
coincides with criterion(38) of the diffusive regime, derived
for the problem of an absorbing wall.
The sufficient condition for applicability requires that the

diffusion zone is formed within the envelope, i.e., that the outer
border ∣ ( )∣z Emin at which inequality(50) is first fulfilled is
smaller than the envelope size H. For the loss mechanisms
discussed in Section 5.1, we have

 n
a

~
+

a+˜ ∣˜ ∣
( )

˜ ( )E z
A

E1:
1

51min
ion

1 2

and

 n
a

~
- p

a-˜ ∣˜ ∣
( )

˜ ( )E z
A

E1:
1

. 52min
1

Since ´ Lp
-A A 7 10 lnion

3 is practically a constant ∼0.1,
a smooth crossover between the two cases occurs at an energy
of about a few tenths of 1 GeV. With Equation (14) we notice
that in absolute units,

*
µ∣ ∣ ( )z

B

j m
, 53min

i

the coordinate of the diffusion onset is proportional to B and
does not depend on ng or ni. As regards the dependence on E, it
is determined by a particular IS energy spectrum. In Figure 6
(discussed in the next section), ∣ ( )∣z Emin is the left border of the
plotted diffusion zone, calculated for IS spectrum(25); it scales
approximately as ∝E1.3 in the non-relativistic case.
Once the requirement ∣ ∣z Hmin is fulfilled and the diffusive

regime operates, the dimensionless CR flux is given by the
corresponding expression in Equation (18), with ¶ ¶ =˜ ˜ ˜/D j z
nk̃2 and ˜ ( )j E z, from Equation (46). We see that the diffusion

part of the modulated flux dominates over the advection part
when n˜ ˜k j2 . This remarkably coincides with the condition
η01 of the diffusion-dominated flux for the loss-free case—
with the only difference that now η0 should be evaluated not for
˜ ( )j EIS but for the derived ˜ ( )j E z, . Then the modulated flux (in
absolute units) is still given by Equation (42) obtained for the
loss-free case; moreover, in the presence of losses, SDD(E)
dominates over a broader range of parameters, since η0 should
be additionally multiplied by a factor of j/jIS�1.
If advection dominates over diffusion, transport

Equation (46) still describes the advection part of the flux(18).

Figure 5. Propagation of CRs in a low-density envelope with energy losses
taken into account. The outer boundary of the envelope (of size H) is now at
z=0, with the same boundary condition as in Figure 1.
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In this case, the modulated flux is given by Equation (44) with
˜ ( )j EIS replaced by ˜ ( )j E z, .

5.3. CR Flux

Summing up the above results, we conclude that the
modulated CR flux in the presence of losses can be written
as a simple superposition of the diffusion and advection
asymptotes. The diffusion flux is given by Equation (42), and
the advection flux is described by a modified Equation (44),
with ˜ ( )j EIS replaced by the solution ˜ ( )j E z, of Equation (46).
This yields

n
+ +

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ˜( ˜ )

˜ ( ) ( )S E z S E E E
j E z

, 1 2
,

2
, 54DD

where the relative magnitude of the advection flux is equal to
the modified diffusion depth(41).

It is noteworthy that not only does the sum of SDD and SAD
provide the correct asymptotic behavior: as demonstrated
below, Equation (54) also allows us to accurately describe a
crossover between them. This can be understood by bearing in
mind a remark we made at the end of Section 5.1: at higher
energies, the losses tend to extend the range of applicability of
the excitation-damping balance, Equation (45), which directly
determines SDD(E). Therefore, Equation (42) remains accurate
where the crossover to advection occurs.11 Moreover, the
losses generally reduce the relative magnitude of the advection
flux, so that the crossover may not take place at all.

From Equations (2) and (3) it follows that the diffusive
regime operates as long as the modulated flux, approximately
equal to SDD(E), is smaller than the local free-streaming flux,
which is proportional to ˜ ( )j E z, . Equation (46) suggests that
this condition is violated at sufficiently large ∣ ∣z , where ˜ ( )j E z,
becomes too small due to the losses. The corresponding inner
border of the diffusion zone, ∣ ( )∣z E0 , can be directly obtained
from excitation criterion(31) (written for given E) where,

again, ˜ ( )j EIS is replaced by ˜ ( )j E z, :

n
m

+
+

=
á ñ

˜
˜

˜ ˜ ( ) ( )E

E
Ej E z

2

1
,

2
. 550

Here, má ñ is the average pitch angle of CRs for >∣ ∣ ∣ ( )∣z z E0 ,
which corresponds to a “downstream” free-streaming zone (see
Appendix A). Since the exact value of má ñ ~ 1 is unimportant
for the presented analysis, for simplicity we keep the same
notation as for the CR flux in the free-streaming zoneI.
The diffusion zone in the presence of losses is shown in

Figure 6, where the left border ∣ ( )∣z Emin is determined from
condition(50) and the right border ∣ ( )∣z E0 is derived from
Equation (55). The overall shape of the zone and its qualitative
change with ν are quite similar to what we see in Figure 2 for
the case of an absorbing wall (we recall that distance ∣ ∣z in
Figure 6 is measured in the negative direction). However, ∣ ∣zmin
and ∣ ∣z0 are much larger than the respective spatial scales (zmin

and z0) in Figure 2. Also, Equation (53) shows that ∣ ∣zmin does
not depend on ν, i.e., the diffusion zone shrinks due to a rapid
decrease of ∣ ∣z0 with ν,12 while for the case of an absorbing wall
both borders move toward each other as ν increases (see
Equation (37)).
The free-streaming flux p m= á ñ( ) ( )S E z j E z, 4 ,free at >∣ ∣z

∣ ( )∣z E0 (as well as for E>Eex) is determined by j(E, z), which is
a solution of transport Equation (15). A general form of the
solution in (p, z) space is

òm= F - á ñ
⎛
⎝⎜

⎞
⎠⎟

˜ ( ) ˜ ( ) ˜ ˜ ˜
˜ ( ˜ )

( )L p j p z z
dp v

L p
, , 56g

g

and the resulting Sfree(E, z) has to be matched at z=z0(E) with
Equation (54). Of course, the free-streaming regime is only
realized when <∣ ( )∣z E H0 , otherwise the CR flux penetrating
the cloud is directly given by Equation (54).
The characteristic behavior of the modulated CR flux in the

presence of losses is illustrated in Figure 7 for ν=3.5, again

Figure 6. Diffusion zone in the presence of losses (CR propagation is diffusive
within the zone), plotted in the ( ∣ ∣)E z, plane for two values of ν. The outer
(left) and inner (right) borders are ∣ ( )∣z Emin and ∣ ( )∣z E0 , respectively, measured
from the outer envelope boundary (see Figure 5). The onset of the diffusive
regime at a given energy requires ∣ ( )∣z Emin to be smaller than the envelope size
H. Note that ∣ ∣zmin does not depend on the gas or ion densities (and hence on ν),
while ∣ ∣z0 rapidly decreases with ν (see Sections 5.2 and 5.3).

Figure 7. Self-modulation of CRs in the presence of losses. Different curves
depict the modulated flux S(E, z) for different distances ∣ ∣z , as indicated; S(E, z)
is normalized by SDD(E), as in the left panel of Figure 4. The solid lines are
numerical calculations and the dotted lines are analytical results, both
corresponding to ν=3.5. The diffusive regime at E0(ν, z)<E<Eex(ν) is
described by Equation (54), and the free-streaming regime induced by the
losses at E<E0 is represented by Equation (56). The matching energy E0 for
given ∣ ∣z (seen here only for =∣ ∣z 10 cm20 ) is obtained by inverting z0(E).

11 We recall that in the loss-free case, the excitation-damping balance always
breaks down at the crossover point η0∼1, see Sections 4.1 and 4.3.

12 In the presence of losses, the dependence of ∣ ∣z0 on the physical parameters
is different in the non-relativistic and relativistic cases, as one can see by
substituting Equations (48) and (49) into (55).
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calculated for IS spectrum(25). One can see that the analytical
curves obtained from Equation (54) are in excellent agreement
with the numerical results. The way in which the losses modify
the flux is evident by comparing these curves with the
corresponding loss-free curve plotted in the left panel of
Figure 4: The flux is attenuated with the distance at lower
energies, thus suppressing a crossover to the advection-
dominated flux, clearly seen in Figure 4 for ν=3.5 (where
the curve in the left panel steadily increases toward smaller E).
Furthermore, at >∣ ∣ ∣ ( )∣z z E0 the losses induce a “backward”
transition to the free-streaming regime, seen as the kink for

=∣ ∣z 1020 cm. For larger ν (not shown here), where the
advection contribution is practically negligible, the curves
become almost horizontal in the diffusive regime, and hence
indistinguishable from those in Figure 4. This striking
similarity is a manifestation of the universal behavior
characterizing the diffusion-dominated flux SDD(E).

6. Discussion and Conclusions

A comparison of results obtained in Sections 4 and 5
demonstrates that, when calculating the magnitude of the
modulated CR flux, it is largely unimportant what leading
mechanism—absorbing wall or gas losses—causes the self-
modulation: Figure 6 suggests that in the presence of losses the
condition of diffusion onset, ∣ ( )∣z E Hmin , is usually fulfilled
for non-relativistic CRs (assuming a typical envelope size of
3–10 pc), and hence they are modulated due to turbulence
induced near the outer envelope boundary. For relativistic CRs
losses are typically unimportant on the scale of the envelope,
and their self-modulation occurs near the absorbing cloud wall;
according to Figure 2, the respective condition zmin(E)<H is
well satisfied. Nevertheless, the resulting CR flux remains
universal at all energies below Eex—it is described by the
diffusion-dominated asymptote SDD(E), Equation (42).
Figures 4 and 7 indicate that the effect of advection, causing
a deviation from this dependence, only becomes significant if
ν10 (according to Equation (23), the corresponding gas
density in the envelope typically must be well below
∼100cm−3).

Of course, the gas losses can destroy universality of the
energy spectrum for low-energy CRs penetrating into the
cloud: Figure 6 shows that, at lower energies and for
sufficiently large ν(100), the right border of the diffusion
zone ∣ ( )∣z E0 becomes smaller than typical H. As discussed in
Section 5, the further free-streaming propagation of such CRs
in the envelope is described by Equation (56), and their flux is
proportional to the local spectrum j(E, z). If the remaining
distance - ∣ ( )∣H z E0 exceeds the integral term in the
parentheses (multiplied by z*), the attenuation modifies the
universal spectrum of SDD(E) before CRs reach the cloud.

The presented results allow us to address several important
questions regarding the interaction of CRs with molecular
clouds, and draw the following major conclusions.

1. Dimensionless numbers.Generic features of CR propa-
gation in low-density envelopes are completely deter-
mined by two dimensionless numbers: the gas damping
rate ν, Equation (22), which governs the diffusive
transport regime (due to the self-generated MHD
turbulence), and the small parameter ò, Equation (20),
which controls the transition between the diffusive

regime and a free streaming of CRs (where the turbulence
is unimportant).

2. Diffusive propagation.The turbulence generated by CRs
in the envelope affects their transport at energies below
the excitation threshold Eex, Equation (31), which is a
function of the product òν. As a result, the CR flux
becomes self-modulated before penetrating into the cloud
—it changes from a free-streaming flux, determined by
given IS energy spectrum jIS(E), to the universal
diffusion-dominated flux SDD(E), scaling as ∝E−1 in
both the non-relativistic and ultra-relativistic limits. The
locations of the diffusion zones (regions of diffusive
propagation) in the envelope are determined by the
leading mechanism of self-modulation for given E<Eex:
the zone can be formed either near the inner boundary
(for higher-energy CRs, whose propagation is unaffected
by the gas losses) or near the outer boundary (for lower
energies, where the losses are important).

3. Wave losses.In Section 2.1 we showed that taking into
account the wave losses basically leads to a renormaliza-
tion of the advection flux SAD(E), Equation (44). Since a
contribution of SAD to the modulated CR flux is
significant only for relatively small ν, the effect of wave
losses can practically always be neglected.

4. Important physical parameters.The excitation threshold
Eex(òν) does not depend on the magnetic field B; it is a
function of the physical parameters of the envelope as
well as of the magnitude and the form of jIS(E). One of
our key findings is that the universal flux SDD(E) is
insensitive to the particular model of nonlinear wave
cascade, depends neither on B nor on jIS(E), and thus is
determined only by densities and masses of the neutral
and ionized species in the envelope, Equation (43).

5. Magnitude of the self-modulation.The CR modulation due
to self-generated turbulence is conveniently characterized
by the flux ratio

n( )
( ) ˜ ˜ ( )

S E

S E Ej E
,DD

free IS

determined by Equations (39) and (42). For IS spectra
analogous to that of Equation (25), the product ˜˜ ( )Ej EIS
achieves a broad maximum (∼1) at E∼100MeV.
Therefore, the strongest modulation occurs at these
energies, where the reduction is ∼òν; for typical envelopes,
the flux can decrease by up to two orders of magnitude.

The conclusion that the CR flux penetrating into denser
cloud regions has a universal energy dependence at E<Eex,
solely determined by the physical parameters of the envelope,
is of substantial general interest and importance. One of the
reasons is that gamma-ray emission, measured from molecular
clouds at different distances from the Galactic Center (see, e.g.,
Digel et al. 2001; Yang et al. 2014; Tibaldo et al. 2015), is
considered to provide information about the global distribution
of CRs in the Galaxy (see, e.g., Aharonian 2001; Casanova
et al. 2010). The derived spatial distribution of Galactic CRs is
then interpreted as a result of global-scale CR propagation and
used as an input for models of their origin (see, e.g., Bloemen
et al. 1993; Breitschwerdt et al. 2002; Strong et al. 2007;
Recchia et al. 2016a). Thus, the fact that the modulated flux is
independent of the spectrum of Galactic CRs may have
profound implications for such analysis.
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Also, observations indicate that the central regions of the
Galactic Disk are enhanced by molecular hydrogen in the form
of very dense molecular clouds and diffuse gas (Oka
et al. 2005). The latter occupies about 30% of the volume of
the central molecular zone, and therefore the overall effect of
the local self-modulation, which we predict to occur in these
diffuse regions, can be significant. For example, the spectrum
of CR protons deduced by Acero et al. (2016) and Yang et al.
(2016) from the Fermi data for the inner Galaxy is harder than
that in the outer Galaxy, and one can speculate that this may be
due to the local self-modulation.

The self-modulation of a CR flux can be important for many
other fundamental problems. In particular, it could cause the
substantial reduction of CR ionization rates observed within
dense molecular clouds (e.g., Caselli et al. 1998), which are
significantly lower than those measured toward diffuse clouds
(Indriolo & McCall 2012). We note that drops in the amount of
CR flux, and the consequent drop in the CR ionization rate
within (UV-)dark clouds, affect physical parameters crucial for
the dynamical evolution of dense clouds: the ionization
fraction, which controls the coupling between gas and magnetic
fields, thus regulating star formation (e.g., McKee 1989); the
gas temperature, which determines the thermal pressure,
particularly important at the scales of dense cloud cores (e.g.,
Fuller & Myers 1992; Keto & Caselli 2008) where stars form;
and internal MHD turbulence in molecular clouds, which could
contribute to the observed magnetic and virial equilibrium and
thus to the cloud dynamics and evolution (e.g., Myers &
Goodman 1988; Goodman et al. 1998; Caselli et al. 2002). Last
but not least, changes in the CR flux can significantly affect the
chemistry, because gas-phase processes in dark clouds are
dominated by ion–molecule reactions with rates depending on
the ionization fraction (Herbst & Klemperer 1973), while
surface chemistry can be modified by CRs directly (via
impulsive spot heating) or indirectly (via UV photons
generated by the fluorescence of H2 molecules).
Self-consistent numerical simulations of dynamically and

chemically evolving magnetized interstellar clouds (with a proper
treatment of CR propagation inclusive of their self-modulation and
generation of MHD turbulence) are needed to quantify our
predictions for case-specific clouds within our Milky Way and
external galaxies, as well as to test our theory against observations.
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Appendix A
Average Pitch Angle in the Free-streaming Regime

Different transport zones are sketched in Figure 8. For
certainty, the zones are illustrated for the absorbing-wall setup
(distance=z, see Figure 1); the results are then readily applied

to the setup with losses (distance=∣ ∣z , see Figure 5). One can
identify three free-streaming zones.
In zone I, corresponding to E>Eex(ν), CRs propagate

across the envelope without experiencing scattering at any
distance. The value of má ñ in this case depends on mechanisms
governing modification of the isotropic IS spectrum jIS(E) upon
its entering into the envelope. (Since the strengths of the
magnetic field inside and outside the envelopes are about the
same, it is reasonable to assume that the magnetic field lines
enter into the envelope without significant distortions.) Let us
denote the spectrum formed upon entering as * m( )j E,IS with
μ>0. Then the average pitch angle, which determines free-
streaming flux Sfree(E) in Equation (3), is readily obtained:

*
òm m m

m
á ñ =

( )
( )

( )d
j E

j E

,
. 57

0

1
IS

IS

The exact form of * m( )j E,IS depends on unknown details of the
entry, but one can generally conclude that the resulting value of
má ñ is of the order of a few tenths. For instance, if * m( )j E,IS is
simply a hemisphere μ>0 of jIS(E), then má ñ = 1 2 (which
corresponds to a well-known expression for a free-streaming
flux through a flat surface). Generally, má ñ may be a function
of E.
Zone II is located “downstream” from the diffusion zone.

The value of má ñ is determined by modification of a local quasi-
isotropic CR spectrum j(E) leaving the diffusion zone. While
details of this process may be different from those controlling
má ñ in zone I, one can still employ Equation (57) with jIS(E)
replaced by j(E). Using exactly the same line of argument as
before, we conclude that má ñ in zone II should be similar to that
in zone I.
Zone III “upstream” from the diffusion zone is unimportant

for our analysis. For E=Eex, the flux propagating further
toward the cloud is strongly modulated, i.e., the incident IS flux
is almost entirely reflected back from the diffusion zone.
Therefore, the value of má ñ in zone III is very small, tending to
∼vA/v when the advection part of the (modulated) flux in
Equation (2) dominates over the diffusion part.

Figure 8. Sketch of the transport zones in the energy–distance plane,
representing the absorbing-wall setup. For the setup with losses (where the flux
is directed to the right), the labels “zone II” and “zone III” should be swapped.
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In the presence of losses, the “upstream” (“downstream”)
zone corresponds to smaller (larger) distances (see Figure 5).
Basically, in this case we only need to swap zones II and III in
the sketch shown.

Appendix B
Numerical Solution of the Governing Equations

Numerical results are deduced from the steady-state solution
of time-dependent dimensionless Equations (15) and (16),
obtained by adding terms -¶ ¶˜ ˜/j t and ¶ ¶-( ˜ ) ˜ ˜W W t2 1 ,
respectively. Dimensionless time *=t̃ t t is determined by
t*, whose value is dictated by the normalization used. We
employ an explicit finite-difference method, which has
straightforward implementation and reasonable convergence
for our parameters.

To include the limitations on the CR flux velocity, we split
this method into two steps: first, we evaluate the flux from

=
-

-
+
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+

+
+

+
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diff , ,
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1
1,

, diff , diff , free 1,

and then calculate the evolution of the CR energy spectrum j̃i l, .
Here indices i and l represent discretization of the spatial
coordinate and energy, respectively.

In fact, ( ˜ )S i ldiff , in Equation (58) is evaluated at an
intermediate grid point, for which we chose the midpoint

= ++ +˜ ( ˜ ˜ )z z zi i i
1

2 11
2

. Therefore, the diffusion coefficient D̃i l,

and the density of MHD waves W̃i l, are also calculated at +zi 1
2
.

However, for brevity we omit 1

2
in the spatial index, keeping in

mind that all these parameters actually correspond to the
midpoint. Thus, a discrete equation for the energy spectrum is
written as
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is taken into
account. For small values of the diffusion coefficient, this
becomes a standard explicit scheme for the heat transport
equation with central difference, otherwise it transforms into an
upwind scheme.

The evolution of density of the MHD waves is performed in
a similar way. We have verified that results do not change in
practice when the advection wave transport, described by the
first term on the lhs of Equation (7), is taken into account. This

allows us to omit this term and use the following upwind
scheme:

n
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t

k W k W

k k

W2 ,

i l i l l i l l i l

l l

i l i l

, , 1
3

, 1
2 3

,
2

1

, ,

where G =˜ ˜ ( ˜ )S k2 ;i l i l l, , for nG - D ( ˜ ˜ ) t2 1i l, , the last term is
replaced by nG - + D( ˜ ˜ ) ˜ ( )W t t2 i l i l, , . To simplify the problem,
we utilize the same grid for j̃ and W̃ , and therefore p̃l and k̃l are
related through the resonance condition.
Boundary conditions for the above equations are

  = = = =˜ ˜ ( ˜ ) ˜ ˜j j j j W0, , 0, 0,l l l i i1, , IS , ,

where  and  denote the number of points on z and E (or k)
axes, respectively.
In order to accelerate the relaxation process, we assume that

CRs are uniformly distributed at the initial moment, i.e.,
= =˜ ( ) ˜j t j0 IS. As for the waves, we introduce a certain “zero-

level” turbulence at the initial moment, and also ensure that W
never decreases below that level during its evolution. The
choice of zero-level turbulence is dictated by two conditions:
first, this should not affect CR propagation; second, this
should be large enough for a fast convergence. The first
condition is satisfied if the corresponding diffusion coefficient
is ~QvH with Θ?1, whereas the convergence time depends
logarithmically on Θ. Hence, a reasonably fast convergence
can be achieved for a wide range of Θ; Θ=1010 was chosen
for our calculations.
The energy loss function Lg(E) is calculated as the sum of

the ionization and pion production terms. Ionization losses,
important for non-relativistic protons, are taken from the
PSTAR NIST database (Berger et al. 2005), while for losses
due to the pion production we employ the expression proposed
by Mannheim & Schlickeiser (1994).

Appendix C
Expansion of the Wave Spectrum in Series of z

In Figure 9 we plot the wave spectrum W(k, z) calculated
numerically from Equation (29).
One can see that, when ν?1 and η01, Equation (32)

reasonably approximates the numerical results except for a
region near z;z0, where W is relatively small. If needed, a
quadratic term ∝z2 can be included in Equation (32) to further
improve the agreement with the numerical results. For
relatively small values of ν and η01 the linear expansion
fails to describe the results properly.
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