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ABSTRACT   

We present investigations on the growth of high quality CH3NH3PbI3 (MAPI) thin films using both vapor and 
solution techniques. Recent work on perovskite film growth indicates critical dependencies of the film quality on the 
nucleation and crystallization steps requiring: i.) uniform distribution of nucleation sites; and ii.) optimal 
crystallization rate that facilitates the growth of a compact, continuous film with low density of pinholes. Our work 
shows that the hybrid chemical vapor deposition technique (HCVD) technique is well suited for the deposition of 
evenly distributed nucleation sites and the optimization of the crystallization rate of the film through detailed 
monitoring of the thermal profile of the growth process.  Signficant reduction in the defect states is recorded by 
annealing the perovskite films in O2. The results are consistent with theoretical studies by Yin et al.1 on O and Cl 
passivation of the shallow states at the grain boundary of MAPI. Their work provides the theoretical basis for our 
experimental observations on the passivation of shallow states by oxygen annealing. High quality films were 
achieved through detailed management of the carrier gas composition and the thermal profile of the nucleation and 
crystallization steps.  
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1. INTRODUCTION  
The present worldwide power consumption is approximately18 TW which is expected to grow by 30% by 2035.2 

Continued dependence on fossil fuels for power generation will lead to devastation in the environment. The International 
Energy Agency had projected that roughly 50% of the net increase in electricity generation will come from renewables.3 
Thus, it is crucial to develop highly cost-effective and efficient photovoltaic cells (PVCs) to meet the global energy 
demands for the 21st Century. Organic-inorganic perovskite thin films, as a new PV material, have drawn significant 
attention due to the dramatic development of high efficiency perovskite solar cells (PSCs). Within a decade since the 
first report of PSC devices, the efficiency had increased from 3.81%4 to a record 22.7%5 at the time of the compilation of 
this manuscript. The key driving forces for such tremendous achievements include: i.) excellent physical properties such 
as high absorption coefficients6, extremely long carrier diffusion lengths7 and tunable bandgaps;8 ii.) development of 
techniques for the growth of high quality perovskite films including the vapor assisted solution process,9 HCVD 
technique,10 solvent engineering,11 and the vacuum-assisted growth techniques12 … etc.; iii.) development of highly 
efficient device structures, for instance the planar structure, mesoporous structure and inverted structure13,14; and iv.) 
development of high-quality electron transport layer  (ETL) and hole transport layer (HTL) for efficient collection and 
transport of photo-generated carriers.15,16 Of all the different factors listed above, the growth of high quality perovskite 
thin films arguably has the biggest impact on the development of the PSCs thus far. 

The solvent engineering technique was reported by Jeon et al.17 who used a mixed solvent of γ-butyrolactone (GBL) 
and dimethylsulphoxide (DMSO) followed by toluene drop-casting that leads to extremely uniform and dense perovskite 
layers via a CH3NH3I–PbI2–DMSO intermediate phase with GBL functioning purely as a solvent. It was shown that at 
the initial stage the film is composed of MAI and PbI2 dissolved in the DMSO/GBL solvent mixture. With the 
evaporation of GBL from the film, a complex consisting of CH3NH3I-PbI2-DMSO is formed.  Toluene, which acts as an 
anti-solvent, is added to the film during the spinning process and induces a super-saturation condition resulting in the 
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for the material was systematically varied and the optoelectronic properties of the materials and the resulting devices 
were characterized in detail and the data were used for the optimization of the process. Our results show that the optimal 
growth temperature is ~165°C19 which is substantially higher than the typical reaction temperatures used in the solution 
growth techniques that are commonly limited to 90°C – 100°C20. It is noted that at temperatures >100°C, for 
conventional solution processed perovskites, significant decomposition of the MAPI, due to the sublimation of MAI 
from the film, is observed20. In the HCVD process, the carrier gas is saturated with MAI which suppresses the 
sublimation of MAI from the film, and thus a higher crystallization temperature can be used without suffering any film 
degradation. A higher growth temperature is beneficial to atomic motion during the crystallization process and thereby 
enhances the grain size of the MAPI layer. 

To investigate the impact of the composition of the carrier gas on the film quality, we have systematically varied the 
ratio of O2/N2 in the carrier gas from 0% to 25%. Planar devices were fabricated using the MAPI films grown under 
different carrier gas compositions and the optoelectronic properties of the devices are summarized in Table 1. Strong 
dependencies of the device PCEs on the carrier gas composition are observed. Our experimental results indicate that 
using the optimal carrier gas composition of N2/O2 (85%/15%) leads to significant enhancement in the PCE of the 
devices.  

Table 1: The summary of the photovoltaic performance of devices with the MAPI grown in different ambient. The 
values were averaged from 6-12 devices. 

Carrier Gas 
Composition 

VOC 
(V) 

JSC 
(mA/cm2) 

FF 
 

Efficiency 
(%) 

N2/O2 
(100 %/0 %) 

0.91 
±0.06 

21.4 
±1.0 

0.57 
±0.08 

11.1 
±2.2 

N2/O2 
(90 %/10 %) 

0.90 
±0.03 

21.7 
±0.8 

0.62 
±0.05 

12.2 
±1.3 

N2/O2 
(85 %/15 %) 

0.96 
±0.03 

22.8 
±2.0 

0.67 
±0.04 

14.5 
±1.4 

N2/O2 
(80 %/20 %) 

0.97 
±0.02 

20.1 
±1.6 

0.66 
±0.01 

12.8 
±1.2 

N2/O2 
(75 %/25 %) 

0.97 
±0.03 

21.0 
±1.7 

0.64 
±0.06 

13.0 
±1.5 

 

The incorporation of a small amount of oxygen during HCVD process is effective in passivating the trap states in 
MAPI. However, incorporation of excessive oxygen may lead to the creation of defect states which may be responsible 
for the slight reduction in the photovoltaic performance of the devices with MAPI prepared in the ambient of N2/O2 
(80%/20%) and N2/O2 (75%/25%) compared to the devices with MAPI grown in optimal composition of N2/O2 
(85%/15%). Photothermal deflection spectroscopy (PDS) was conducted to investigate this observation and the results 
will be discussed in the latter text.   

We have examined the impact of the post-deposition cooling rate on the film morphology. SEM pictures of MAPI 
films grown by HCVD technique under different conditions (Figure 2) show that HCVD-grown films with fast cooling 
rate, at 8°C/min (Figure 2a and 2b), demonstrate high concentration of pinholes which is substantially reduced when the 
cooling rate decreases to 4°C/min (Figure 2c and 2d). Films with a slow cooling rate at 0.7°C/min (Figure 2e, 2f) 
demonstrate highly uniform and compact films with large crystal size ranging from ~300 nm to > ~1.5 μm and the 
lowest pinhole concentration among the three types of films. This is consistent with work by Sriram et al.21 on 
perovskite-oriented (Pb0.92Sr0.08)(Zr0.65Ti0.35)O3 thin films who demonstrated that a lower post-deposition cooling rate 
resulted in the reduction of stress and an increase in the degree of orientation for the film. Such pinholes significantly 
affect the optoelectronic properties of the devices due to the high concentration of recombination centers. Furthermore, 
shorts between the electrodes may develop through the pinholes. The SEM images in Figure 2 show that the carrier gas 
composition has no obvious effects on the morphology of the MAPI films. The results stipulate that the function of the 
oxygen is to passivate the defect states rather than enhancing the crystallization of the material. On the other hand, slow 
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cooling rates facilitates the formation of larger crystals. Figure 2g and 2h demonstrate superior crystal quality of the 
slow-cooled HCVD grown film. The PSC devices based on slow-cooled HCVD-grown MAPI layer is expected to 
exhibit substantial enhancement in device performance.  

We have characterized the minority carrier lifetimes by analyzing the time resolved photoluminescence (TRPL) 
signals from the perovskite samples. From Figure 3a, six different types of MAPI films, with thickness 420 nm ± 10 nm, 
were investigated: i.) N2 carrier gas and cooling rate of ~8°C/min (type 1); ii.) N2 carrier gas and cooling rate of 
~4°C/min (type 2); iii.) N2 carrier gas and cooling rate of ~0.7°C/min (type 3); iv.) optimal carrier gas and cooling rate of 
~8°C/min (type 4); v.) optimal carrier gas and cooling rate of ~4°C/min (type 5); and vi.) optimal carrier gas and cooling 
rate of ~0.7°C/min (type 6). The TRPL data are fitted to a bi-exponential decay function, in which two distinct lifetimes 
τ1 and τ2 can be determined from the data. Significant improvements in the minority carrier lifetimes for films grown 
using N2/O2 mixture carrier gas instead of pure N2 are observed. It is believed that the oxygen in the carrier gas 
passivates the defects in MAPI and, thereby, reducing defect-assisted recombination. Films grown at post-deposition 
cooling rate of 0.7°C/min also resulted in the enhancement of the carrier lifetime. This stipulates the reduction of the 
material defects due to enhancement in the crystal dimension. From the TRPL data, it is estimated that the carrier 
diffusion length for our optimized sample can be higher than 3 μm.   

 

Figure 2. SEM images of MAPI films grown in N2 (a.; c.; and e.) and O2/N2(15%/85%) (b.; d.; f.; g.; and h.) and at 
cooling rates 8°C/min (a.; b.; and g.); 4°C/min (c. and d.) and 0.7°C/min (e.; f; and h.) 

 

Figure 3. a) TRPL data and b) PDS spectra for different types of MAPI samples. 
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We have examined the PDS for different types of MAPI films. The technique of PDS can detect the changes in the 
thermal state of the samples due to the nonradiative relaxation of photo-excited carriers with a high sensitivity of the 
order of 10-4. It is useful tool for the characterization of the energetic disorder such as the exponential decay of the 
absorption below the bandgap with a characteristic Urbach energy (EU)22. The technique has been widely utilized for 
analyzing electronic defects in amorphous and organic semiconductors23. In this work, four different types of samples 
were studied (types 1, 3, 4 and 6) and the results are presented in Figure 3b. It is observed that the bandgap is 
approximately 1.59 eV in agreement with existing reports. The shallow traps are classified within the energy range of 15 
meV from the conduction band edge, while the deep levels are the bandgap states that are at least ~0.15 eV from the band 
edge. 

The shallow traps can be characterized by EU which reflects the steepness of the band tail states located at the 
conduction band edge. The EU for samples 1, 3, 4 and 6 are 22.2 meV, 20.7 meV, 21.9 meV and 20.8 meV respectively. 
The EU shows strong dependence on the cooling rates of the samples demonstrating significant reduction by 1.5 meV and 
1.1 meV for slow-cooled samples (types 3 and 6) compared to their fast-cooled counterparts (types 1 and 4). Recent 
work by Yin et al.1 showed that O can passivate the shallow traps at the grain boundaries for MAPI films which is 
consistent with our experimental results. Furthermore, the cooling rate show significant impact on the defect densities of 
the films. We next consider the effects of the growth conditions on the deep traps. Types 3 film demonstrate substantial 
reduction in the trap density between 1.24 eV to 1.45 eV compared to type 1 film. Similarly, comparing type 4 film also 
show significant reduction in the deep traps between 0.8 eV to 1.08 eV compared to type 1 film. It is interesting to point 
out that for type 6 film, in which both the optimal carrier gas and slow cooling rate are used, deep traps over the entire 
energy range from 0.8 eV to 1.45 eV exhibit substantial reduction. Thus, the experimental results clearly show that both 
carrier gas ambient and the cooling rates have strong influences in the density of the deep traps. It is believed that there 
are two competing processes for the incorporation of oxygen during the HCVD growth. In addition to the effect of 
oxygen passivation, oxygen can be also regarded as a p type dopant in MAPI. Incorporation of excessive oxygen into the 
material will create additional traps in MAPI, which is analogous to the case of excess dopants in semiconductors.   

Meanwhile, low-frequency excess noise was measured on different types of MAPI films grown under the conditions: 
i.) MAPI films grown by two-step solution technique and without oxygen post-deposition annealing (type A); ii.) MAPI 
films grown by two-step solution technique with post-deposition oxygen annealing (type B); iii.) MAPI films grown by 
HCVD technique using pure nitrogen as the carrier gas (type C); and iv.) MAPI films grown by HCVD technique using 
N2/O2 (85%/15%) mixture as the carrier gas (type D). Low-frequency noise measurement is a non-destructive 
characterization technique performed directly on the complete device structure. It has been shown that the low-frequency 
noise in a semiconductor device arises from the modulation of the device conductance due to the random capture and 
emission of carriers by localized states in the device24. Under a constant voltage bias the current fluctuation due to a 

single trap gives rise to a random telegraph noise with a power spectral density in the form of a Lorentzian, 
2 21

τ
ω τ+

. 

Since the individual trapping and detrapping events are statistically independent the total current noise power spectral 
density, SI(f), of the complete device is given by 

                       ூܵ(݂) = ଶ(଴ܫ∆)4 ׬ ׬ ׬ ׬ ,ܧ)்ܰ ,ݔ ,ݕ (ݖ ఛଵାସగమ௙మఛమ௫௬௭ா  (1)   ,ܧ݀ݖ݀ݕ݀ݔ݀

in which ΔI0 is the current fluctuation arising from the capture of a single carrier under constant voltage bias. The 
Lorentzian peaks sharply at ( )0lnp BE k T ωτ= −  and the trap density can be expressed as ( ) ( )4 ,T p I

B

CfN E S f T
k T

≈
 
where 

C is a proportionality constant and is related to the magnitude of the fluctuation in the conductance of the resistive 
structure due to: i.) modulation of the local carrier concentration at the vicinity of the trap; ii.) fluctuation in the carrier 
mobility arising from the changes of the Coulombic scattering rate due to the fluctuation in the density of the fixed 
charged states;25 and iii.) fluctuation in the current arising from the modulation of the energy barrier at various 
heterojunctions26 such as the TiO2/perovskite interface, metal/perovskite interface and the grain boundaries. Despite the 
complicated picture underlying the quantitative evaluation of the conductance fluctuation for our samples, the exact 
magnitudes of C should bear little consequences on the conclusion of our investigations as we are only interested in the 
relative changes in the trap density of the perovskite layer due to the various growth techniques. The normalized trap 
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EP (eV)

densities can be determined for the samples based on Eq. 1. The results (Figure 4) demonstrate significant reduction in 
the trap density due to post-deposition oxygen annealing (type B) for solution processed samples and the use of a carrier 
gas consisting of an N2/O2 (85%/15%) mixture (type D) in HCVD growth process. 

 

Figure 4. Normalized trap density for the different types of samples of resistive structures as a function of energy. 

Standard planar devices were fabricated using HCVD-grown perovskite films with different post-deposition cooling 
rates in the optimized ambient. The corresponding optoelectronic properties are summarized in Table 2. It is found that 
the average PCE of the devices increased significantly for the MAPI layers grown in N2/O2 (85%:15%) and with a slow 
cooling rate of 0.7°C/min. It is found that the shunt resistance of the planar devices increases when the post-deposition 
cooling rate is reduced from 8°C/min to 0.7°C/min, indicating less shunting paths in the slow-cooled MAPI devices as 
lowering the cooling rate is desired for MAPI crystallization with reduction in the concentration of pinholes. The reverse 
saturation current density (Jo) is reduced with the reduction in the post-deposition cooling rate. The characterizations 
performed on the MAPI material and the corresponding devices show that the optimal growth ambient and proper 
thermal profile management are critical factors for the HCVD process to yield high quality MAPI films with low defect 
density. The best planar device fabricated utilizing the optimal fabrication parameters as presented above is shown to 
have a PCE of 17.2%. 

Table 2: The summary of photovoltaic performance of HCVD based solar cells. The values were averaged from 7 
devices. 

Structure  Cooling 
Rate 

(°C/min) 

VOC (V) JSC 
(mA/cm2) 

FF PCE (%) RS (Ωcm2) RSH 
(kΩcm2) 

Jo 
(mA/cm2) 

Planar 8 0.97±0.02 22.8±0.6 0.66±0.02 14.6±0.6 7±3 15±5 1×10-8 
4 1.01±0.03 22.7±1.0 0.67±0.02 15.5±0.3 7±3 18±9 2×10-10 

0.7 1.00±0.02 23.3±0.4 0.72±0.01 16.7±0.4 7±1 24±1 1×10-10 
Mesoporous 8 0.99±0.02 23.2±0.6 0.68±0.02 15.5±0.3 13±6 15±2 5×10-8 

4 1.00±0.02 23.2±0.4 0.69±0.01 16.1±0.4 14±5 19±6 2×10-8 
0.7 0.99±0.01 23.1±0.4 0.75±0.02 17.2±0.2 12±5 35±5 1×10-12 

 

Device performance can be enhanced by improving the device structure. Photovoltaic devices utilizing an mp-TiO2 
scaffold were fabricated. We have conducted X-ray diffraction (XRD) characterizations of the perovskite films deposited 
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