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In this work, we explore the possibility of enhancing a spin current under a thermal switch, i.e.,
connecting the central transport region to two leads in individual thermal equilibrium abruptly.
Using the nonequilibrium Green’s function method for the transient spin current, we obtain a
closed-form solution, which is applicable in the whole nonlinear quantum transport regime with a
significant reduction of computational complexity. Furthermore, we perform a model calculation
on a single-level quantum dot with Lorentzian linewidth. It shows that the transient spin current
may vary spatially, causing spin accumulation or depletion in the central region. Moreover, general
enhancement of the spin current in the transient regime is observed. In particular, the in-plane
components of the transient spin current may increase by 2∼3 orders of magnitude compared to
the steady-state thermoelectric spin current under a temperature difference of 30 K. Our research
demonstrates that ultrafast enhancement of spin currents can be effectively achieved by thermal
switches.
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I. INTRODUCTION

With the ever-lasting minimization of electronic devices, reducing power consumption and dissipation of devices has
become vital. This issue can be solved by using spintronic devices, which have the potential advantages of faster data
processing speed, lower power consumption, and higher integration densities[1, 2]. For realizing spintronic devices, a
major challenge is to control and manipulate spin currents, which are useful for spin injection into semiconductors[3–5]
and magnetic reorientation of ferromagnets[6–9].

Traditionally, spin currents can be manipulated using magnetic fields, bias voltages, gate voltages, etc. Besides
regular electrical methods, the burgeoning research field of “spin caloritronics” offers a new way to manipulate spin
currents, i.e., thermal manipulation of spin currents[10, 11]. Interestingly, experiments performed by Cahill et al.
provided evidence that spin transfer torques, which are components of a spin current absorbed at an interface, could
be enhanced by the intense and ultrafast heat current created by laser light[12]. Due to the simultaneous variation
of the temperature, it is not clear about whether there is an intrinsic enhancement of spin currents in the transient
regime or not. Although electrically-induced transient phenomena are well investigated for charge currents[13–17] and
spin currents[9, 18, 19], little is known about thermally-induced transient spin currents.

Previously, investigations of transient quantum transport phenomena mostly focused on electrically-driven ones.
For a simplest two-probe transport system, one can assume that the system is in equilibrium before an arbitrary
time t = t0. Then, the nonequilibrium Hamiltonian is added, and the system is in nonequilibrium afterwards[13, 20].
However, when the temperature difference of two leads is involved, one cannot assume a sudden temperature variation
of a lead at t = t0 because the characteristic time scale for lattice dynamics is at least three orders larger than that
of electrons[12]. Instead, the temperature difference can be set up before t = t0 with leads disconnected with the
central region. Therefore, to explore thermally-induced transient spin currents under a temperature difference, one
may connect leads in different temperatures with the central part suddenly at t = t0. This operation is called a
“thermal switch”[21, 22].

In this work, we use the nonequilibrium Green’s function (NEGF) method to investigate the transient spin current
under a thermal switch. A closed-form solution is obtained and formulated in terms of steady-state nonequilibrium
Green’s functions, greatly simplifying the transient problem and facilitating further ab initio studies. Our formalism
is applicable in the entire nonlinear quantum transport regime. Furthermore, we perform a model calculation for a
quantum dot coupled to ferromagnetic leads with Lorentzian linewidths. We find that the transient spin current may
vary spatially, causing spin accumulation or depletion in the central region. In addition, the transient spin current
is enhanced a lot compared to the steady-state thermoelectric spin current: the in-plane components (x, z) of the
spin current increase by several orders of magnitude; while, the out-of-plane component of the spin current increases
by a few percent. Further analysis reveals the dependence of transient spin currents on the temperature, the QD
energy level, and the noncollinear angle. Our studies demonstrate that spin currents can be effectively manipulated
by thermal switches.

II. THEORY

A. Model Hamiltonian

Considering a magnetic tunnel junction (MTJ) consisting of an insulating central part (C) and two ferromagnetic
leads (L,R), we can write down the Hamiltonian of the system as[9, 23]

ĤL =
∑

k,s=±1

{
[εkLs + sML cos θ] ĉ†kLsĉkLs

+ML sin θĉ†kLsĉkLs̄

}
, (1)

ĤR =
∑
ks

[εkRs + sMR] ĉ†kRsĉkRs, (2)

ĤC =
∑
m,s

εmd̂
†
msd̂ms, (3)

V̂ =
∑

s,m;kα∈L,R
tkα,mĉ

†
kαsd̂ms + H.c., (4)

where ML(R) is the total magnetic moment of lead L(R) with unit magnetization vector M̂L(M̂R), εkL(R)s is an energy

level with band index k and spin s in lead L(R), s = ±1, and s̄ = −s. In addition, ĉ†kαs(ĉkαs) creates (annihilates)

an electron labeled by k and s in lead α. d̂†ms(d̂ms) creates (annihilates) an electron with spin s and energy εm
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FIG. 1. Schematic plot of the magnetic tunneling system investigated. (a) When t < 0, leads L and R are in thermal equilibrium
with temperatures TL and TR, respectively. (b) The connection between the leads and the quantum dot is switched on at t = 0
suddenly and persists afterwards.

in the central region (C), which is spin-degenerate. Hopping between C and lead α is described by tkα,n, which is

spin-independent. “H. c.” means Hermitian conjugate. In this model, M̂R aligns with the z-axis, M̂L lies in the x− z
plane, forming a noncollinear angle of θ (0◦ ≤ θ < 360◦) with M̂R [see Figure 1]. In experiments, the magnetization
direction of ferromagnetic leads can be manipulated by applying a magnetic field or using pinning layers.[1, 24]

B. Transient spin currents at t > 0 under a sudden switch-on of connection at t = 0

When the connection of leads to the central region is suddenly switched on at t = 0, the spin current flowing from
the central region to lead l after t = 0 is

Jspinl;α (t) = −
∫ t

0

dt1TrRe
{
Gr (t, t1) Σ<

l (t1, t)σα

+G< (t, t1) Σa
l (t1, t)σα

}
(5)

according to Eq. (A6). Here, σα is a Pauli matrix, Gr(<) is the retarded (lesser) Green’s function of the system, and

Σ
<(a)
l is the lesser (advanced) self-energy of lead l. To obtain Jspinl;α (t), one needs to obtain the Green’s functions

Gr,< and self-energies Σa,<
l .

Self-energies for lead l are

Σγl;n′′s′′,ns′ (t1, t) = θ (t1)θ (t)
∑

k′′α′′,kα∈l

tn′′,k′′α′′ ·

gγk′′α′′s′′,kαs′ (t1, t) tkα,n, (6)

where θ(t) is the Heaviside step function and γ = r, a,>,<. When both time variables are larger than 0, we can also
obtain the Fourier transform of the self-energies for the connected system as[25](t, t1 > 0):

Σγl;n′′s′′,ns′ (t1, t) =

∫
dε

2π
Σγl;n′′s′′,ns′ (ε) e

−iε(t1−t), (7)

where

Σγl;n′′s′′,ns′ (ε) =
∑

kα,k′′α′′∈l

tn′′,k′′α′′g
γ
k′′α′′s′′,kαs′ (ε) tkα,n. (8)

Thus, self-energies actually depend on time difference when both time variables t, t′ are later than 0 (t, t1 > 0), i.e.,

Σγ
l (t1, t) = Σγ

l (t1 − t) . (9)
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After obtaining the steady-state self-energies in Eq. (8), the double-time self-energies can be determined using Eq. (7).
For the lesser and retarded Green’s functions of the central system, we note the Keldysh formula[26–28]

G< = (1+GrΣr)G<
0 (1 + ΣaGa) + GrΣ<Ga, (10)

where a product of two terms is interpreted as a matrix product in the internal variable time. With the first term on
the right-hand side rewritten, this equation can be further simplified to be[29]

G< (t, t′) = Gr (t, 0) G< (0, 0) Ga (0, t′) +∫∫ +∞

−∞
dt1dt2G

r (t, t1) Σ< (t1, t2) Ga (t2, t
′) ,

(11)

where G< (0, 0) is the initial population of the central region at t = 0. From this equation, G< can be obtained once
Gr and the initial population are known. For using a thermal switch at t = 0, we have[27]

G< (t, t′) = Gr (t, 0) G< (0, 0) Ga (0, t′) +∫∫ +∞

0

dt1dt2G
r (t, t1) Σ< (t1, t2) Ga (t2, t

′) .

(12)

Then, for the retarded Green’s function of the central region, we may utilize the Dyson equation

Gr (t, t′) = Gr
0 (t, t′) +

∫ +∞

0

∫ +∞

0

dt1dt2

Gr
0 (t, t1) Σr (t1, t2) Gr (t2, t

′) , (13)

where Gr
0(t, t′) is the retarded Green’s function of the disconnected central region and it depends on t− t′ :

Gr
0 (t, t′) = Gr

0 (t− t′) =

∫
dε

2π
Gr

0 (ε)e−iε(t−t′). (14)

By introducing a double-time Fourier transformation of Green’s functions, we can prove that [see B]:

Gr (t, t′) = Ḡr (t− t′) , t, t′ > 0, (15)

where Ḡr (t, t′) is the retarded Green’s function in the steady-state limit. Its Fourier component Ḡr (ε) can be
calculated using

Ḡr (ε) = [ε+ iη −H0 −Σr]
−1
, (16)

where η is an infinitesimal positive number. Although the system undergoes a sudden change at t = 0, the retarded
Green’s function Gr (t, t′), strikingly, has time-translational invariance when t, t′ > 0. This result is key to our
formulas, because it means that the double-time Green’s function Gr(t, t′) can be obtained through Fourier transform
of Ḡr (ε). Then, the double-time lesser Green’s function can be acquired using Eq. (12), which is in a closed form
and does not need iterative calculation.

Finally, the α-component of the transient spin current flowing into lead l [Eq. (5)] can be computed as

Jspinl;α = −
∫ +∞

−∞

dε

2π
ReTr

[
A (ε, t) Σ<

l (ε)σα

+ A (ε, t) Σ< (ε) Bl (ε, t)σα

+ Gr (t, 0) G< (0, 0) Ḡa (ε) Cl (ε, t)σα
]
, (17)

where

A (ε, t) = Ḡr (ε) +

∫ +∞

−∞

dω

2πi

e−i(ω−ε)t

ε− ω + i0+
Ḡr (ω), (18)

Bl (ε, t) = ḠaΣa
l −

∫
dω

2πi

ei(ω−ε)t

ε− ω − i0+
Ḡa (ω) Σa

l (ω), (19)

Cl (ε, t) =

∫
dω

2πi
Σa
l (ω)

−eiωt

ε− ω + i0+
, (20)
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FIG. 2. Transport properties of the FM/QD/FM system in the long-time steady-state limit. (a) Transmission and (b) Seebeck
coefficients of spin-up (red dash line) and spin-down (thick blue solid line) channels as functions of energy ε and chemical
potential µ, respectively, when TL = TR = 300 K. Lorentzian line-shape bandwidth function as a function of ε/W is also shown
in the inset of (a). (c) Spin currents in lead L (thin light-orange dashed line) and R (thick light-blue line) as functions of
temperature difference ∆T = TL − TR, where TL is fixed to be 300 K. Here, γL↑, γL↓, γR↑, γR↓ are chosen to be 0.2, 0.05, 0.02,
and 0.01 eV, respectively. Other parameters are set as: W = 1 eV, ε0 = 0.03 eV, η = 1× 10−13 eV, θ = 0◦.

respectively. In particular, when the central part is initially unpopulated, the third term in Eq. (17) is zero. This
closed-form formula for the transient spin current greatly simplifies numerical calculations, which would be rather
complicated and time-consuming using the perturbation theory[21]. So far, we have solved out the transient spin
current and the final expression [Eq. (17)] requires only the steady-state quantities. We shall apply Eqs. (17-20) to
the simplest spin-degenerate single-level quantum dot model to investigate the transient spin current under a thermal
switch.

III. SPIN-DEGENERATE SINGLE-LEVEL QD WITH LORENTZIAN BANDWIDTH FUNCTIONS

In the above section, the transient spin current under a thermal switch is expressed as one single integral over
energy. In some cases where self-energies of leads are in simple analytic forms, the retarded Green’s function of the
central region and even the A(ε, t) and Bl(ε, t) functions can be acquired analytically.

We consider a system which consists of two ferromagnetic (FM) leads and a single-level quantum dot (QD) between
the leads. Similar FM/QD/FM systems have been widely studied previously[23, 30–32]. When t < 0, three parts are
disconnected and in individual thermal equilibrium. When t = 0, the QD is connected to two leads suddenly. [See
Fig. 1] Coulomb blockade effects are usually found in single-level quantum dots where the single-electron charging
energy U0 exceeds the thermal energy kBT and the level broadening (γ↑,↓ in below). Therefore, we assume that the
wavefunction in the single-level QD model is well-delocalized, having U0 small enough, and thus the Coulomb blockade
effects can be neglected. Also, defined as

Γl= −2ImΣrl , (21)

the bandwidth function of lead l (Γl) is a key factor for transport properties. To obtain analytical results, the
bandwidth function is usually supposed to be constant (wide-band limit).[17, 20, 23] In our work, we go beyond the
wide-band limit and introduce the Lorentzian linewidths. We suppose that the bandwidth function of lead l in parallel
configuration (θ = 0) is in Lorentzian line-shape as[13, 27] [the inset of Fig. 2(a)]

Γlσ(ε) =
γlσW

2

ε2 +W 2
, (22)

where σ(=↑, ↓) labels spin (|z ↑〉, |z ↓〉) states, γlσ is the linewidth amplitude of spin-σ channels in lead l, and W is the
bandwidth. Lorentzian linewidths are mathematically convenient and are widely used for introducing finite-bandwidth
effects. Then, the retarded self-energies of leads L and R can be obtained by utilizing the spectral representation of
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Green’s functions as[13]

Σr,alσ (ε) =

∫
dω

2π

Γlσ (ε)

ε− ω ± i0+
=

1

2

γlσW

ε± iW
, (23)

Σr
L0 (ε) =

1

2

W

ε+ iW

(
γL↑

γL↓

)
, (24)

Σr
R (ε) =

1

2

W

ε+ iW

(
γR↑

γR↓

)
. (25)

For a general noncollinear angle θ, the retarded self-energy of the left lead can be written as

Σr
L = R†Σr

L0R (26)

with the rotation matrix[23]

R =

(
cos θ2 sin θ

2

− sin θ
2 cos θ2

)
. (27)

With well-defined self-energies, the transient spin current can then be obtained. Analytical results of the auxiliary
functions A (ε, t) and Bl (ε, t) for this single-level QD model can be found in D.

Before investigating transient behaviors, we would like to present transport properties of the steady-state limit at
t → ∞, where the spin current is driven by the temperature gradient. Steady-state limit restrains the long-time
tail, which is necessary for us to get a full picture of the transient behavior. Due to the retarded nature of Green’s
functions, all time-related quantities in A(ε, t) and Bl(ε, t) vanish when t → ∞, which means that only the dc
component persists to infinite time. Assuming that the initial population on the central QD is zero, we can prove
that[9]

Jdc;spinL;x/z = −1

2

∫ +∞

−∞

dε

2π
(fL − fR) Tr

[
ḠrΓRḠaΓLσx/z

]
(28)

and a similar form for Jdc;spinR;x/z . For collinear spin systems with spin polarization along z, it is further reduced to

Jdc;spinL;z = −1

2

∫ +∞

−∞

dε

2π
(fL − fR) [T↑ (ε)− T↓ (ε)] . (29)

Actually, the dc spin current is proportional to the dc charge current[33]. This connection can be attributed to the fact
that the investigated spin angular momentum is carried by electrons. Under a thermal voltage, the dc spin current is
the thermoelectric spin current, which within linear response theory can be expressed as[34]

Jdc;spinL;z =
~
2e

(G↑S↑ −G↓S↓) ∆T, (30)

where ∆T = TL − TR, and Gσ (Sσ) is the electrical conductance (Seebeck coefficient) of spin-σ electrons.

IV. RESULTS AND DISCUSSION

To begin with, we choose a particular set of parameters to investigate the transient spin current in detail and focus
on the parallel configuration, i.e., θ = 0, where only spin-z current exists. Considering that the bandwidth function
in a Phenyldithiol molecular junction could be Γ = 0.11 eV or 0.0042 eV[35], we choose γL↑ = 0.2, γL↓ = 0.05,
γR↑ = 0.02, and γR↓ = 0.01 eV, corresponding to lead L and R with spin polarization 60% and 33%, respectively.
The energy level of QD is ε0 = 0.03 eV for a better thermoelectric performance, as what we shall see below. Also, we
assume that the energy level of the QD is initially unoccupied.

In Fig. 2 (a), spin-resolved transmission coefficients are plotted as a function of energy. It shows that transmission
spectra of spin-up and down electrons exhibit resonant tunneling peaks near ε0. Both transmission peaks are in the
typical Lorentzian line shape. In particular, the transmission of spin-up electrons has a wider peak than that of
spin-down electrons. This phenomenon is due to the stronger coupling between the leads and the central region of the
spin-up electrons in our model.[26, 36, 37] Heights of resonant peaks are less than 1, which can be attributed to the
scattering caused by mismatched leads. The corresponding Seebeck coefficients are further shown in Fig. 2(b). The
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FIG. 3. (a-c) Transient spin currents at lead lead L (thin light-orange dashed line) and R (thick light-blue line) as a function of
time at the parallel configuration (θ = 0◦) during t = 0 to 20 fs. (a) Leads L and R are different: γL↑ = 0.2, γL↓ = 0.05, γR↑ =
0.02, γR↓ = 0.01 eV. (b)(c) Leads L and R are identical, where γL(R)↑, γL(R)↓ are set to be (b) 0.2, 0.1 eV, and (c) 0.02, 0.01 eV,
respectively. (d-f) Accumulated spin angular momentum at the central region estimated as a function of time, corresponding
to (a-c), respectively. Blue solid lines indicate results obtained using the accumulated number of electrons and the red dots
indicate results of conservation of spin angular momentum. The other parameters are set as: W = 1 eV, ε0 = 0.03 eV,
η = 1× 10−13 eV, TL = 300 K, and TR = 270 K.

Seebeck coefficient of spin-down electrons has a larger absolute value than that of spin-up electrons within the range
of [−0.58, 0.58] eV, thanks to the narrow width of spin-down resonant peak[23]. If ε0 = 0, both Seebeck coefficients
of spin-up and spin-down electrons would be zero due to the electron-hole symmetry in our model. Thus, we set
ε0 slightly away from the zero point and near the maximum absolute value, to have a sizable thermoelectric spin
current. It is also shown that when µ = 0, both S↑ and S↓ are negative, indicative of electron-like transport. Since
S↓ = −237 µV/K and S↑ = −30.1 µV/K at µ = 0, the spin current is dominated by spin-down electrons at µ = 0
and Ss = S↑ − S↓ basically follows the sign of −S↓.

In Fig. 2 (c), dc spin current JspinL/R is shown as a function of temperature difference. It is clearly demonstrated that

JspinL = −JspinR , indicative of the steady-state condition and conservation of spin angular momentum. Noting that

JspinL > 0, TL > TR, and the system is in electron-like regime, one knows that spin current JspinL is dominated by hot
spin-down electrons transporting from L to R. When no temperature difference is present, the spin current should
be zero since no driving forces are involved. Then, as the temperature difference ∆T = TL − TR increases within
the linear-response regime, the steady-state thermoelectric spin current increases linearly, which is in good agreement
with Eq. (30). It is worth noting that the thermoelectric spin current is about 2.41× 10−5 eV when ∆T = 30 K and
TR = 270 K.

Now we move one step forward to obtain the transient spin current as a function of time. Results with three
different parameter sets are demonstrated in Fig. 3. Various coupling strength parameters are chosen to compute
the transient spin current in two leads. As illustrated in Fig. 3(a), the transient spin current JspinL(R) starts from zero

at t = 0, showing reasonable consistency in time domain. Also, the transient spin current flows out of both leads
immediately after t = 0. In particular, lead L, which has higher spin polarization, has a larger transient spin current.
Remarkably, the transient spin current of lead L reaches −0.0248 eV, which is three orders of magnitude larger
than that of the steady-state dc spin current shown in the long-time limit of spin currents when ∆T = 30 K [Fig. 2
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FIG. 4. (a)-(d) Temperature and (e)-(h) ε0 dependence of the transient spin current at lead L (thin black line) and R (thick
red line) at different times: (a,e) t = 0.1 fs; (b,f) t = 1 fs; (c,g) t = 10 fs; (d,h) t = 1000 fs. In (a)-(d), TL = TR + 30 K; while
in (e)-(h), TL = 300 K, TR = 270 K. The other constant parameters are set to be the same with those in Fig. 3(a).

(c)]. The enhancement factor,

P (X) =
|X|max

|X(t→∞)|
, (31)

is P (JspinR;z ) = 1.0× 103. Compared with normal enhancement of 1 ∼ 6 times in electrically-induced transient charge

or spin currents[14, 19], this result demonstrates that the transient spin current can be anomalously larger than the
corresponding steady-state thermoelectric spin current.

When two leads have the same coupling strength with the central QD, the transient spin current has nearly the
same magnitude in two leads, as shown in Fig. 3 (b) and (c). This overlap of the transient spin current in two leads
also implies negligible influence of the thermoelectric spin current near t = 0. Also, when the coupling strength is
weakened [Fig. 3 (c) compared to Fig. 3 (b)], the enhancement factor P significantly decreases from 4.9 × 102 to
1.2× 102.

As reflected in Fig. 2, JspinL + JspinR = 0 should be satisfied for steady-state transport. For the transient spin

current, JspinL + JspinR 6= 0 as evidenced in Fig. 3(a-c). Conservation of spin angular momentum implies that there is
accumulation or depletion of spins in the central QD:∫ t

0

(
JspinL;z + JspinR;z

)
dt+ 〈Sz (t)〉 = 0, (32)

where 〈Sz (t)〉 is the expected value of spin angular momentum in the QD at time t. Therefore, we may estimate the
accumulation of spins using

〈Sz (t)〉 = −
∫ t

0

(
JspinL;z + JspinR;z

)
dt. (33)

Alternatively, the accumulation of spins can be calculated using the number of accumulated electrons:

〈Sz〉 =
~
2

(〈n↑〉 − 〈n↓〉) , (34)

where 〈nσ〉 is the number of spin-σ electrons in the QD:

〈nσ〉 = −iG<σσ (t, t) . (35)



9

FIG. 5. Transient behaviors of the (a) x, (b) y, and (c) z components of the spin current flowing through lead R at different
noncollinear angles: θ = 0◦(thin dashed line), 30◦(dotted line), 60◦(thick dashed line), and 90◦ (solid line). Other parameters
are set to be the same with those in Fig. 3(b).

As demonstrated in Fig. 3(d-f), two methods lead to the same results. From Fig. 3(d-f), one can see that after t = 0
spin angular momentum accumulates quickly to a maximum and then decreases. The accumulation of spins in the
central region is in accordance with the time variation of the transient spin current.

As demonstrated above, transient spin currents can be much larger than the steady-state thermoelectric spin
currents. To examine the influence of temperature, transient spin currents at different times t as a function of TR are
plotted in Fig. 4(a)-(d). For t = 0.1, 1 and 10 fs, the transient spin current in both leads show nearly no dependence

on TR. And when t = 1000 fs, it displays the steady-state signature, where JspinL = −JspinR . From Fig. 4(d), variation
of the spin current is up to 3×10−5 eV. Therefore, the temperature mainly changes the dc thermoelectric spin current
and has little effect on the fast transient region near t = 0. Interestingly, the independence of the transient spin
current near t = 0 and the quasi-linear dependence of dc thermoelectric spin currents near t � 0 on ∆T lead to a
rough estimation that the enhancement factor varies with ∆T in a fashion ∝ 1/∆T . Thus, the enhancement of JspinR;z

when ∆T = 3 K would be about ten times larger than that of JspinR;z when ∆T = 30 K.
By contrast, the transient spin current significantly depends on the quantum dot energy level ε0, as plotted in

Fig. 4(e)-(h). Although the transient spin current has only a little dependence on ε0 when t = 0.1 fs, it changes
a lot when t = 1 fs. Strong dependence is also shown at t = 10 fs and t = 1000 fs. For t = 10 fs, variation is
contributed by the transient component. While, for t = 1000 fs, variation is caused by the steady-state thermoelectric
component.[34].

Finally, we shall have a short discussion about the dependence of transient spin current on the noncollinear angle
θ. In our model, the magnetization direction of lead R is along z, thus the x(y) component of the spin current
actually corresponds to the in-plane (out-of-plane) spin transfer torque (STT), respectively[9]. For simplicity, we
choose identical leads, i.e., the same coupling parameters of leads L and R, γLσ=γRσ, and focus on the transient spin
current in lead R. Results are demonstrated in Fig. 5. As mentioned above, when θ = 0, both x and y components of
the spin current are zero (Fig. 5). As θ increases from 0◦ to 90◦, the absolute values of both JspinR;x and JspinR;y increase

from 0 to the maximum numbers. In addition, the angular dependence of transient JspinR;x and JspinR;y follow roughly

the sin θ function, similarly to the transient STTs realized using the traditional electrical approaches[19]. For the

in-plane JspinR;x , its maximum value in the transient region far exceeds the steady-state limit, which is dominated by

the thermoelectric spin current. By contrast, the out-of-plane JspinR;y has a rather large steady-state zero-field STT,
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and the transient enhancement is very small. The enhancement factor [Eq. (31)] for the x and y components of the
spin current are biggest at θ = π/2, for which we have

P (JspinL;x ) = 3.9× 102 (36)

and

P (JspinL;y ) = 1.16, (37)

respectively. As for the spin-z current, it is well-known that the spin-z current has the biggest and smallest value at
θ = 0 and θ = 180◦, respectively. As a result, the noncollinearity angle has a much smaller impact on JspinR;z than on
other components.

In summary, we investigated the transient spin current under a thermal switch using the NEGF method. A closed-
form solution has been obtained and formulated in terms of steady-state nonequilibrium Green’s functions. This
solution is applicable in the entire nonlinear quantum transport regime and can be used for further ab initio studies.[38]
As a model application of the general solution, we perform a model calculation on an FM/QD/FM system, where the
connection between the single-level QD and the leads is described by a Lorentzian linewidth function. Interestingly, it
shows that the transient spin current may vary spatially, causing spin accumulation or depletion in the central region.
Remarkably, the transient spin current enhances a lot compared to the dc limit of thermoelectric spin current: the
in-plane components (x, z) of the spin current increase by 2∼3 orders of magnitude under a temperature difference of
30 K; while, the out-of-plane component of the spin current increases by a few percent. Further analysis shows that
the transient spin current near t = 0 has negligible dependence on temperature, but strongly relies on the QD energy
level and the noncollinear angle. The key factor in the transient enhancement of the spin current is the transient
nature instead of the temperature gradient. Our studies demonstrate that spin currents can be effectively amplified
by thermal switches.
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Appendix A: General expression for time-dependent spin currents

The general form of a spin current flowing from the central region to lead l is (~ = 1)[9]

Jspinl (t) = −
∑
ss′s′′

kα∈l,n∈C

Re
[
σs′,s′′tkαs′′,nsG

<
ns,kαs′ (t, t)

]
, (A1)
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where Jspin = (Jspinx , Jspiny , Jspinz ), σ = (σx, σy, σz), σx/y/z are Pauli matrices, and the lesser Green’s function is
defined as[20]

G<ns,kas′ (t, t
′) = i〈c†kαs′ (t

′) dns (t)〉. (A2)

Assuming that the hopping between lead l and the central region does not cause spin-flipping, i.e., tis′′,js = ti,jδss′′
is spin-independent, we have

Jspinl (t) = −
∑
ss′

kα∈l,n∈C

Re
[
σs′stkα,n (t)G<ns,kαs′ (t, t)

]
. (A3)

By analytic continuation rules[20], the lesser Green’s functionG<ns,kαs′ (t, t) can be written in terms of Green’s functions

of leads in the uncoupled system (gγkαs,k′α′s′) and Green’s functions of the central region in the coupled systems

(Gγns,n′s′). Then, the spin current in lead l turns to be

Jspinl (t) = −
∑
ss′s′′

nn′n′′∈C

∫
dt1Re

{
σs′s

[
Grns,n′′s′′ (t, t1) ·

Σ<l;n′′s′′,ns′ (t1, t) + G<ns,n′′s′′ (t, t1) Σal;n′′s′′,ns′ (t1, t)
]}
, (A4)

where the time-dependent self-energies of lead l are defined as (γ =>,<, r, a)

Σγl;n′′s′′,ns′ (t1, t) =
∑

k′′α′′,kα∈l

tn′′,k′′α′′ (t1) ·

gγk′′α′′s′′,kαs′ (t1, t) tkα,n (t) . (A5)

Written in matrix form, the α-component of the spin current flowing through lead l [Eq. (A4)] is (α = x, y, z)

Jspinl;α (t) = −
∫
dt1TrRe

{
σαGr (t, t1) Σ<

l (t1, t)

+ σαG< (t, t1) Σa
l (t1, t)

}
= −

∫
dt1TrRe

{
Gr (t, t1) Σ<

l (t1, t)σα

+G< (t, t1) Σa
l (t1, t)σα

}
, (A6)

where the trace goes over both the spin and orbital degrees of freedom. Here and hereinafter, bold-face quantities are
defined in the central region.

Appendix B: Gr(t, t′) = Ḡr(t− t′) (t, t′ > 0) under a sudden thermal switch

To solve out the retarded Green’s function, we introduce a double-time Fourier transform of a function F (t, t′) as

F (ε, ε′) =

∫ +∞

0

dt

∫ +∞

0

dt′F (t, t′) eiεte−iε′t′ . (B1)



13

FIG. 6. Schematic plots of integration contours over ε2 and ε3 in Eq. (B8). Black dots in the lower half of the complex plane
in (a) and (b) represent poles of Gr

0(ε) and Gr
0(ε)Σr(ε), respectively.

Note that the integrals of time goes from 0 to +∞, different to the traditional form that goes from −∞ to +∞[23].
Due to this difference, its inverse transformation is F (t, t′) only when both times variables are later than 0:

∫ +∞

−∞

dε

2π

∫ +∞

−∞

dε′

2π
F (ε, ε′) e−iεteiε′t′

=

∫
dε

2π

∫
dε′

2π

∫ +∞

0

du

∫ +∞

0

du′·

F (u, u′) eiεue−iε′u′e−iεteiε′t′

=

∫
dε

2π

∫
dε′

2π

∫ +∞

0

du

∫ +∞

0

du′·

F (u, u′) eiε(u−t)e−iε′(u′−t′)

=

∫ +∞

0

du

∫ +∞

0

du′F (u, u′) δ (u− t) δ (u′ − t′)

=F (t, t′) t, t′ > 0. (B2)

Under this transform, we may write

Gr (ε, ε′) =

∫ +∞

0

dt

∫ +∞

0

dt′Gr (t, t′) eiεte−iε′t′ , (B3)

Gr (t, t′) =

∫ +∞

−∞

dε

2π

∫ +∞

−∞

dε′

2π
Gr (ε, ε′) e−iεteiε′t′ (t, t′ > 0) . (B4)

To work out Gr from the Dyson equation [Eq. (13)], we replace Gr in the r.h.s. of Eq. (13) by the r.h.s. of Eq. (13)
iteratively, obtaining

Gr (t, t′) = Gr
0 (t, t′) + X1 (t, t′) + X2 (t, t′) + · · · (B5)

where

X1 (t, t′) =

∫ +∞

0

dt1

∫ +∞

0

dt2·

Gr
0 (t, t1) Σr (t1, t2) Gr

0 (t, t′) , (B6)

Xn+1 (t, t′) =

∫ +∞

0

dt1

∫ +∞

0

dt2·

Xn (t, t1) Σr (t1, t2) Gr
0 (t2, t

′) . (B7)



14

By utilizing Eqs. (7)(14), X1 (t, t′) can be transformed to

X1 (t, t′)

=

∫ +∞

0

dt1

∫ +∞

0

dt2

∫ +∞

−∞

dε

2π
Gr

0 (ε) e−iε(t−t1)·∫
dε1

2π
Σr (ε1) e−iε1(t1−t2)

∫
dε2

2π
Gr

0 (ε2) e−iε2(t2−t′)

=

∫ +∞

−∞

dε

2π
Gr

0 (ε) e−iεt

∫
dε1

2π

i

ε− ε1 + i0+
Σr (ε1) ·∫

dε2

2π

ieiε2t
′

ε1 − ε2 + i0+
Gr

0 (ε2)

=

∫ +∞

−∞

dε

2π
Gr

0 (ε) e−iεt

∫
dε1

2π

ieiε1t
′
Σr (ε1) Gr

0 (ε1)

ε− ε1 + i0+

=

∫ +∞

−∞

dε

2π
Gr

0 (ε) Σr (ε) Gr
0 (ε) e−iε(t−t′), (B8)

where ∫ +∞

0

eiωtdt =
i

ω + i0+
(B9)

is used, and the integrals over ε1 and ε2 are carried out in the upper half of complex plane as shown in Fig. 6 using
the theorem of residue. From this result, we know that X1 (t, t′) actually depends on time difference when t, t′ > 0:

X1 (t, t′) = X1 (t− t′) (t, t′ > 0) (B10)

with Fourier components

X1 (ε) = Gr
0 (ε) Σr (ε) Gr

0 (ε) . (B11)

Similarly,

X2 (t, t′)

=

∫ +∞

0

dt3

∫ +∞

0

dt4X1 (t− t3) Σr (t3, t4) Gr
0 (t4, t

′)

=

∫ +∞

−∞

dε

2π
X1 (ε) Σr (ε) Gr

0 (ε) e−iε(t−t′)

= X2 (t− t′) (B12)

with Fourier components

X2 (ε) = X1 (ε) Σr (ε) Gr
0 (ε) . (B13)

Consequently, for arbitrary integer n > 0 and time t, t′ > 0, we have

Xn (t, t′) = Xn (t− t′) , (B14)

Xn (ε) = Xn−1 (ε) Σr (ε) Gr
0 (ε) , (B15)

where X0 (ε) is defined as

X0 (ε) = Gr
0 (ε) (B16)

for convenience.
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Therefore, the Dyson equation for the retarded Green’s function in Eq. (13) becomes

Gr (t, t′) = Gr
0 (t− t′) + X1 (t− t′) + X2 (t− t′) + · · ·

=

∫
dε

2π

+∞∑
n=0

Gr
0 (ε) [Σr (ε) Gr

0 (ε)]
n
e−iε(t−t′)

=

∫
dε

2π
Ḡr (ε)e−iε(t−t′)

= Ḡr (t− t′) , (B17)

where Gr
0 (ε) is the retarded Green’s function for the disconnected central region,

Gr
0 (ε) = [ε+ iη −H0]

−1
, (B18)

and Ḡr (ε) is the retarded Green’s function for the connected system in steady state[23]

Ḡr (ε) = [ε+ iη −H0 −Σ]
−1

= Gr
0 (ε)

+∞∑
n=0

[Σr (ε) Gr
0 (ε)]

n
. (B19)

Appendix C: A(ε, t)

For simplifying the expression for spin currents, we introduce the A(ε, t) function as[27]

A (ε, t) =

∫ t

0

dt′Gr (t, t′) eiε(t−t′). (C1)

Its Fourier transformation is

Gr (t, t′) =

∫ +∞

−∞

dε

2π
A (ε, t) e−iε(t−t′) t, t′ > 0. (C2)

Using Eq. (15), A (ε, t) can be rewritten as[13, 27]

A (ε, t) = Ḡr (ε) +

∫ +∞

−∞

dω

2πi

e−i(ω−ε)t

ε− ω + i0+
Ḡr (ω). (C3)

This equation offers a simpler way to calculate the A (ε, t). Replacing Σ< by its Fourier transformation, one finds
that the Equation (12) can also be rewritten in terms of A (ε, t) as

G< (t, t′) = Gr (t, 0) G< (0, 0) Ga (0, t′) +∫
dε

2π
A (ε, t)Σ< (ε) A† (ε, t′) e−iε(t−t′). (C4)

It is advantageous over the original form in that the double integral is eliminated to a single integral.

Appendix D: Analytical formulas for the spin-degenerate single-level QD with Lorentzian bandwidth
functions

The retarded Green’s function of the FM/QD/FM system in the steady-state limit when θ = 0 is

Ḡr (ε)

= [ε+ iη − ε0 −Σr]
−1

= diag

([
ε+ iW

(ε− ω1↑) (ε− ω2↑)
,

ε+ iW

(ε− ω1↓) (ε− ω2↓)

])
,

(D1)
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where ωnσ(n = 1, 2; σ =↑↓) are defined to be poles of the retarded Green’s function through factorization of the
denominators as:

(ε− ω1↑) (ε− ω2↑) = (ε+ iW ) (ε+ iη − ε0)− γ↑W/2,
(ε− ω1↓) (ε− ω2↓) = (ε+ iW ) (ε+ iη − ε0)− γ↓W/2

(D2)

with γ↑ = γL↑ + γR↑, γ↓ = γL↓ + γR↓. Note that due to the retarded nature of Ḡr, {ωnσ} must distribute in the
lower half of the complex plane. Bearing this property in mind, we can go forward to get the key functions A(ε, t)
and Bl(ε, t).

By applying the theorem of residue, we can obtain analytical expressions for A(ε, t):

A (ε, t) = Ḡr (ε)

+ diag

([ ∑
n=1,2

(−1)
n
e−i(ωn↑−ε)t (ωn↑ + iW )

(ε− ωn↑) (ω1↑ − ω2↑)
,

∑
n=1,2

(−1)
n
e−i(ωn↓−ε)t (ωn↓ + iW )

(ε− ωn↓) (ω1↓ − ω2↓)

])
(D3)

and Bl(ε, t):

Bl (ε, t) = ḠaΣa
l

+ diag

−γl↑W
2

∑
n=1,2

ei(ω∗n↑−ε)t

ε− ω∗n↑
(−1)

n(
ω∗2↑ − ω∗1↑

) ,
−γl↓W

2

∑
n=1,2

ei(ω∗n↓−ε)t

ε− ω∗n↓
(−1)

n(
ω∗2↓ − ω∗1↓

)
 . (D4)

In the above, we have acquired explicit analytical expressions for A(ε, t) and Bl(ε, t). Then, the transient spin
current under a sudden thermal switch can be calculated by numerically carrying out one single integral over energy
in Eq. (17). For cases with θ 6= 0, the above procedures can be performed similarly, except that the number of poles
doubles when θ 6= 0◦ and 180◦.
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