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Abstract— Micro/nano-manipulation systems have been de-
veloped and utilized for decades due to their irreplaceable
roles in fields such as MEMS/NEMS fabrication and biological
studies. Generally, the motion precision of a micro/nano-
manipulator highly depends on its actuator, whose performance
can be enhanced by proper control strategies. To design
satisfactory controllers, an accurate plant model is ideal. For
micro/nano-manipulators, the implemented actuators are most-
ly Smart Materials (SMs), which exhibit strong hysteretic and
dynamic coupling characteristics. The construction of linear
dynamics preceded by hysteresis is a prevalent representation
for describing SM actuators’ behaviors. To effectively and
accurately model SM actuators, this paper employs the Ex-
tended Unparallel Prandtl-Ishlinskii (EUPI) model to describe
complicated hysteretic behaviors. For modeling dynamics of
SM actuators, firstly, the EUPI inverse is implemented to
compensate the hysteretic effect of the plant; subsequently,
the Weighted Complex Least-Squares (WCLS) identification
method is proposed to estimate parameters of the dynamic part
in the form of complex number function. To guarantee stability
of the identified model, the Particle Swarm Optimization based
WCLS (PSO-WCLS) optimization approach is proposed. The
advantage of the proposed modeling scheme is that, it is capable
of accurately describing complicated hysteresis of SM actuators
and does not require the drive signal to be small while modeling
its dynamics; besides this scheme contains frequency domain
identification merits, such as easy noise reduction and easy
combination of data from different experiments. The modeling
and identification scheme is verified through comparison tests
conducted on a piezoelectric actuator platform.

I. INTRODUCTION

Micro/nano-manipulation systems such as Atomic Force
Microscopy (AFM), Scanning Ion Conductance Microscopy
(SICM) have been widely implemented and playing irre-
placeable roles in fields of MEMS/NEMS fabrication, ultra-
high precision manufacturing and biological studies [1], [2].
The motion precision of a micro/nano manipulation system
highly depends on the implemented actuator, which consists
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mostly of Smart Materials (SMs) for advantages of high spa-
tial resolution, fast response, flexible structure and easy man-
ufacturing properties [3]–[5]. Most SMs exhibit hysteresis,
dynamics coupling characteristics. To date, two prevalent SM
actuator modeling approaches, hysteresis/dynamics parallel
model [6], [7] and cascade model [8]–[12] have been widely
employed in advanced controllers design. The parallel model
has an additive relation between its hysteretic and dynamic
portions, which is relatively easy to estimate the associated
parameters. However, the parallel model is not suitable for
capturing high frequency behaviors, and its dynamic portion
is typically used for describing relatively slow behaviors [7],
[13].

The cascade model possesses hysteretic and dynamic
cascade construction, which is more suitable for describing
SM actuators with high frequency response. The cascade
model is prevalently represented as linear dynamics preceded
by hysteresis construction (as shown in Fig. 1), where the
dynamic portion is commonly built as a transfer function
for easy frequency and uncertainty analysis [8]. The hys-
teretic behavior is more complicated, since it is intrinsically
nonlinear. To represent hysteretic phenomena accurately,
lots of practical modeling approaches have been reported,
such as operator based superposition models including the
Preisach model [7], Prandtl-Ishlinskii (PI) model [6], and the
Generalized PI (GPI) operator based model [14]. Bouc-Wen
hysteresis model is in the category employing differential
equations representation [9].

Fig. 1. Linear dynamics preceded by hysteresis model of SM actuators.

Prisach operator can effectively describe most static hys-
teresis phenomena [15], [16], however it is not very efficient
since it requires to employ a great amount of operators
to meet satisfactory precision [17]. As an alternative, PI
model was developed and have been widely adopted for
its convenient description and analytical inverse represen-
tation [6], [18]. However, the symmetric property of the
Classical PI (CPI) operator hinders its further application
in complicated hysteresis modeling [14]. Similar as the PI
model, the differential equation based Bouc-Wen model has
fewer tunable parameters, which limits its performance on



modeling complicated hysteresis. To date, great efforts have
been focused on complicated hysteresis modeling, such as a
memoryless function was added to the CPI model to generate
saturation property [19] and a memoryless function was
used to re-map output of CPI model to generate asymmetric
property [20]; literature [14] proposes to use generalized
envelop functions to describe complicated hysteresis loops.
However, challenge still exists. The memoryless function
modified PI model cannot represent hysteresis flexibly, since
their ascending/descending branches share same parameters;
while the GPI model is hard to design, mostly because
selection of the invertible envelop functions is empirical.

To accurately model SM actuators with linear dynamics-
hysteresis cascade input-output relation, in this study, the
Extended Unparallel PI (EUPI) model is employed to capture
the hysteretic behavior considering its simplicity and capa-
bility of accurately describing complicated hysteresis [21].
To model dynamics of SM actuators, firstly the hysteresis
inverse is designed and implemented to reduce the hysteretic
effect [13]; subsequently, the weighted complex least-squares
(WCLS) identification method is derived to estimate fre-
quency domain dynamics represented as a complex number
function. To guarantee stability of the identified model, the
Particle Swarm Optimization based WCLS (PSO-WCLS)
identification method is employed. Basically, this algorith-
m searches optimal parameters under stability constraints.
The advantages of this entire modeling and identification
scheme are: it can describe complicated hysteresis with
high precision; it does not require the drive signal to be
small while identifying SM actuator’s dynamics; it contains
the frequency domain identification merits, such as easy
noise reduction and easy combination of data from different
experiments [22], [23]. To verify the proposed modeling and
identification scheme, the piezoelectric actuator, which is
mostly employed in micro/nano-manipulation systems [1],
[9], is modeled and identified. Comparison tests were con-
ducted, where the MATLAB graphic identification toolbox
was employed as the benchmark.

The remaining contents are arranged as following: in
section II, the EUPI hysteresis modeling approach is briefly
reviewed and the stable compensator design technique is
addressed; in section III, the WCLS identification method
is derived and the PSO-WCLS stable model identification
algorithm is presented; in section IV, a piezoelectric actuator
platform is set up to verify the proposed identification
scheme; section V concludes this study.

II. REVIEW OF THE EUPI HYSTERESIS
MODELING AND COMPENSATION APPROACH

A. Hysteresis Modeling using EUPI Model
In this study, the EUPI model is utilized to capture

complex hysteretic characteristic of SM actuators [21]. The
basic UPI operator is defined as (1),

Fri,α j [u](t)

= max(u(t)− ri, min(α j(u(t)+ ri),Fri,α j(t
−)))

with t− = lim
δ→0+

(t −δ ) and ri ≥ 0, α j > 0,
(1)

where u(t) represents the drive signal at moment t, and ri
denotes the ith threshold and the descending edge is tilted
by multiplying a factor α j. In particular, by setting the
tilt parameter α j to 1, the UPI operator becomes the CPI
operator.

Typically, a complicated hysteresis can be decomposed
into two parts: memory and memoryless components. Fur-
thermore, the memory component can be separated into the
symmetric and asymmetric parts. To facilitate compensator
design and analysis, the EUPI model is built using the three
components described as (2) [21],

H[u](k) = ΓCPI [u](k)+ΓUPI [u](k)+P[u](k)

ΓCPI [u](k) = a0u(k)+∑Nh
i=1 biFri,1[u](k)

ΓUPI [u](k) = ∑Nr
i=1 ∑Na

j=1 di jFri,α j [u](k)

P[u](k) = ∑Np
i=2 piui(k)+ p0

s.t. a0, α j > 0, bi, di j, ri ≥ 0,

(2)

where H[u](k) is the output of the EUPI model; ΓCPI [u](k),
ΓUPI [u](k), and P[u](k) are the CPI, UPI and polynomial
parts, respectively; a0 is a linear coefficient, which can be
directly extracted to design controllers [12]; notation bi,
di j and pi are the weight gains for the corresponding CPI
operators, UPI and polynomial parts, respectively; Nh and
Np are the number of operators consisting the CPI and
polynomial portion; Na and Nr are the total levels for the
tilt α j and the threshold ri in the UPI component; p0 is an
output offset associated with the hysteresis initial condition.

B. EUPI Model based Stable Compensator

Hysteresis compensator is efficient and practical for re-
ducing hysteretic effect in open-loop systems. In order to
compensate hysteretic influence efficiently, the built model
should be utilized effectively [24]. As addressed in [13],
without an analytical expression, the EUPI model based
inverse is constructed in an indirect way. Based on con-
struction of the EUPI model shown in (2), the CPI portion
can be extracted to perform direct inverse action, and other
portion should be formatted to link the inverse CPI portion
(as shown in Fig. 2). Similar as the scheme proposed in [6],
an iterative construction represented in (3) is adopted as the
EUPI inverse.

u(k) = H−1[yr](k)

= Γ−1
CPI(yr(k)−ΓUPI [u](k−1)−P[u](k−1)), (3)

where Γ−1
CPI [u](k) denotes the inverse of the CPI component,

which can be directly calculated according to procedure
in [6], and yr(k) represents the input reference signal.

It is noted that the inverse scheme shown in Fig. 2
possesses a closed-loop construction inside, indicating it
requires to perform iteratively to approach the desirable
solution. However, whether this procedure can converge is
not obvious. As addressed in [13], the sufficient condition
for designing a stable EUPI inverse scheme is described as



Fig. 2. Schematic diagram of the EUPI compensator.

(4) based on the well known small gain theorem.

a0 > max(
∣∣∣∣d(ΓUPI [u](k)+P[u](k))

du

∣∣∣∣), (4)

where a0 denotes the linear coefficient of the CPI component
in (2); ΓUPI [u](k) and P[u](k) are the UPI and polynomial
components, respectively.

It is noted that not all the directly built EUPI model can be
utilized to construct the inverse scheme (3), since parameter
a0 may not be larger than the maximum gain of the rest
part. It is also noted that, if a0 is significantly larger than
the possible gain of the rest part, the inverse scheme will
converge much faster. Therefore, to guarantee the global
stability of the compensator, one should manipulate the CPI
and the rest component to significantly increase a0 and
reduce the maximum gain of the rest part. The adjustment
can be conducted using (5), where a proportional gain kex is
adopted to guarantee the stable condition described in (4).

H[u](k) = (ΓCPI [u](k)+ kexu(k))

+(ΓUPI [u](k)+P[u](k)− kexu(k)). (5)

Once condition (4) is satisfied, the function of the EUPI
compensator will be a contract map [6]. According to the
fix point theory, there exists a unique solution for any given
yr(k).

III. DYNAMICS MODELING AND PSO-WCLS
IDENTIFICATION APPROACH

A. Dynamics Modeling in Frequency Domain

Dynamic portion of a SM actuator is critical in controllers
design, since it provides frequency dependent properties
which influence the system stability seriously. Linear dy-
namic systems can be represented as Laplace domain format
Dp(s) in (6), which facilitates the frequency and uncertainty
analysis,

Dp(s) =
y(s)
v(s)

=
k0(sm + · · ·+g js j + · · ·+g0)

sn + · · ·+aisi + · · ·+a1s+a0
+D,

(6)
where v(s) stands for the input of dynamic component Dp(s),
and the output of the hysteretic portion, as well; m is the
numerator order, and it is strictly less than the denominator
order n; D denotes the feedforward gain of the system, and
k0, ai, g j are associated parameters.

A transfer function can always be represented as a com-
plex number function by replacing the Laplace variable s

with a complex number ω j as shown in (7),

Dp(ω j) =
bn(ω j)n +bn−1(ω j)n−1 + · · ·+b1(ω j)+b0

(ω j)n +an−1(ω j)n−1 + · · ·+a1(ω j)+a0

= Re(ω)+ Im(ω) j = A(ω)eα(ω),
(7)

where ω is the input frequency with unit rad/s; A(ω)
and α(ω) denote the magnitude and phase at frequency ω ,
respectively; Re(ω) and Im(ω) represent the real and imagi-
nary parts of the transfer function regarding ω , respectively.

B. WCLS Identification Approach

Based on the complex number representation of (7), the
parameters [bn,bn−1, · · · ,b0,an, · · · ,a0] of a transfer function
should be easily estimated using a Complex Least-Squares
(CLS) identification approach. With this motivation, the CLS
method is derived. To emphasize some essential data (fea-
tures), the weighting method is introduced, as a combination,
the estimation approach is called Weighted CLS (WCLS)
identification method. To derive the WCLS approach, first,
the objective function J is defined as:

J = ∑n
i=1 wi(yi − ŷi)(yi − ŷi)

⇒ J = (Y − Ŷ )TW (Y − Ŷ )

⇒ J = (Y −XT Θ̂)TW (Y −XT Θ̂),

(8)

where X ∈Cn×p denotes the regression variable in the com-
plex domain; Y = [y1,y2, · · · ,yn]

T ∈Cn×1 is the given data in
the complex domain; Ŷ = [ŷ1, ŷ2, · · · , ŷn]

T ∈Cn×1 is the mod-
el output; Θ̂ ∈ Rp×1 represents the real number parameters
that need to be identified; W ∈ {Λ|Λ = diag(w1, · · · ,wn) ≥
0, wi ∈ R} is the weighting matrix to emphasize the inter-
esting data, and (·) represents the conjugate of the complex
(·).

Via expanding X as [x11, · · · ,x1n; · · · ;xn1, · · · ,xnn], objec-
tive function J can be represented as:

J = ∑n
i=1 wi(yi −∑p

d=1 θdxid)(ȳi −∑p
d=1 θd x̄id)

⇒J = ∑n
i=1 wi[yiȳi −∑p

d=1 θd(x̄idyi + xid ȳi)

+(∑p
d=1 θdxid)(∑p

d=1 θd x̄id)],

(9)

where θd is the dth parameter in Θ̂. Based on (9), J is then
differentiated associated with θz, and is set to zero (as shown
in (10)) to calculate the optimal θz.

∂J
∂θz

= ∑n
i=1 wi[−(x̄izyi + xizȳi)

+(∑p
d=1 θd x̄idxiz)+(∑p

d=1 θdxid x̄iz)] = 0.
(10)

By rewriting (10), the following relation can be obtained:

∑n
i=1 wi (x̄izyi + xizȳi)

=∑n
i=1 wi

[
(∑p

d=1 θd x̄idxiz)+(∑p
d=1 θdxid x̄iz)

]
=(∑p

d=1 θd ∑n
i=1 wix̄idxiz)+(∑p

d=1 θd ∑n
i=1 wixid x̄iz)

=∑p
d=1 θd(∑n

i=1 wix̄idxiz +∑n
i=1 wixid x̄iz).

(11)



Consequently, by grouping associated variables together in
(11), the following compact representation can be finally
achieved,(

XTWX̄ + X̄TWX
)

Θ̂ =
(
X̄TWY +XTWȲ

)
⇒

Θ̂ =
(
XTWX̄ + X̄TWX

)−1 (
X̄TWY +XTWȲ

)
.

(12)

The identified parameters in Θ̄ are always real since X̄TWX
is the conjugate of XTWX̄ , so is the relation between X̄TWY
and XTWȲ .

To apply the WCLS identification method in transfer func-
tion (7), it is required to format (7) as the following linear
representation with unknown parameters at each frequency
ωi:

Y (ωi j) = X(ωi j)Aeα(ωi)

⇒ bn(ωi j)n +bn−1(ωi j)n−1 + · · ·+b1(ωi j)+b0

= A(ωi)eα(ωi)[(ωi j)n +an−1(ωi j)n−1 + · · ·+a0]

⇒ Xi · Θ̂ = Yi,

(13)

where Θ̂, Xi and Yi have the following expression:

Θ̂=[bn,bn−1, · · · ,b1,b0,an−1,an−2, · · · ,a1,a0 ]
T

Xi= [ (ωi j)n,(ωi j)n−1, · · · ,1,−A(ωi)e jα(ωi)(ωi j)n−1,

−Ae jα(ωi)(ωi j)n−2, · · · ,−A(ωi)e jα(ωi) ]

Yi=A(ωi)e jα(ωi)(ωi j)n.
(14)

Once (13) is achieved, the parameters of a transfer function
can be simply calculated using (12).

C. PSO-WCLS Identification Approach for Stable Systems

The WCLS approach can optimize parameters for a trans-
fer function regarding objective function J(Θ̂), however, it
cannot guarantee the stability due to the influence of possible
noise and nonlinear property of a plant. Usually, the stability
constraint is complicated and may not be convex. To achieve
stable representation for a system, a practical constrained
identification approach is the Particle Swarm Optimization
(PSO) method which can perform large scale searching with
both directional and random properties.

In this paper, the PSO method is employed to search a
suboptimal stable solution for modeling a plant. Basical-
ly, the denominator parameters are compacted into Pg,s =
[an−1, · · · ,a1,a0]

T , which is a particle in the PSO algorithm
with s denoting the particle ID in one swarm, and g denoting
the generation ID of that swarm. Once a particle Pg,s is
selected, (13) will be calculated with (15) to optimize the
numerator parameters in Θ̂n = [bn,bn−1, · · · ,b0]

T .

Xi = [(ωi j)n,(ωi j)n−1, · · · ,(ωi j),1]

X = [XT
1 ,XT

2 , · · · ,XT
n ]T

Yi = A(ωi)e jα(ωi){(ωi j)n +[(ωi j)n−1, · · · ,(ωi j),1]Pg,s}
Y = [Y1,Y2, · · · ,Yn]

T .
(15)

After Ps,g and Θ̂n are settled, the following fitness function
Te will be calculated considering the stability constraint.

Once the stability constraint cannot be satisfied, the current
particle will be discarded.

Te =
1
n

n

∑
i=1

∣∣∣∣XiΘ̂n

Yi
−A(ωi)e(αωi)

∣∣∣∣
s.t. {Pg,s |Re(root(sn +[sn−1, · · · ,1]Pg,s))< 0}.

(16)

During identification, the frequency domain data will be
first estimated using the WCLS method, subsequently the
poles of the identified transfer function will be calculated.
If some pole is outside the left half complex plane, the
PSO stabilizing procedure will be triggered. The whole
identification procedure can be addressed as following:

i) Format given frequency data into (14), and then run (12)
to estimate the Θ̂. If the poles of the identified system are
all on the left half complex plain, then go to step vi).

ii) The poles with positive part is flipped along the
imaginary axis. The identified denominator parameters
[an−1, · · · ,a1,a0] is calculated again using the stable poles,
then the new parameters [a′n−1, · · · ,a′1,a′0] are obtained.

iii) Around each parameter a′i, a searching range will be
defined, and particle entries are randomly scattered into these
searching ranges. Subsequently, the fitness function (16) is
calculated for each particle of the current swarm. After that,
the particle with the minimum Te will be assigned to Pg,opt
as the local optimal particle, which will be used to estimate
the updating velocity of each particle.

iv) If the condition Te ≤ T ∗
e is satisfied (T ∗

e represents the
selected error tolerance), the optimization algorithm will go
to step vi).

v) The current optimal particle Popt ∈ {P1,opt ,P2,opt , · · · ,
Pg,opt} is the globally optimal particle with minimum Te. The
new generation swarm of particles is calculated as following:

M = Mmax −g · Mmax −Mmin

gmax
,

Vg+1 = M ·Vg + c1 ·R1 · (Pg,opt −Pg,s)

+ c2 ·R2 · (Popt −Pg,s),

Pg+1,s = Pg,s +Vg+1,

(17)

where g denotes the generation of current swarm; Vg is
the updating velocity; M is the inertial gain for generating
smoother Vg, and Mmax, Mmin are the allowable maximum and
minimum gains, respectively; c1, c2 are the weighting gains
for emphasizing the local optimal direction and global op-
timal direction, respectively; R1 and R2 are positive definite
random diagonal matrices for generating versatile particles.
If the maximum generation gmax is not reached, then go back
to step ii).

vi) Stop identification, calculate the optimal Te, show
the optimal particle and plot the Te of each Pg,opt along
generations if applicable.

Remark 1: The reason for flipping the unstable poles
along the imaginary axis in step ii) is that, this operation will
not alter the optimal magnitude response of the identified
transfer function, making use of it will reduce the swarm
size, and benefit the particle searching procedure.



IV. EXPERIMENTAL SETUP AND PIEZOELECTRIC
ACTUATOR MODELING VERIFICATION

An experimental platform for a piezoelectric actuator
modeling test was set up. The platform as shown in Fig. 3(a)
consists of a piezoelectric stack actuator (maximum output
21.3µm with maximum input 150V ), a custom-made one-
dimensional fixed mechanism, one power amplifier (Ampli-
fication is 30), one capacitive sensor (effective resolution
20nm), NI DAQ card (16-bit PCI-6221), and one computer
with MATLAB and the real-time module installed. The
EUPI compensator outputs signal to the power amplifier
and collects actuator displacement data from the capacitive
sensor via the DAQ card. The amplified compensation signal
was directly applied to drive the piezoelectric actuator.
The sampling rate for static hysteresis modeling was set
to 0.1kHz because this procedure requires to capture very
low-frequency (quasi-static) data, relatively low sampling
frequency will reduce data amount. While modeling the
dynamic part, the sampling rate was set to 10kHz to accurate
capture the high frequency data.
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Fig. 3. Experimental setup, (a) piezoelectric actuator platform, (b)
hysteresis raw data and model prediction data in the input-output domain,
(c) hysteresis reduction using the designed EUPI compensator.

During building a hysteresis-linear-dynamics model, a
quasi-static voltage signal was applied to drive the piezoelec-
tric actuator for exciting the static hysteresis information. The
collected data are shown in Fig. 3(b), which is asymmetric.
By utilizing the EUPI model to represent the hysteresis
phenomenon, the identification result is plotted with dotted
curve. Based on the hysteresis portion model, the correspond-
ing EUPI compensator was designed using the approach
introduced in section II. The hysteresis compensation result
is shown in Fig. 3(c), in which the hysteretic effect is greatly
reduced in contrast to original data shown in Fig. 3(b).

To accurately model the dynamic portion of the actuator,
the designed EUPI compensator was implemented to gener-
ate the drive signal to excite the actuator. The identification
platform is shown in Fig.4, where the EUPI inverse processed
chirp signal was applied to excite the piezoelectric actuator

with selected frequency range. In this procedure, the input
frequency was set to 0.01 − 50Hz, since the integrated
actuator system shows strong damping effect.

Fig. 4. Dynamics identification platform of the piezoelectric actuator.
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Fig. 5. Dynamics identification of the piezoelectric actuator, (a) magnitude
response, modeling results and errors, (b) phase response, modeling results
and errors, (c) Tes comparison along generations.

The actuator dynamics was identified using the PSO-
WCLS approach with swarm size 100, maximum generation
20 and searching range a′i ·(1±0.5). The optimal Te for each



generation is plotted in Fig. 5(c), where one can see the Te
becomes constant after 7 generations, since the objective
T ∗

e ≤ 0.01 has been reached. The dynamics identification
results are shown in Fig. 5(a), (b), which describe the plant
magnitude and phase responses and the associated errors
in the frequency domain using a 4th order model with
[b4, · · · ,b0]=[0.008933, −1.839, 260.4, 9.313× 105, 3.096×
107], and [a4, · · · ,a0]=[1, 244.2, 3.605 × 104, 1.898 ×
106, 3.343×107]. It is noted that the magnitude response of
the system decays seriously as input frequency increases.
As benchmark, the transfer function estimation method of
MATLAB graphic identification toolbox was employed, and
the identified result is plotted in Fig. 5(a), (b), respectively.
From the identification errors, one can see the proposed
PSO-WCLS method and MATLAB identification approach
have very close performances, however the proposed
method shows better precision with smaller optimal Te value
illustrated in plot (c). The poles of the identified system are
100 × [−0.8456 ± 1.2107 j, −0.3756 ± 0.1105 j], indicating
it is stable.

V. CONCLUSIONS

In this study, the model of linear dynamics preceded
by complicated hysteresis is employed to characterize be-
haviors of SM actuators. To precisely describe the hys-
teretic characteristic, the EUPI model is employed, which
can describe hysteresis flexibly. To reduce the hysteretic
influence during the dynamics identification, the stable EUPI
inverse is established. The hysteresis inverse processed input-
output dynamics data are utilized to directly identify the
model parameters via the proposed WCLS approach. To
guarantee stability of the identified model, the PSO-WCLS
identification approach is proposed, which searches satis-
factory parameters in a constrained non-convex space. The
proposed identification scheme is verified with experiment
on a piezoelectric actuator platform. As the benchmark,
the MATLAB graphic identification toolbox is applied to
estimate the dynamic component. The identification result
shows that the proposed method achieves a better result
compared to that obtained by the MATLAB toolbox.
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