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In quantum Shannon theory, the way information is encoded and decoded takes advantage of the laws of
quantum mechanics, while the way communication channels are interlinked is assumed to be classical. In
this Letter, we relax the assumption that quantum channels are combined classically, showing that a
quantum communication network where quantum channels are combined in a superposition of different
orders can achieve tasks that are impossible in conventional quantum Shannon theory. In particular, we
show that two identical copies of a completely depolarizing channel become able to transmit information
when they are combined in a quantum superposition of two alternative orders. This finding runs counter to
the intuition that if two communication channels are identical, using them in different orders should not
make any difference. The failure of such intuition stems from the fact that a single noisy channel can be a
random mixture of elementary, noncommuting processes, whose order (or lack thereof) can affect the

ability to transmit information.
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Introduction.—Information theory, initiated by the semi-
nal work of Claude Shannon [1], has given us a framework
to understand the fundamental workings of communica-
tion, data storage, and signal processing. Shannon’s theory
was originally formulated with the assumption that the
carriers of information and the communication channels are
classical. The data were represented by classical random
variables, and the communication channels were treated as
stochastic transition matrices. However, the laws of nature
are fundamentally quantum, and one can take advantage of
these laws to build a new model of information processing.
This gave rise to quantum Shannon theory [2], where
quantum features such as superposition and entanglement
were used to enhance communication, increasing trans-
mission rates [3], providing unconditional security [4], and
introducing new means of information transmission [5],
just to name a few examples. Nevertheless, quantum
Shannon theory is still conservative, in that it assumes
that the communication channels are combined in a well-
defined configuration. In principle, quantum theory allows
for new ways to combine communication channels by
connecting them in a quantum superposition of different
configurations. In particular, quantum theory allows the
order of application of channels to be entangled with a
control system [6], a situation that is sometimes referred to
as a quantum superposition of orders. Even more generally,
quantum theory allows for exotic configurations that are
not compatible with any underlying model where the order
is definite [7]. Both features could emerge in a theory of
quantum gravity [8,9] and would offer enhancements in a
number of tasks, such as testing properties of quantum
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channels [10,11], playing nonlocal games [7], and reducing
communication complexity [12]. In this Letter, we show
that the ability to combine quantum channels in a super-
position of orders can boost the rate of communication
beyond the limits of conventional quantum Shannon theory.

Our result is based on a novel quantum primitive, called
the quantum SwITCH [6]. The quantum SWITCH is an
operation that takes two channels A/, and A, as inputs
and creates a new channel, which uses the channels A/ and
N, in an order that is entangled with the state of a control
qubit, thus generating a quantum superposition of two
alternative orders. Figure 1 illustrates different ways of
combining the two channels A/} and \V,, either in a definite
order or in a quantum superposition of orders. In [6], it was
shown that the quantum SWITCH cannot be realized by any
circuit where the order to the two channels A/, and N, is
fixed. Likewise, the quantum SWITCH cannot be realized as
a classical mixture of circuits using channels N'; and NV, in
fixed orders [10]. An even broader sense in which the
quantum SWITCH cannot be decomposed into quantum
processes with definite order has been discussed in [13].

In this Letter, we introduce a quantum Shannon theoretic
task where the quantum SWITCH enables two communicat-
ing parties to transmit information. We show that the
entanglement of the control system with the order of
application of two channels can be used to perform
communication tasks that are impossible when the order
is fixed or even correlated with a classical variable.
Surprisingly, the advantage can be achieved by switching
two copies of the same channel, a phenomenon which
we refer to as self-switching. Specifically, we show the
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FIG. 1. Fixed order vs superposition of orders. 1(a) A quantum
particle, prepared in the state p, goes first through channel A/,
and then through channel \,. This configuration is associated to
the state p. = [1)(1] of a control qubit, in which the choice of
order is encoded. 1(b) The quantum particle goes first through
N, and then through A/;. This alternative configuration is
associated to the qubit state p. = |0)(0]. 1(c) The quantum
SWITCH creates a superposition of the two configurations 1(a)
and 1(b). It takes a control qubit in a superposition state, such as
pe = |+)(+|, and correlates the order of the two channels with
the state of the qubit.

advantage of switching two copies of the completely
depolarizing channel, which transforms every quantum
state into the maximally mixed state. Clearly, none of
the two fixed configurations in Fig. 1 can be used to
communicate information. Here, we show that the entan-
glement of these two configurations with a control system
can be used to communicate classical information—a
phenomenon we call causal activation. This phenomenon
sheds light on the fact that the properties of channels do not
solely depend on the way they are constructed, but also on
the way they are combined: two channels combined in a
superposition of different orders behave very differently
from the same channels combined in a fixed order.

One of the main pillars of Shannon theory is quantifying
the capacity of channels to communicate information.
Channel capacity theorems are of fundamental importance
both for the theoretical characterization of channels, as well
as the experimental implementation of communication
protocols. In this Letter, we derive an analytical expression
for the Holevo capacity [14] of the two causally activated
depolarizing channels. Quite counterintuitively, we find
that the Holevo capacity is maximum for qubit channels
and decreases with the dimension of the input.

Preliminaries.—In this section, we review the concepts
and tools needed to understand our finding.

We use quantum channels to represent transmission lines
in a quantum communication network. Mathematically,
quantum channels are described by completely positive
trace preserving maps (CPTP). We will often use the Kraus

decomposition, which allows one to represent the action of
a channel A on a quantum state p as N'(p) = 3, K:pK],
where {K;} is a set of operators such that S,K/K; = I.
In a fixed causal structure, channels can be composed either
in parallel or series. Two channels | and A/, composed in
parallel are represented by the tensor product of the two
channels N/, @ N,. If used in series, the second channel
simply acts on the output of the first channel, i.e. N yoN.
More generally, the two channels can be connected in an
arbitrary quantum circuit including intermediate operations.
In principle, however, the order does not have to be fixed.
Two channels could be combined by the quantum SWITCH
operation, ending up in a situation where their relative order
is entangled with a control system. Let us denote the Kraus

operators of the channel N/ as {KEI)} and N, as {K™}.
The quantum SWITCH uses an auxiliary quantum system to
control the order of the Kraus operators of the two channels
in an indefinite causal manner. The Kraus operators of the
overall quantum channel resulting from the switching of

N, and N, are
w

e (1)

acting on a target quantum state p and a control state p,.
The action of the quantum SWITCH is then given by

SNLNL)(p ® pe) = ZWij(P ® Pc)W,Tj- (2)

K7k @ 10)(0], + KK @ [1)(1

ij — &

It is easy to check that above definition is independent of
the choice of Kraus operators for the channels A/; and NV >.
Mathematically, the quantum SWITCH is a higher-order
operation [6]: it takes two channels N/ and N, as input
and creates a quantum channel S(N|,N,) as output.
Specifically, this higher-order operation combines the
two input channels in an order that depends on the
state of the control qubit: if the qubit is in the state
px =10)(0|, the channel S(N, ;) will return the state
NN (p) ® |0)(0]; if the qubit is in the state p, = |1)(1],
the channel will return the state N'; A5 (p) ® |1)(1]. When
the qubit is in a superposition of |0) and |1), the channel
returns a correlated state, which can be interpreted as the
result of the input channels A/, and A/, acting on p in a
quantum superposition of two alternative orders.
Quantum Shannon theory with the assistance of the
quantum SWITCH.—In quantum Shannon theory, quantum
channels represent communication resources. Hence,
higher-order operations, like the quantum SWITCH, can
be viewed as transformations of resources. Quantum
Shannon theory can be cast in the form of a resource
theory by specifying a set of higher-order operations that
are regarded as free [15]. A basic type of free operation
maps an input channel A/ into an output channel Do o&,
where £ and D are two channels, representing encoding and
decoding operations at the sender’s and receiver’s end,
respectively. Another type is composition in parallel,
whereby two channels A/, and N, are combined into
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the channel N/} ® N,. Finally, it is also natural to consider
scenarios where the sender sends the information to the
receiver through a repeater, connected to the sender and the
receiver through two channels A/; and N5, respectively.
The corresponding type of free operation is composition in
sequence, whereby two input channels N, and N, are
combined into the output channel N ,oRoN'|, where R
represents the operation performed by the repeater.
Combining these three types of operations (possibly
including free classical correlations), one obtains a resource
theory, suitable to describe basic communication tasks
involving a single sender and a single receiver.

We now define an extension of standard quantum
Shannon theory that includes quantum superpositions of
causal orders. We do this in the resource-theoretic frame-
work, by adding the quantum SWITCH to the set of free
operations. More precisely, we add the free operation that
maps a pair of channels N'; and \V, to the new channel A/’
defined by N'(p) =SSN, N5)(p ® p.), where S is
defined as in Eq. (2), and p,. is a fixed state of the control
qubit. Note that the state of the control is part of the way the
two channels are combined and is not accessible to the
sender: the sender cannot encode classical bit in the state of
the control. The control is only accessible to the receiver,
who can use it as an aid for decoding. We refer to the
extended model as quantum Shannon theory with the
assistance of the quantum SWITCH. Adding the quantum
SWITCH 1is similar to what is done in other variants of
quantum Shannon theory, where one adds free entangle-
ment [3], free symmetric side-channels [16,17], free no-
signaling channels [18,19] and such like.

In the following, we will focus on the communication of
classical information. Holevo [14], Schumacher, and
Westmoreland [20] (HSW) proved that a single copy of
any quantum channel N can communicate classical infor-
mation at best at the rate y (\') := max, ,/(X;B),, where
I(X; B),, is the von Neumann mutual information, evaluated
on a state of the form ¢ := > p.|x)(x|y ® N(p,)z and
maximized over all possible ensembles {p,,p.}. The
quantity y(N') is called the Holevo information and has
been shown to be, in general, nonadditive [21]. This means

|
== Z(plo

SNPNP)p®p.) =

0, ® U;UpUtU} + (1

that there exist two channels A/ and M such that

YN ® M) > y(N) + y(M). Therefore, if many copies

of a channel whose Holevo information is nonadditive are
available, the Holevo information is a lower bound for the
capacity of quantum channels to communicate classical
information. Operationally, the lower bound corresponds to
the amount of information that can be transmitted if the
sender uses only product states in the encoding.

One of the implications of the HSW theorem is that any
quantum channel that is not constant can be used to
communicate classical information. This is because for a
channel NV that is not constant, there exist at least two pure
states [¢p) and [y), such that N (|¢){(#]) # N (jw)(y]).
Using these two states with equal probability, it can be
seen immediately that the Holevo information is positive. On
the other hand, the Holevo information of a constant channel
is trivially zero. Even if the constant channel is used many
times, none of the operations allowed in the standard model
of quantum Shannon theory allows one to generate a channel
that transmits information. In the following, we will show
that, in contrast, classical communication can become
possible with the assistance of the quantum SWITCH.

Main result.—A completely depolarizing channel A/P
on a d-dimensional quantum system can be represented by
uniform randomization over d”> orthogonal unitary oper-
ators U,, such that its action on a state p is

1 & . I
NP(p) :EZ UipU, = Trlp] <. (3)
i=1

Therefore, according to Eq. (1), the overall quantum
channel resulting from the quantum SWITCH of two
completely depolarizing channels has Kraus operators

1
Wi =

j = (UU; @ [0){0] + U;U; @ [1)(1],). (4)

Suppose that the control system is fixed to the state

¢ = we)lwel, where |y) = /p|0) + /T = p[1). If the
sender prepares the target system in the state p, then the
receiver will get the output state

- p)IN)(1]. ® U;UpUU]

+/p(1=p)[0)(1], ® U;U;pUUT +/p(1 = p)|[1)(0], ® U;U;pU}U})
/ UI
=p|o><0|c®3+<1—p)|1><1|c®3+ p(l= )|o 1|C®2Tr Ul

d?

+ 7%1)(;2—[)) 11)(0]. ® ;Tr[pU;} %

= (p10){0] + (1

=PI ® 5+ /p(T= (0}, + 1) (0l) ® 2. 5
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The first equality follows from Eq. (4). The second
equality is the application of the depolarizing channel in
Eq. (3). Finally, the last equation follows from the fact that
the operators U; form an orthonormal basis for the set of
d x d matrices.

Equation (5) shows that the quantum SWITCH of two
depolarizing channels has a clear dependence on the input
state p. Therefore, the HSW theorem implies that we can
communicate classical information at a nonzero rate.

The quantum SWITCH implements a transfer of informa-
tion from the input system to the correlations between the
output system and the control. Note that the information is
not contained in the state of the system alone nor in the state
of the control alone: it is genuinely contained in the
correlations. Note also that these correlations must be
quantum: if the control decoheres in the basis {|0), |1)},
the information is completely lost. In spite of this, the
receiver does not need to perform entangled operations in
the decoding. Instead, the receiver measures the control
system in the Fourier basis {|+),|—)}, obtaining the
conditional states

(SN NP)(p ® pol) = 5% V(L= p) 5. (6
Since these states still depend on p, the receiver can use this
dependence to extract nonzero information from the target
system. In terms of the Kraus operators (4), the postselection
on the outcomes + and — generates the noisy channel
generalization of the quantum superpositions of time evo-
lutions proposed by Aharonov and collaborators [22].

So far, we have shown that the quantum SWITCH allows
one to use depolarizing channels to communicate at some
nonzero rate. We now compute the optimal rate in the case
of product encodings by analytically calculating the maxi-
mum Holevo information over all input ensembles. We
restrict our attention to the case where the control qubit is in
the state p. = |+)(+| because for such a state, the
communication rate is the highest. The expression for
the maximum Holevo information is derived in the
Supplemental Material [23], where, in fact, we derive an
even more general expression, valid for arbitrary depola-
rizing channels, sending an input state p to an output state
gp+ (1 —=¢q)I/d, with 0 < g <1 a generic noise param-
eter. For the complete depolarizing channel (¢ = 0), we
find the Holevo information to be

X[SNP.NP)] =logd + H(p,)
A e (5) + ()
x log <d2;21>
F2(d=1) <2—1d> log <2—1d> } 7)

where P = 1/2|0)(0] + 1/2[1) (1| + 1/2d>(|0) (1] +
[1)(0|) is the reduced state of the control system. It should
not be surprising that the entropy of the control system
appears in the expression for the capacity of the switched
depolarizing channels. This is because the control system is
a parameter describing the way in which the depolarizing
channels are combined.

Equation (7) is the best rate one can communicate
classical information by switching only two copies of
the depolarizing channel. However, if one has access to
more copies of these channels, one may be able to
communicate more by inputting states that are entangled
across the channels. To show this would require a proof that
the overall mapping generated by switching depolarizing
channels is not additive. Since this question is separate
from the main point of this Letter, we leave this task for
future investigation.

Conclusions and Discussion.—In this Letter, we
explored an extension of quantum Shannon theory where
communication channels can be combined in a quantum
superposition of orders. In this extended model, we showed
that combining two completely depolarizing channels with
the quantum SWITCH activates them, allowing the trans-
mission of classical information. In contrast, no such
activation is possible in the standard model, where the
order is fixed or controlled by a classical random variable.

Strikingly, we showed that the Shannon theoretic ad-
vantage can be gained as a result of creating a superposition
of a channel with another copy of itself. This result may
seem paradoxical because exchanging two uses of the same
channel would not have any observable effect in any
ordinary quantum circuit. The resolution of the paradox
lies in the fact that noisy quantum channels can be seen as
random mixture of different processes, corresponding to
different Kraus operators. The advantage of the self-
switching arises because some of these processes do not
commute with each other, and therefore, a quantum control
on the order offers a nontrivial resource. We observe that no
self-switching effect arises for quantum channels that admit
a Kraus decomposition consisting of mutually commuting
operators.

Our results are an invitation to investigate a new
paradigm of Shannon theory, where the order of the
communication channels can be in a quantum superposi-
tion. This paradigm may find applications in future
quantum communication networks. Consider a situation
where a provider connects different communicating parties
through a network of quantum channels. In this situation,
the provider could opt to connect the channels in a
superposition of alternative configurations, thereby boost-
ing the communication rates between parties. Of course,
every such application requires a careful analysis of
physical resources required for the implementation of the
quantum SWITCH. While in this Letter, we treated the
quantum SWITCH as an abstract higher-order operation,
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there exist different ways in which this operation could be
realized, including table-top photonic implementations
[24,25], implementations with ion traps [26], and super-
conducting circuits [27]. The practical extent of the
advantage shown in our Letter greatly depends on the
resources required in each implementation. For example,
Oreshkov [28] has recently analyzed the structure of the
photonic implementations of [24,25], showing that an
essential ingredient is the ability to delocalize the input
channels in time, coherently controlling when the environ-
ment interacts with the system. On the other hand, our
result provides new motivation to the development of
experimental techniques for the implementation of the
quantum SWITCH.
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