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Thermodynamics of energy, charge, and spin currents in a thermoelectric quantum-dot spin valve
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We provide a thermodynamically consistent description of energy, charge, and spin transfers in a thermoelectric
quantum-dot spin valve in the collinear configuration based on nonequilibrium Green’s function and full counting
statistics. We use the fluctuation theorem symmetry and the concept of entropy production to characterize the
efficiency with which thermal gradients can transduce charges or spins against their chemical potentials, arbitrary
far from equilibrium. Close to equilibrium, we recover the Onsager reciprocal relations and the connection to
linear response notions of performance such as the figure of merit. We also identify regimes where work extraction
is more efficient far then close from equilibrium.
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I. INTRODUCTION

Heat management and control in nanoscaled spin devices
has become increasingly popular after the experimental discov-
ery of spin Seebeck effect (SSE) [1,2] that led to the advent of
spin caloritronics [3,4]. The main motivation behind this field is
to utilize waste heat in order to generate charge and spin current
efficiently in magnetic nanostructures. The heat management
ability of these devices finds novel applications in power con-
verters [5], thermometers [6,7], and thermally assisted record-
ing devices [8–12]. In order to make the harvesting process
from heat as efficient as possible, nanostructured systems with
reduced dimension such as quantum point contacts [13,14] and
quantum dots [15–19] are particularly interesting due to their
high figure of merit (FOM) ZT and reduced phonon thermal
conductivity [20] in comparison with the bulk structures.

The dimensionless FOM ZT is the most commonly used
measure of performance of thermoelectric power generation.
It is exclusively defined in terms of linear response coefficients
and becomes inadequate far from equilibrium. The spin FOM
ZsT was introduced to parametrize a thermally generated spin-
current harvester in analogy with the FOM of a spinless system
[21–24]. In nanodevices, as their size becomes comparable
or smaller to the inelastic scattering length, deviations from
the (linear response) Wiedeman-Franz law occur [25,26] and
nonlinear transport coefficients cannot be neglected anymore.
It thus becomes essential to establish measures of performance
in nonlinear thermoelectrics that remain meaningful beyond
the linear response FOM. This can be done using concepts
from thermodynamics of heat machines such as the efficiency
and related quantities (maximum power, maximum efficiency,
and minimum dissipation) [16,27–35].

Another effect arising at small scales is that the relative
importance of fluctuations increase. “Macroscopic” efficien-
cies are defined as a ratio between the input and output
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ensemble averaged fluxes. While they provide proper measures
of performance in the nonlinear regime, they are inadequate
to characterize the fluctuations in the efficiency of a single
device given by the ratio between an input and an output
flux that both fluctuate. Full counting statistics (FCS) can
be used to characterize current fluctuations [36–49] as well
as efficiency fluctuations [50–57]. The efficiency statistics
provides a complete picture of the device performance and
have been observed experimentally [56,58]. The macroscopic
efficiency is recovered as the most likely value of the efficiency
statistics.

In this work, we provide a complete framework to study the
statistics of charge and spin current efficiency for a quantum-
dot spin valve (QDSV) in the collinear configuration. The
efficiency fluctuations are studied from the perspective of
FCS and we use the nonequilibrium Green’s function (NEGF)
formalism that does not require the week coupling of the
system to the reservoirs [59,60]. This allows us to capture
the true quantum nature of efficiency statistics as compared to
quantum master equations [52,61] that are limited to the weak
coupling regime. Furthermore, we obtain the scaled cumulant
generating function (SCGF) of spin, charge and heat current
that obeys the fluctuation theorem and thus allows us to obtain
a thermodynamically consistent definition of charge and spin
current efficiencies via the entropy production rate (EPR).
For both efficiencies, we obtain the large deviation functions
(LDF) from the SCGF that allows us to study the efficiency
statistics. We numerically show that the device could be made
more efficient beyond the linear response limit and analyze the
charge and spin current efficiency fluctuations.

The paper is structured as follows. In Sec. II, the model
Hamiltonian and the SCGF for the particle, spin and heat
current will be given in terms of NEGF and the fluctuation
symmetry will be checked. Charge and spin current efficiency
will be defined and their corresponding FOM will be obtained
in the linear response regime in Sec. III. Section IV is devoted
to the charge and spin current efficiency statistics. Numerical
results are shown in Sec. V together with their physical
interpretations. We finally summarize our work in Sec. VI.
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II. MODEL AND TRANSPORT

A. The model

We consider an insulating layer modeled as a quantum
dot sandwiched between two ferromagnetic layers modeled as
electrodes. The setup is in the collinear configuration, meaning
that the magnetic moment of the left electrode is parallel or
anti-parallel to the one of the right electrode. A tunneling
magnetoresistance effect ensues because the resistance of the
device depends on the relative orientation of the two magnetic
moments [62,63]. We assume that no spin flip occurs across the
tunnel junction. The Hamiltonian of the whole system reads

H = HL + HR + HC + HT . (1)

The Hamiltonian of the left and right electrode, Hα (α = L/R),
and of the central quantum dot, HC , are given by

Hα =
∑
kσ

εkασ c
†
kασ ckασ , HC =

∑
σ

εσ d†
σ dσ , (2)

where εσ = ε + 1
2σ�ε is the spin-dependent onsite energy

with �ε being the energy difference between the spin-up and
spin-down electron energy levels inside the quantum dot. The
splitting between the spin-up and spin-down energies can be
induced via an external magnetic field or could be intrinsic in
magnetic quantum dots. In turn, HT is the tunneling (without
spin flip) Hamiltonian between the electrodes and the quantum
dot:

HT =
∑
kασ

(tkασ c
†
kασ dσ + H.c.). (3)

The electrodes are initially assumed at equilibrium at time
t = 0:

ρα = exp

(
−Hα − ∑

σ μασ Nασ

Tα

)/
Z, (4)

where Nασ = ∑
k c

†
kασ ckασ is the electron number in electrode

α with spin σ and Z is the normalizing partition function.
The chemical potential of electrode α in spin direction σ is
denoted as μασ and its temperature Tα . Throughout the paper
we set Boltzmann and Planck constant as well as electronic
charge to unity: kB = h̄ = e = 1. In real materials, there will
be an additional contribution to heat transport due to phonons
that we have ignored herein and focused on the electronic
contributions only.

B. Counting statistics

The statistics of the charge, spin and energy transfers is
obtained from the differences in the outcomes between a
projective measurement of NLσ and HL (which commute)
at time 0 and at time t . Because we will eventually only
focus on steady state properties, measurements at the right
electrode do not provide additional information [64]. The
generating function (GF) of these transfer probability is given
by [39,45,47,48]

Z(t) = Tr[ρ(0)Ûγ (0,t)Ûγ (t,0)]. (5)

The dressed evolution operator is given by

Ûγ (t,t ′) = e
∑

σ iγσ NLσ +iγEHLÛ (t,t ′)e−∑
σ iγσ NLσ −iγEHL

= TC exp

[
−i

∫ t

t ′
Ĥγ (t1)dt1

]
, (6)

where the dressed Hamiltonian reads

Ĥγ (t) = e
∑

σ iγσ NLσ +iγEHLĤ (t)e−∑
σ iγσ NLσ −iγEHL (7)

and TC is the time-ordering operator. The counting fields
{γ↑,γ↓,γE}, which “dress” the evolution keep track, respec-
tively, of the number of spin-↑ and spin-↓ electrons as well
as the energy entering the left electrode. They depend on
the Keldysh contour branch on which they reside and take
the value {−λ↑/2,−λ↓/2,−λE/2} on the forward branch
and {λ↑/2,λ↓/2,λE/2} on the backward branch. The scaled
cumulant generating function (SCGF) characterizing the large
deviations of the stead-state currents can be expressed as

F(λ↑,λ↓,λE) = lim
t→∞

lnZ(t)

t
=

∫
dω

2π
ln

[
det

(
G−1

λ

)
det

(
G−1

λ=0

)]
,

(8)

in terms of the dressed inverse Green’s functions

G−1
λ =

(
Ga,−1 − �> �̃<

L + �<
R

�̃>
L + �>

R −Gr,−1 − �>

)
. (9)

The dressed lesser and greater self-energy in spin space is given
by

�̃<
L =

(
eiλ↑+iλEω�<

L↑ 0

0 eiλ↓+iλEω�<
L↓

)
,

�̃>
L =

(
e−iλ↑−iλEω�>

L↑ 0

0 e−iλ↓−iλEω�>
L↓

)
. (10)

We note that the four subblock matrices of G−1
λ are symmetric

in spin space. Since the system is collinear, there are no off-
diagonal terms to the self-energy in the spin space implying
that the spin-up and -down electrons are independent of each
other. The undressed Green’s functions and self-energies used
in Eqs. (9) and (10) can be expressed as

Gr
σσ = [

Ga
σσ

]∗ = 1

ω − εσ + i(�Lσ + �Rσ )/2
,

�<
ασ = i�ασ fασ ,

�>
ασ = i�ασ (fασ − 1), (11)

where �ασ is the coupling strength which we assume energy
independent (wide-band approximation). Throughout we will
suppress the explicit dependence of the frequency ω on the
Green’s function, fermi distributions, and the self-energies for
notational simplicity. Using the above equations we can further
simplify Eq. (8) as

F({λ0}) =
∫

dω

2π
ln

{
1 +

∑
σ

[(eiλσ +iωλE − 1)Tσ fLσ f̄Rσ

+ (e−iλσ −iωλE − 1)Tσ fRσ f̄Lσ ]

}
, (12)

with the short-hand notation f̄ασ = 1 − fασ for the Fermi-
Dirac distribution in the α electrode and {λ0} = (λ↑,λ↓,λE).
The transmission coefficients (explicit ω dependence sup-
pressed) are given by

T↑ = �L↑�R↑|Gr
↑↑|2, T↓ = �L↓�R↓|Gr

↓↓|2. (13)
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Using the identity

fLσ (1 − fRσ ) = eβLμLσ −βRμRσ fRσ (1 − fLσ ), (14)

we find the fluctuation theorem symmetry of the SCGF:

F(λσ ,λE) = F(−λσ + i(βRμRσ − βLμLσ ),

− λE + i(βL − βR)), (15)

with βα = (kBTα)−1. This symmetry implies that the backward
joint probability of the transferred spin-up and -down electrons
(Nσ ) and energy (E) is exponentially disfavored with respect
to the forward one with the relation

P (N↑,N↓,E)

P (−N↑,−N↓,−E)

= exp [ṡi t]

= exp

[∑
σ

(βRμRσ − βLμLσ )Nσ + (βL − βR)E

]
, (16)

where ṡi is entropy production rate. The above relation, known
as the steady-state fluctuation theorem, also tells us that the
probability of an entropy production increase is exponentially
more likely than the probability of entropy production de-
crease. A generalized version of the above fluctuation theorem
in presence of a magnetic field has been derived from the
principles of microscopic reversibility in Ref. [65]. The second
law of thermodynamics, i.e., in average the entropy production
rate is non-negative 〈ṡi〉 ≡ Ṡi � 0, is a simple consequence
of Jensen’s inequality applied to the fluctuation theorem
[Eq. (16)].

Partially differentiating the SCGF with respect to
the counting field, i.e., Iσ = ∂iλσ

F |λ↑=λ↓=λE=0 and IE =
∂iλE

F |λ↑=λ↓=λE=0, we obtain the spin-up and -down electronic
current as

I↑ =
∫

dω

2π
T↑(fL↑ − fR↑),

I↓ =
∫

dω

2π
T↓(fL↓ − fR↓), (17)

and the energy current

IE =
∫

dω

2π
h̄ω

∑
σ

Tσ (fLσ − fRσ ). (18)

The heat current is given by

Ih = IE −
∑

σ

μRσ Iσ . (19)

In our definition above, −Ih is the heat current taken from the
hot electrode to fuel the device. This definition arises from the
first law of thermodynamics, namely, energy conservation for
the total system, i.e., IE = Ih − Ẇchem with the total rate of
chemical work Ẇchem = −∑

σ μRσ Iσ .

C. Linear regime

Equilibrium occurs when TR = TL and μLσ = μRσ . Intro-
ducing �T = TR − TL and �μσ = μLσ − μRσ , we can ex-
pand the Fermi-Dirac distributions around T = (TL + TR)/2

and μσ = (μLσ + μRσ )/2,

fLσ − fRσ ≈ f ′[(ω − μσ )�T/T 2 − �μσ /T ]. (20)

This corresponds to the linear regime where the fluxes are
proportional to the corresponding thermodynamic forces via
the Onsager matrix L with the expression⎡⎣I↑

I↓
Ih

⎤⎦ =
⎡⎣ L↑ 0 L↑h

0 L↓ L↓h

L↑h L↓h Lhh

⎤⎦⎡⎣ �μ↑/T

�μ↓/T

−�T/T 2

⎤⎦, (21)

where

Lσ = −
∫

dω

2π
f ′Tσ ,

Lσh = −
∫

dω

2π
(ω − μRσ )f ′Tσ , (22)

Lhh = −
∫

dω

2π
f ′[(ω − μR↑)2T↑ + (ω − μR↓)2T↓].

The Onsager coefficients are related to the famous transport
coefficients [67–69],

Gσ = Iσ

�μσ

∣∣∣∣ �T =0
�μσ ′=0
{σ ′ �=σ }

= Lσ

T
, (23)

K = − Ih

�T

∣∣∣∣
I↑,↓=0

= 1

T 2

det L
L↑L↓

, (24)

Sσ = �μσ

�T

∣∣∣∣
Iσ =0

= 1

T

Lσh

Lσ

, (25)

where Gσ is the spin-σ conductance, Sσ is the spin-σ Seebeck
coefficient, and K is the thermal conductance.

Introducing the charge Ip and spin Is current

Ip = I↑ + I↓, Is = I↑ − I↓, (26)

together with the heat current (19), we also find that⎡⎣Ip

Is

Ih

⎤⎦ =

⎡⎢⎣ T Gp T Gs GpST 2

T Gs T Gp P ′GpST 2

GpST 2 P ′GpST 2 κT 2

⎤⎥⎦
⎡⎢⎣ �μp/T

�μs/T

−�T/T 2

⎤⎥⎦,

(27)

where we introduced the charge and spin biases

�μp = 1
2 (�μ↑ + �μ↓),

�μs = 1
2 (�μ↑ − �μ↓), (28)

and the coefficients

Gp = G↑ + G↓, Gs = G↑ − G↓, κ = Lhh,

S = G↑S↑ + G↓S↓
G↑ + G↓

, P ′ = G↑S↑ − G↓S↓
G↑S↑ + G↓S↓

. (29)

Above we have expressed the coefficients in term of conven-
tional coefficients [2,4,5]: Gp and Gs are the charge and spin
conductance, S is a factor appearing in the charge and spin
Seebeck coefficients [see Eqs. (38) and (42)], and P ′ is the
polarization of GpS. We note that the Onsager reciprocity
relation is satisfied for the two Onsager matrices, Eqs. (21)
and (27), due to the fluctuation theorem symmetry (15) [39].
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III. ENERGY TRANSDUCTION

The entropy production rate (EPR), Ṡi , for a system at
steady state between multiple reservoirs is given by the rate of
entropy changes in those reservoir. For the QDSV in collinear
configuration it is thus given by

Ṡi =
∑

α

βαIαh � 0, (30)

where Iαh = IαE − μα↑Iα↑ − μα↓Iα↓. The non-negativity of
the EPR follows from the fluctuation theorem symmetry, as
discussed below Eq. (16).

The EPR can be simplified using conservation laws that
dictate the number of independent affinity and current pairs
that contribute to EPR [66]. In our model we have 6 affinities
{βαμα↑,βαμα↓,βα} for α = L,R and three conservation laws,
namely, particle current conservation IL(p) + IR(p) = 0, spin
current conservation IL(s) + IR(s) = 0, and energy current con-
servation IL(h) + IR(h) = 0, that give us 3 [6 (total affinities) −
3 (conservation laws)] independent affinity and current pairs.
The EPR can thus be written as

Ṡi = Ṡh + Ṡp + Ṡs , (31)

Ṡh = −(βL − βR)Ih (32)

Ṡp(s) = βLIp(s)�μp(s). (33)

When the QDSV operates as a charge (respectively, spin)
pump, Ṡp < 0 (respectively, Ṡs < 0). These processes can oc-
cur against their spontaneous direction because the remaining
EPR contributions are sufficiently positive to make the total
EPR positive. The macroscopic efficiency with which these
processes occur is thus given by the ratio between the average
output and input flow

0 � η̄p = −Ṡp

Ṡh + Ṡs

= −〈ẇp〉
ηCIh + 〈ẇs〉 � 1, (34)

0 � η̄s = −Ṡs

Ṡh + Ṡp

= −〈ẇs〉
ηCIh + 〈ẇp〉 � 1, (35)

where the charge and spin power are given by

〈ẇp〉 = −Ip�μp, 〈ẇs〉 = −Is�μs (36)

and ηC = (1 − βR/βL) is the Carnot efficiency. The upper
bound one is a direct consequence of the non-negativity of
the EPR. These efficiencies are valid measure of performance
arbitrary far from equilibrium and are not restricted to the linear
response regime.

Next, we obtain explicit expressions for the maximum
charge and spin current efficiency in the linear response regime
in terms of the FOM for charge ZpT and spin ZsT . In order
to obtain the charge FOM ZpT , the spin current of the system
should be zero. Using Eq. (27), the condition Is = 0 can be
satisfied if the spin bias

�μs = P ′S�T − P�μp,

where P = Gs/Gp is the polarization of the spin conductance.
Inserting the above expression into the charge current equation

obtained via the Onsager matrix [Eq. (27)], we obtain

Ip = (1 − P 2)Gp�μp − (1 − PP ′)GpS�T

= Gspin�μp − LTp�T . (37)

Thus we can now define the charge Seebeck coefficient [22]
as the ratio of the temperature bias coefficient to the chemical-
potential bias coefficient when the charge current is zero, i.e.,
from Eq. (37) as,

Sp = �μp

�T

∣∣∣∣
Ip=0

= LTp

Gspin
= 1 − PP ′

1 − P 2
S, (38)

where we should note that Gspin = (1 − P 2)Gp differs from
Gs . Then the charge FOM ZpT can be defined as [5]

ZpT = GspinS
2
pT

K

= (1 − PP ′)2GpS2T

(2PP ′ − P ′P ′ − 1)GpS2T + (1 − P 2)κ
. (39)

In order to find the maximum charge current efficiency, we
look for the zero of the derivative of η̄p with respect to the
charge current with zero spin current Is = 0, i.e., ∂Ip

η̄p|Is=0 =
0. Under this condition, we obtain the expression for the charge
current,

Ip = (1 − PP ′)GpS�T

ZpT
(
√

1 + ZpT − 1). (40)

Substituting the above expression into the definition of charge
current efficiency [Eq. (34)], the maximum charge current
efficiency (scaled by the Carnot) in the linear response regime
reads [70,71]

(η̄p)max =
√

1 + ZpT − 1√
1 + ZpT + 1

. (41)

Similar to the charge FOM and maximum charge current
efficiency derived above, we can also obtain the spin FOM
and maximum spin current efficiency. In order to obtain
these quantities, we set the charge current Ip = 0 to obtain
a condition on the charge bias �μp. The condition then helps
to obtain the spin-Seebeck coefficient when plugged into the
expression for the spin current Is = 0 as

Ss = �μs

�T

∣∣∣∣
Is=0

= P ′ − P

1 − P 2
S. (42)

Given the spin-Seebeck the spin FOM ZsT emerges naturally
as

ZsT = GspinS
2
s T

K

= (P ′ − P )2GpS2T

(2PP ′ − P ′P ′ − 1)GpS2T + (1 − P 2)κ
, (43)

which was also earlier proposed (without derivation) in
Refs. [21,22]. Therefore we can now easily obtain the max-
imum spin-current efficiency by setting the derivative of η̄s

with respect to the charge current to zero under the condition
Ip = 0, i.e., ∂Is

η̄s |Ip=0 = 0. This restricts the spin current
Is = (P ′ − P )GpS�T (

√
1 + ZsT − 1)/(ZsT ), and allows us
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to obtain the maximum spin-current efficiency (scaled by the
Carnot) as [70,71]

(η̄s)max =
√

1 + ZsT − 1√
1 + ZsT + 1

. (44)

The above maximum spin-current efficiency has the same form
as the charge-current efficiency with ZpT replaced by ZsT .
Thus even in the spin case an increase in spin FOM ZsT ensures
a high efficiency of the device in the linear response regime.

We can also see from our expressions Eqs. (41) and (44) that
as ZT → ∞ we approach Carnot efficiency.

Besides the maximum efficiency, another quantity of inter-
est is the efficiency at maximum output power [33]. In the linear
response regime, setting the derivative ∂�μp

〈ẇp〉 = 0 using
Eq. (36) gives us the condition on the charge bias to achieve
maximum output power, i.e., �μp = 1

2 (S�T − P�μs). Thus
the maximum charge power reads 〈ẇp〉MP = 1

4Gp(S�T −
P�μs)2. The corresponding charge current efficiency at max-
imum charge power is given by

(
η̄l

p

)
MP = −〈ẇp〉MP

2〈ẇp〉MP − ηC(κ�T − 2GpP ′ST �μs) − Gp�μ2
s

. (45)

Similarly, letting the derivative ∂�μs
〈ẇs〉 = 0 gives us that the maximum output charge power happens at spin bias �μs =

1
2 (P ′S�T − P�μp). Hence the maximum spin power is 〈ẇs〉MP = 1

4Gp(P ′S�T − P�μp)2 and the corresponding spin current
efficiency at maximum spin power is given by(

η̄l
s

)
MP = −〈ẇs〉MP

2〈ẇs〉MP − ηC(κ�T − 2GpST �μp) − Gp�μ2
p

. (46)

In this section, we defined the spin and charge efficiencies
for the QDSV in linear response and far from equilibrium
regimes. We explicitly showed that in the linear response
regime the spin current efficiency is related to the spin FOM
in an analogous way to the traditional methods relating the
FOM ZT and maximum thermoelectric efficiency. Moreover,
we also found explicit expressions for the efficiencies at
maximum power in the linear response regime that could again
be expressed in terms of the Onsager coefficients.

IV. EFFICIENCY STATISTICS

In this section, we introduce the charge and spin current
efficiency statistics from the perspective of FCS. We begin by
making the counting field substitutions

iλ↑ → −λhμR↑ − λp�μp − λs�μs,

iλ↓ → −λhμR↓ − λp�μp + λs�μs,

iλE → λh (47)

in Eq. (12) to obtain the SCGF for charge, spin, and heat.
Above, λp,λs, and λh are the counting fields for charge work
wp = tẇp, spin work ws = tẇs , and heat q = t q̇ and we set
the flow direction from the right to the left reservoir as positive.
The charge power ẇp, spin power ẇs , and heat current q̇

are stochastic variables and their mean values are |Ip�μp|,
|Is�μs |, and |Ih| that have been introduced in the last section.
The SCGF after the substitutions has the form

F(λp,λs,λh)

=
∫

dω

2π
ln[1 + (e−(ω−μR↑)λh+λp�μp+λs�μs − 1)T↑fL↑f̄R↑

+ (e(ω−μR↑)λh−λp�μp−λs�μs − 1)T↑fR↑f̄L↑

+ (e−(ω−μR↓)λh+λp�μp−λs�μs − 1)T↓fL↓f̄R↓

+ (e(ω−μR↓)λh−λp�μp+λs�μs − 1)T↓fR↓f̄L↓]. (48)

From Eq. (15), the fluctuation theorem symmetry relation of
SCGF can be expressed as

F(λp,λs,λh) = F(−λp + βL,−λs + βL,

− λh + (βL − βR)). (49)

Setting λp = λs = λh = 0 this symmetry relation implies the
integral fluctuation theorem, namely,

〈exp[−βL(wp + ws) − (βL − βR)q]〉 = 1. (50)

Furthermore, the above equality helps bound the macroscopic
value of efficiencies (η̄p(s) =−〈wp(s)〉/(ηC〈q〉+〈ws(p)〉)�1)
defined in Eqs. (34) using the Jensen’s inequality that implies
−(〈wp〉 + 〈ws〉)/(ηC〈q〉) � 1. In the probabilistic sense, since
the fluctuation theorem relates the forward and backward joint
probabilities (even though the backward is exponentially less
likely) we expect to observe efficiencies lower and higher
(exponentially unlikely) than the most likely ones in the
statistics.

Since wp, ws , and q are stochastic variables that fluc-
tuate, so are the efficiencies ηp = −wp/(ηCq + ws), ηs =
−ws/(ηCq + wp). Efficiency statistics are not bounded and
can be characterized by the rate J (η) at which the probability
to observe a given efficiency η decays exponentially during a
long measurement time [50–52],

P (η) = lim
t→∞ exp[−J (η)t]. (51)

This rate is called the large deviation function (LDF) of
efficiency η and can be related to the SCGF in Eq. (48).
Large deviation principle describes the exponentially unlikely
deviations of a stochastic variable from its most likely value
at which the large deviation function vanishes. We first show
how we can get the LDF of charge efficiency J (ηp) by
setting the constraints on λh and λs . The probability dis-
tribution of the charge efficiency in the long-time limit is
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given by

P (ηp) =
∫∫∫

dωpdωsdqP (ωp,ωs,q)δ

(
ηp − −ωp

ηCq + ωs

)
,

(52)

where the joint probability for charge, spin work, and heat

P (ωp,ωs,q) =
∫∫∫

dλpdλsdλhe
−λpωp−λsωs−λhq

× e−tF(λp,λs ,λh), (53)

with the SCGF F(λp,λs,λh) given by Eq. (48). Thus the
probability distribution and the generating function are related
simply by the Laplace transform, i.e.,

P (ηp) =
∫

dλp exp[−tF(λp,ηpλp,ηpηCλp)]. (54)

In the long-time limit, using the Laplace approximation the
integral simplifies to

P (ηp) � lim
t→∞ exp[−t min

λp

F(λp,ηpλp,ηpηCλp)]. (55)

Then the LDF of charge efficiency ηp is obtained through
F(λp,λs,λh) by setting λh = ηpηCλp, λs = ηpλp, and min-
imizing F relative to λp, namely [50–52],

J (ηp) = − min
λp

F(λp,ηpλp,ηpηCλp). (56)

The minimization procedure requires us to set
dλp

F(λp,ηpλp,ηpηCλp) = 0 and obtain the constraint on
λp that minimizes F(λp,ηpλp,ηpηCλp). The LDF for spin
current efficiency is obtained in a similar way,

J (ηs) = − min
λs

F(ηsλs,λs,ηsηCλs). (57)

The efficiency at which we obtain the maximum (minimum)
of the LDF is the Carnot efficiency ηC (macroscopic effi-
ciency), and this universal result follows directly from the
fluctuation theorem [50]. Since we want to get the minimum
of F with respect to λp in Eq. (56), we first numerically
obtain the value of λp ∈ (−βL/ηp, + βL/ηp) satisfying the
condition dλp

F(λp,ηpλp,ηpηCλp) = 0, using the bisection
method. Then we use the obtained λp to get the minimum
of F in Eq. (56), and hence the LDF. The spin efficiency LDF
in Eq. (57) is obtained in a similar manner.

In the linear response regime, by expanding the SCGF
[Eq. (48)], we obtain

F(λp,λs,λh) = 1
2λCλT + λxT , (58)

with λ = [λp,λs,λh]. The real symmetric covariance matrix is

C =
⎡⎣Cpp Cps Cph

Csp Css Csh

Chp Chs Chh

⎤⎦ (59)

and current vector is x = [〈ẇp〉,〈ẇs〉,Ih]. The covariance
matrix entries can be obtained by relating the equilibrium
fluctuations to the linear response coefficients through the
Green-Kubo relation [50]. Hence the entries in terms of the

Onsager matrix elements Eq. (27) are given by

Cpp = 2GpT �μ2
p, Cps = 2GsT �μp�μs,

Css = 2GpT �μ2
s , Csh = 2GpP ′ST 2�μs,

Chh = 2κT 2, Cph = 2GpST 2�μp. (60)

Thus, in terms of the covariance matrix elements the SCGF,

F(λp,ηpλp,ηpηCλp) = apλ2
p + bpλp,

F(ηsλs,λs,ηsηCλs) = asλ
2
s + bsλs, (61)

with

ap = 1
2

[
Cpp + η2

pCss + η2
pη2

CChh

]
+ ηp[Cps − ηCCph − ηpηCCsh],

bp = 〈ẇp〉 + ηp〈ẇs〉 + ηpηCIh,

as = 1
2

[
Css + η2

s Cpp + η2
s η

2
CChh

]
+ ηs[Cps − ηCCsh − ηsηCCph],

bs = 〈ẇs〉 + ηs〈ẇp〉 + ηsηCIh. (62)

From Eqs. (56) and (57), the efficiency statistics in the linear
response regime reads

J (ηp) = b2
p

4ap

, J (ηs) = b2
s

4as

. (63)

In the linear response limit, the entropy production can be
approximated as Ṡi = −β(ηCIh + 〈ẇp〉 + 〈ẇs〉) with ηC =
�T/T . Plugging Eqs. (27), (36), (60), and (62) into Eq. (63),
one can directly verify that both efficiency LDFs, J (ηp(s)), take
the upper-bound value Ṡi/4 at the Carnot ηp(s) = 1. Similar
behavior was reported in the traditional thermoelectric devices
without spin degree of freedom in the linear response limit [55].

V. NUMERICAL RESULTS

In this section, we test our analytic results numerically
for the QDSV model described via Eqs. (1)–(3). We restrict
the spin-dependent bias to the left electrode, i.e., μR↑ =
μR↓ = μR = 0, such that �μp = (μL↑ + μL↓)/2 and �μs =
(μL↑ − μL↓)/2. The linewidth amplitude �L↑ = �L↓ = �0,
�R↑ = �0(1 + p), and �R↓ = �0(1 − p) with p ∈ [−1,1] de-
noting the spin polarization degree of the right ferromagnetic
electrode. Throughout we set the charge �μp and spin bias
�μs to be positive, i.e., currents flow from left to right, opposite
in direction to the temperature bias �T . Thus an output spin
or charge power less than zero implies that the engine heats
the hot and cold electrodes utilizing the spin or charge work.
Such a system can no longer operate as a thermoelectric engine
and is termed as a dud engine. The spin Seebeck coefficient
could be up to 3.4 meV/K in spin-semiconducting graphene
nanoribbons [24], so that several meV charge and spin bias as
shown below is experimentally achievable.

Figure 1 compares the efficiencies (η̄p and η̄s) and
average power (〈ẇp〉 and 〈ẇs〉) within the linear response
approximation (near equilibrium) with the exact results.
The maximum efficiency and power lie beyond the linear
response implying an efficient engine far from equilibrium.
Additionally, the linear response always tends to underestimate
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FIG. 1. Charge efficiency η̄p (a), charge power 〈ẇp〉 (b), spin
efficiency η̄s (c), and spin power 〈ẇs〉 (d) are plotted vs the charge
or spin bias using the exact formula (red dashed lines) and linear
response limit (blue solid lines). The spin bias is chosen to be
�μs = 0.2�μp . The other parameters are ε↑ = 0.3 eV, ε↓ = 0.4 eV,
p = 0.2, �0 = 10 meV, TL = 300 K, and TR = 500 K.

the power and efficiency. The underestimation of power is
due to the positive higher-order contributions of the spin
and charge currents beyond linear response. This is naturally
expected since the model does not exhibit any exotic
features like negative differential resistance that requires
a negative contribution from the higher-order terms. The
underestimation of efficiency is mainly due to the output
power (ẇp/s) since the input flow of both spins and particles
(Ṡh + Ṡs/p = ηCIh + 〈ẇs/p〉) does not show a systematic
difference between the exact and linear response.

Since the maximal power and maximal efficiencies appear
at different biases we plot the efficiency at maximum power as
seen in Fig. 2. From a practical standpoint, having maximum
power output is the quantity of prime interest since it provides
a reasonable measure of how efficient the device is when
it is producing maximum power output. The linear response
results again underestimate the efficiency at maximum power,
implying that the exact theory provides valuable insight into
the device performance. The linear response predicts that
the thermoelectric and thermospin devices have an optimal
working temperature bias beyond which the device degrades
due to a substantial increase in heat contribution ηCκ�T [see
Eqs. (45) and (46)]. This feature persists far from equilibrium
[Figs. 2(a) and 2(c)] for the thermospin device but not for the
thermoelectric one that monotonously becomes more efficient
with the increase in temperature bias. The unplotted regions
in Figs. 1 [beyond 27 meV for �μp in panels (a) and (b),
and beyond 5.4 meV for �μs in panels (c) and (d)] and in
Fig. 2 [white region in panels (a) and (c)] correspond to the
dud engine regime. Here, the large charge (spin) bias leads to a
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FIG. 2. Charge (spin) efficiency at maximum power (η̄p(s))MP

[(a) and (c)] and (b) their linear response limit (η̄l
p(s))MP [(b) and (d)]

plotted against different spin (charge) �μs(p) and temperature �T

biases. The temperature in the left electrode is fixed to be TL = 300 K.
The other parameters are ε↑ = 0.1 eV, ε↓ = 0.2 eV, p = 0.2, and
�0 = 10 meV.

large power causing the system to be driven by the charge (spin)
bias instead of the thermal bias. This causes the electrodes to
heat up leading to an unphysical dud engine scenario. The
linear response theory [Figs. 2(b) and 2(d)] is unable to predict
this breakdown of the engine and moreover estimates wrongly
that the efficiency at maximum power for charge (ηl

p)MP [spin
(ηl

s)MP] increases with �μp [�μs].
In Figs. 3(a) and 3(b), we plot the charge and spin current

efficiency along with the corresponding power versus the spin
polarization degree p. We observe that the engine enters the
dud regime around polarization p = −1. In this region, the
transmission coefficient for spin-up electrons T↑ [Eq. (13)] is
negligible [since �R↑ = �0(1 + p) ≈ 0] and hence only the
spin-down current contributes to the charge and spin current.
This causes the spin-current to be negative even though the spin
bias is positive leading to a negative spin power and hence a
negative spin efficiency η̄s . This precisely is the condition for
the engine to become dud even though the charge efficiency
η̄p is well defined.

Next, we vary the parameter ε [Figs. 3(c) and 3(d)] that
changes the spin-dependent energy ε↑ ∈ [0.06,0.1] eV and
ε↓ ∈ [0,0.04] eV of the QDSV such that ε↑ > ε↓ due to
a positive energy level splitting �ε. The spin currents will
be chemical potential driven from left to right if μLσ >

εσ > μRσ = 0 eV due to the resonant or elastic tunneling of
spins. The spin-up chemical potential of the left lead (μL↑ =
0.012 eV) is such that it is never greater than the spin-up energy
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FIG. 3. Charge and spin efficiency η̄p/s (a) and power 〈ẇp/s〉
(b) vs the spin polarization degree p. The other parameters are
�μp = 10 meV, �μs = 2 meV, ε↑ = 0.1 eV, ε↓ = 0.2 eV, �0 = 10
meV, TL = 300 K, and TR = 500 K. (c) shows the charge and spin
efficiency η̄p/s and (d) depicts the charge and spin power 〈ẇp/s〉
vs the quantum dot energy level ε. The on-site spin-dependent
energy εσ = ε + 1

2 σ�ε with �ε = 0.06 eV. The other parameters are
�μp = 10 meV, �μs = 2 meV, p = 0.2, �0 = 10 meV, TL = 300 K,
and TR = 500 K.

ε↑ causing the up current to be entropy driven from right to left
due to the temperature bias TR > TL. On the other hand, the
variation in ε is such that within the range [0.03,0.038) eV
we have resonant tunneling of down spins from left to right
since μL↓ > ε↓ > μR↓. In this range of ε, since the spin-
up and -down currents are opposite in direction the charge
current Ic = I↑ + I↓ decreases in magnitude whereas the spin
current Is = I↑ − I↓ increases. This obviously causes the spin
power to dominate the charge power within this range of
ε ∈ [0.03,0.038) eV with the crossover being at ε = 0.038 eV
beyond which charge power dominates. It is important to note
here that when spin power dominates the charge power the
down-spin power (〈ẇ↓〉 = −I↓�μ↓) is negative. Hence, in this
regime, the machine to convert heat to spin-polarized power is
a dud engine, whereas the machine to convert heat to spin and
charge power works as a thermoelectric engine.

In Fig. 4, we display the LDF of charge and spin efficiency
which are scaled by the system EPR Ṡi with the affinity values
chosen close to the linear response limit in panels (a) and (b),
and far beyond the linear response limit in panels (c) and (d).
The efficiencies corresponding to the minimum values of the
scaled LDF are the macroscopic ones, which are the most likely
values in the statistics. It is most unlikely to achieve Carnot
efficiency for either the spin or charge, since the maximum of
the scaled LDF occurs always at the Carnot.

Similar to the macroscopic efficiencies wherein the charge
efficiency η̄p is always larger than the spin efficiency η̄s , the
statistics shows that a broader range of charge efficiencies

FIG. 4. Exact (red dashed line) and linear response (blue solid
line) scaled efficiency LDFs J (η)/Ṡi for spin [(b) and (d)] and charge
[(a) and (c)] at different charge biases. (a) and (b) correspond to TL =
300 K, TR = 500 K, and the charge bias �μp = 5 meV, and in (c)
and (d) TL = 300 K, TR = 600 K, and �μp = 40 meV. For all panels
the spin bias is chosen to be �μs = 0.2�μp and the other parameters
are ε↑ = 0.3 eV, ε↓ = 0.4 eV, p = 0.2, and �0 = 10 meV.

are likelier than their spin counterpart. The magnitudes of
charge and spin efficiency fluctuation, as seen by the broaden-
ing of the scaled LDF, increases with the bias. This is mainly
because an increase in bias leads to larger fluctuations in
the currents and hence broader scaled LDF as also observed
in traditional thermoelectric setups that do not posses the
spin degree of freedom [50–52,55]. In the linear response
limit, both the scaled efficiency LDFs, J (ηp(s))/Ṡi , take the
upper-bound value of 1/4 at the Carnot ηp(s) = 1, an analytic
result discussed in Sec. IV. However, the exact result of both
charge and spin LDFs are always smaller than 1/4. Moreover,
since the fluctuations would have a stronger effect far from
equilibrium we always find the linear response approximation
underestimates the broadening of both the LDFs.

VI. CONCLUSION

In this work, using the nonequilibrium Green’s function
approach, we obtained the scaled cumulant generating function
(SCGF) of the thermoelectric quantum-dot spin valve in
the collinear configuration. The Green’s function approach
allowed us to obtain the currents exactly in the QDSV setup
and the SCGF provided a basis to obtain efficiencies and their
statistics. In the linear response regime, using the conservation
laws [66], we obtained the correct Onsager matrix [2,4] and the
reciprocal relations were a result of the underlying fluctuation
theorem. We then provided a thermodynamic basis to define
charge and spin current efficiencies from the EPR perspective.
This not only allowed us to obtain the macroscopic efficiencies
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η̄p/s , but also justified our approach for the efficiency statistics
via the large deviation function.

In the linear response regime, we were further able to extend
the thermoelectric notion of FOM to the QDSV setup, wherein
we require a spin ZsT and charge ZpT FOM. Interestingly, the
maximum efficiencies were linked to the FOMs via the same
mathematical form as that in the traditional thermoelectric
setup, implying that an infinite spin and charge FOM would
help achieve the Carnot efficiency for spin and charge. In this
regime, we also obtained the efficiency at maximum power that
could be connected to the elements of the Onsager matrix.

Furthermore, we employed numerical techniques to com-
pare between the exact methods and their linear response
counterparts. We found that the linear response regime always
underestimates the macroscopic efficiencies, average power,
and also the efficiencies at maximum power. In regimes
outside the linear response it even leads to wrong predictions
and could lead to ill-defined results like a dud engine being
highly efficient. Thus the device performance can be accurately
gauged only by the exact method and moreover the device
can be made more efficient only far from equilibrium. Lastly,
we looked at the efficiency large deviation functions wherein
the macroscopic efficiencies corresponded to the minimum
value of the LDFs. The most unlikely efficiency always turned
out to be the Carnot efficiency. The scaled efficiency LDFs
are bounded by the value 1/4 taken at ηp(s) = 1 in the linear
response regime.

Overall, the method outlined in this work provides a strong
basis to explore a QDSV connected to electrodes with a
spin-dependent temperature (see Appendix for details) or when
the left electrode is not parallel or anti-parallel to the right
electrode (noncollinear setup). In such a noncollinear setup,
the spin current can transfer spin angular momentum and
induce a spin transfer torque which could be used to switch the
magnetic orientation of the ferromagnetic layers [72–74]. This
phenomenon is a result of spin-flip processes that leads to spin
currents with x, y, and z polarizations. Similar to the collinear
setup discussed in this work the z polarized current would still
be conserved, but the unconserved x and y polarized currents
would induce a spin torque. Depending on the polarization,
a parallel (τ‖) and perpendicular (τ⊥) torque would act on
the system-electrode interface in the QDSV. These additional
torques are the extra affinities that would cause the Onsager
matrix to be a 5×5 matrix. Such a noncollinear system would
then form a perfect test bed to explore the fluctuation theorem
for a complicated setup and gain insight as to how the Onsager
matrix would transform from a 5×5 matrix to a 3×3 matrix
when the angle of polarization between the electrodes is
varied. Moreover, our discussion was limited to the electronic
contributions to thermospin transport and in order to connect
to real devices a promising future avenue would be to tackle
the effects of electron-phonon interaction.
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APPENDIX: SPIN-DEPENDENT VOLTAGE
AND TEMPERATURE BIAS

In the appendix, we generalize the formalism in the main
text to the case with both spin-dependent voltage bias and
temperature gradient, �Ts . Spin dependent temperature Tασ in
α-electrode is due to spin polarized heat current [75]. Because
of the spin-dependent temperature gradient, we shall have
two separate counting fields λE↑ and λE↓ to count the energy
current carried by the spin up and down electrons in the left
electrode. Analogously to Eq. (12), we have

F(λ↑,λ↓,λE↑,λE↓) =
∫

dω

2π
ln

{
1 +

∑
σ

[(eiλσ +iωλEσ − 1)

× Tσ fLσ (1 − fRσ ) + (e−iλσ −iωλEσ − 1)

× Tσ fRσ (1 − fLσ )]

}
. (A1)

One could verify the fluctuation theorem with the symmetry

F(λσ ,λEσ ) = F(−λσ + i(βRμRσ − βLμLσ ),

− λEσ + i(βLσ − βRσ )). (A2)

From Eq. (A1), one can get the spin-σ current Iσ and heat
current Ihσ in the linear regime as following:[

Iσ

Ihσ

]
= Lσ

[
�μσ/T

−�Tσ/T 2

]
, (A3)

with �Tσ = TRσ − TLσ . The spin-σ Onsager matrix Lσ is
given by

Lσ =
[

Lσ Lσh

Lσh Lσhh

]
(A4)

with matrix entries

Lσ = −
∫

dω

2π
f ′Tσ ,

Lσh = −
∫

dω

2π
(ω − μRσ )f ′Tσ , (A5)

Lσhh = −
∫

dω

2π
(ω − μRσ )2f ′Tσ .

The Onsager coefficients are related to the transport coeffi-
cients

Gσ = Iσ

�μσ

∣∣∣∣
�Tσ = 0

= Lσ

T
, (A6)

Kσ = − Ihσ

�Tσ

∣∣∣∣
Iσ =0

= 1

T 2

det Lσ

Lσ

, (A7)

Sσ = �μσ

�Tσ

∣∣∣∣
Iσ =0

= 1

T

Lσh

Lσ

, (A8)

where Gσ is the spin-σ conductance, Kσ is the spin-σ thermal
conductance, and Sσ is the spin-σ Seebeck coefficient.
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In order to obtain the SCGF for the charge power, spin
power, spin-up heat current, and spin-down heat current, we
make the following substitutions:

iλ↑ → −λh↑μR↑ − λp�μp − λs�μs,

iλ↓ → −λh↓μR↓ − λp�μp + λs�μs, (A9)

iλEσ → λhσ ,

that are similar to Eq. (47). Further assuming βL↑ = βL↓ = βL,
so that the spin-dependent temperatures only exist in the hot
reservoir, we have the symmetry relation for SCGF,

F(λp,λs,λh↑,λh↓) = F(−λp + βL,−λs + βL,

− λh↑ − �β↑,−λh↓ − �β↓), (A10)

with �βσ = βL − βRσ . Due to the presence of an additional
independent affinity, i.e., spin-dependent temperature gradient,
the Onsager matrix becomes a 4×4 matrix [6] given by⎡⎢⎢⎢⎣

Ip

Ih↑
Is

Ih↓

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
GT PαT PGT αT

L↑h L↑hh L↑h L↑hh

PGT αT GT PαT

L↓h L↓hh −L↓h −L↓hh

⎤⎥⎥⎥⎦

×

⎡⎢⎢⎢⎣
�μp/T

−�T↑/T 2

�μs/T

−�T↓/T 2

⎤⎥⎥⎥⎦, (A11)

with �Tσ = TRσ − TLσ (σ =↑ , ↓), �μ(p,s) defined in
Eq. (28), and T = ∑

σ (TRσ + TLσ )/4. Performing a transfor-
mation to the spin-dependent heat currents,

Ih = Ih↑ + Ih↓, Ihs = Ih↑ − Ih↓, (A12)

we obtain⎡⎢⎢⎢⎣
Ip

Ih

Is

Ihs

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
GT PαT PGT αT

PαT GhT αT PGhT

PGT αT GT PαT

αT PGhT PαT GhT

⎤⎥⎥⎥⎦

×

⎡⎢⎢⎢⎣
�μp/T

−�T/T 2

�μs/T

−�Ts/T 2

⎤⎥⎥⎥⎦. (A13)

The coefficients above are expressed by

G =
∑

σ

Lσ

T
, PG =

∑
σ

σLσ

T
,

α =
∑

σ

σLσh

T
, Pα =

∑ Lσh

T
,

Gh =
∑

σ

Lσhh

T
, PGh =

∑ σLσhh

T
,

which are obtained from Eqs. (A3) and with σ = +1 for ↑ and
σ = −1 for ↓. Above the temperature gradients are given by

�T =
∑

σ

TRσ −TLσ

2
, �Ts =

∑
σ

σ (TRσ −TLσ )

2
. (A14)

The entropy production rate of the system in the steady state
is expressed as

Ṡi =
∑
α,σ

βασ Iαhσ � 0, (A15)

with the spin-σ heat current in the αth electronic reser-
voir Iαhσ = IαEσ − μασ Iασ . Having assumed βL↑ = βL↓ =
βL and using the particle, spin, spin-up heat, and spin-down
heat current conservation laws IL(·) + IR(·) = 0 with (·) =
s,p,h ↑ ,h ↓, we can rewrite the EPR as

Ṡi = Ṡh↑ + Ṡh↓ + Ṡp + Ṡs ,

Ṡhσ = −(βL − βRσ )Ihσ , (A16)

Ṡp(s) = βLIp(s)�μp(s),

with Ihσ = IEσ − μRσ Iσ . Spin-up and -down currents without
electrode indexes refer to the currents in the left electrode. In
order to obtain the above partition of the EPR with the form like
Eq. (31) from Eq. (A15), spin-dependent temperature should be
assumed to exist only in the hot reservoir. Hence we can define
the charge current efficiency η̄p and spin current efficiency η̄s

in the QDSV as

0 � η̄p = −Ṡp

Ṡh↑ + Ṡh↓ + Ṡs

= −〈ẇp〉∑
σ ηCσ Ihσ + 〈ẇs〉 � 1,

0 � η̄s = −Ṡs

Ṡh↑ + Ṡh↓ + Ṡp

= −〈ẇs〉∑
σ ηCσ Ihσ + 〈ẇp〉 � 1,

(A17)

where the charge and spin power are given by

〈ẇp〉 = −Ip�μp, 〈ẇs〉 = −Is�μs (A18)

with the Carnot efficiency of spin direction σ defined as
ηCσ = 1 − TL/TRσ . Using the procedure outlined in Sec. IV,
the charge and spin efficiency LDF could also be obtained from
the SCGF, for the case of spin-dependent temperature gradient.
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