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Abstract
Entanglement in angularmomentumdegrees of freedom is a precious resource for quantum
metrology and control. Herewe study the conversions of this resource, focusing onBell pairs of spin-J
particles, where one particle is used to probe unknown rotations and the other particle is used as
reference.When a large number of pairs are given, we show that every rotated spin-JBell state can be
reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate
determined by the quantumFisher information. This result provides the foundation for the definition
of an elementary unit of information about rotations in space, whichwe call theCartesian refbit. In the
finite copy scenario, we designmachines that approximately break downBell states of higher spins
intoCartesian refbits, as well asmachines that approximately implement the inverse process. In
addition, we establish a quantitative link between the conversion of Bell states and the simulation of
unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower
bounds on thefidelity of deterministic gate simulation. The result holds not only for rotation gates,
but also to all sets of gates that formfinite-dimensional representations of compact groups. For
rotation gates, we showhow rotations on a systemof given spin can simulate rotations on a systemof
different spin.

1. Introduction

Quantum states that encode information in the angularmomentumdegree of freedomare a valuable resource
for quantummetrology [1, 2] and communication [3, 4]. But depending on the task at hand, certain states can be
more useful than others. In situations where quantum communication is a scarce resource, it is natural to prefer
entangled states that convey precise informationwith the smallest number of particles. In situationswhere joint
operations are challenging to implement, it ismore preferable to encode information into product states, even if
such encoding requires an overhead in the number of particles.When different tasks are composed, it becomes
useful to switch fromone encoding to another: for example, onemaywant tofirst transfer directional
information from a sender to a receiver (using theminimumamount of quantum communication) and then to
broadcast the information from the receiver to a number of local users (using an encoding that allows to read out
the information locally). A device that implements the conversion between one encoding and the other acts as an
‘adapter’, which converts information from a form that is easier to transmit to a form that is easier to read out.

In this paperwe focus on the conversions ofmaximally entangled bipartite states, also known as Bell states.
Bell states of systemswith definite angularmomentum are faithful carriers of information about rotations in
space: when a rotationR is applied locally on one part of a Bell state Fñ∣ , the resulting Bell state

R IRF ñ = Ä Fñ∣ ( )∣ is in one-to-one correspondence withR. Evenmore specifically, the Bell states are optimal
for probing rotations among the states of systemswith definite value of the angularmomentum [5, 6]. Bell states
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are also optimal for the task of storing/retrieving rotation gates [7] and for correcting errors due to the lack of a
shared reference frame of Cartesian directions [8].

The conversion of Bell states is the paradigmatic example of optimal conversions of quantum reference
frames [9]. In this paperwe study the Bell state example in depth, determining the convertibility conditions and
highlighting their physicalmeaning. This work illustrates and complements the general theory of asymmetry as a
resource [10–16], offering a concrete case study that can be used for further generalisations. Specifically, we
investigate the problemof convertingN copies of a spin-JBell state intoM copies of a spin-KBell state, while
preserving the information about local rotations. One example of this type of conversions is the cloning of Bell
states [17–19], corresponding to the case J=K and M N> . In the largeN limit, we show that a deterministic
and reversible conversion can be achievedwhenever the quantumFisher information is conserved at the leading
order. Our result supports a conjecture byMarvian and Spekkens [16], who suggested that, under the validity of
certain symmetry conditions, the conservation of the quantumFisher information should be sufficient for an
asymptotically reversible conversion of quantum reference frames.

Since all the Bell pairs of spin-J particles are asymptotically interconvertible with each other, we can regard
the spin-1/2 Bell pair as the standard unit of information about rotations in space, or equivalently, about
Cartesian reference frames. Borrowing a term introduced by van Enk [20, 21], we call the spin-1/2Bell pair a
Cartesian refbit—a bit of Cartesian reference frame.

We then consider two categories ofmachines: one category ofmachines break downBell states into
Cartesian refbits.We name suchmachines quantum analysers. The other category ofmachines perform the
opposite conversion,merging groups of Cartesian refbits into Bell states of higher angularmomenta.We name
thesemachines quantum synthesisers.

Decomposing/recomposing quantum states into/frombasic units of reference frame has a number of
interesting applications. For example, quantum analysers can be used to distribute directional information to
multiple receivers: using a quantumanalyser, a high-precision gyroscope can be broken down into a number of
elementary gyroscopes, each carrying a unit of directional information. In this way, the original information can
be distributed tomultiple receivers, who can then perform localmeasurements. Essentially, the quantum
analyser takes care of the hard part in the readout and redistributes the information in a form that can be
accessed locally. Quantum synthesisers, instead, can be used to compress directional information into amore
compact form that is useful for storage into the quantummemory of a quantum computer or for transmission
via a quantum communication line.

In the non-asymptotic scenario wefind that quantumanalysers exhibit a number of peculiar properties. For
example, wefind that individual Bell states are ‘unbreakable’, meaning that no quantum analyser can convert a
singleBell state intoCartesian refbits with high level of accuracy. This fact is in stark contrast with the situation
for spin-J coherent states [22, 23], which can be reversibly broken down into M J2= spin-1/2 coherent states.
The contrast is worth highlighting because, among the states of systemswith definite angularmomentum, the
spin coherent states are the best carriers of information about individual directions [24], while the Bell states are
the best carriers of information about Cartesian reference frames [5, 6]. The contrast between spin coherent and
Bell states highlights a fundamental difference between the communication of a single direction and the
communication of a full Cartesian frame: while the best states for communicating individual directions can be
broken down into elementary units, the best states for communicatingCartesian frames cannot. Heuristically,
the difference arises from the particular way inwhichCartesian frames are encoded into Bell states: rather than
localising the information about three directions onto three different systems, the Bell state concentrates the
information into one entangled pair. Such away to pack information is system-specific, and systemswith
different spins correspond to different, inequivalent encodings.

Besides the conversions of Cartesian reference frames, our results determine how rotation gates on a system
of a given spin can be simulated by rotation gates on a systemwith different spin. For example, imagine the
scenariowhere a black box performs an unknown rotation on a spin-1/2 particle. By using the blackbox for
N times, amachine can simulate the rotation of a higher angularmomentum. But how large shouldN be in order
to reproduce the desired rotationwith high accuracy? And howmany times can themachine execute the
rotation? To address these questions we derive a general result, bounding the average performance of a
deterministic gate conversionwith the performance of a probabilisticBell state conversion. Specifically, we show
that the twofidelities satisfy the relation

F F F , 1Bell
prob 2

gate
det

Bell
prob ( ) ( )

valid not only for rotations but also for every compact group of unitary transformations. As a consequence, we
show that a gate simulation can be achieved deterministically with highfidelity if and only if the corresponding
state conversion can be achieved probabilistically with highfidelity. Once this fact is established, every result on
the probabilistic conversion of Bell states can be translated into a result on the deterministic simulation of
rotation gates. For example, wefind that a single rotation of a spin-J system cannot be used to simulate rotations
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on spin-1/2 systems. Our results provide tools that can be applied also beyond the problemof simulating
rotation gates. In a broad perspective, they contribute to the study of quantummachines capable of
automatically learning how to performdesired tasks, such as learning an unknownunitary gate [7] or learning a
quantummeasurement [25].

The paper is organised as follows. In section 2, we introduce the general framework. The deterministic
conversions of Bell states are studied in section 3, wherewe introduce the notion of Cartesian refbit. The
probabilistic conversions are then studied in section 4. Then, wemove to the problemof analysing/synthesising
Bell states into/fromCartesian refbits. In section 5, we focus on the task of breaking angularmomentumBell
states intoCartesian refbits. In section 6, we focus on the dual task ofmergingCartesian refbits into Bell states of
higher angularmomenta. Section 7 addresses the simulation of rotation gates and its relation to spin
conversions, providing general results valid for arbitrary groups of unitary gates. Finally, the conclusions are
drawn in section 8. The technical proofs are provided in the appendices, which can be skipped at afirst reading.

2. Bell state conversions

In this sectionwe introduce the general problemof converting angularmomentumBell states, defining the
notation and the relevant figures ofmerit used in the paper.

2.1. The task
Imagine that an experimenter has access to a black box performing an unknown rotation on a quantum system
with definite angularmomentum, specified by the quantumnumber J. Let us denote by g 3SOÎ ( ) the rotation,
and byUg J, is the unitarymatrix that represents the rotation on the system’sHilbert space.

Formany applications, it is useful to imprint the rotation into the state of a quantum system. For example,
the application could be to communicate the direction of three Cartesian axes [26–28], to sense an unknown
magnetic field [2], or to store the rotation in the thememory of a quantum computer [7], to correct for an error
[7, 8], or to generate a quantumprogramme for a programmablemeasurement device [29, 30]. For a single use
of the black box, the optimal way to imprint the rotation gate is illustrated infigure 1. Explicitly, one has to

(i) prepare a pair of spin-J systems in the standard Bell state

J m J m

J

, ,

2 1
, 2J

m J
J

F ñ
å ñ Ä ñ

+
=-∣ ≔

∣ ∣
( )

where J m m J J, , ...,ñ = - +{∣ ∣ }are the eigenvectors of the z component of the angularmomentum
operator.

(ii) let the first system undergo the rotation, so that the standard Bell state is transformed into the rotated Bell
state

U I , 3g J g J J J, ,F ñ Ä F ñ∣ ≔ ( ) ∣ ( )

where IJ is the identitymatrix.

Figure 1.Encoding a local rotation into a Bell state. A spin J system (in red), acting as a probe, is entangledwith another spin J system
(in blue), acting as a reference. The two systems are initially in the standard Bell state JF ñ∣ . Then, the probe undergoes the unknown
rotation g and the state of the composite system is transformed into a rotated Bell state g J,F ñ∣ .
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By repeating this procedure onN pairs, the experimenter can generateN identical copies of the rotated Bell
state g J,F ñ∣ . At this point, theN copies represent a physical token of the information about the rotation. Bell states
corresponding to the same rotation but to different values of the angularmomentum represent different types of
tokens.

In the followingwe consider the task of converting one type of token into another. Precisely, wewill search
for the optimal process that transformsN copies of a rotated spin-JBell state intoM approximate copies of a
rotated spin-KBell state, while preserving the information about the rotation. Ideally, we aim at implementing
the transformation

g, 3 . 4g J
N

g K
M

, , SOF ñ  F ñ " ÎÄ Ä∣ ∣ ( ) ( )

Inmost cases, such transformation cannot be implemented perfectly.Wewill refer to the task of approximating
the desired transformation as ‘convertingN copies of a rotated spin-J Bell state intoM copies the corresponding spin-
KBell state’. Implicitly, it is understood that the rotation g in the input Bell state g J

N
,F ñÄ∣ is unknown and

therefore the conversionmechanism should be independent of g.

2.2.Optimal quantummachines
In this paper we consider twoways of converting Bell states: by deterministic operations and by probabilistic
operations. A deterministicmachine is described by a quantum channel (completely positive trace-preserving
map)  , transforming the state of theN input pairs into the state of theM output pairs. Themachine converts
theN-copy input state g J

N
,F ñÄ∣ into the (generallymixed) output state g J g J

N
, , F ñáF Ä(∣ ∣ ). Note that, in general we

allow themachine to perform global operations jointly on all the input systems. The performance of the
machine ismeasured by the average fidelity between the output state and the desiredM-copy state, namely

F gd . 5g J
N

g K
M

g K
M

g J g J
N

g K
M

Bell
det

, , , , , ,òF ñ  F ñ = áF F ñáF F ñÄ Ä Ä Ä Ä[∣ ∣ ] ∣ (∣ ∣ )∣ ( )

Aprobabilisticmachine is described by a quantumoperation (completely positive trace-non-increasing
map). The occurrence of the probabilistic transformation is heralded by the outcome of a quantum
measurement.We call this outcome the ‘successful outcome’, meaning that, when the outcome occurs, the
machine produces an output according to the intendedmap. In such a case, the output state is

Tr
6g

g J g J
N

g J g J
N

, ,

, ,




r¢ =

F ñáF

F ñáF

Ä

Ä

(∣ ∣ )
[ (∣ ∣ )]

( )

and the probability of success is

p gsucc Tr . 7g J g J
N

, ,= F ñáF Ä( ∣ ) [ (∣ ∣ )] ( )

Conditionally on the occurrence of the successful outcome, the performance of the probabilisticmachine is
evaluated by the average fidelity between the output state and the desiredM-copy state, namely

F p gd succ , 8g J
N

g K
M

g K
M

g g K
M

Bell
prob

, , , ,ò rF ñ  F ñ = áF ¢ F ñÄ Ä Ä Ä[∣ ∣ ] ( ∣ ) ∣ ∣ ( )

where p gd succ( ∣ ) is the conditional probability distribution for the rotation g. Specifically, the probability
distribution can be expressed as p g p g g pd succ succ d succ=( ∣ ) ( ∣ ) , where gd is the normalisedHaarmeasure
and

p gd Tr 9g J g J
N

succ , ,ò= F ñáF Ä[ (∣ ∣ )] ( )

is the total success probability. Combining the above relations, the probabilistic fidelity reduces to

F
g

g

d

d Tr
. 10g J

N
g K

M g K
M

g J g J
N

g K
M

g J g J
NBell

prob
, ,

, , , ,

, ,





ò
ò

F ñ  F ñ =
áF F ñáF F ñ

F ñáF
Ä Ä

Ä Ä Ä

Ä
[∣ ∣ ]

∣ (∣ ∣ )∣

[ (∣ ∣ )]
( )

This expressionwill be often used in our analysis. In the end of the paper wewill show that the probabilistic
fidelity in equation (10) provides bounds on a gate simulation task, where the goal is to simulateM uses of a
rotation on spin-K systemwithNuses of the same rotation on a spin-J system.

3.Deterministic conversions

In this sectionwe characterise the conversions of Bell states that can be achieved deterministically.Wefirst
consider the simplest instance of the problem, involving a single input Bell state and a single output Bell state.
Then, wemove to conversions involving asymptoticallymany copies. In the asymptotic setting, we identify the
conservation of the quantumFisher information as the necessary and sufficient condition for a faithful
conversion.
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3.1. Single-copy conversions
Let us start from the simple case where the input of the conversion is a single copy of a spin-JBell state. In this
case, the symmetry of the problem allows us to identify the optimal conversion process and to give an analytical
expression for thefidelity. Herewe focus on the results and on their physical interpretation, while the technical
details are provided in appendix A.

In the single-copy case, it turns out that deterministic and probabilistic operations perform equally well, no
matter how small is the probability of success. The optimal fidelity for converting one spin-JBell state into one
spin-KBell state is

F
J

K J K

2 1

2 1 2 1
. 11g J g KBell , ,F ñ  F ñ =

+
+ - +

[∣ ∣ ]
( ) ( ∣ ∣ )

( )

An important observation is that the conversion is never perfect, except in the trivial cases J=K and/orK=0.
For all the other values of J andK thefidelity satisfies the bound

F 75%, 12g J g KBell , , F ñ  F ñ[∣ ∣ ] ( )

where the equality is attained by setting J=1 and K 1 2= . For large J or largeK, thefidelity tends to zero as the
difference J K-∣ ∣becomes large.

The optimal conversion process has an intuitive physical realisation. The idea is that a single spin-J system
can be faithfully encoded into a systemof J2 spin-1/2 particles, whose state is constrained to be in the symmetric
subspace [31].When J is smaller thanK, the initial J2 particles can be converted into K2 particles by using the
universal quantum cloningmachine [32].When J is larger thanK, one has to discard J K2 -( ) of the particles.
In both cases, the protocol produces K2 spin-1/2 particles in the symmetric subspace. Thanks to this fact, the
K2 particles can be transformed into a single spin-K systemby a suitable decoding operation. The overall
protocol is illustrated infigure 2.

Figure 2 shows that the optimal Bell state conversion is achieved by local operations, performed
independently on the two input spins. For K J> , there is an interesting connectionwith the cloning problem
considered in [33, 34], where the aim is to locally clone the correlations between a system and a reference. It
turns out that the universal cloningmachine is optimal both for the local cloning problemof [33, 34] and for the
problemof converting Bell states. In a sense, the conversion of the Bell state g J,F ñ∣ into the Bell state g K,F ñ∣ can be
viewed as the local cloning of correlations, with cloning operations performed both on the system and on the
reference.

Onemaywonder whether this is a generic feature of Bell state conversions.We can imagine that, for every
Bell pair, one spin is in Alice’s laboratory and the other is in Bob’s laboratory. Then the question is: canAlice and
Bob achieve the optimal Bell state conversion by performing local operations in their laboratories and, possibly,
coordinating their operations through the communication of classicalmessages? Interestingly, this is not the
case for N 1> or M 1> : later in the paper wewill see that, in general, joint operations are necessary in the
multicopy scenario.

3.2. Asymptotic conversions
Herewe consider asymptotic conversionswhere one is given a large number of spin-J pairs, each pair in the same
rotated Bell state. The goal is to produce asmany spin-K pairs as possible, under the condition that the joint state

Figure 2.Optimal single-copy Bell state converter. The figure illustrates the action of an optimalmachine converting a spin-JBell state
g J,F ñ∣ into a spin-KBell state g K,F ñ∣ for the J K case. Two identical sequences of operations are applied to each of the two subsystems

constituting the Bell pair: first, the encoding channel  embeds the spin-J system into a systemof J2 spin-1/2 systems (qubits). Then,
the universal cloningmachine  optimally turns J2 qubits into K2 qubits. Finally, the decoding channel merges K2 qubits into a
single spin-K system.A similar sequence of operations allow us to achieve conversions with J K> , the only difference being that one
has to replace the universal cloningwith a universal discarding, corresponding to the partial trace over J K2 2- qubits. In both cases,
the optimal conversion only requires local operations on the two subsystems of the Bell pair.
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of all pairs should resembleM perfect copies of the rotated spin-KBell pair, with an error vanishing in the
asymptotic limit. In the asymptotic scenario, it turns out that Bell states with different angularmomenta can be
interconverted reversibly, as shownby the following Theorem.

Theorem1 (Deterministic Bell state conversion). If the condition

MK K NJ J1 1 13+ - + = D∣ ( ) ( )∣ ( )

holds with O N1D = a-( ) for some 0a > , then there exists a deterministic machine that reversibly transforms
N copies of the spin- J Bell state g J,F ñ∣ into M copies of the spin-K Bell state g K,F ñ∣ with error vanishing as

NJ J 1 2D +[ ( )] in the largeN limit.

The idea of the proof is to decompose theN-copy input states into a superposition of eigenstates with
definite values of the quantumnumber of the total angularmomentum.When this is done, it turns out that the
quantumnumber of the total angularmomentum is asymptotically distributed as aGaussianwith variance
NJ J 1 3+( ) , times a polynomial prefactor. Specifically, for integerNJ one has the decomposition

p , 14g J
N

j

NJ

j
N J

g j
N J

,
0

,
,

,F ñ = Y ñÄ

=
∣ ⨁ ∣ ( )( ) ( )

where j is the quantumnumber of the total angularmomentum, g j
N J
,

,Y ñ∣ ( ) is an eigenstate of the square of the total

angularmomentumoperator, and pj
N J,( ) is a probability distribution, asymptotically equal to

p
j

N J J

j

NJ J
O

N J

27 2 1

8 1
exp

3

2 1
1

1

1
15

j
N J,

4

3 3 3

2

p
=

+
+

-
+

-
+

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( )
( ) ( ) ( )

( )( )

(see appendices B andC for the derivation of equations (14) and (15), respectively).
The same decomposition holds for theM-copy output space, except that the variance of theGaussian is

MK K 1 3+( ) , instead of NJ J 1 3+( ) . To convert the input state into the output state, we use a
transformation that preserves the total angularmomentum,while transforming the state g j

N J
,

,Y ñ∣ ( ) into the state

g j
M K
,

,Y ñ∣ ( ) for every value of j. The conversion has high fidelity if theGaussian distributions of the input and output
states are close, which happenswhen MK K 1+( ) is equal to NJ J 1+( ) at the leading order. The proof details
can be found in appendixD.

Theorem 1 tells us that spin-JBell states can be reversibly converted into spin-KBell states, provided that the
two quantities MK K 1+( ) and NJ J 1+( ) are close to each other. In particular, thismeans that the ratio
between the number of output and input copies grows asymptotically as

M

N

J J

K K

1

1
, 16=

+
+

+
( )
( )

( )

where ò vanishes as ND .
Note that, in general, the conversion of rotated Bell states cannot be achieved by local operations. For local

operations, the theory of pure state entanglement [35] implies that the ratioM/Nmust be smaller than or equal
to J Klog 2 1 log 2 1+ +( ) ( ). Thismeans that conversion of rotated Bell states requires global operations
whenever J Klog 2 1 log 2 1+ +( ) ( ) is smaller than J J K K1 1+ +( ) [ ( )].When this is the case, the
conversion of rotated Bell states requires global operations capable of generating entanglement, while preserving
the information about the rotation.

3.3. Conservation of the Fisher information
The condition (16) has an intuitive interpretation in terms of the amount of information carried by the input
and output states. Suppose that rotation g is parametrised in terms of three rotation angles, corresponding to
rotations around the axes x, y, and z. To discover the three rotation angles , ,x y zq q q q= ( ), it is convenient to use
an unbiasedmeasurement, that is, ameasurement that on average returns the correct angles. The precision of
themeasurement can be quantified by the covariancematrix Cq, defined as

C p: d , 17ij i i j jò q q q q q q q= - -q[ ] ( ˆ ∣ ) ( ˆ ) ( ˆ ) ( )

where , ,x y zq q q q=ˆ (ˆ ˆ ˆ ) are themeasured angles and p q q( ˆ∣ ) is the conditional probability distribution of
measuring q̂ when the true angles are q. The covariancematrix can be bounded in terms of the quantumFisher
informationmatrix Fq, which for a pure state Y ñq∣ is defined as

QFI : 4 Re , 18ij i j i j, , , ,= áF F ñ - áF F ñáF F ñq q q q q q q[ ] [ ∣ ∣ ∣ ] ( )
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wherewe used the notation i,
i

F ñ Y ñq qq
¶
¶

∣ ≔ ∣ . The bound on the covariancematrix, known as the quantum

Cramér–Rao bound [24, 36, 37], has the form

C QFI , 191q q
- ( )

where QFI 1
q
- denotes the inverse of thematrix QFIq, and the notation A B means that all eigenvalues of the

matrixA−B are positive or zero. In particular, the quantumCramér–Rao bound implies that the variance for
themeasurement of the angles xq yq , and zq are lower bounded by the diagonal entries of the inverse quantum
Fisher informationmatrix.

For the spin-JBell states the quantumFisher informationmatrix is independent of q and is given by [38]

NJ J
QFI

4 1

3

1 0 0
0 1 0
0 0 1

. 20=
+ ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟

( ) ( )

Since the quantumFisher informationmatrix is proportional to the identity, we can simply focus on the
proportionality constant NJ J4 1 3+( ) and refer to it as the ‘quantumFisher information’.We can now give an
intuitive interpretation to the condition (16) on the asymptotic convertibility of Bell states. The condition is the
(approximate) conservation of the Fisher information from the input to the output: if the quantumFisher
information of the input is approximately equal to the quantumFisher information of the output, then the
transition is asymptotically possible and can be implemented reversibly.

3.4. TheMarvian–Spekkens conjecture
For families of pure states generated by rotations, the conservation of the quantumFisher information is
equivalent to the conservation the covariancematrix of the angularmomentumoperator. This conditionwas
identified byMarvian and Spekkens [16] as a necessary requirement for the reversible, asymptotic convertibility
of pure states. In the samework,Marvian and Spekkens conjectured that the conservation of the covariance
matrix should also be sufficient, provided that two additional symmetry requirements are satisfied. In our
settings, these requirements are trivial and therefore theMarvian–Spekkens conjecture becomes that the
conservation of the Fisher information is necessary and sufficient for an asymptotically reversible conversion.
Theorem1 proves the validity of this conjecture in the case of rotated Bell states.

In the Bell state case, we can also provide a strong converse to theMarvian–Spekkens conjecture, showing
that the quality of the conversion vanishes whenever the conversion rate exceeds the value determined by the
conservation of the Fisher information. Specifically, we prove that every deterministicmachine has to satisfy the
upper bound

F
NJ J

MK K
O

N

M

1

1
21g J

N
g K

M
Bell
det

, , 3

3
2

F ñ  F ñ
+
+

+Ä Ä
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟[∣ ∣ ] ( )

( )
( )

valid for largeN andM. The derivation of the bound is provided in appendix E. According to the bound (21), a
deterministicmachine that over-produces Bell states will incur in an error, proportional to the extent towhich
the conservation of the quantumFisher information has been violated. For example, amachine that produces
Bell states at a quadratic rate M N 2µ will necessarily have vanishing fidelity in the asymptotic limit.

3.5. TheCartesian refbit
The asymptotic convertibility of Bell states provides the foundation for the definition of an elementary unit of
information about rotations in space. As a standard unit of information, we choose the spin-1/2 Bell state

g ,1 2F ñ∣ . There are two reasons for this choice:

(i) the spin-1/2 Bell state is the best state that carries faithful information about rotations on the smallest
quantum system

(ii) in the asymptotic setting every spin-J Bell state can be reversibly converted into spin-1/2 Bell states, at a rate
determined by the conservation of the quantumFisher information.

Since the rotations in space are in one-to-one correspondence withCartesian reference frames, the spin-1/2
Bell state can be regarded as a unit of Cartesian reference frame.We call such unit aCartesian refbit, borrowing a
term introduced by van Enk [20, 21] in a slightly different, but closely related context. In section 5 (section 6)we
will study howBell states converted into (generated from)Cartesian refbits in the non-asymptotic setting. Before
that, wewill analyse the conversion of Bell states via probabilistic operations.
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4. Probabilistic conversions

In this sectionwe study the conditions for exact and approximate probabilistic conversions of Bell states. The
problem is interesting in view of the relation between probabilistic Bell state conversions and deterministic gate
simulations, discussed in the end of the paper.

4.1. Exact probabilistic conversions
Let us start from the exact conversions, that is, the conversions that can be achievedwith unit fidelity.We focus
on the N 1> case, because theN=1 case has already been treated in section 3.1. For N 1> , a necessary and
sufficient condition for perfect convertibility is the following:

Theorem2 (Exact probabilistic conversion of angularmomentumBell states).Aprobabilistic machine can
perfectly convert N 1> copies of a rotated spin- J Bell state into M copies of corresponding spin-KBell state if and
only if NJ MK .

The proof idea is similar to the proof idea of theorem1,with the only difference that nowourmachine is not
constrained to operate deterministically. Once again, we decompose the input and output states into a
superpositions of states with definite values of the quantumnumber of the total angularmomentum, as in
equation (14). Tofix ideas, consider the case where bothNJ andMK are integers. In this case, the angular
momentumnumber has integer values from0 toNJ for the input state and from0 toMK for the output state. If
NJ is larger thanMK, the input state contains a larger set of values. Then, we can construct a perfect probabilistic
machine that filters out the states with values of the angularmomentum larger thanMK and uses the states with
angularmomentumbetween 0 andMK as ingredients to reproduce exactly theM-copy output state.Note that
thismachine is intrinsically probabilistic, because it has to project the input state into a subspace, and also
because it has to reshape the relative weights of the terms in the quantum superposition (14). The details can be
found in appendix F.

The proof that the condition NJ MK is necessary for a perfect probabilistic conversion is also provided in
appendix F. The proof idea is nicely linkedwith the impossibility of cloning quantum states. Basically, we prove
that a perfect Bell state conversionwith NJ MK< would allow us to perfectly convert NJ2 copies of a spin-1/2
Bell state into MK2 copies of the same state, in violation of the no-cloning theorem.

Theorem 2 tells us themaximumnumber of spin-KBell states that can be extracted perfectly fromN copies of
a spin-JBell state. As long aswe insist on having no error, the ratio between the output and input copiesmust
satisfy the bound

M

N

J

K
, 22 ( )

nomatter how small is the probability of success.
In the followingwewill see that tolerating a small error allows one to achievemuch better scaling, withM

growing quadratically, instead of linearly withN.

4.2. Asymptotic probabilistic conversions
In the limit of largeN, the performance of the probabilistic Bell state conversion is determined by the following
theorem:

Theorem3 (Asymptotic probabilistic Bell state conversion). N copies of a rotated spin-J Bell state can be
probabilistically converted into M copies of the corresponding spin-KBell state with arbitrarily small error whenever
NJ is large compared to MK K 1+( ) . Conversely, everymachine with MK K NJ1+ ( ) must have non-
vanishing error.

Tounderstand the idea of the proof, it is useful to recall that the input and output states can be decomposed
into superpositions of states with different values of the total angularmomentum, as in equation (14). The
weights in the superposition are proportional to aGaussian distributionwith standard deviation equal to

NJ J 1 3+( ) for the input state, and to MK K 1 3+( ) for the output state. On the other hand, the support
of the input distribution reaches the valueNJ. Hence, we canmodify theweights in the input state in such away
that they look like theweights in the output state, for all the values of the angularmomentumuntil first
c MK K 1 3+( ) , where c is a constant. In this way, we obtain a state that is identical to the desired output state
for all values of the angularmomentumwithin c standard deviations. By choosing c large enough, we canmake
thefidelity as large aswewant. Summarising, the condition NJ MK K 1+ ( ) guarantees a probabilistic
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conversionwith highfidelity. The full proof is provided in appendix G, wherewe also show that the condition
M?N2 leads to unavoidable errors.

With respect to the deterministicmachine of theorem 1, the probabilisticmachine of theorem3 boosts the
number of output copies fromO(N) to O N 2( ). As it often happens for probabilisticmachines [39–41], the
performance enhancement comes at the price of a damped probability of success. For the probabilisticmachine
used in theorem 3, the probability of success can be upper bounded in terms ofN, J, and the ratio R M N= .
Whenever the ratio exceeds the critical value

R
J J

K K

1

1
, 23*

+
+

≔ ( )
( )

( )

the probability of success is upper bounded as

p
R

R
e . 24succ

1NJ
J

R
R

3
2 3

2 1

*
* - -+⎜ ⎟⎛

⎝
⎞
⎠ ( ) ( )( )

Hence, every ratio R R* leads to an exponentially vanishing probability of success. In otherwords, every
violation of the conservation of the quantumFisher information is exponentially suppressed in the largeN limit.

Due to the exponentially vanishing probability, the probabilistic conversions are not practically relevant in
the asymptotic scenario.However, they are conceptually important, because they determine the extreme
boundary of what is possible in quantummechanics.Moreover, they are important as a technical tool for
studying the the simulation of rotation gates: in the end of the paper, wewill show that the fidelity of the
probabilistic Bell state conversion gives upper and lower bounds on the fidelity of the deterministic gate
simulation.

5.Quantumanalysers of rotational information

In this sectionwe designmachines that break downBell states intoCartesian refbits. Thesemachines will be
called quantum analysers.

5.1. Single Bell states are unbreakable
We start from the problemof breaking down a single Bell state into units of rotational information. Herewe
show that, nomatter how large is J, there is noway to convert the information carried by a single spin-JBell state
intoCartesian refbits. Quantitatively, we have the following

Proposition 1.Nomachine can break down a single spin-J Bell state into Cartesian refbits with fidelity larger
than J1 2 1 4+ ( )/ .

Proposition 1 applies to both the deterministic and probabilisticmachines. It shows that the fidelity of the
quantumanalyser is never equal to 1, except in the trivial case where J is already equal to 1/2. For every other
value of J, the fidelity is upper bounded by 75%and converges to 50% in the large J limit.

Some insight into the physical origin of this result can be obtained by thinking of the spin-J system as a
systemof J2 spin-1/2 particles, constrained to the symmetric subspace. By discarding all particles but one, we
can transform the original spin-J system into a spin-1/2 system.However, this procedure will not transform a
spin-JBell state into a spin-1/2Bell state: instead, it will generate a noisy Bell state. The bigger the total spin, the
larger the noise will be. In this picture, the physical reasonwhyBell states are unbreakable is the intra-particle
entanglement among the J2 particles constituting the spin-J system. The complete proof can be found in
appendixH.

Proposition 1 shows that the reference frame information contained in the Bell states is unbreakable. The
fact highlights a fundamental difference betweenCartesian reference frames and reference frames for individual
directions. Consider the spin coherent states [22, 23], namely the states defined by

J J U J J, : , ,g g J,ñ = ñ∣ ∣

where J J, ñ∣ denotes the eigenstate of the z component of the angularmomentumoperator for the eigenvalue J.
Among the states of a single spin-J system, the spin coherent states are known to be the best carriers of
information about a single direction [24]. Spin coherent states can be perfectly broken down into elementary
units: indeed, it is immediate to see that there exists a quantum channel transforming the spin coherent state
J J, gñ∣ into J2 exact copies of the spin coherent state 1 2, 1 2 gñ∣ . In summary, the information about a single
direction can be broken down into elementary units, while the information about a full Cartesian frame cannot.
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5.2. Unlocking the refbits
Consider now the problemof breaking downN copies of a spin-JBell state. Already forN=2, interesting
phenomena occur. For example, a deterministicmachine can transform two copies of a spin-JBell state into
O J 2( ) refbits, with afidelity of 85.6% in the large J limit (appendix I).Moreover, one can also construct a
probabilisticmachine that achieves unit fidelity in the large J limit. In general, we have the following proposition:

Proposition 2.There exists a probabilistic machine that transforms N copies of a rotated spin-J state into M
Cartesian refbits with fidelity

F M
N J

M
1 1 exp

2

1
. 25g J

N
g

M
Bell
prob

, ,1 2

2 2

F ñ  F ñ - + -
+

Ä Ä
⎡
⎣⎢

⎤
⎦⎥[∣ ∣ ] ( ) ( )

The physical origin of the result is the same as in theorem 3. The quantumnumber of the total angular
momentumgoes from0 toNJ for the input state, and each of these values has a non-zeroweight. On the other
hand, the target output state has aGaussian distributionwith variance O M( ). Hence, the input state can be
turned into a good approximation of the output statewheneverNJ is large compared to M . The bound (25)
follows fromHoeffding’s bound on the tails of theGaussian distribution. The explicit derivation is provided in
appendix J.

Proposition 2 tells us that the error vanishes whenever the condition M N J2 2 is satisfied. In short, a
probabilisticmachine can ‘unlock’ the elementary units of reference frame information contained in the Bell
state, wheneverN is larger than 1 and the product NJ is sufficiently large.

6.Quantum synthesisers of rotational information

In this sectionwe consider the task of generating Bell states from elementary units of rotational information.
Machines implementing this taskwill be called quantum synthesisers.

Specifically, we study howNCartesian refbits can be converted into a single spin-KBell state. For this task,
we consider a simple protocol based on estimation and re-preparation: givenNCartesian refbits, the protocol is
to estimate the rotation and to prepare the corresponding spin-KBell state. Let us denote by ĝ the estimate of the
unknown rotation and let us assume that themachine prepares the Bell state g K,F ñ∣ ˆ corresponding to the
estimate. The action of themachinewill be described by themeasure-and-prepare channel

g Md Tr , 26g K g K gMP , , òr rF ñáF( ) ≔ ˆ ∣ ∣ [ ] ( )ˆ ˆ ˆ

where Mg{ }ˆ are the operators describing themeasurement.We choose the optimalmeasurement for the
estimation of g. Suchmeasurement is given by the operators [6, 42]

M k l2 1 2 1 . 27g
k l

N

g k g l
, 0

2

, ,å= + + F ñáF
=

( )( ) ∣ ∣ ( )ˆ ˆ ˆ

Now, it is interesting to ask how fast canK grow as a function ofN. By explicit evaluation, wefind out that the
fidelity converges to 1wheneverK grows slower than N . In this case, thefidelity has the asymptotic expression

F
K

N
O N1

2 1

4
, 28g

N
g KBell

MP
,1 2 ,

2
1F ñ  F ñ = -

+
+Ä -[∣ ∣ ] ( ) ( ) ( )

derived in appendixK. Instead, whenK is large compared to N , thefidelity vanishes as N K 2 in the asymptotic
limit.

7. Simulating rotation gates

Our results on the conversion of Bell states have an application to the study of quantummachines that use
rotations on a given system to simulate rotations on another system. An interesting example is that ofmachines
that use qubit rotations to simulate rotations of higher angularmomenta.More generally, the problem is to
simulate a unitary gate through the use of another gate. Previousworks on this type of simulation included the
cloning of unitary gates [43–45] and othermanipulations, such as inversion, charge conjugation, and
controlization of unitary gates [46].

7.1. The gate simulation task
Suppose thatwe are given a black box implementing a unitary gateUx, where the parameter x is randomly drawn
from some set Xwith probability px. Our goal is to implement another unitary gateVx, possibly acting on a
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different system, usingUx as a resource. The problem is how to simulate the gateVxwhile actually using the gate
Ux. For example,Ux could be a rotation on a small system andVx could be a rotation on a larger system.

Now, suppose that we can use the gateUx forN times andwewant to simulateM parallel uses of the gateVx.
To do this, wewill need to build a quantumnetworkwhere the black box implementing the gateUx is connected
with other quantumdevices, suitably chosen to optimise the simulation. A network of this kind is shown in
figure 3.

Wewillfirst consider the casewhere the gate simulation network consists of deterministic devices. In this
case, the overall operation implemented by the network is a quantum channel (trace-preserving completely
positivemap) x

N ( ), acting onM identical systems. Ideally, the action of x
N ( ) should resemble asmuch as possible

the action ofM parallel queries to the gateVx. To quantify the resemblance, we use the entanglement fidelity [47],
namely the fidelity between the output of the actual channel and the output of the target channel when the two
channels are applied locally to amaximally entangled state.

Specifically, let outF ñ∣ be the canonical Bell state defined by

n n

d
,n

d

out
1

out

outå
F ñ =

ñ Ä ñ
=∣

∣ ∣

where dout is the dimension of theHilbert space out , onwhich the target gateVx acts.When the channel x
N ( ) is

applied locally onM copies of the Bell state outF ñ∣ , it generates the output state

,x x
N M Mdet

out out out S = Ä F ñáFÄ Ä( )(∣ ∣ )( ) ( )

wherewe implicitly understand that the channel x
N ( ) (respectively, M

outÄ ) acts on thefirst (respectively, second)
systemof each Bell pair inside the round bracket. For afixed value of the parameter x, the entanglement fidelity is

F N U V V I V I, ,x x x
M M

x
M

x x
M Mdet

out
det

out = áF Ä S Ä FñÄ Ä Ä Ä Ä[( ) ] ∣ ( ) ( ) ∣† ( )

where the notation N U, x( )means that the input resource consists ofNuses of the gateUx, employed in an
arbitrary (not necessarily parallel) disposition. Averaging over all possible rotation gates, we obtain the fidelity

F N U V p F N U V, , . 29x x
M

x
x x x x

M
gate
det det

X
å = Ä

Î

Ä[( ) ] [( ) ] ( )

It is worthmentioning that themaximisation of the entanglement fidelity is equivalent to themaximisation of
the average fidelity between the outputs when the channels are applied to a randomly drawn input state [47].

Wewill also consider networks of probabilistic devices, whose successful functioning is heralded by a
sequence ofmeasurement outcomes. A probabilistic networkwill transform theN input uses of the gateUx into
a (generally trace non-increasing) quantumoperation x

N( ) acting onM identical systems. The probability that
the quantumoperation x

N( ) takes place on the Bell state M
outF ñÄ∣ is

p xsucc Tr ,x
N M M

out out out = Ä F ñáFÄ Ä( ∣ ) [( ) (∣ ∣ )]( )

wherewe implicitly understand that the quantumoperation x
N( ) acts on thefirst systemof each Bell pair.When

the quantumoperation takes place, the output state is

Tr
.x

N x
N M M

x
M M

out out out

out out out

 

 
S =

Ä F ñáF
Ä F ñáF

Ä Ä

Ä Ä

( ) (∣ ∣ )
[( ) (∣ ∣ )]

( )
( )

Figure 3.Network for gate simulation. The network (in blue) hasN open slots whereN uses of the unitary channel x (in orange) can
be inserted.When the gates are in place, the network simulatesMuses of the unitary channel x (in green).
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For a given value of the parameter x, the entanglement fidelity is

F N U V V I V I, . 30x x x
M M

x
M

x
N

x
M Mprob

out out = áF Ä S Ä FñÄ Ä Ä Ä Ä[( ) ] ∣ ( ) ( ) ∣ ( )† ( )

Conditioning on the successful functioning of the devices in the network, the average fidelity is

F N U V p x F N U V, succ , . 31x x
M

x
x x x

M
gate
prob prob

X
å = Ä

Î

Ä[( ) ] ( ∣ ) [( ) ] ( )

In the followingwewill establish connections between thefidelities of gate simulation and the fidelities of
Bell state conversion.

7.2. Simulation of gates versus conversion of states
TheChoi isomorphism sets up a one-to-one correspondence between unitary gates andmaximally entangled
states, whereby the gateU ismapped into the state

U I
d

n n: , :
1

. 32U
n

d

1
åF ñ = Ä Fñ Fñ = ñ Ä ñ
=

∣ ( ) ∣ ∣ ∣ ∣ ( )

Operationally, themapU UF ñ ∣ can be implemented deterministically by applying the gate on one systemof
anBell pair. Instead, the inversemap UUF ñ ∣ can only be implemented probabilistically via conclusive
teleportation [48], with amaximumprobability of success determined directly by the causality principle [49].

The above properties of the Choi isomorphism imply an elementary relation between the task of simulating
gates and the task of transforming Bell states:

Proposition 3. Let Ux x XÎ{ } and Vx x XÎ{ } be two sets of unitary gates and let U xx XF ñ Î{∣ } and V xx XF ñ Î{∣ } be the
corresponding sets of Bell states. Then, one has

F N U V F N U V

F

, ,

, 33

x x
M

x x
M

U
N

V
M

gate
det

gate
prob

Bell
prob

x x

 

= F ñ  F ñ

Ä Ä

Ä Ä

[( ) ] [( ) ]

[∣ ∣ ] ( )

where F U
N

V
M

Bell
prob

x x
F ñ  F ñÄ Ä[∣ ∣ ] is the optimal fidelity for the probabilistic Bell state conver-

sion U
N

V
M

x x
F ñ  F ñÄ Ä∣ ∣ .

The above proposition is quite generic, for it simply follows from the operational properties of theChoi
isomorphism.More interesting features arise when the unitaries Ux{ }and Vx{ } form two group representations.
These features will be discussed in the remaining part of the paper.

7.3. Analytical expression of thefidelity
Let us consider first the case where a single use of the gateUx is available, corresponding to the caseN=1. For
simplicity of notation, we also assume that the goal is to simulate a single use of the gateVx, although everything
wewill do holds also for M 1> uses, upon replacingVxwithV V:x x

M¢ = Ä . In the followingwe assume that the
two sets of gates Ux{ }and Vx{ }are two representations of the same group G, andwewrite g GÎ in place
of x XÎ .

With this notation, we have the following

Theorem4. For two group representations Ug{ }and Vg{ }, one has

F U V F

d d
d mmax

1
, 34

g g U V

l V U l j U
j l

j

gate
prob

Bell
prob

Irr out Irr

g g

å

 = F ñ  F ñ

=
Î Ä Î

⎡
⎣
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⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

[ ] [∣ ∣ ]

( )
( ) ( )

( )

where themaximum is over the irreducible representations contained in the decomposition of the product
representation V Ug gÄ{ }withUg denoting the complex conjugation ofUg with respect to a fixed basis, dout is the
dimension of theHilbert space whereVg acts, dl is the dimension of the irreducible representation labelled by l , the

sum inside the round brackets is over the irreducible representations contained in the decomposition of Ug{ }, and ml
j( )

is themultiplicity of the representation Ug
l{ }( ) in the decomposition of V Ug g

jÄ{ }( ) .

Quite naturally, thefidelity depends only on group-theoretic quantities. These quantities are related to the
structure of the input and output representations, and to theway these representations are combined together.
The exact value of the fidelity is derived in appendix L.
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The probabilistic fidelity (34) takes an even simpler expressionwhen the input gates Ug{ } form an irreducible
representation. In this case, the sumover j consists of a single term and one is left with the expression

F U V F
d

d

m

d
max , 35g g U

N
V

M

l V U

l

l
gate
prob

Bell
prob in

out Irr
g g = F ñ  F ñ =Ä Ä

Î Ä

⎡
⎣⎢

⎤
⎦⎥[ ] [∣ ∣ ] ( )

( )

whereml is themultiplicity of the representation Ug
l{ }( ) in the decomposition of V Ug gÄ{ }. As an illustration,

consider the following example:

Example 1 (Cloning anunknownunitary gate). Imagine that an experimenter is given access to a single use of
an unknownunitary gateU , acting on a d-dimensional quantum system. Imagine that the experimenter wants
to simulate two uses of the same gateU . If probabilistic operations are allowed, the fidelity is given by
equation (35). To evaluate theminimumover l, one has to decompose the representation U U UÄ Ä{ }, which
is easily done using themachinery of Young diagrams. Specifically, onefinds that themaximum ratio m dl l is
obtained by choosing the representation U{ }, which has dimension d dl = andmultiplicity ml = 2.Hence, the
probabilisticfidelity has the expression

F U U F
d

2
. 36U Ugate

prob 2
Bell
prob 2

2
 = F ñ  F ñ =Ä Ä[ ] [∣ ∣ ] ( )

The probabilisticfidelity is an upper bound to the deterministic fidelity, which has the value [43]

F U U
d

1 1
. 37d

gate
det 2

1

2

2

 =
+ -

Ä[ ] ( )

Comparing the twofidelities, we observe that the advantage of using probabilistic operations vanishes when the
dimension of the system is large: the gap between the deterministic and probabilistic fidelities vanishes as d1 4.

7.4. No probabilistic advantage for irreducible representations
When the input and output representations are irreducible, it turns out that there is no difference between the
performances of probabilistic and deterministic strategies.More precisely, one has the following

Theorem5. Let G be a group and let Ug{ }and Vg{ }be two unitary representations of G. If the input representation
Ug{ } is irreducible, then one has

F U V F . 38g g U VBell
det

Bell
prob

g g = F ñ  F ñ[ ] [∣ ∣ ] ( )

If both the input representation Ug{ }and the output representation Vg{ }are irreducible, then one has

F U V F . 39g g U Vgate
det

gate
prob

g g = F ñ  F ñ[ ] [∣ ∣ ] ( )

The proof idea comes from the symmetry of the problem. The key observation is that the optimal probabilistic
operations can be chosen to be invariant under the action of the gates Ug{ }and Vg{ }. Irreducibility ensures that
the probability that the operations take place is independent of the input state. In turn, independence of the
input statemeans that each operation is proportional to a deterministic operation, which takes placewith unit
probability on every state. The difference between Bell state conversions and gate simulations is only that the Bell
state conversion involves operations on input systems acted upon by the representation Ug{ }, while the gate
simulation involves also operations where the input state can be acted upon by the representation Vg{ }. The
details of the proof are provided in appendixM.

Example 2 (Optimal cloning of Bell states). Suppose that we are given one copy of a generic Bell state UF ñ∣ of
two d-dimensional quantum systems, and that wewant to generate onemore copy. This problem is tofind the
physical process that implements the Bell state conversion U U

2F ñ  F ñÄ∣ ∣ withmaximumfidelity.
The problemof cloning Bell states was previously studied in terms of single-copy fidelity [50]. Thanks to

theorem5, we nowknow that the optimal two-copyfidelity is

F
d

2
40U UBell

det 2
2

F ñ  F ñ =Ä[∣ ∣ ] ( )

[see equation (36)].

Example 3 (Optimal charge-conjugation). Suppose that we are given a black box implementing the gateU and
wewant to use it to simulate the gateU , obtained fromU through complex conjugation in afixed basis. In
physics,U is sometimes regarded as the result of charge-conjugation. Using theorem 5,we know that the
optimal deterministic network performs equally well as the optimal probabilistic network, whose fidelity is given
by equation (35). The evaluation of thefidelity is simple: one has only to decompose the representation
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U UÄ{ }, which is known to have only two irreducible subspaces, the symmetric subspace and the
antisymmetric subspace, of dimensions d d d 1 2s = +( ) and d d d 1 2a = -( ) , respectively. The evaluation
of equation (35) then yields thefidelity

F U U
d d

2

1
, 41gate

det  =
-

[ ]
( )

( )

retrieving a result of [46]. Note that the fidelity is equal to 1 for two-dimensional systems, where the gatesU and
U are unitarily equivalent.

7.5. Local andmemoryless operations
Weconclude our analysis of theN=1 casewith a sufficient condition for the realisation of the optimal Bell state
conversionwith local operations, and for the realisation of the optimal gate simulation through a network
without internalmemories, as infigure 4.

Theorem6. Let G be a group, let Ug{ }and Vg{ }be two unitary representations of G, and let ml be themultiplicity of

the irreducible representation Ug
l{ }( ) in the decomposition of V Ug gÄ{ }. If themaximum of m dl l is attained by a

representation withmultiplicity ml = 1, then

(i) the Bell state conversion U Vg g
F ñ  F ñ∣ ∣ can be achieved by local operations whenever Ug{ } is irreducible.

(ii) the gate simulation U Vg g can be achieved by a network without internal memories whenever Ug{ } and Vg{ }
are irreducible.

Agood illustration of all the features shown so far is the simulation of a rotation on a spin-K systemusing a
rotation on a spin-J system.

Example 4 (Rotate one spin to rotate another). Suppose that we have access to a gate that rotates a spin-J
system, canwe use it to rotate a spin-K systemwith K J¹ ? Intuitively, onewould expect that the answer is
affirmative, as long as J is smaller than K : after all, if we are able to rotate a bigger system, we should also be able
to rotate a smaller one. But this is not the case: the entanglement fidelity of the best gate simulation is given by
equation (35), which here gives

F U U
J

K J K

2 1

2 1 2 1
, 42g J g Kgate , , =

+
+ - +

[ ]
( ) ( ∣ ∣ )

( )

retrieving the result of [51]. Except in the trivial casewhere J and K are equal or where K is zero, thefidelity is
always bounded away from1, even in the asymptotic limit of large J and K . Specifically, one can easily see that
thefidelity is upper bounded by 75% for all values of J and K with J K¹ and K 0¹ . This upper bound also
implies an upper bound for the simulation ofmultiple uses of the same rotation: a single use of the rotationUg J,

cannot simulate M uses of the rotationUg K, withmore than 75%fidelity.
Besides the value of thefidelity, it is interesting to see how the optimal gate simulation is achieved. Infigure 5

we show an explicit quantum circuit attaining themaximumfidelity. Again, the idea is to encode the state of a
single spin-J system into the state of J2 spin-1/2 particles and to use cloning and discarding in order to force the
number of particles to have the desired values.

7.6. Bounding the gatefidelity in terms of the Bell statefidelity
Weconclude the paper with a fundamental result linking gate simulation andBell state conversion for arbitrary
groups:

Figure 4.Gate simulation networkwithout internalmemories. The network (in blue) exploits one use of the unitary channel g (in
orange) to simulate one use of the unitary channel g (in green)without the assistance of any internalmemory.
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Theorem7. Let G be a group and let Ug{ }and Vg{ }be two finite-dimensional unitary representations of G. Then the
fidelities for the gate simulationU Vg g and for the state conversion U Vg g

F ñ  F ñ∣ ∣ satisfy the bound

F U V F . 43g g U Vgate
det

Bell
prob 2

g g F ñ  F ñ[ ] ( [∣ ∣ ]) ( )

The proof is provided in appendixO. Theorem7 has an important consequence: for unitaries forming a group
representation, a gate simulation can be achieved deterministically with high entanglement fidelity if and only if
the corresponding state conversion can be achieved probabilistically with highfidelity. This fact follows from the
bound

F F U V F , 44U V g g U VBell
prob 2

gate
det

Bell
prob

g g g g F ñ  F ñ  F ñ  F ñ( [∣ ∣ ]) [ ] [∣ ∣ ] ( )

implied by theorem7 and proposition 3.
Leveraging on the correspondence between gate simulation and state conversion, we can directly derive a

number of facts about the simulation of rotation gates:

(i) For large J, two uses of the same rotation on a spin J system can be used to deterministically simulate O J 2( )
uses of the same rotation on spin 1/2 systems. The quadratic factor comes from the fact that the simulation
performance is evaluated on average over all states. Our resultmeans that O J 2( ) uses of the spin 1/2 rotation
can be simulatedwith vanishing error on the typical input states, whose total probability tends to one in the
large J limit. However, there exist states where the simulation does notwork: for example, all states in
subspaces with total angularmomenta of size J2.

(ii) In the largeN limit, N uses of a spin-J rotation can be used to deterministically simulate O N 2( ) uses of the
corresponding spin-K rotationwith exponentially vanishing error in the largeN limit. This result is
reminiscent of previous results on the super-replication of quantumgates [44, 45, 52], where the taskwas to
simulatemultiple uses of a gate using a smaller number of queries to the same gate.

These two examples are just an illustration of the power of theorem7. The theorem can be applied not only to
rotation gates, but also to every other group of gates, including phase gates [53], permutation gates [54], and the
set of all unitary gates [55].

8. Conclusions

We showed that Bell states of different angularmomenta can be reversibly converted into one another at a rate
fixed by the Fisher information. The reversibility of the conversionmeans that we can regard the Bell state of two
spin-1/2 particles as theCartesian refbit, the elementary unit of information about rotations in space.

Not every state can be converted intoCartesian refbits, though. States that do not carry faithful information
about Cartesian reference frames cannot be converted intoCartesian refbits, even if asymptoticallymany copies
are available [16]. This fact can be easily seen for spin coherent states: since a spin coherent state encodes only
one direction, havingmany identical copies will not help identifying the other two directions needed to specify a
full Cartesian frame. This observation opens up two directions for future research. Thefirst direction is to study
the convertibility problem for states that are in one-to-one correspondence withCartesian reference frames,
such as the optimal states introduced in [6, 26–28]. Having good carriers of directional information is important
not only for quantummetrology, but also for the realisation of programmable quantumprocessors [56, 57] that
perform rotations in space [7, 8, 42] or carry outmeasurements in a desired basis [29, 30].

Figure 5.Optimal single-use rotation converter. Thefigure illustrates the simulation of a single use of a spin-K rotation gateUg K, using
a spin-J rotationUg J, for the J K case. A sequence of operations are performed on any input systemofUg K, to change its spin: first,
the encoding channel  embeds the spin-K system into a system of K2 spin-1/2 systems (qubits). Then, the universal cloning
machine  optimally turns K2 qubits into J2 qubits. Finally, the decoding channel merges J2 qubits into a single spin-J system.
The system’s spin now fits the spin-J rotation. After applyingUg J, , the same sequence of operations are performed in reverse order. A
similar sequence of operations allowus to achieve conversionswith K J> , the only difference being that on has to replace the
universal cloningwith a universal discarding, corresponding to the partial trace over 2K−2J qubits.

15

New J. Phys. 19 (2017) 123003 YYang et al



In this scenario, it ismeaningful to establish the optimal asymptotic rate for the conversion of a given state
intoCartesian refbits, and the optimal asymptotic rate for the inverse process.We call these two rates the
distillable refbits and the refbits of formation, respectively, in analogy to the corresponding notions in the resource
theory of entanglement [58]. For angularmomentumBell states, we have shown that the distillable refbits
coincidewith the refbits of formation, because every angularmomentumBell state can be reversibly converted
into refbits.Whether the equality holds for all faithful carriers of Cartesian reference frames is a genuinely open
question.Note that, in principle, the equality between distillable refbits and refbits of formation could hold even
if the conversion is not implemented by reversible operations.

The second direction is to consider quantum states that carry only partial information about rotations—for
example, spin coherent states. Expanding the scope of the ideas discussed in this paper, we propose to adopt the
spin-1/2 coherent states as units of directional information, or directional refbits. The choice ismotivated by the
fact that (i) the spin-1/2 coherent states are the optimal states of the smallest quantum system carrying
directional information, and (ii) spin-J coherent states can be reversibly converted into spin-1/2 coherent states.
An interesting question is whether there exists a canonical asymptotic decomposition of all quantum states into
directional refbits. If true, this result would lead to a dramatic simplification of the resource theory of
asymmetry.

The techniques developed in this work can be extended from rotations in space to other groups of
operations, including translations in time, charge conjugation, and general unitary evolutions infinite
dimensions. The key open question is whether every theory of asymmetry admits a notion of elementary unit, in
which every resource state can be asymptotically decomposed.
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AppendixA. Single-copy conversions

Herewe provide the derivation of our results on single-copy conversions. Specifically, we show that

(i) The optimal deterministic and probabilistic machine perform equally well in the single-copy conversion. This is
because the set of input states

U I g 3g J g J J, , SOF ñ = Ä F ñ Î{∣ ( ) ∣ ∣ ( )}

is invariant under the action of the irreducible representation U U h k3 , 3h J k J, , SO SOÄ Î Î{ ∣ ( ) ( )}. It is a
general fact that probabilisticmachines do not offer any advantagewhenever the set of input states is
invariant under an irreducible representation [39].

(ii) The optimal fidelity of the single-copy Bell state conversion is given by equation (11).The proof of equation (11)
follows from a general expression of the probabilisticfidelity of single-copy Bell state conversions, derived
in equation (35) of section 7, and summarised here for convenience. The expression applies to Bell states of
the form U I:U g in ing

F ñ = Ä F ñ∣ ( )∣ and V I:V g out outg
F ñ = Ä F ñ∣ ( )∣ , where Ug{ }and Vg{ } are two representa-

tions of a given group G, and inF ñ∣ (respectively, outF ñ∣ ) is the canonical Bell state in theHilbert space

in in Ä (respectively, out out Ä ), onwhich the representation Ug{ } (respectively, Vg{ }) acts locally.
With these settings, the optimal probabilisticfidelity is

F
d

d

m

d
max , A.1U V

l V U

l

l
Bell
prob in

out Irr
g gF ñ  F ñ =

Î Ä

⎡
⎣⎢

⎤
⎦⎥[∣ ∣ ] ( )

( )

whereml is themultiplicity of the irreducible representation Ug
l{ }( ) in the decomposition of the product

representation V Ug gÄ{ } (we direct the interested reader to the textbook [59] formore details on the
notions of irreducible representation andmultiplicity). Herewe are interested in the case where the group is

3G SO= ( ) and the representations areU Ug g J,º andV Ug g K,º .With these settings, the addition rules for
the angularmomenta imply that the product representation V Ug gÄ{ } is decomposed into representations
with angularmomentum l running from J K-∣ ∣ to J+K. The dimension of such representations is
d l2 1l = + , while themultiplicity isml= 1 for every l. Hence, themaximum in equation (A.1) is attained
when l J K= -∣ ∣, thus implying
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F
J

K J K

2 1

2 1 2 1
,g J g KBell

prob
, ,F ñ  F ñ =

+
+ - +

[∣ ∣ ]
( )( ∣ ∣ )

as stated by equation (11).

(iii) The protocol described in figure 2 is optimal. The protocol is based on local operations that convert the input
spin-J systems into output spin-K systems. Each spin-J (spin-K ) system is regarded as a composite system
of J2 ( K2 ) spin-1/2 particles, whose state is constrained to the symmetric subspace. The conversion of the
J2 input particles into K2 output particles is implemented by the quantum channel J K2 2  , defined by the
relation

P I P J K

J K

,

Tr ,
J K

J

K K
K J

K

J K

2 2

2 1

2 1 2
2

2
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r
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>


+
+

Ä -
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⎪

⎧
⎨
⎩
( )( ) ≔

( )

[ ]

( )

where P2K is the projector on the symmetric subspace of K2 spin-1/2 particles, while ρ is a generic state of
the input system.
Applying the channel J K2 2  on each of the two spin-J systems of the input Bell state g J,F ñ∣ , we obtain the
output state

J

K

K k K k j j K k K k j j
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for J K> . Here we defined

K k U K k, ,g g K,ñ ñ∣ ≔ ∣

andwe used the expression
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valid for M N .
Using the expressions of the output state g

outr( ), we can now compute thefidelity of the Bell state conversion.

For J K , we obtain
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For J K> , we obtain
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In both cases, the fidelity is equal to the optimalfidelity in equation (11).

Appendix B. Proof of equation (14): decomposition of the input Bell states

Proof.All throughout the paper wewillmake extensive use of the the double-ket notation [60, 61], which
associates operators with bipartite states according to the correspondence A A ññ∣ , where Aññ∣ is the bipartite
state defined as

A A m n A m A n, .
m n

mn mn
,
åññ ñ Ä ñ á ñ∣ ≔ ∣ ∣ ≔ ∣ ∣

Using this notation, the rotated Bell states can be expressed as

U

J2 1
.g J

g J
,

,F ñ =
ññ

+
∣

∣

Todeal with theN-copy states g J
N

,F ñÄ∣ we take advantage of the decomposition of the corresponding tensor
productHilbert space. For simplicity, we assumeN andM to be even (anyways, the parity ofN andMwill not
matter in the asymptotic limit) . For each Bell pair, we denote by J A, ( J B, ) theHilbert space of the first
(second) spin. Then, for x A B,= wehave the decomposition

, B.1J x
N

j

NJ

j x j x
N J

,
0

, ,
,  = ÄÄ

=
( ) ⨁ ( ) ( )( )

where j is the quantumnumber of the total angularmomentum, j x, is a representation space carrying the

j2 1+( )-dimensional irrep of 3SO( ), and j x
N J
,

,( ) is amultiplicity space, where the group 3SO( ) acts trivially.
Relative to this decomposition, the action of the rotation gatesUg J

N
,
Ä can be expressed as

U U I , B.2g J
N

j

NJ

g j m,
0

,
j
N J,= ÄÄ

=
⨁ ( ) ( )( )

where Ug j,{ } is the irreducible representation of 3SO( )with quantumnumber j, acting on the representation

space j , while Imj
N J,( ) denotes the identity operator on themultiplicity space j

N J,( ). The dimension of the

representation space j is d j2 1j = + . The dimension of themultiplicity space j
N J,( ), denoted by mj

N J,( ), is
called themultiplicity of the irreducible representation Ug J,{ } in the decomposition of the product representation

Ug J
N

,
Ä{ }.More details on the decomposition (B.2), sometimes called the isotypic decomposition, can be found in

the classic textbook by Fulton andHarris [59].
Using the decomposition (B.1), theHilbert space ofNBell pairs can be decomposed as

,J A J B
N

j j

NJ

j A j B j A
N J

j B
N J

, ,
, 0

, , ,
,

,
,     Ä Ä Ä ÄÄ

¢=
¢ ¢( ) ⨁ ( )( ) ( )

wherewe rearranged theHilbert spaces in such away that the representation spaces are on the left and the
multiplicity spaces are on the right. Plugging equation (B.2) into the double-ket notation, theN-copy input state
can be represented as
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Note that the decomposition of equation (14) also applies to the output state, which takes the form
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where mk
M K,( ) is themultiplicity of the irreducible representation Ug k,{ } in the decomposition of the product

representation Ug K
M

,
Ä{ }.

AppendixC. Proof of equation (15): asymptotic expression for pj
N J,( )

Proof.By definition, one has p d m J2 1j
N J

j j
N J N, ,= +( )( ) ( ) . To compute themultiplicity, we use the standard

group-theoretic formula [59]
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which follows fromtheorthogonality of the irreducible characters [59].Now,weparametrise the rotation g in terms
of the rotation angleω andof the rotation axis n. Integratingover all possible directions n, weobtain the expression
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Using this expansion, we can express mj
N J,( ) as
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It is straightforward to see that, since N1d  , one has
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On the other hand, the same integral with the range ,d d-[ ] is non-vanishing in the largeN limit. As a
consequence, we can expand the range of the integral in equation (C.1) from ,d d-[ ] to ,-¥ ¥[ ], introducing
only a negligible error. Adopting this expansion, we obtain the following approximate value of themultiplicity:
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ByTaylor expansion of the last term,wefinally obtain the asymptotic expression
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Substituting the above into equation (B.5), we find that pj
N J,( ) is given by
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as anticipated in equation (15). +

AppendixD. Proof of theorem1: asymptotic convertibility via deterministic reversible
operations

Herewe provide the proof of theorem1. The ingredients of the proof are collected in the following subsections.

D.1. Covariant isometric channels
As an ansatz for the Bell state conversion, we consider covariant isometric channels, namely channels that

(i) satisfy the covariance condition
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and

(ii) can bewritten as V V =(·) · † for some isometryV.

Such channels are guaranteed to exist whenNJ andMK are both integers, andNJ is smaller than or equal toMK.
Themaximum fidelity over all covariant isometric channels is given by the following proposition

Proposition 4. For NJ MK , the fidelity of the optimal covariant isometric channel is
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where pj
N J,( ) and pk

M K,( ) are the probabilities in the decompositions (B.3) and (B.6), respectively. The optimal

isometric channel is defined by the relation
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where the states g j
N J
,

,Y ñ∣ ( ) and g j
M K
,

,Y ñ∣ ( ) are defined in equations (B.3) and (B.6), respectively.

Proof. In terms of the isometryV, the covariance requirement amounts to the relation
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Hence, the fidelity of the isometric channel V V =(·) · † is given by
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The bound is saturated by the isometry defined in equation (D.2), which is therefore optimal over all covariant
isometries. +

An alternative optimality proof can be obtained froman upper bound on the fidelities of covariant isometric
channels, derived byMarvian and Spekkens in theorem3of [14].

D.2. Evaluation of the asymptoticfidelity
The asymptotic fidelity for the Bell state conversion can be computed by inserting the asymptotic expression
(C.2) into the expression for the fidelity (D.1). Suppose that deviation MK K NJ J: 1 1D = + - +( ) ( ) grows
as N1 a- with 0, 1 4a Î ( ). Then, for NJ MK we obtain the asymptotic fidelity
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with S NJ J 1+≔ ( ). Note that thefidelity converges to 1 in the largeN limit. The condition 1 4a < can be
easily removed: if one can produce up to N1 a- extra copies with vanishing error, one can always discard some
copies and reduce the number of extra copy to N1 a- ¢ with 1 4a¢ . Note also that the condition NJ MK ,
used to derive equation (D.1), can also be removed: if NJ MK> one can construct an isometry from a subspace
of the input space and complete the isometry with some other operation in the orthogonal subspace.With this
choice, thefidelity will have at least the value of equation (D.4), meaning that the errorwill vanish at least as

S 2D( ) . This concludes the proof of theorem1. +

Appendix E.Derivation of equation (21): asymptotic upper bound on the deterministic
fidelity

Herewe provide a bound on thefidelity of arbitrary quantum channels in the limit of largeN. The proof
technique is a generalisation of a technique introduced in our previous work [19] for the cloning of qubit Bell
states, corresponding to the J K 1 2= = case.

Due to the symmetry of the problem, the optimal quantum channel  can be assumedwithout loss of
generality to be covariant, i.e. to satisfy the condition

. E.1g K h K
M

g J h J
N

, , , ,     Ä = ÄÄ Ä( ) ( ) ( )

In terms of theChoi operator C I I I Ä ññáá≔ ( )(∣ ∣), the covariance condition (E.1) can bewritten as
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, , , ,Ä Ä Ä =Ä Ä[ ( ) ( ) ] ( )

HereUg J, is the complex conjugation ofUg J, .
With this constraint, as well as the property of the Choi operator that I CTr T

in out r r= Ä( ) [( ) ], thefidelity
(5) can be rewritten as
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To evaluate thefidelity, we use equations (B.3) and (B.6) to decompose the joint state of the input and the
output as
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j k l, ( ) being a shorthand for the values of j and k satisfying the inequality k j l k j - +∣ ∣ . Applying
Schur’s lemma to equation (E.2), and taking into consideration the decomposition of the states (E.3), theChoi
operator can be assumedwithout loss of generality to have the form
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Thefidelity is then bounded as
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Combining the expressions for the fidelity, for sl and for the optimal coefficients ajkl{ }, we then obtain
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Now that the upper bound of the fidelity depends only on jl , we continue the derivation by noticing that
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which, for s 0l ¹ , implies that jl{ }are determined by the set of constraints
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Notice that for any 0jl ¹ there exists at least one s 0l ¹ , whichwe define as l( j), such that jl appears in the
lth constraint. Defining the set j l j llH =≔ { ∣ ( ) }we turn the constraints (E.8) into
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Again, we optimize S under the set of constraints (E.9) using Lagrangianmultipliers, equation (E.7) yielding
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having used the inequality d d dl j k j k l k: , å ( ) in the third inequality. Finally, the fidelity is upper bounded as
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One can immediately see from the above bound that the deterministic fidelity vanishes in the asymptotic limit
if M N .

Appendix F. Proof of theorem2: necessary and sufficient condition for perfect
probabilistic conversion

F.1. The proof of sufficiency
The sufficiency of the condition NJ MK (with N 1> ) can be proved by straightforwardly. IfNJ andMKhave
the same parity, we use the pure quantumoperation W W r r=( ) †, whereW is the operator defined by the
relation
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required to be valid for all j that p 0N j, ¹ and for every g 2SUÎ ( ). For N 1> , thefidelity of this quantum
operation can be derived by substituting the expression of into equation (10). The result is
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This proves that the condition MK NJ guarantees a perfect probabilistic conversionwhenNJ andMKhave
the same parity.

Let us consider now the case whereNJ andMK does not have the same parity. IfMK is smaller thanNJ, a
perfect conversion can be accomplished by the following protocol:

(i) First analyse the spin-JBell states into NJ2 copies of spin-1/2Bell states;

(ii) discard one copy of the spin-1/2Bell state;

(iii) transform the remaining states intoM spin-KBell states.

The transformations in (i) and (iii) can be accomplished perfectly, using themachine (F.1).

F.2. Proof of necessity
Herewe show that no probabilisticmachine can achieve perfect conversionwhen NJ MK< . The idea is that, if
such amachine existed, it would violate the probabilistic version of the no-cloning theorem [62].

Let usfirst consider the case when M 1> . Suppose that we are given NJ2 copies of an unknown spin-1/2
Bell state g ,1 2F ñ∣ . Then, the sufficient condition in appendix F.1 guarantees that we can probabilistically convert
the NJ2 spin-1/2Bell states intoN copies of the spin-JBell state g J,F ñ∣ , without any error. At this point, we can
apply themachine  , gettingM copies of g K,F ñ∣ . But then, the sufficient condition in appendix F.1would imply
thatwe can generate MK2 perfect copies of the state g ,1 2F ñ∣ . The overall process is a perfect cloning of the spin-
1/2Bell state g ,1 2F ñ∣ since MK NJ> . This contradicts with the fact that only states drawn from a set of linearly
independent states can be perfectly cloned, using probabilisticmachines [62].

Finally we consider the case whenM=1. If there exists such amachine that perfectly implements the
conversion g J

N
g K, ,F ñ  F ñÄ∣ ∣ , then the conversion g J

N
g K,

2
,

2F ñ  F ñÄ Ä∣ ∣ can also be perfectly implemented by
using themachine twice. Applying again the previous argumentwe reach the contradiction.

AppendixG. Proof of theorem3: asymptotic probabilistic Bell state conversions

G.1.Direct part
Herewe show that the condition NJ MK K 12 +( ) ( ) is sufficient for asymptotic convertibility with vanishing
error. To this purpose, we consider as an ansatz the quantumoperation defined in equation (F.1). Thefidelity of
this particular operation, already evaluated in equation (F.2), takes the form
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whenMK is larger thanNJ. In this case, one has the bound
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¥ -( ) ≔ ( ) is the complementary error function. From the above inequalities, we can

see that an asymptotically faithful conversion is achievedwhenever NJ MK K 12 +( ) ( ).

G.2. Converse part
Wenow show that the condition NJ MK K 12 +( ) ( ) is necessary forBell state conversionswith asymptotically
vanishing error. To this purpose, wefirst derive an explicit formula for theoptimal probabilisticfidelity.
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M K j, ,( ) is themultiplicity of the irreducible representation Ug l,{ } in the decomposition of the
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Proof.The derivation is based on an expression for the optimal fidelity [63], which here takes the form

F I I I I , G.3g J
N

g K
M

K
M

K
M

K
M

K
M

Bell
prob

, ,
1
2

1
2t r tF ñ  F ñ = Ä Ä Ä ÄÄ Ä Ä Ä - Ä Ä -

¥
( )) ([∣ ∣ ] ( )

where ¥ · is the operator norm (in this case equal to themaximumeigenvalue of the operator inside the bars), τ
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The state τ can be computed from the decomposition of the input state in equation (B.3). Using Schur’s
lemma [59]we obtain
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Let us compute the average input–output state ρ. To this purpose, wefirst decompose the input state as in

equation (B.3), obtaining
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Exchanging the order of the two summations in equation (G.5)we obtain the expression
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Using equation (G.6), we can now compute the average state ρ, which reads
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Combining this expressionwith equations (L.2) and (L.5), we obtain the relation

I I I I

I

d

I

d
, G.9

l

NJ MK
l

l

l

l
l l

out out out out

0

1
2

1
2t r t

m m

Ä Ä Ä Ä

= Ä Ä ¢ñá ¢

- -

=

+

( ) ( )

⨁ ∣ ∣ ( )

with

d p
I

m

I

m
: .l

j l MK

l MK

j l
M K j m

l
M K j

m

j
N Jmax 0,

2 , ,

, , ,

l
M K j

j
N J, , ,

m¢ñ =
ññ

Ä
ññ

= -

+
∣ ⨁

∣ ∣

{ }

( )
( ) ( )

( ) ( )

Wenow reached the conclusion. In order to compute thefidelity, equation (L.1) tells us thatwemust compute
themaximumeigenvalue of the operator in equation (G.9). The eigenvalues are

d

d
d p

d m

d d

1

1

.

l
l

l l

l j l MK

l MK

j l
M K j

j l MK

l MK
j l

M K j

K
M

l

2

2
max 0,

2 , ,

max 0,

, ,

å

å

l m m= á ¢ ¢ñ

=

=

= -

+

= -

+

∣

{ }

( )

{ }

( )

Maximising over l, we obtain
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Our second step is to derive an upper bound on the probabilistic fidelity. The bound is as follows:

Lemma2. For MK NJ , the optimal probabilistic fidelity for the Bell state conversion g J
N

g K
M

, ,F ñ  F ñÄ Ä∣ ∣ is
upper bounded as
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with the convention that p 0k
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Weare now ready to prove the converse part of theorem 3.Using equation (G.10), we obtain
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Note that the coupling of angularmomenta guarantees that the function g
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Taking the above conditions into account, the fidelity can be upper bounded as
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Equation (G.17) tells us that thefidelity F g J

N
g K

M
Bell
prob

, ,F ñ  F ñÄ Ä[∣ ∣ ] can approach 1 only if the probability P
approaches 1.Now, for largeM, the probability distribution pk

M K,( ) is approximately a polynomial times a

normal distributionwith standard deviation O MK K 1+( ( ) ), see equation (C.2). Hence, the probability P

can approach 1 only if the size of the interval x x NJ, +[ ] is comparable with MK K 1+( ) . Instead, if the ratio
betweenNJ and MK K 1+( ) tends to zero, then the probability P tends to zero, too. In that case, the fidelity
tends to the constant value F 1 2Bell

prob = . This concludes the proof of theorem3. +

AppendixH.Upper bound on thefidelity of quantumanalyserswithN=1

Formachines taking a single copy as input, we have already seen in appendix A that deterministic and
probabilisticmachines have the same optimalfidelity.

Now, recall that the single-copy fidelity is an upper bound to the globalfidelity, because one can always
discard all the output copies but one, thus obtaining amachine that produces a single output copy.Hence, we
obtain the bound

F
J

J
M

2 1

4
,g J g

M
Bell , ,1 2  F ñ  F ñ

+
" ÎÄ[∣ ∣ ]

which follows from inserting the value K 1 2= into equation (11).

Appendix I. Deterministic analyser for two copies of a spin-JBell state

To break down the two copies of the Bell state, we use the reversiblemachine defined in proposition (4). In the
large J limit, thismachine can produce a number of Cartesian refbits growing like J2 with a non-vanish fidelity.
The exact value of the fidelity for M J 2a= ⌊ ⌋is plotted infigure I1 for various values ofα.

For large J, themaximumfidelity is obtained for 2.241a » and has the value

F J85.6%, 1. I.1g J g
J

Bell
iso

,
2

,1 2
2.241 2F ñ  F ñ »Ä Ä [∣ ∣ ] ( )⌊ ⌋
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To see this, we insert the expressions
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into the expression of thefidelity (equation (D.1)). At the leading order, we obtain the equality
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0
1òg - -( ) ≔ is the lower incomplete Gamma function.Maximising overα, we obtain that

fidelity 85.6%, achieved for 2.241a = .

Appendix J. Probabilistic analyser forN copies of a spin-JBell state

To obtain the desired result, we use the probabilisticmachine defined by equation (F.1). Thefidelity of this
machine is given by equation (F.2), which in the present case becomes
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Now, the probability distribution pk
M ,1 2( ) has the explicit form
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leading to the bound
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following fromHoeffding’s inequality [64].

AppendixK. Ameasure-and-prepare synthesiser of Bell states

Herewe evaluate thefidelity of themeasure-and-prepare synthesiser proposed in section 6.
Inserting the expression of themeasure-and-prepare channel (equations (26) and (27)) into thefidelity

formula (5), we obtain the relation

Figure I1.Optimal reversible analyser for two copies of a spin-JBell state. Thefigure shows the exact values of thefidelity in
equation (D.1) as a function of J. For each solid line, the number of output copies is set to M J 2a= ⌊ ⌋, with a particular value ofα.
Specifically, the red line represents thefidelity for the optimal value 2.241a = , which approaches 0.856 (the dashed line) as J grows
large. The blue line represents thefidelity for 2.1a = , and the green line represents thefidelity for 2.4a = .
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Then, parametrising the rotation g in terms of the rotation angle (denoted byω) and the rotation axis, we
obtain the explicit expression
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For largeN, the function f w( ) can be computed explicitly as
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having used equation (15) for the probability distribution pj
N J,( ). Note that f w( ) decays exponentially fast for

N 12w  . Hence, we can express themeasure-and-prepare fidelity as
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where 0d > is an arbitrary constant.
Let us analyse the largeN asymptotics. First of all, we show that the fidelity vanisheswheneverK is large

compared to N . This is an immediate consequence of the bound
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which follows from equation (K.1).
Now, suppose thatK grows as Na for some 1 2a < . Picking δ so that 1 2a d< -( ) , we can guarantee

the condition K2 1 1w+ ( ) within the domain of integration in equation (K.1). Hence, we canTaylor-
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w+( ), thus obtaining
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In conclusion, every Bell state with spin K O N= ( ) can be synthesised almost perfectly in the largeN limit.

Appendix L. Proof of theorem4: analytical expression of the probabilisticfidelity

Proof.The proof uses the expression of the ultimate probabilisticfidelity derived in [63]. The expression reads

F I I I I , L.1Bell
prob

out out out out
1
2

1
2t r t= Ä Ä Ä Ä- -

¥( ) ( ) ( )

where ¥ · is the operator norm (in this case equal to themaximumeigenvalue of the operator inside the bars), τ
is the average input state

gd ,U Ug gòt = F ñáF∣ ∣

(the average is with respect to the normalisedHaarmeasure gd and the Ug
F ñ∣ denotes the complex conjugate of

the vector Ug
F ñ∣ ), and ρ is the average output–input state
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Using the double-ket notation and the isotypic decomposition [59]
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wherewe reordered the tensor factors in order to have the two representation spaces on the left and the two
multiplicity spaces on the right. Applying Schur’s lemma [59], the average state τ be explicitly calculated as
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where againwe reordered the tensor factors in order to have all the representation spaces on the left and all the
multiplicity spaces on the right.

Computing the average state ρ is a bitmore complex. First, we express the product state V Ug g
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with the usual reordering of the tensor factors. Here, ml
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Weare now ready to compute the average state ρ, which reads
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Combiningwith equations (L.2) and (L.5), we obtain the relation
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Wenow reached the conclusion. In order to compute thefidelity, equation (L.1) tells us thatwemust compute
themaximumeigenvalue of the operator in equation (L.6). The eigenvalues are

d d

d m

d d
.

l
l l

l

j U

j l
j

l

out

outIrr
å

l
a a

=
á ¢ ¢ñ

=
Î

∣

( )

( )

Maximising over l one then obtains the desired expression
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AppendixM. Proof of theorem5: irreducibility implies no probabilistic advantage

Proof. Let us start from the case of the Bell state conversion.We use a general result from [39], stating that the
optimal probabilistic and deterministic operations perform equally well whenever the set of input states is
invariant under the action of an irreducible group representation. Thanks to this result, we only need to show
that the set of input states Ug

F ñ{∣ } is invariant under the action of an irreducible representation. In our case, the
irreducible representation is U Uh kÄ{ }, where the elements h and k vary independently over the group G, and
Uk is the complex conjugate ofUkwith respect to afixed basis, regarded as the ‘computational basis’. The
irreducibility of the representation U Uh kÄ{ } is immediate from the assumption that the representation Ug{ } is
irreducible.

The invariance of the set Ug
F ñ{∣ } is immediate from the relation
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valid for arbitrary group elements g k, , and h. Hence, the result of [39] guarantees that there is no difference in
performance between probabilistic and deterministic operations.

Let us consider now the case of gate simulations, implemented by quantumnetworks of the formoffigure
M1. A convenient way to describe the gate simulation network is to use themethod of quantum combs [65, 66],
which associates the networkwith a positive operatorR acting on the fourHilbert spaces

, , , ,0 out 1 in 2 in 3 out          

where in is the space onwhich the gateUg acts, and out is the gate onwhichVg acts. In terms of the operator
R, the probabilistic fidelity is given by
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where the subscripts identify theHilbert spaces towhich the vectors belong, andTr30 denotes the partial trace
over theHilbert space 3 0 Ä . The symmetry of equation (M.1) implies that, without loss of generality, the
optimal network can be chosenwith an operatorR satisfying the condition
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Now, equation (M.2) implies that the network has the same performance of a deterministic network. To prove
this, we recall that a network is deterministic if and only if its operatorR satisfies the conditions [65, 66]

R I R R ITr and Tr , M.33 2 1 0= Ä ¢ ¢ =[ ] [ ] ( )

for some nonnegative operator R¢ acting on 1 0 Ä . Now, equation (M.2) yields the condition

R U U V h kTr , 0, , ,h k k3 ,2 ,1 ,0 G GÄ Ä = " Î " Î[ [ ] ]

which in turn implies the condition

R I RTr3 2= Ä ¢[ ]

having used Schur’s lemma and the fact that Uh{ } is an irreducible representation.Moreover, the operator R¢
must satisfy the condition

R U V k, 0, ,k k,1 ,0 G¢ Ä = " Î[ ]

which implies

R V kTr , 0, ,k1 ,0 G¢ = " Î[ [ ] ]

and, in turn,

R ITr ,1 0l¢ =[ ]

for some constantλ. The last equality is a consequence of Schur’s lemma, applied to the irreducible
representation Vk{ }.

Defining R R:det l= , we then have that Rdet is the operator of a deterministic quantumnetwork. From
equation (M.1) it is immediate that the deterministic networkwith operator Rdet has the samefidelity of the
probabilistic networkwith operatorR. +

AppendixN. Proof of theorem6:when local operations andmemoryless networks are
optimal

Proof. Let us start from the case of the Bell state conversion. The proof uses theChoi isomorphism,which
associates the quantum channel  to the operatorC, acting on out1 out2 in1 in2   Ä Ä Ä , where the
subscripts 1 and 2 label the two spaces in the input and output Bell pairs. Note that, in order to be theChoi
operator of a quantum channel, the operatorCmust be positive andmust satisfy the normalisation condition

C I ITr . N.1out1,out2 in1 in2= Ä[ ] ( )

In terms of theChoi operator, thefidelity for the Bell state conversion U Vg g
F ñ  F ñ∣ ∣ can bewritten as [63]

F CTr ,Bell r= [ ]

where ρ is the state

g

d d

I I

d
m

d

1
, with N.2

V V U U

l V U

l l l l

l
l l l

in out

g g g g

Irr

òr

a a
a a

= F ñáF Ä F ñáF

=
Ä Ä ñá

á ñ =
Î Ä

∣ ∣ ∣ ∣

⨁
∣ ∣

∣ ( )
( )

see equation (L.5). Recall that there is no difference between the probabilistic fidelity and the deterministic
fidelity, since the representation Ug{ } is irreducible (see theorem 5). Hence, themaximum fidelity for the

FigureM1.Gate simulation network. The figure illustrates the general formof a network connectedwith a black box implementing
the gateUg. Here  and  are generic quantumoperations, heralded by the outcomes of two probabilistic processes.
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deterministic Bell state conversion U Vg g
F ñ  F ñ∣ ∣ is given by equation (35), which provides the expression

F
d

d

m

d
max , N.3

l V U

l

l
Bell
det in

out Irr
=

Î Ä

⎡
⎣⎢

⎤
⎦⎥ ( )

( )

whereml is themultiplicity of the representation Ug
l{ }( ) in the decomposition of V Ug gÄ{ }. By direct inspection,

one can see that the optimal fidelity is attained by the operator

C d
I

d

I

d
,l

l

l

l

l l

l l
opt in

2 *

*

*

*

* *

* *

a a
a a

= Ä Ä
ñá

á ñ

⎛
⎝⎜

⎞
⎠⎟

∣ ∣
∣

where l* is the value of l thatmaximises the ratio m dl l. Note that the operator Copt is positive and satisfies
equation (N.1): indeed, one has

C d
I

d

I

d

d I
I

d

Tr Tr Tr

Tr Tr , N.4

l

l

l

l

l l

l l

l

l

l l

l l

out1,out2 in
2

out2 out1

in in1 out2 1

*

*

*

*

* *

* *

*

*

* *

* *



a a
a a

a a
a a

= Ä Ä
ñá

á ñ

= Ä Ä
ñá

á ñ

⎡
⎣
⎢⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦
⎥⎥

[ ]
∣ ∣

∣

∣ ∣
∣

( )

wherewe applied Schur’s lemma to the irreducible representation Ug{ }, and Tr
1 denotes the partial trace over

themultiplicity spaces resulting from the coupling offirst systems in the input and output Bell pairs. Finally, we
apply again Schur’s lemma to the irreducible representation Ug{ }, obtaining

C d I
I

d

I I

I I

I I

Tr Tr Tr

Tr

Tr

. N.5

l

l

l l

l l

l l

l l

l l

l l

out1,out2 in in1 out2

in1 in2

in1 in2

in1 in2

1

1 2

*
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* *

* *
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* *
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a a
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a a
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= Ä Ä
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= Ä
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= Ä
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= Ä

Ä

⎡
⎣
⎢⎢

⎡
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⎤
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⎡
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⎤
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[ ]
∣ ∣

∣

∣ ∣
∣
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( )

Hence, Copt is the Choi operator of a quantum channel. If m 1l*
= , the Choi operator Copt has the product form

C A Bopt = Ä , with

A B
d

d
I .

l
l

in

*
*

= =

Here,A is the Choi operator of a channel transforming system in1 into system out1, whileB is the Choi
operator of a channel  transforming system in2 into system out2. In conclusion, the optimal Bell state
conversion is implementedwith local operations performed independently on the two systems of the input
Bell pair.

Let us consider now the case of the gate simulation. The gate simulation network is described by a quantum
combR, which can be chosenwithout loss of generality to satisfy the commutation relation (M.2). In terms of
the quantum combR, thefidelity can bewritten as

F
d

d
RTr ,gate

in

out

r= [ ]

where ρ is the state in equation (N.2). Again, there is no difference between probabilistic and deterministic
fidelity, because the representations Ug{ }and Vg{ } are both irreducible (see theorem5). Hence, themaximum
fidelity is provided by equation (35), which yields

F
d

d

m

d
max . N.6

l V U

l

l
gate
det in

out Irr
=

Î Ä

⎡
⎣⎢

⎤
⎦⎥ ( )

( )

By direct inspection, we find that the optimal fidelity is attained by the operator

R d d
I

d

I

d
,l

l

l

l

l l

l l
opt in out *

*

*

*

* *

* *

a a
a a

= Ä Ä
ñá

á ñ

⎛
⎝⎜

⎞
⎠⎟

∣ ∣
∣

where l* is the value of l thatmaximises the ratio m dl l. The operatorR represents a deterministic quantum
network, because the conditions (M.3) are satisfied: indeed, one has
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R d d
I

d

I

d

d I
I

d

Tr Tr

Tr , N.7
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wherewe applied Schur’s lemma to the irreducible representation Ug{ }andwe used the notation Tr
32 to

denote the partial trace over themultiplicity spaces resulting from the coupling of systems 3 and 2.
Equation (N.7) implies that we have R I RTr3 2= Ä ¢[ ] with

R d
I

d
Tr .l

l

l l

l l
out 32
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* *

* *


a a
a a
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∣ ∣
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Moreover, we have

R d
I

d

I

I

I

Tr Tr Tr

Tr

Tr

, N.8

l

l

l l

l l

l l

l l

l l

l l

1 out 1

0

0

0

32

32 10

*

*

* *

* *

* *

* *

* *

* *



 

a a
a a

a a
a a

a a
a a

¢ = Ä
ñá

á ñ

=
ñá

á ñ

=
ñá

á ñ
=

Ä

⎡
⎣
⎢⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

[ ]
∣ ∣

∣

∣ ∣
∣

∣ ∣
∣

( )

the second equality following fromSchur’s lemma applied to the representation Vg{ }. This concludes the proof
thatR represents a deterministic quantumnetwork.

If m 1l*
= , the quantum comb Ropt has the product form R d d

I

d

I

dopt in out
l

l

l

l

*

*

*

*

= Ä( ), where thefirst factor
acts on theHilbert spaces 3 and 2 , while the second acts on theHilbert spaces 1 and 0 . Thismeans that the
optimal network consists of a quantum channel from system0 to system 1, followed by a quantum channel 
from system 2 to system3, the two channels having theChoi operators

A
d

d
I B

d

d
Iand ,

l
l

l
l

in out

**
* *

= =

respectively. Note that no quantummemory is needed between and  . +

AppendixO. Proof of theorem7: lower bound on the gatefidelity

Proof.Wehave to prove the bound

F U V F ,g g U Vgate
det

Bell
prob 2

g g F ñ  F ñ[ ] ( [∣ ∣ ])

where Fgate
det is the ultimate deterministic fidelity of the gate simulationU Vg g and FBell

prob is the optimal fidelity
of the corresponding spin conversion U Vg g

F ñ  F ñ∣ ∣ .
To derive the boundwe start from the decomposition of the representations Ug{ }and Vg{ }. Explicitly, we

write

U U I V U I . O.1g
j U

g
j

m g
k V

g
k

nj k

Irr Irr

= Ä = Ä
Î Î
⨁ ( ) ⨁ ( ) ( )

( )

( )

( )

( )

In addition, we decompose the representationU Ug
k

g
jÄ( ) ( ) as

U U U I , O.2g
k

g
j

l U U
g
l

m
k j l

k j,

Irr

Ä = Ä
Î Ä

⨁ ( ) ( )( ) ( )

( )

( )

( ) ( )
( )

where ml
k j,( ) is themultiplicity of the irreducible representation Ug

l{ }( ) in the decomposition of the product

representation U Ug
k

g
jÄ{ }( ) ( ) . The dimensions of the representation andmultiplicity spaces in equations (O.1)

and (O.2)determine the optimal fidelity. The exact formula is given by proposition 5 of [51], which yields the
expression

F
n d d m m

d d
hmax ,

h l V U k V j U

k k j j l
k j

l
k lgate

det
2 ,

out
2 ,

2

k l, Irr Irr Irr
å å å=

Î Ä Î Î

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟·

{ } ( ) ( ) ( )

( )

where hk l,{ } is a set of coefficients satisfying the constraints h 0k l,  and h k1l k l,å = " . Choosing hk l ll, *
d=

for some fixed (but otherwise arbitrary) l*, we get a lower bound of the gate simulation fidelity. Specifically, we
have
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Now,we use the standard group-theoretic formula for themultiplicities [59], which can be computed as
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A trivial rearrangement of the terms gives
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where mj
k l,( ) is themultiplicity of the irreducible representation Ug

j{ }( ) in the decomposition of the product

representation U Ug
k

g
lÄ{ }( ) ( ) .

On the other hand, the decomposition
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which in turn implies the inequality
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Using the above property, we can reduce the fidelity bound (O.3) to
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where ml
j

*

( ) is themultiplicity of the irreducible representation Ug
l*{ }( ) in the decomposition of the product

representation V Ug g
jÄ{ }( ) . The last term in the inequality is exactly the fidelity of the Bell state conversion, as

given by equation (L.7). +
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