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Abstract

Increasing numbers of human diseases are being linked to genetic variants, but our understanding of the mechanistic links
leading from DNA sequence to disease phenotype is limited. The majority of disease-causing nucleotide variants fall within
the non-protein-coding portion of the genome, making it likely that they act by altering gene regulatory sequences. We
hypothesised that SNPs within the binding sites of the transcriptional repressor REST alter the degree of repression of target
genes. Given that changes in the effective concentration of REST contribute to several pathologies—various cancers,
Huntington’s disease, cardiac hypertrophy, vascular smooth muscle proliferation—these SNPs should alter disease-
susceptibility in carriers. We devised a strategy to identify SNPs that affect the recruitment of REST to target genes through
the alteration of its DNA recognition element, the RE1. A multi-step screen combining genetic, genomic, and experimental
filters yielded 56 polymorphic RE1 sequences with robust and statistically significant differences of affinity between alleles.
These SNPs have a considerable effect on the the functional recruitment of REST to DNA in a range of in vitro, reporter gene,
and in vivo analyses. Furthermore, we observe allele-specific biases in deeply sequenced chromatin immunoprecipitation
data, consistent with predicted differenes in RE1 affinity. Amongst the targets of polymorphic RE1 elements are important
disease genes including NPPA, PTPRT, and CDH4. Thus, considerable genetic variation exists in the DNA motifs that connect
gene regulatory networks. Recently available ChIP–seq data allow the annotation of human genetic polymorphisms with
regulatory information to generate prior hypotheses about their disease-causing mechanism.
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Introduction

Genetic factors underlie the distinct phenotypic traits and

disease susceptibilities that are observed between human individ-

uals and populations [1]. Huge resources have been allocated to

mapping genetic variants - particularly the smallest, single

nucleotide variants (SNPs) - that correlate with numerous human

traits, including obesity, blood pressure, and schizophrenia [2].

While these projects have uncovered several thousand disease risk

variants, such genome-wide association studies suffer from a major

drawback: they provide little prior information or hypothesis on

the mechanism by which an associated SNP causes the observed

phenotype. Such mechanistic insight will be crucial if genetic

information is to lead to therapeutic strategies to treat genetic

diseases. Given that the majority of functional SNPs lie outside

protein-coding regions and are likely to act by altering gene

regulatory sequences, the genome-wide annotation of regulatory

SNPs represents a promising avenue for the comprehensive

prediction of SNP mechanisms-of-action [3].

It is likely that many non-coding SNPs lie within regulatory

DNA motifs, altering their affinity for transcription factors and

thus also altering the expression levels of genes cis-targeted by

those motifs. In agreement with this, variation in gene transcript

levels has been observed between individuals, and these differences

correlated with non-coding SNP alleles [4]. However, it has until

recently been difficult to establish mechanistic consequences of

SNPs at a genome-wide level because (a) most transcriptional

regulatory motifs can not be confidently identified based on DNA

sequence alone, and (b) genome-wide experimental maps of

transcription factor binding have not been available. Nevertheless,

a number of validated cases do exist where a SNP has been shown

to alter the regulation of a nearby gene: for example, a SNP in the

VEGF promoter converts non-functional DNA into a p53 response

element in 6% of genotyped individuals [5]. Indeed, it has been

shown in a small number of cases that regulatory SNPs that create

or disrupt transcriptional regulatory motifs can result in genetic

disease [6,7]. Clearly, the ultimate aim must be to comprehen-

sively annotate regulatory SNPs in human populations. In recent

years, a number of studies have employed human genome

sequence to systematically hunt for regulatory SNPs lying in the

predicted binding sites of particular transcription factors, notably
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NRF2 [8] and USF1 [9]. Unfortunately, relying on genome

sequence analysis alone to discover transcription factor binding

sites is plagued by high false positive rates, especially for the

majority of factors that recognise short or degenerate DNA motifs.

Recently, the development of high-throughput sequencing has

offered a solution to this problem, by enabling the genome-wide

experimental mapping of transcription factor binding sites using

the ChIPseq method [10]. Thus it is possible, for the first time, to

make highly accurate genomic annotations of regulatory SNPs

affecting transcriptional regulation.

For practical reasons, we propose that a genome-wide search for

regulatory SNPs should select a system with the following

properties: (a) the transcriptional regulatory sequence should be

clearly recognisable by motif analysis; (b) there must be an

experimentally-derived, genome-wide map for the transcription

factor in question; and (c) that transcription factor should have

known roles in human disease. In this study, we describe such a

study on the transcriptional repressor, REST (RE1-Silencing

Transcription Factor). This essential zinc finger protein represses

numerous genes in various developmental stages [11] and adult

tissues [12]. Importantly, changes in the effective nuclear levels of

REST are pathological in cancer [13,14], as well as cardiac

hypertrophy [15], vascular smooth muscle proliferation [12],

ischaemia [16] and Huntington’s disease [17]. Consequently, this

system is a promising drug target [18]. REST is recruited to target

genes by a long, characteristic motif - the RE1 (Repressor Element

1) - which can be identified with high confidence using motif-

finding methods [19]. Finally, REST was the first factor whose

binding sites were mapped by ChIPseq (chromatin immunopre-

cipitation followed by high throughput sequencing) in the human

genome [10], and since then a number of additional datasets in

various cell types have become available. In this paper, we

hypothesise that SNP variants in RE1 motifs can affect the in vivo

recruitment of REST to target genes, resulting in differential gene

repression, and altering the severity or frequency with which

individuals are affected by the abovementioned diseases.

Overall, RE1 motifs are depleted for SNPs, indicating that these

motifs are under negative evolutionary selection and that in

general, polymorphisms that affect the affinity of RE1 motifs have

a deleterious effect on their carrier [20]. Nevertheless, 8% of RE1s

contain at least one annotated SNP. In order to identify

phenotypically important SNPs that act through the modulation

of mRNA levels of REST target genes, we designed a multi-step

screen to discover polymorphic RE1 sites (henceforth referred to

as ‘‘pRE1s’’) and measured allelic affinity differences in vitro. We

present analysis of 56 SNPs that are predicted to strongly affect the

binding affinity of REST to its target genes in vivo, making them

candidate modulators of disease susceptibility.

Results

Our aim was to curate the set of genetic polymorphisms that

affect the function of REST by altering the affinity of its cognate

genomic DNA recognition elements, RE1s (Figure 1B). The RE1

consists of left and right half sites of 9 and 6 basepairs, respectively,

separated by a spacer of two nucleotides (‘‘canonical motif’’)

(Figure 1A). It was recently shown that an additional population of

binding sites contain ‘‘noncanonical’’ RE1 motifs having more or

less spacer nucleotides [10]. Genome-wide studies have also

identified REST binding regions containing one or other RE1 half

site, or indeed no identifiable RE1 motif at all, although it remains

unclear to what extent REST recruitment to these regions depends

on specific DNA recognition or whether other factors are involved

such as recruitment by another protein complex [10,21]. We

obtained an experimentally determined set of REST binding

regions in a human cell line, determined by the high-throughput

sequencing-based ChIPseq method [10] (Figure 1C). This dataset,

containing 1946 binding sites, is purely experimental and does not

explicitly contain information about the DNA motif responsible

for REST binding at each location. Thus, we passed all ChIPseq

sites through a bioinformatic motif finding filter, retaining only

those 924 instances containing an identifiable RE1 element

(Figure 1C). Importantly, we included RE1 motifs having both

canonical and non-canonical spacer configurations, but excluded

all other sites lacking both RE1 half sites within 12 nt of each

other. This validated RE1 motif set was next cross referenced to

the set of all known single nucleotide variants from dbSNP129,

yielding a set of 86 SNPs lying within 82 RE1 motifs (3 RE1s each

had 2 SNPs at distinct locations), of which 52/30 were canonical/

noncanonical, respectively. Henceforth we refer to these RE1

motifs as ‘‘Polymorphic RE1s’’ or pRE1s, and for convenience we

number them 1–82. The complete set of pRE1s can be found in

File S1. We hypothesised that these SNPs should affect the

regulation of these genes by REST in vivo, by altering their

binding affinity (Figure 1B).

The final component of the screen was an in vitro binding assay

to define the biochemical effect of SNP polymorphism on RE1

affinity. We used the competition electrophoretic mobility shift

assay that we successfully employed previously [20] to measure

REST binding to pRE1 variants. In this assay, purified

recombinant REST protein is mixed with a high affinity,

fluorescently-labelled RE1 oligonucleotide probe. The affinity of

various putative RE1 sequences can then be measured by their

ability to compete the protein:probe interaction. A comparison of

the bound and unbound probe concentrations yields a measure –

‘‘Fraction Bound’’ - that approaches 1 for a competitor sequence

that cannot bind REST, and approaches 0 for a sequence that

strongly binds REST. We refer to the more/less frequent SNP

allele as the ‘‘Major’’/‘‘Minor’’ variants, respectively. Experiments

were carried out for multiple replicates, allowing us to discern

differential affinity with statistical significance. We optimized the

EMSA conditions by maximising the Fraction Bound difference

Author Summary

Common human diseases such as cancer, heart disease, or
epilepsy have a genetic component that predisposes
particular individuals to suffer from them. Huge sums have
been invested to map the regions of the human genome
where small DNA variations, or SNPs (‘‘single-nucleotide
polymorphisms’’), determine the probability of developing
these diseases. A major problem with this approach,
however, is that, once the culprit SNPs are discovered, we
know very little about how they cause disease—which is
critical if we are to use this information to develop drugs
and therapies. In this study, we demonstrate a new
approach, employing functional maps of the human
genome that have recently been published. We begin
with regions of the genome recognised by a gene
repressor protein—REST—that is involved in a number of
important human diseases. Using information on where
REST binds in the human genome, we predict and validate
common DNA variations that increase or decrease this
binding. By affecting how much REST is recruited to
important genes, these variations may predispose or
protect individuals from a number of diseases. Studies
like this show how we can use genomic information to
gain a deeper understanding of the genetics behind
human disease.

SNPs That Alter REST Binding
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between idealised (high affinity) and mutated (low affinity)

synthetic RE1 competitor sequences. In this way, we were able

to capture allelic affinity differences between high-quality RE1

sequences and their mutants (Figure 2). First, we validated the

screening approach using a series of control RE1 sequences

(designated N1-N4), containing SNPs outside the core REST

recognition motif. None of these peripheral SNPs had a detectable

effect on REST affinity (Figure 2A, 2B, 2D).

Next, we measured REST binding to the major and minor

alleles of the 82 pRE1s discovered in the bioinformatic screen

(Figure 2E). Fifty six of these exhibited significant allelic affinity

differences for REST. In most cases the minor variant was found

to bind less strongly to REST (46/56), while for the remaining

eight cases the minor variant bound more strongly (the likely

reason for this discrepancy is covered in the Discussion). This

number was found by imposing a minimum difference in Fold

Change between alleles of 0.1. If we simply use a statistical cutoff

(Pv0.05, uncorrected for multiple testing) then we find 70 pRE1s

with significantly different affinity between alleles. These data are

summarised in Figure 2E, Tables 1 and 2. Examples of three

pRE1s are shown in Figure 3. The SNP rs12565 within the pRE1

of the NPPA 39 UTR has a minor allele that strongly reduces its

binding affinity (Figure 3A). Conversely, the SNP rs6093022 in the

pRE1 upstream of the CDH4 gene strongly increases its affinity for

REST (Figure 3B). Finally, the minor allele of the SNP rs1040480,

located in pRE1-49 within an intron of the tumour-suppressor

PTPRT [22], reduces the affinity of REST (Figure 3C).

We sought to find additional evidence that the annotated target

genes in this study are indeed regulated by REST. We compared

the 78 predicted REST target genes from this study to recently

published siREST microarray expression data [23], and found

that at least 11 genes in this study respond to REST knockdown

and thus may be considered to be bona fide targets (Table 1,

Table 2, File S1). These include NPPA and CDH4 genes

mentioned above [23,12].

Several lines of evidence suggest that our EMSA method is

accurate in predicting the outcome of a SNP variant within an

RE1 element. First, we validated selected SNPs using luciferase

Figure 1. Experimental pipeline to discover SNPs that affect gene repression by REST. (A) The structure of the RE1 motif, illustrating its
two strongly constrained half sites and weakly constrained spacer and 39 regions. The spacer region may have ‘‘canonical’’ size of two nucleotides, or
other ‘‘non-canonical’’ sizes. (B) Cartoon illustrating the hypothetical effect of a SNP in an RE1 element. In the upper panel, the Major (ie more
frequent) allele contains a high-affinity RE1 sequence that strongly recruits REST, resulting in target gene repression. The presence of the SNP reduces
REST binding affinity, and results in an increase in target gene transcription. (C) The flowchart illustrates the pipeline employed in this study to
discover pRE1 SNPs.
doi:10.1371/journal.pgen.1002624.g001

SNPs That Alter REST Binding

PLoS Genetics | www.plosgenetics.org 3 April 2012 | Volume 8 | Issue 4 | e1002624



assay, which measures the ability of an RE1 to repress gene

transcription of a reporter gene (Figure 4A). Consistent with

REST functioning as a transcriptional repressor, SNPs that

increased the affinity for REST (‘‘UP’’), increased the repression

of the luciferase reporter gene, and vice versa (‘‘DOWN’’). We did

not observe robust differences in reporter activity when comparing

Figure 2. Electrophoretic mobility shift assay to measure affinity differences between RE1 alleles. To measure RE1 affinity in vitro, we
employed a competition EMSA method. We tested the ability of unlabelled competitor sequences to compete for REST binding with a fluorescently
labelled DNA probe. (A) Various control oligonucleotides were used to validate the sensitivity and selectivity of the comparative EMSA assay. The
Ideal RE1 motif is a high affinity synthetic sequence we used previously [20]. By swapping two highly conserved dinucleotides in the sequence, the
affinity of the Ideal RE1 can be completely abolished (Mutated RE1). We also designed four pairs of RE1 alleles (N1-4), where SNPs lie outside the RE1
half sites, and thus would not be expected to alter binding affinity. (B) The results of control EMSAs are shown, where replicate EMSA gels have been
quantitated and plotted. The data are displayed in units of Fraction Bound (see Materials and Methods), where a low Fraction Bound value indicates
high binding affinity, and vice versa. Example raw data are shown in panels: (C) Ideal/Mutated RE1s and (D) N1 RE1s. (E) Summary results of EMSA for
all pRE1s in this study. The y-axis plots the difference in Fraction Bound between Major and Minor alleles, where the arrow begins at the value for
Major, and ends at Minor. All RE1s are ranked by their change in Fraction Bound.
doi:10.1371/journal.pgen.1002624.g002
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RE1 alleles that do not differ in affinity, as gauged by EMSA (‘‘No

difference’’).

Motif analysis of the pRE1s also supports the EMSA assay

results. Transcription factor binding to DNA is guided by the

presence of a particular sequence element, and the affinity of

binding is generally in proportion to the similarity that the element

has to an idealised motif [24]. Thus, single nucleotide changes that

make an element more similar to the ideal motif are expected to

increase the element’s affinity, and vice versa. We tested this, by

using the RE1 PWM to estimate changes in pRE1 motif quality

due to the presence of a SNP (Figure 4B). We divided the RE1s

between those where the minor allele had greater affinity (‘‘UP’’),

weaker affinity (‘‘DOWN’’), or no difference. These data show that

the effect of a SNP on binding affinity agrees well the expectation

based on motif analysis: SNPs that strongly decrease the RE1

motif quality, also strongly decrease the RE1 binding affinity, and

vice versa. We also observed diversity in the strength of the effect

of SNPs depending on their location within the RE1 motif

(Figure 4C).

Finally, the degree of in vivo binding to these RE1 sites, as

measured by ChIPseq, correlates with the degree of binding

observed in the EMSA assay (Figure S1). We used REST ChIPseq

data from the ENCODE consortium to measure the degree of in

vivo binding of REST to pRE1s, and compared this to the binding

affinity discovered by EMSA. This analysis showed that REST

recruitment in vivo is significantly correlated with the RE1 motif’s

affinity, at least in GM12878 cells.

Clearly, it is important to demonstrate that changes in RE1

affinity due to observed SNPs actually alter the recruitment of

REST in the cell nucleus. It has been shown that differential

affinity of TFBS variants can be identified using allele-specific

quantitative PCR and Sanger sequencing methods [9]. We

Figure 3. SNPs may increase or decrease affinity of RE1s. Examples of SNPs that decrease (A) and increase (B) the affinity of an RE1 sequence.
On the left are diagrams of the genomic location of polymorphic RE1s, their target genes and the REST ChIPseq read density taken from ENCODE
data. On the right is corresponding quantitative EMSA data. In (A), the well-studied RE1 that lies within the 39 UTR of the NPPA gene contains the SNP
rs12565 that strongly decreases its affinity for REST. In (B), the RE1 lying distally upstream of the CDH4 gene contains the SNP rs6093022 that strongly
increases its affinity. (C) The SNP rs1040480 within an intron of PTPRT reduces the affinity of REST. B = Bound complex of REST with probe;
U = Unbound probe; D = Degradation product. The latter band represents a fraction of purified REST protein that is partially degraded, as was
observed previously [20].
doi:10.1371/journal.pgen.1002624.g003
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reasoned that, in a similar way, allele-specific reads in high

throughput ChIPseq should reflect a bias in allele affinity. Using

data from the ENCODE project for GM12878 cells, we searched

for sequencing reads specifically mapping to one or other pRE1

alleles, and tested for statistically significant differences in the

frequencies of reads. We chose these cells since, unlike the majority

of cell lines, they are karyotypically normal and genetic

abornamalities will not confound the analysis of allele-specific

sequencing reads. As expected, the GM12878 cells are homozy-

gous for most of the pRE1s - as evidenced by a complete absence

of read matches representing the 25mers overlapping the minor

SNP sequence variant. In the five cases shown in Figure 5, non-

zero numbers of minor allele SNP matches were observed,

indicating that the pRE1s are heterozygous in these cells. The

allelic read frequencies in all cases agree with the changes in

affinity reported by EMSA, indicating that the in vitro affinity

measurements are a good representation of the effect that a SNP

has on genomic recruitment of REST. In one case, pRE1-80, the

EMSA showed that the SNP has no effect on affinity, and this is

reflected in no significant difference in ChIPseq reads between the

two alleles. Three lines of evidence support the accuracy of this

analysis: First, we repeated the analysis for the second independent

NRSF Chipseq performed by ENCODE in GM12878 cells, and

observed the same allelic biases (Figure S2). Second, we repeated

this analysis on another karyotypically normal cell line in the

ENCODE dataset - the human H1 embryonic cell line - and again

observed allelic ChIPseq biases that were consistent with

predictions by the EMSA assay in two out of three cases (in one

case, the allelic ChIPseq reveals increased affinity of the minor

allele of pRE1-53, which is also observed in EMSA but below the

threshold we imposed) (Figure S3). Finally, we experimentally

validated these findings in the GM12878 cells using allele-specific

Table 1. Polymorphic RE1s where the minor allele has reduced affinity.

pRE1 ID Location DFB SNP ID Frequency Gene Dist(bp) Disease Association

pRE1-79 chr4:26728358 0.55 rs16878854 CEU* STIM2 256947

pRE1-73 chr16:88422513 0.53 rs1079556 ND SPIRE2 105

pRE1-64 chr11:129340555 0.50 rs12802622 CEU JPT YRI PRDM10 217828

pRE1-37 chr1:11828357 0.47 rs12565 ND NPPA 2070 Familial atrial fibrillation

pRE1-67 chr16:88422513 0.37 rs2376876 ND SPIRE2 105

pRE1-76 chr19:45318825 0.37 rs12461190 - ZNF780A 230140

pRE1-33 chr15:81129125 0.35 rs2303988 ND CPEB1 215342 Chronic lymphocytic leukemia

pRE1-82 chr9:130021147 0.32 rs36009729 ND DNM1 15663 Nicotine dependence

pRE1-34 chr3:13901643 0.30 rs12629044 CEU* WNT7A 25024 Limb deformity

pRE1-61 chr22:32763132 0.28 rs5994827 ND LARGE 2116722 Muscular dystrophy

pRE1-57 chr8:137199432 0.27 rs62526589 CEU* KHDRBS3 660550 Medulloblastoma, childhood absence
epilepsy

pRE1-65 chr11:11345063 0.27 rs16909532 - GALNTL4 255062

pRE1-70 chr10:94137238 0.27 rs11594670 - MARCH5 96338

pRE1-5-2 chr14:90031546 0.26 rs12893572 ND CALM1 98420 Osteoarthritis

pRE1-20 chr19:11320989 0.26 rs12984429 ND TMEM205 23267

pRE1-38-2 chr2:91125788 0.26 rs2599127 ND RPIA 2353497 Ribose 5-phosphate isomerase deficiency

pRE1-31-1 chr5:1476347 0.26 rs423091 ND SLC6A3 20012 Attention deficit hyperactivity disorder,
major affective disorder, tobacco addiction

pRE1-23 chr17:23114277 0.25 rs28944187 ND NOS2 37405 Hypertension, malaria infection

pRE1-32 chr1:241249144 0.25 rs61823647 ND CEP170 236102

pRE1-43 chr19:38576373 0.24 rs58865132 ND CEBPG 19924 Acute myeloid leukemia

pRE1-35 chr16:47121638 0.24 rs6500392 CEU* N4BP1 79983

pRE1-60 chr19:4720717 0.23 rs28713481 ND PGSF3 600

pRE1-5-1 chr14:90031546 0.22 rs12893721 ND CALM1 98420 Osteoarthritis

pRE1-50 chr7:64922879 0.22 rs62469938 ND VKORC1L1 252880

pRE1-62 chr3:10153511 0.22 rs6796538 CEU* VHL 24808 Erythrocytosis, pheochromocytoma, renal
cell carcinoma

pRE1-55 chr20:61747214 0.21 rs6062472 ND STMN3 8012

pRE1-42 chr20:43577393 0.20 rs6130854 ND WFDC6 24155

pRE1-72 chr15:75894622 0.19 rs55805135 ND LINGO1 2182858 Essential tremor

pRE1-19 chr22:28204664 0.19 rs59221441 ND NEFH 21555 Amyotrophic lateral sclerosis

pRE1-49 chr20:40686144 0.19 rs1040480 CHB CEU JPT YRI PTPRT 565643 Various cancers

DFB: Change in Fraction Bound value, FBMinor2FBMajor ; Frequency indicates Hapmap populations where the Minor SNP allele occurs at §5% (ND-Not determined,
-v5% in all populations)(Note: genotype data come from Hapmap, except for genotyping carried out on Hapmap CEU set in this study, denoted CEU*); Dist: Distance
from RE1 to gene transcriptional start site (negative indicate upstream). Known REST target genes are underlined - see File S1 for more information.
doi:10.1371/journal.pgen.1002624.t001
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ChIP, interrogated by quantitative PCR (Figure 5). We managed

to design primers specific to major and minor pRE1 alleles in three

cases, and could confirm strongly increased binding of REST to

the major allele of pRE1-57. We could detect no difference in

binding between the alleles of pRE1-18 and pRE1-80, which

broadly reflects the results of EMSA/ChIPseq, where no

substantial difference in affinity was found.

In the course of this study, two important datasets were released:

REST (NRSF) ChIPseq data for multiple cell lines from the

ENCODE consortium [25], and updated dbSNP polymorphism

catalogues incorporating data from the 1000Genomes project

[26]. We have used this data to compile a second-generation set of

polymorphic RE1s, which can be found in Methods S1 and File

S5. Based on lessons learned in the first attempt, we modified our

analysis pipeline in several ways: RE1 motifs were scanned at low

score threshold, to improve discovery of pRE1s with higher-

affinity minor alleles; motifs were filtered through ENCODE

ChIPseq binding regions combined from five cell lines to improve

the sensitivity of motif discovery; and we only considered common

SNPs (at least 1% frequency), to avoid the discovery of extremely

rare or artifactual SNPs such as rs12565 in NPPA. Details of this

analysis can be found in Methods S1. Altogether, this second-

generation analysis yielded 628 SNPs overlapping 601 candidate

RE1s. These will form the basis of future, more sensitive analysis of

polymorphic RE1s.

Discussion

The functional annotation of phenotypic human polymor-

phisms is presently a serious bottleneck that prevents advances in

genomics from being translated into new therapies. Thus it is

imperative that, in parallel to gathering genome-wide association

data, efforts be made to annotate regulatory SNPs genome-wide.

This has been recognised and attempted by a number of groups

[27,28,29,9]. By demonstrating that regulatory polymorphisms

can be identified and characterised, we have shown that such

annotation is feasible, and allows a clear mechanistic explanation

linking noncoding DNA polymorphism with known genomic

regulatory pathways and likely disease roles.

We have shown that the genomic motifs targeted by REST

differ beween individual humans as a result of genetic polymor-

phisms. These polymorphic binding sites have different biochem-

ical affinities for REST, resulting in altered in vivo transcription

factor recruitment and differential reporter gene repression. This

results in clear and consistent changes in in vivo binding of REST,

as evidenced by our analysis of allele-specific ChIPseq reads.

The levels or activity of REST has been shown to contribute to

various pathologies [30]. For example, in Huntington’s disease,

excessive levels of REST are found in the nucleus, repressing

target genes such as BDNF and resulting in neurodegeneration

[31]. In contrast, loss of functional REST expression through

genetic mutations has been shown to contribute to colon cancer

progression [13]. Coupled with the fact that we have identified

SNPs that can either increase or decrease pRE1 affinity, these

findings suggest that pRE1s may either increase or decrease the

likelihood and/or severity of associated diseases. Clearly the next

step is to interrogate the frequency of pRE1 SNPs in genome-wide

association studies (GWAS) for REST-associated diseases, to

validate that they do indeed contribute to disease phenotypes as

predicted. This analysis has been hindered by the present lack of

availability of raw GWAS data due to patient confidentiality

issues, meaning that raw data from published studies is not

required to be freely shared, in contrast to the norm for other types

of genomic data.

The pRE1s identified in this study are often located in the

vicinity of genes involved in diseases linked to REST mediated

mis-regulation, most notably cardiovascular disease, neurological

diseases and cancer (Tables 1 and 2, and File S1). Amongst the

most promising pRE1 candidates we identified was that in the

pRE1-37, residing in the 39UTR of the NPPA gene. This encodes

the atrial natriuretic peptide, a crucial signalling peptide whose

circulating levels are strongly correlated with blood pressure [32].

Regulation of this gene by REST is a major pathway in cardiac

hypertrophy: loss of REST expression in diseased heart allows the

re-activation of the fetal cardiac gene expression program and

resultant hypertrophy [15]. A recent large scale study identified a

nearby SNP (rs5068) in the NPPA 39UTR as the single strongest

predictor within that locus of circulating ANP levels [32]. We

initially thought that the SNP in pRE1-37 (rs12565) - that was not

directly interrogated in the Newton-Cheh study - was the true

causative variant and was in linkage disequilibrium with rs5068.

However, subsequent genotyping in the Hapmap CEU cohort

indicated that these two SNPs are not linked (File S3). In fact, we

did not detect any instances of rs12565 in the 30 CEU individuals,

suggesting that it is rare. Given that the SNP reduces the affinity of

the RE1, and that REST is known to repress ANP levels within the

cardiovasculature [15], we may surmise that the minor variant

confers a tedency towards reduced blood pressure on carriers. It

Table 2. Polymorphic RE1s where the minor allele has increased affinity.

pRE1 ID Location DFB SNP ID Frequency Gene Dist(bp) Disease Association

pRE1-36 chr20:58929675 20.53 rs6093022 CEU* CDH4 2331290 Colorectal cancer, gastric cancer

pRE1-9 chr18:39881775 20.30 rs8092075 CEU* SETBP1 2633086 Acute myeloid leukemia

pRE1-24 chr8:143374761 20.25 rs28396985 CEU* TSNARE1 107683

pRE1-59 chr9:118157319 20.16 rs11356865 ND PAPPA 201427 Cardiac disease, birthweight

pRE1-6 chr10:83728154 20.16 rs11192022 ND NRG3 103077 Schizophrenia

pRE1-22 chr22:25675371 20.12 rs5761858 CEU MIAT 272933 Myocardial infarction

pRE1-69 chr22:33141085 20.12 rs9621935 ND LARGE 2494675 Muscular dystrophy

pRE1-56 chr4:3840072 20.11 rs3979 CEU* ADRA2C 101978 Congestive heart failure

DFB: Change in Fraction Bound value, FBMinor2FBMajor ; Frequency indicates Hapmap populations where the Minor SNP allele occurs at §5% (ND-Not determined,
-v5% in all populations)(Note: genotype data come from Hapmap, except for genotyping carried out on Hapmap CEU set in this study, denoted CEU*); Dist: Distance
from RE1 to gene transcriptional start site (negative indicate upstream). Known REST target genes are underlined - see File S1 for more information.
doi:10.1371/journal.pgen.1002624.t002
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will be exciting to observe the results of future deeper genotyping

assays to reveal the true frequency of this polymorphism.

Our experimental method had a number of deficiencies that

may be improved in future. First, our initial scan for RE1 motifs

was performed on the reference genome, meaning that it was

biased towards discovering Major allele RE1s. Second, allelic

affinity differences were only assayed in EMSA at a single

competitor concentration which may lead to false negatives when

the free energy of binding of the allelic pair is very different from

the idealized probe. Having detailed biophysical binding models

and measuring actual binding energies would increase the

accuracy of the screen, exemplified by the automated fluorescence

anisotropy method employed by Fersht and colleagues [33].

Third, we only assayed for the presence of polymorphisms in the

minority of REST-bound genomic loci where recruitment can

unambiguously be ascribed to a high-quality, full-length RE1

element. Hopefully, future studies will shed light on the cryptic

processes mediating recruitment to the other 52% of loci

containing single half sites, or no identifiable motif at all [21,10].

Finally, many other types of genetic polymorphism exist in

addition to SNPs, the effects of which on REST targeting we have

not examined, but is likely to be important.

One important weakness in this study that only became

apparent subsequently, can be inferred from Figure 4B. While

there is a clear trend for SNPs that decrease the RE1 motif score to

also strongly decrease their binding affinity, this relationship is not

strong for SNPs that increase binding affinity. This is likely to be

result of the way we designed our analysis: We only searched for

high quality motifs in the reference genome. Therefore we

specifically selected against RE1s that have a weak motif in the

major allele, that increases in the minor allele. Those RE1s in the

present study that have higher affinity in the minor allele, are likely

to be outliers that are in fact poorly modelled by the RE1 PWM.

The other RE1s that would behave in the expected way (increase

binding affinity, increase in PWM score), are specifically selected

against, because they have a motif score below cutoff in the

reference genome, and thus were exluded from our analysis. This

weakness of our design strategy will be addressed in future.

Recent technological progress in microarray and sequencing

technologies has enabled rapid advances in human genetics,

specifically in (a) the gathering of genome-wide association data,

and (b) the depth of annotation of human genetic variants. The

latter refers specifically to the ongoing 1000Genomes Project,

which is set to revolutionise human SNP catalogues. During

preparation of this manuscript, the numbers of SNPs in dbSNP

has increased by 61% (23653737 in dbSNP131 vs 14708752 in

dbSNP129), and we thus expect that future studies will identify

similarly more pRE1s. In particular, SNPs from the 1000Genomes

project are likely to include many rarer variants that are not

represented in current annotations, and are likely to include

strongly-acting disease variants that remain undetected at present

and are posited to underlie much of the currently unexplained

genetic basis of common diseases. This means that both the

number of phenotype-associated SNPs and the total number of

known SNPs are likely to increase rapidly in the future. As a

consequence, regulatory SNP annotations will quickly become

obsolete, and will need to be repeated as genetic catalogues grow.

To account for this, we used the latest data available from

ENCODE and dbSNP to create a second generation pRE1

dataset, now comprising 628 SNPs overlapping 601 candidate

pRE1s. It is likely that these numbers will continue to increase in

the near future. We anticipate that the combination of genetics

and genomics such as that presented in this study will yield

powerful insights into the numerous polymorphisms that, in

combination, are likely determine the unique disease susceptibility

of each individual.

Materials and Methods

Discovery of SNPs in RE1 motifs
All genomic coordinates in this study are based on human

genome version hg18. ChIPseq data for REST is based on the

1946 binding peaks discovered previously in human Jurkat cells

[10]. The locations of binding peaks were converted from human

genome version hg17 to hg18 using the UCSC LiftOver tool.

Because the binding regions were of heterogeneous size, we

extended/reduced the size of each region to 100 bp centred on the

binding peak. We used the position weight matrix (PWM) search

program Seqscan [19] to identify RE1 motifs in the 100 bp

ChIPseq regions. In order to include RE1 motifs with non-

canonical spacer lengths, motif searches were carried out using

PWMs representing all possible spacer lengths from 0 to 12 bp (the

canonical RE1 contains a spacer of 2 bp). In each case, the single

highest scoring RE1 was assumed to account for REST binding.

As a result, we found 942 ChIPseq regions that contained an RE1

with a score of §0.88 from Seqscan, corresponding to a medium

stringency motif quality that is not found in appreciable numbers

in random genomic DNA. We reasoned that SNPs in the most

strongly constrained region of the RE1 motif would be most likely

to disrupt REST binding. Thus we separated all RE1s into their

left and right half sites (corresponding to positions 1–9 and 12–17

in the canonical motif), and overlapped these locations with all

SNPs of length 1 from dbSNP129, using the Galaxy package [34].

We considered the sequence variant that occurs in the human

reference genome (and usually the more frequent variant) to be the

Major allele, and the less frequent sequence variant to be the

Minor allele.

Electrophoretic mobility shift assay for comparison of
RE1 alleles

EMSAs were carried out as described previously using a 30 bp

double stranded RE1 element probe modified with 59 Cy5 label on

both strands, adapted from the rat Scn2a2 gene [35,20]. Probe was

premixed with various unlabelled competitor DNA sequences at a

molar ratio of competitor:probe 300:1, at 40C for 1 h. A master

mix containing purified recombinant HisMBP-REST/DBD

protein was then added to the premixed DNA, such that the final

reaction mixture contained 0.5 nM probe, 150 nM competitor

Figure 4. Validation and analysis of RE1 SNPs. (A) Luciferase reporter gene assay was used to test the function of pRE1 sequences. Data were
normalised to results from an ‘‘Empty’’ pGL4TK reporter gene plasmid containing no RE1 sequence. On the x-axis, RE1s are grouped according to their
performance in the EMSA assay. We included two control RE1 pairs (N2, N3) having SNPs outside their core RE1 sequence. In each case the activity of
Major and Minor RE1 alleles were tested in parallel and compared by Student’s t test (* Pƒ0.05, ** Pƒ0.01). Firefly luciferase values were normalised
to cotransfected Renilla luciferase, and values are expressed relative to the empty pGL4TJ plasmid. (B) We estimated the change in the quality of each
RE1 motif resulting from the presence of a SNP, using a position specific scoring matrix [19] (shown on the y-axis). All RE1s in this study are grouped
according to their performance in EMSA. The mean of each set is shown by a wider bar. (C) The absolute change in affinity resulting from a SNP is
plotted, as a function of the SNP location within the RE1 motif (grey bars). The absolute fold change was found by calculating the difference between
the Fraction Bound values for Major and Minor RE1 alleles. For each location, the mean value is shown by a wider bar.
doi:10.1371/journal.pgen.1002624.g004
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Figure 5. Allele-specific recruitment to pRE1s in GM12878 cells. The data shown corresponds to the 5 heterozygous SNPs discovered in
GM12878 cells. In all cases blue indicates the Major allele, and red the Minor allele. EMSA data is shown in left panel (Note that Fraction Bound units
correlate inversely with binding affinity), allele-specific ChIPseq read density from the ENCODE project is shown in the central panel, and allele-
specific ChIP enrichment (where available) is shown in the right panel. Statistical significance was calculated using Student’s t test (EMSA, allele-
specific ChIP) and Binomial statistics (ChIPseq).
doi:10.1371/journal.pgen.1002624.g005
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DNA and 40 nM protein in EMSA buffer (2 mM b -mercapto-

ethanol, 10 mM TrisHCl pH 8.0, 100 mM KCl, 50 M ZnCl2,

10% ultra pure glycerol, 0.1% NP-40, and 0.1 mg/ml bovine

serum albumin). This mixture was incubated at 40C for 1 h.

Unlabelled rat Chrm4 RE1 was used as a positive control

competitor (validated high affinity RE1)(‘‘Ideal’’). A mutated

version of this sequence was used as non-specific dsDNA control

competitor (‘‘Mut’’). The bound and unbound probes were

subsequently separated at 40C on a pre-run tris-glycine 12%

polyacrylamide gel at 200 V for 30 min. The fluorescence was

detected using a Typhoon 9140 PhosphorImager (Amersham),

and bound and unbound probe bands were quantified using

ImageQuant 5.2 software (Amersham). For every competitor

DNA, three independent reaction mixes were made and run on

the same gel, and all error bars and statistical tests were carried out

using these three replicates. Statistical tests were carried out using

Student’s t test (unpaired, one-sided, not corrected for multiple

testing). All quantitation data is available in File S2 and all raw

EMSA images are available from the Authors upon request.

Luciferase transcription assay
Forty base pair oligonucleotides encompassing candidate RE1s

were cloned into the pGL4 luciferase reporter plasmid (Promega),

upstream of a thymidine kinase (TK) promoter, using BglII and

KpnI restriction sites. HEK293 cells were maintained at 370C in

5% CO2 with Dulbecco’s modified Eagle’s medium (DMEM),

supplemented with 10% fetal bovine serum, 4500 mg/L glucose,

4 mM L-glutamine, 100 units/ml penicillin and 100 mg/ml

streptomycin. Cells were seeded at a density of 7.56105 cells per

well in 24-well plates the day before transfection. For each well,

100 ng luciferase reporter plasmids and 5 ng pRL Renilla

transfection control plasmid were mixed and transfected using

Lipofectamine 2000 (Invitrogen) following the manufacturers

protocol. After 48 hours, cells were harvested and the reporter

activity was analyzed using Dual Luciferase Reporter Assay

(Promega) and GloMax-Multi+ chemiluminescence microplate

reader (Promega) according to the manufacturers instructions.

Three biological replicates were carried out in two technical

replicates each. Luciferase activities were normalized to the

corresponding Renilla readings, then divided by the background

activity as measured for pGL4-TK plasmids lacking the RE1

insert.

Allelic analysis of ChIPseq reads
Raw ChIPseq reads were downloaded from the ENCODE

dataset within UCSC genome browser in FASTQ format. We

employed the recently released ENCODE dataset for REST (also

known as NRSF) in GM12878 (Epstein-Barr virus transformed

lymphoblastoid cells from one of the Hapmap cohort) (25 bp

reads) and H1 (human embryonic stem cells) (35 bp reads) because

(a) these datasets has a higher number of sequencing reads than

previous ChIPseq studies on REST [10], and (b) because these

cells have normal karyotype. One can only distinguish between

reads from polymorphic regions containing a SNP, by inspection

of the sequencing reads that directly overlap that SNP. Therefore,

we used a custom script to generate all possible reads that uniquely

and exactly overlap each pRE1 SNP, that distinguish Major and

Minor variants. We considered a pRE1 to be heterozygous in a

given cell line, if it had at least 5 reads overlapping both major and

minor variants. In these cases, we compared the numbers of each

variant read using the exact binomial test in R to generate

statistical significance. We checked for heterozygous pRE1 SNPs

that could have another nearby SNP (within one ChIPseq read

length) that could confound this analysis: we identified a single

case, rs28396985, which was omitted from further analysis.

Allelic-specific ChIP
GM12878 cells were grown in RPMI media supplemented with

15% FBS and 1 mM L-glutamine. Cells were cross-linked by

adding formaldehyde directly to the media at a final concentration

of 1%. Cross-linking was quenched after 10 minutes by adding

glycine at a final concentration of 200 mM. Nuclei were obtained

by washing cells in cell lysis buffer (10 mM Tris pH 8, 0.25%

Triton-X 100, 10 mM EDTA, 0.1 M NaCl). Nuclei were lysed in

high SDS lysis buffer (50 mM Hepes pH 7.5, 150 mM NaCl1,

2 mM EDTA, 1% Triton X-100, 0.1% Na deoxycholate, 1%

SDS) and chromatin was washed twice in low SDS lysis buffer

(50 mM Hepes pH 7.5, 150 mM NaCl1, 2 mM EDTA, 1%

Triton X-100, 0.1% Na deoxycholate, 0.1% SDS). Chromatin was

sonicated to an average size of 300 bp and immuno-precipitation

was performed using REST-specific antibody (Santa Cruz).

Immunoprecipitated DNA was eluted, reverse-crosslinked and

purified by phenol:chloroform extraction. Enrichment of RE1s

was read out using quantitative real-time PCR with allele-specific

primers. Control ChIP experiments are shown in Figure S4, and

allele-specific primer sequences in File S4. We designed two

primer pairs per SNP, one for each allele (Major and Minor). One

oligo in each pair was designed such that its 39end coincided with

the SNP. To increase specificity, a mismatch was introduced in the

penultimate position. The other primer did not coincide with the

SNP nucleotide and was shared between the pairs. To calculate

enrichment for the ChIP-enriched DNA, we normalized the Ct

values obtained for the SNP-specific product with the Ct values

obtained from amplifying a locus in a GAPDH exon (non-target

control) to generate Delta Ct values. These were further

normalized to Input (non-immunoprecipitated DNA), and fold

enrichment was calculated by the DeltaDelta Ct method.

Supporting Information

Figure S1 Correlation of in vivo recruitment to in vitro affinity

of pRE1s.Using raw ENCODE ChIPseq reads, binding peaks

were recovered using MACS [36] at default settings. Relevant

control Input libraries were used for normalisation. ChIPseq

enrichment values for each pRE1 were plotted against the relative

binding from EMSA - defined as (1 - Fraction Bound). The non-

parametric Spearman method was used to compute the correla-

tion between Enrichment and Fraction Bound. This correlation is

expected to be negative, since the value of Fraction Bound

decreases with the increasing binding. Statistical significance of

these correlations is also shown. Two available replicates of each of

GM12878 and H1 cell lines were analysed independently.

(PDF)

Figure S2 Allele-specific ChIPseq reads in two independent

biological replicates. Identical analysis was carried out on the two

GM12878 NRSF (REST) ChIPseq libraries available from the

ENCODE consortium. Charts show the number of uniquely

mapping reads originating from Major or Minor alleles of pRE1s

found to be heterozygous in GM12878. The data in the left panel

(Replicate 1) correspond to those shown in Figure 5 of the main

text.

(PDF)

Figure S3 Allelle-specific ChIPSeq analysis in H1 cell line.

Using data from the ENCODE consortium, we extracted those

sequencing reads mapping uniquely and specifically to all pRE1s.

We identified three heterozygous cases having non-zero reads for
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both major and minor alleles, shown here. The figures show the

density of reads at each position around the relevant SNP for

Major (blue) and Minor (red) alleles. Left panel shows EMSA data

(Note that units are in Fraction Bound, which is inversely

correlated to binding affinity), right panel shows ChIPseq read

density. Statistical significance was calculated using Student?s t test

(EMSA) and Binomial statistics (ChIPseq).

(PDF)

Figure S4 Control experiments for allel-specific ChIP. Shown

are enrichment values for conventional ChIP carried out using an

anti-REST antibody in GM12878 cells. ACTB and RPL amplicons

are not proximal to any REST binding site, and thus are not

expected to show enrichment. Data is also shown for conventional

primer sets (ie not allele-specific) to pRE1s indicated, where REST

is expected to be recruited.

(PDF)

File S1 Complete list of polymorphic RE1s identified in this

study (First Generation pRE1 Catalogue).

(XLS)

File S2 Raw EMSA quantification data.

(XLS)

File S3 Genotyping of pRE1s in CEU Hapmap population.

(XLS)

File S4 ChIP qPCR primer sequences.

(DOC)

File S5 Complete list of polymorphic RE1s identified in the

Second Generation pRE1 Catalogue.

(XLS)

Methods S1 Description of the Second-Generation annotation

of polymorphic RE1s.

(DOC)
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