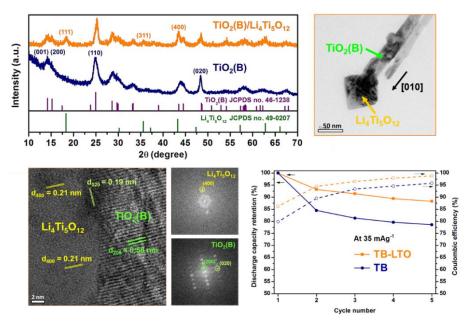
Preferential Growth of Li₄Ti₅O₁₂ onto (020) Planes of TiO₂(B) Towards Highly Reversible and Durable TiO₂-Based Li-Ion Battery Anode


Ching-Kit Ho¹, Chi-Ying Vanessa Li^{*1}, Kwong-Yu Chan^{*1}, Hoi Yung¹, and Yee-Yan Tay²

¹Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong

²School of Materials Science and Engineering, Nanyang Technological University, Singapore Facility for Analysis, Characterization, Testing and Simulation (FACTS) in Nanyang Technological University, Singapore

Abstract

The synthesis of anatase TiO₂-free TiO₂(B)/Li₄Ti₅O₁₂ composite remains unexploited due to the co-occurrence of anatase TiO₂ and Li₄Ti₅O₁₂ both derived from TiO₂(B) during conventional synthesis. Here, TiO₂(B)/Li₄Ti₅O₁₂ dumbbell-like nanofibers (TB-LTO) comprising Li₄Ti₅O₁₂ nanocrystals preferentially grown onto (020) planes of TiO₂(B) nanofibers are synthesized via a simple hydrothermal approach using pristine TiO₂(B) nanofibers (TB) and LiOH solution as precursors. The preferential growth is originated from the high surface free energy of (020) plane relieved by the coverage of Li₄Ti₅O₁₂ with a relatively small lattice mismatch, serving as the key to the successful preparation of TB-LTO with negligible anatase TiO₂ content. Benefiting from the synergistic effect of the composition and structure containing new TiO₂(B)/Li₄Ti₅O₁₂ interfaces, the TB-LTO dumbbell-like nanofiber features a significantly mitigated initial ICL (7 % at 35 mA g⁻¹), stable cycling (93 % capacity retention after 1000 cycles at 1750 mA g⁻¹), and enhanced rate performance (122 mAh g⁻¹ at 2630 mA g⁻¹). This work reveals a potentially effective way to integrate Li₄Ti₅O₁₂ with mestastable phases like TiO₂(B) for high electrochemical performance and durability.

Acknowledgement: The authors acknowledge financial support from Innovation and Technology Fund (ITS/378/13), Internship Programme (InP/299/14) and HKU Seed Fund for Basic Research (201605159011)