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1 Introduction

Reinsurance is an important activity of insurance companies for transferring some of their poten-

tial risk to another party at the cost of sacrificing part of their potential profit. Because of its

practical importance, the problem of optimal reinsurance has been studied extensively in the ac-

tuarial literature. Under the criterion of minimizing ruin probability or maximizing adjustment

coefficient, many optimal results have been derived for the classical risk model and its diffusion

approximation. For example, [2], [9] and [8] considered the problem of minimizing ruin probability;

and [3]-[6] focused on constructing optimal contracts that maximize the adjustment coefficient by

the martingale approach.

In the actuarial literature, insurance risk analysis in the presence of dependent risks has been

one of the major topics in the past few decades. Although it might be a bit long overdue, the study

of dependent risks has been extended to the problem of optimal reinsurance in recent years. One of

the frequently-seen risk models with dependence assumes that correlation among different classes

of insurance risks is due to common shocks. For two classes of insurance risks with common shock

dependence, [1] sought the optimal excess of loss reinsurance to minimize the ruin probability based

on the diffusion approximation risk model; and [7] studied the optimal proportional reinsurance

problem under the variance premium principle for both the compound Poisson risk model and the

associated diffusion risk model. For more than two classes of insurance business with common

shock dependence, [13] considered the objective of maximizing the expected exponential utility and

derived the optimal reinsurance strategy not only for the diffusion approximation risk model but

also for the compound Poisson risk model.

In order to depict more realistic features of dependence, [14] first introduced the so-called risk

model with thinning dependence in which claims in one class may induce claims in other classes

with certain probabilities. A typical example is that a severe car accident may cause not only

the loss of the damaged car but also the medical expenses of the injured driver and passengers.

Mimicking the idea of [14], [11] studied the thinning relation in the discrete-time case; and [10]

formulated the thinning-dependence structure in a more general framework, and investigated some

basic properties of the corresponding risk process as well as the impact of the thinning dependence

on ruin probability.
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In the classical risk model, the risk process is given by

U(t) = u+ ct− S(t) = u+ ct−
N(t)∑
i=1

X(i), (1.1)

where u is the initial capital, c is the premium rate, S(t) is the aggregate claims process, the

claim-number process N(t) is a homogeneous Poisson process with intensity λ, and {X(i), i ≥ 1}

is a sequence of positive, independent and identically distributed (i.i.d.) claim-amount random

variables. It is assumed that the claim-number process N(t) is independent of the claim amounts

{X(i), i ≥ 1}.

Suppose that an insurance company has n (n ≥ 2) classes of business. In the setting of thinning

dependence, stochastic sources that may cause a claim in at least one of the n classes are classified

into m groups. It is assumed that each event in the kth group may cause a claim in the jth class

with probability pkj for k = 1, 2, . . . ,m and j = 1, 2, . . . , n. Thus, the total amount of claims for

the jth class up to time t has the form

Sj(t) =

Nj(t)∑
i=1

Xj(i),

where Nj(t) is the claim-number process of the jth class. Denote by Nk(t) the number of events

generated from the kth group that has occurred up to time t, and by Nk
j (t) the number of claims

of the jth class up to time t generated from the events in group k. Then the claim-number process

of the jth class can be written as

Nj(t) = N1
j (t) +N2

j (t) + · · ·+Nm
j (t),

and the aggregate claims process of the entire portfolio is given by

S(t) =
n∑
j=1

Sj(t) =
n∑
j=1

Nj(t)∑
i=1

Xj(i),

where {Xj(i), i ≥ 1} is a sequence of i.i.d. non-negative claim-amount random variables with

common distribution FXj for class j (j = 1, . . . , n).

Incorporating the thinning dependence into (1.1), we define the risk process of the jth (j =

1, . . . , n) class as

Uj(t) = uj + cjt− Sj(t) = uj + cjt−
Nj(t)∑
i=1

Xj(i),
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and the risk process of the company is denoted by

U(t) = u+ ct− S(t) = u+ ct−
n∑
j=1

Nj(t)∑
i=1

Xj(i), (1.2)

with u =
∑n

j=1 uj and c =
∑n

j=1 cj . As was mentioned in [10], we need the following assumptions

in order to make the analysis of U(t) mathematically tractable:

(A1) The process N1(t), · · · , Nm(t) are independent Poisson processes with intensities λ1, · · · , λm,

respectively. For k 6= k′, the two vectors of claim-number processes (Nk(t), Nk
1 (t), · · · , Nk

n(t))

and (Nk′(t), Nk′
1 (t), · · · , Nk′

n (t)) are independent.

(A2) For each k = 1, · · · ,m, Nk
1 (t), · · · , Nk

n(t) are conditionally independent given Nk(t).

Remark 1.1. If m = n and pkk = 1 for k = 1, . . . , n, then U(t) of (1.2) is the risk model of [14]

with the so-called thinning-dependence structure. If n = 2, m = 3, p12 = p21 = 0, p31 = p32 = 1,

p11 = p22 = 1, then U(t) of (1.2) is the risk model with common shock for two dependent classes of

business; see, for example, [7] and [12]. For n > 2, more general risk models with common shock

can also be constructed from (1.2) by choosing the values of m and pkj appropriately.

In this paper, our aim is to find the optimal reinsurance strategy for the compound Poisson

risk model with thinning dependence under the criterion of maximizing the adjustment coefficient.

Section 2 presents the compound Poisson risk model with thinning dependence in the presence of

proportional reinsurance. In Section 3, optimal results under both the expected value premium

principle and the variance premium principle are derived. Section 4 provides some numerical

examples to illustrate the impact of the model parameters on the optimal reinsurance strategies.

2 Model with proportional reinsurance

Assume that insurance company can reinsure a fraction of its claim with retention level qj (0 ≤

qj ≤ 1) for each risk in class j (j = 1, 2, . . . , n). Let δ(q) be the reinsurance premium rate with

q = (q1, q2, · · · , qn). Let U q(t) be the associated risk process that describes the reserve of an

insurance company at time t with reinsurance strategy q. It follows from (1.2) that

U q(t) = u+ (c− δ(q))t− Sq(t), (2.1)
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where

Sq(t) =
n∑
j=1

Sqj (t) =
n∑
j=1

Nj(t)∑
i=1

qjXj(i).

Following the arguments in the proof of [10], one can show that Sq(t) is still a compound Poisson

risk process which can be rewritten as

Sq(t) =

NX
t∑

i=1

Xi,

where NX
t is a Poisson process with intensity λ = λ1 + · · · + λm, and {Xi, i ≥ 1} are i.i.d. with

common distribution FX having moment generating function

MX(r) =
1

λ

m∑
k=1

λk

n∏
j=1

(Mj(qjr)pkj + 1− pkj), (2.2)

with Mj(r) being the moment generating function of distribution FXj (j = 1, 2, ..., n).

Denote the ruin time by

T q = inf{t ≥ 0 : U q(t) < 0},

and the probability of ultimate ruin by

ψq(u) = P{T q <∞|U q(0) = u}.

It is well known from the classical risk theory that the ruin probability has the form

ψq(u) =
e−R

qu

E[e−RqUq(T q)|T q <∞]
,

where Rq is the adjustment coefficient. In general, there is no closed-form expression for the

conditional expectation in the denominator. As a result, much ruin analysis has been carried out

using the Lundberg inequality

ψq(u) ≤ e−Rqu. (2.3)

By definition, the adjustment coefficient Rq is the positive root of

MSq(t)−(c−δ(q))t(r) = e−r(c−δ(q))teλt[MX(r)−1] = 1,

and hence satisfies

(c− δ(q))r − λ[MX(r)− 1] = 0. (2.4)

In the next section, we derive the optimal reinsurance strategy that maximizes the adjustment

coefficient or minimizes the upper bound in (2.3).
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3 Optimal results

To simplify the optimality analysis, we consider working on the model of study with two classes of

business, i.e., n = 2, from now on. In this section, we discuss the optimal reinsurance problem for

risk process (2.1) under two typical premium principles.

3.1 Expected value premium principle

Under the expected value premium principle, the reinsurance premium rate is

δ(q) = (1 + η)
2∑
j=1

µj(1− qj)
m∑
k=1

λkpkj , (3.1)

where η is the reinsurer’s safety loading of two classes of insurance business. Denote the insurer’s

safety loading by

θ =
c∑2

j=1 µj
∑m

k=1 λkpkj
− 1. (3.2)

Plugging (2.2), (3.1) and (3.2) into (2.4), we obtain

[
(1 + θ)

2∑
j=1

µj

m∑
k=1

λkpkj − (1 + η)
2∑
j=1

µj(1− qj)
m∑
k=1

λkpkj

]
r

−
m∑
k=1

λk

2∏
j=1

[Mj(qjr)pkj + 1− pkj ] + λ = 0. (3.3)

The main objective of the paper is to find the optimal reinsurance strategy q∗ = (q∗1, q
∗
2) that

maximizes the adjustment coefficient or minimizes the upper bound for the ruin probability given

in (2.3). So, we want to find the maximized adjustment coefficient Rq
∗

satisfying the following

equation

sup
(q1,q2)

{[
(1 + θ)

2∑
j=1

µj

m∑
k=1

λkpkj − (1 + η)

2∑
j=1

µj(1− qj)
m∑
k=1

λkpkj

]
r

−
m∑
k=1

λk

2∏
j=1

[Mj(qjr)pkj + 1− pkj ] + λ

}
= 0.

Let

f(q1, q2) =
[
(1 + θ)

2∑
j=1

µj

m∑
k=1

λkpkj − (1 + η)

2∑
j=1

µj(1− qj)
m∑
k=1

λkpkj

]
r

−
m∑
k=1

λk

2∏
j=1

[Mj(qjr)pkj + 1− pkj ] + λ.
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Differentiating it with respect to q1 and q2 gives
∂f(q1, q2)

∂q1
= (1 + η)µ1

m∑
k=1

λkpk1r −
m∑
k=1

λk
[
rM ′1(q1r)pk1

]
[M2(q2r)pk2 + 1− pk2] ,

∂f(q1, q2)

∂q2
= (1 + η)µ2

m∑
k=1

λkpk2r −
m∑
k=1

λk
[
rM ′2(q2r)pk2

]
[M1(q1r)pk1 + 1− pk1] ,

and 

∂2f(q1, q2)

∂q21
= −

m∑
k=1

λk
[
r2M ′′1 (q1r)pk1

]
[M2(q2r)pk2 + 1− pk2] < 0,

∂2f(q1, q2)

∂q22
= −

m∑
k=1

λk
[
r2M ′′2 (q2r)pk2

]
[M1(q1r)pk1 + 1− pk1] < 0,

∂2f(q1, q2)

∂q1∂q2
= −

m∑
k=1

λk
[
rM ′1(q1r)pk1

] [
rM ′2(q2r)pk2

]
< 0.

Lemma 3.1. The function f(q1, q2) is a concave function with respect to qj for j = 1, 2.

Proof. To prove that f(q1, q2) is a concave function with respect to qj for j = 1, 2, we need to show

that the Hessian matrix of f(q1, q2) is a negative definite matrix.

Denote the Hessian matrix of f(q1, q2) by

HE =


∂2f(q1, q2)

∂q21

∂2f(q1, q2)

∂q1∂q2
∂2f(q1, q2)

∂q1∂q2

∂2f(q1, q2)

∂q22

 = r2A, (3.4)

where

A =

−
m∑
k=1

λkM
′′
1 (q1r)pk1 [M2(q2r)pk2 + 1− pk2] −

m∑
k=1

λk [M ′1(q1r)pk1] [M ′2(q2r)pk2]

−
m∑
k=1

λk [M ′1(q1r)pk1] [M ′2(q2r)pk2] −
m∑
k=1

λkM
′′
2 (q2r)pk2 [M1(q1r)pk1 + 1− pk1]

 .

Because of (3.4), it is sufficient to show that A is negative definite. It is obvious that

∂2f(q1, q2)

∂q21
= −

m∑
k=1

λkM
′′
1 (q1r)pk1 [M2(q2r)pk2 + 1− pk2] < 0.

The remaining step is to prove

|A| =

m∑
k=1

λkM
′′
1 (q1r)pk1 [M2(q2r)pk2 + 1− pk2]

m∑
k=1

λkM
′′
2 (q2r)pk2 [M1(q1r)pk1 + 1− pk1]

−
[ m∑
k=1

λk
[
M ′1(q1r)pk1

] [
M ′2(q2r)pk2

] ]2
> 0. (3.5)
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Since 0 < pkj < 1, the left-hand side of (3.5) becomes

m∑
k=1

λkM
′′
1 (q1r)pk1 [M2(q2r)pk2 + 1− pk2]

m∑
k=1

λkM
′′
2 (q2r)pk2 [M1(q1r)pk1 + 1− pk1]

−
[ m∑
k=1

λk
(
M ′1(q1r)pk1

) (
M ′2(q2r)pk2

) ]2
>

m∑
k=1

λkpk1pk2M
′′
1 (q1r)M2(q2r)

m∑
k=1

λkpk1pk2M
′′
2 (q2r)M1(q1r)

−
[ m∑
k=1

λk
(
M ′1(q1r)pk1

) (
M ′2(q2r)pk2

) ]2
≥

(
m∑
k=1

√
λkpk1pk2M

′′
1 (q1r)M2(q2r)

√
λkpk1pk2M

′′
2 (q2r)M1(q1r)

)2

−
[ m∑
k=1

λk
(
M ′1(q1r)pk1

) (
M ′2(q2r)pk2

) ]2
=
( m∑
k=1

λkpk1pk2

)2[
M ′′1 (q1r)M2(q2r)M

′′
2 (q2r)M1(q1r)− [M ′1(q1r)M

′
2(q2r)]

2
]

=
( m∑
k=1

λkpk1pk2

)2(
E
[
X2

1e
q1rX1

]
E
[
eq1rX1

]
E
[
X2

2e
q2rX2

]
E
[
eq2rX2

]
−
(

E
[
X1e

q1rX1
]

E
[
X2e

q2rX2
] )2)

≥
( m∑
k=1

λkpk1pk2

)2[(
E
[
X1e

1
2
q1rX1e

1
2
q1rX1

] )2(
E
[
X2e

1
2
q2rX2e

1
2
q2rX2

] )2
−
(

E
[
X1e

q1rX1
]

E
[
X2e

q2rX2
] )2]

=0,

where the second inequality and the last one are due to Hölder’s inequality.

From Lemma 3.1, we see that (q1, q2) maximizing f(q1, q2) satisfies the following equations
(1 + η)µ1

m∑
k=1

λkpk1r −
m∑
k=1

λk [rM ′1(q1r)pk1] [M2(q2r)pk2 + 1− pk2] = 0,

(1 + η)µ2
m∑
k=1

λkpk2r −
m∑
k=1

λk [rM ′2(q2r)pk2] [M1(q1r)pk1 + 1− pk1] = 0.

(3.6)

For notational convenience, we set a = q1r and b = q2r. Equation (3.6) becomes
(1 + η)µ1

m∑
k=1

λkpk1 −
m∑
k=1

λk [M ′1(a)pk1] [M2(b)pk2 + 1− pk2] = 0,

(1 + η)µ2
m∑
k=1

λkpk2 −
m∑
k=1

λk [M ′2(b)pk2] [M1(a)pk1 + 1− pk1] = 0.

(3.7)
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For checking the existence and uniqueness of the solution to (3.7), we need the following lemmas.

Lemma 3.2. There is a unique positive solution to each of the following equations

(1 + η)µ1

m∑
k=1

λkpk1 =
m∑
k=1

λkM
′
1(a)pk1, (3.8)

and

(1 + η)µ1

m∑
k=1

λkpk1 =
m∑
k=1

λkµ1pk1 [M2(b)pk2 + 1− pk2] . (3.9)

Proof. We first discuss equation (3.8). From equation (3.8), we have

M ′1(a) = µ1(1 + η).

Since M ′1(a) is an increasing function with M ′1(0) = µ1, equation (3.8) must have a unique positive

solution a1 given by

a1 = M ′−11 (µ1(1 + η)).

For equation (3.9), let

g0(b) =
m∑
k=1

λkµ1pk1 [M2(b)pk2 + 1− pk2] .

It is easy to check that

g0(0) =

m∑
k=1

λkµ1pk1,

g′0(b) =

m∑
k=1

λkµ1pk1E(X2e
bX2) > 0,

g′′0(b) =

m∑
k=1

λkµ1pk1E(X2
2e
bX2) > 0,

which imply that g0(b) is an increasing convex function. Furthermore, the left-hand side of equation

(3.9) is a constant which is larger than g0(0), and the right-hand side of (3.9) tends to∞ as b→∞.

Therefore, equation (3.9) has a unique positive root denoted by b1.

Lemma 3.3. There is a unique positive solution to each of the following equations

(1 + η)µ2

m∑
k=1

λkpk2 =
m∑
k=1

λkµ2pk2 [M1(a)pk1 + 1− pk1] , (3.10)

and

(1 + η)µ2

m∑
k=1

λkpk2 =
m∑
k=1

λkM
′
2(b)pk2. (3.11)
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Proof. Similar to the proof of Lemma 3.2, one can show that equations (3.10) and (3.11) have

unique positive roots denoted by a2 and b2, respectively.

The next lemma states the existence and uniqueness of the solution to (3.7).

Lemma 3.4. Let a1, b1, a2 and b2 be the unique positive roots of equation (3.8),(3.9),(3.10) and

(3.11), respectively. If 
a1 > a2,

b1 < b2,

or 
a1 < a2,

b1 > b2

hold, then equation (3.7) has a unique positive solution (t1, t2).

Proof. Let

G1(a, b) = (1 + η)µ1

m∑
k=1

λkpk1 −
m∑
k=1

λk
[
M ′1(a)pk1

]
[M2(b)pk2 + 1− pk2] ,

and

G2(a, b) = (1 + η)µ2

m∑
k=1

λkpk2 −
m∑
k=1

λk
[
M ′2(b)pk2

]
[M1(a)pk1 + 1− pk1] .

Assume that G1(a, b) = 0 with a = f1(b) and G2(a, b) = 0 with a = f2(b). Differentiating both

sides of G1(a, b) = 0 with respect to b yields

m∑
k=1

λk

[
f ′1(b)M

′′
1 (a)pk1 [M2(b)pk2 + 1− pk2] +M ′1(a)M ′2(b)pk1

]
= 0,

which in turn gives

f ′1(b) = −

m∑
k=1

λkM
′
1(a)M ′2(b)pk1

m∑
k=1

λkf
′
1(b)M

′′
1 (a)pk1[M2(b)pk2 + 1− pk2]

< 0.

Moreover, it follows from Lemma 3.2 that the equations G1(0, b) = 0 and G1(a, 0) = 0 have unique

positive solutions a1 and b1, respectively. Therefore, the function f1(b) is decreasing with
f1(0) = a1 > 0,

f−11 (0) = b1 > 0.
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Along the same lines, one can show that f ′2(b) < 0. This implies that f2(b) is also a decreasing

function with 
f2(0) = a2 > 0,

f−12 (0) = b2 > 0.

As a result, if the following inequalities
f1(0) > f2(0),

f−11 (0) < f−12 (0),

or 
f1(0) < f2(0),

f−11 (0) > f−12 (0)

hold, the functions f1(b) and f2(b) have at least one point of intersection at some t2 > 0. By

mimicking the proof of Lemma 3.2 of [7], one can show that t11 = t12 and t21 = t22 if both (t11, t21)

and (t12, t22) are solutions to (3.7). So, equation (3.7) has a unique positive root (t1, t2) with

t1 = f1(t2) = f2(t2).

Let (t1, t2) be the solution to (3.7). It follows from the relationship between (3.6) and (3.7) that

t1 = q1r and t2 = q2r. Plugging r = t1/q1 into (3.3) and r = t2/q2 into (3.3) separately, we obtain

the following two equations

[
(1 + θ)

2∑
j=1

µj

m∑
k=1

λkpkj − (1 + η)

2∑
j=1

µj(1− qj)
m∑
k=1

λkpkj

] t1
q1

−
m∑
k=1

λk

2∏
j=1

[Mj(tj)pkj + 1− pkj ] + λ = 0,

[
(1 + θ)

2∑
j=1

µj

m∑
k=1

λkpkj − (1 + η)

2∑
j=1

µj(1− qj)
m∑
k=1

λkpkj

] t2
q2

−
m∑
k=1

λk

2∏
j=1

[Mj(tj)pkj + 1− pkj ] + λ = 0,
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which imply that

q1 =

(θ − η)t1
2∑
j=1

µj
m∑
k=1

λkpkj

m∑
k=1

λk
2∏
j=1

[Mj(tj)pkj + 1− pkj ]− λ− (1 + η)
2∑
j=1

µjtj
m∑
k=1

λkpkj

,

q2 =

(θ − η)t2
2∑
j=1

µj
m∑
k=1

λkpkj

m∑
k=1

λk
2∏
j=1

[Mj(tj)pkj + 1− pkj ]− λ− (1 + η)
2∑
j=1

µjtj
m∑
k=1

λkpkj

.

(3.12)

We next discuss the optimal reinsurance strategy for each line. Note that retention levels should

lie between [0, 1]. When q1 or q2 is outside the [0, 1] interval, we set it to be 0 (if it is negative) or 1

(if it is greater 1), and recalculate the retention level for the other line. When both retention levels

fall outside the interval, we regard the boundary values as the optimal reinsurance strategies. The

details are illustrated as follows.

For q1 < 0 and 0 ≤ q2 ≤ 1, the optimal reinsurance strategy for the first line is set to be 0,

i.e., q∗1 = 0. It means that the insurance company should buy reinsurance for all of its risks in the

first line. In this case, we need to recalculate the value of q2. To do so, one can plug q∗1 = 0 into

equation (3.3) and let t′2 = q′2r. This results in

(θ − η)

2∑
j=1

µj

m∑
k=1

λkpkj
t′2
q′2

=

m∑
k=1

λk
[
M2(t

′
2)pk2 + 1− pk2

]
− (1 + η)µ2t

′
2

m∑
k=1

λkpk2 − λ,

which gives

q′2 =

t′2(θ − η)
2∑
j=1

µj
m∑
k=1

λkpkj

[M2(t′2)− (1 + η)µ2t′2 − 1]
m∑
k=1

λkpk2

. (3.13)

To figure out the value of t′2, we directly plug q∗1 = 0 into equation (3.3) and take the first derivative

on both sides with respect to q′2. So, we have

M ′2(t
′
2) = (1 + η)µ2,

which yields

t′2 = M ′−12 [(1 + η)µ2] .

Plugging it into (3.13), we obtain

q′2 =

M ′−12 [(1 + η)µ2] (θ − η)
2∑
j=1

µj
m∑
k=1

λkpkj[
(1 + η)µ2 − (1 + η)µ2M

′−1
2 [(1 + η)µ2]

] m∑
k=1

λkpk2

.

12



Therefore, the optimal reinsurance strategy (q∗1, q
∗
2) for the insurance company has the form (0, (q′2)+∧

1) with (q′2)+ = max(q′2, 0).

For q1 < 0 and q2 /∈ [0, 1], the optimal reinsurance strategy (q∗1, q
∗
2) should be set as (0, 0) for

q2 < 0 and (0, 1) for q2 > 1.

For q1 > 1 and 0 ≤ q2 ≤ 1, we take q∗1 = 1 as the optimal reinsurance strategy for the first line.

Similar to the derivation of (3.13), we obtain the following revised value of q2

q′′2 =

t′′2

[
(1 + θ)

2∑
j=1

µj
m∑
k=1

λkpkj − (1 + η)µ2
m∑
k=1

λkpk2

]
m∑
k=1

λk
2∏
j=1

[
Mj(t′′j )pkj + 1− pkj

]
− λ− (1 + η)

2∑
j=1

µjt′′j
m∑
k=1

λkpkj

, (3.14)

where (t′′1, t
′′
2) is the solution to (3.7), which can be alternatively derived by plugging q∗1 = 1 into

equation (3.6) and letting t′′j = qjr, j = 1, 2. As a result, the optimal reinsurance strategy for the

second line is q∗2 = (q′′2)+ ∧ 1.

For q1 > 1 and q2 /∈ [0, 1], the optimal reinsurance strategy (q∗1, q
∗
2) will be (1, 0) for q2 < 0 and

(1, 1) for q2 > 1.

For q1, q2 ∈ [0, 1], the optimal reinsurance strategy (q∗1, q
∗
2) for the insurance company is just

(q1, q2).

Finally, when q1 ∈ [0, 1] and q2 /∈ [0, 1], we set the optimal reinsurance strategy for the second

line as q∗2 = 0 for q2 < 0 and q∗2 = 1 for q2 > 1. In these cases, the value of q1 needs to be

recalculated. Steps similar to the previous recalculations can be applied for finding the revised

values of q1 denoted by q′1 for q∗2 = 0 and q′′1 for q∗2 = 1. The optimal reinsurance strategy (q∗1, q
∗
2)

13



is then given by ((q′1)+ ∧ 1, 0) and ((q′′1)+ ∧ 1, 1), respectively. In summary, we have

(q∗1, q
∗
2) =



(0, 0), q1 < 0, q2 < 0,

(0, (q′2)+ ∧ 1), q1 < 0, 0 ≤ q2 ≤ 1,

(0, 1), q1 < 0, q2 > 1,

((q′1)+ ∧ 1, 0), 0 ≤ q1 ≤ 1, q2 < 0,

(q1, q2), 0 ≤ q1 ≤ 1, 0 ≤ q2 ≤ 1,

((q′′1)+ ∧ 1, 1), 0 ≤ q1 ≤ 1, q2 > 1,

(1, 0), q1 > 1, q2 < 0,

(1, (q′′2)+ ∧ 1), q1 > 1, 0 ≤ q2 ≤ 1,

(1, 1), q1 > 1, q2 > 1.

In addition to the discussion on q1 and q2, we briefly describe how explicit expressions for the

adjustment coefficient can be obtained. Consider the case of q∗j = qj ∈ [0, 1] for j = 1, 2. Plugging

q∗j = qj into equation (3.3) and setting tj = qjr for j = 1, 2 lead to

Rq
∗

=

m∑
k=1

λk
2∏
j=1

[Mj(tj)pkj + 1− pkj ]− λ− (1 + η)
2∑
j=1

µjtj
m∑
k=1

λkpkj

(θ − η)
2∑
j=1

µj
m∑
k=1

λkpkj

.

When q∗1 = 0, one can use the same technique to obtain the following adjustment coefficient

Rq
∗

=



0, if (q∗1, q
∗
2) = (0, 0),

[M2(t
′
2)− 1]

m∑
k=1

λkpk2 − (1 + η)µ2t
′
2

m∑
k=1

λkpk2

(θ − η)
2∑
j=1

µj
m∑
k=1

λkpkj

, if (q∗1, q
∗
2) = (0, q′2),

[M2(t
′
2)− 1]

m∑
k=1

λkpk2

(θ − η)
2∑
j=1

µj
m∑
k=1

λkpkj + (1 + η)µ2
m∑
k=1

λkpk2

, if (q∗1, q
∗
2) = (0, 1).

Note that the optimal reinsurance strategy (q∗1, q
∗
2) = (0, 0) gives Rq

∗
= 0 due to (3.3). Along

the same lines, one can derive closed-form expressions for the maximized adjustment coefficient for

other cases.
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3.2 Variance premium principle

Under the variance premium principle, the reinsurance premium rate is

δ(q) =
2∑
j=1

µj(1− qj)
m∑
k=1

λkpkj + Λ1

[ 2∑
j=1

(1− qj)2(µ2j + σ2j )
m∑
k=1

λkpkj

+
m∑
l=1

2∑
k=1

2∑
j 6=k

µjµk(1− qj)(1− qk)λlpljplk
]
,

where Λ1 is the reinsurer’s safety loading of the two classes of insurance business. Denote the

insurer’s safety loading by Λ which is given by

Λ =

c−
2∑
j=1

µj
m∑
k=1

λkpkj

2∑
j=1

(µ2j + σ2j )
m∑
k=1

λkpkj +
m∑
l=1

2∑
k=1

2∑
j 6=k

µjµkλlpljplk

.

Similar to the case under the expected value premium principle, the adjustment coefficient must

satisfy equation (2.4), which turns out to be{
Λ
( 2∑
j=1

(µ2j + σ2j )

m∑
k=1

λkpkj +

m∑
l=1

2∑
k=1

2∑
j 6=k

µjµkλlpljplk

)
+

2∑
j=1

µj

m∑
k=1

λkpkj

−
2∑
j=1

µj(1− qj)
m∑
k=1

λkpkj − Λ1

[ 2∑
j=1

(1− qj)2(µ2j + σ2j )
m∑
k=1

λkpkj

+

m∑
l=1

2∑
k=1

2∑
j 6=k

µjµk(1− qj)(1− qk)λlpljplk
]}
r

−
m∑
k=1

λk

2∏
j=1

[Mj(qjr)pkj + 1− pkj ] + λ = 0. (3.15)

To obtain the maximized adjustment coefficient Rq
∗
, we need to find the solution to the following

equation

sup
(q1,q2)

{{
Λ
( 2∑
j=1

(µ2j + σ2j )

m∑
k=1

λkpkj +

m∑
l=1

2∑
k=1

2∑
j 6=k

µjµkλlpljplk

)
+

2∑
j=1

µj

m∑
k=1

λkpkj

−
2∑
j=1

µj(1− qj)
m∑
k=1

λkpkj − Λ1

[ 2∑
j=1

(1− qj)2(µ2j + σ2j )
m∑
k=1

λkpkj

+

m∑
l=1

2∑
k=1

2∑
j 6=k

µjµk(1− qj)(1− qk)λlpljplk
]}
r −

m∑
k=1

λk

2∏
j=1

[Mj(qjr)pkj + 1− pkj ] + λ

}
= 0.
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Let

f(q1, q2) =

{
Λ
( 2∑
j=1

(µ2j + σ2j )
m∑
k=1

λkpkj +
m∑
l=1

2∑
k=1

2∑
j 6=k

µjµkλlpljplk

)

+
2∑
j=1

µj

m∑
k=1

λkpkj −
2∑
j=1

µj(1− qj)
m∑
k=1

λkpkj

−Λ1

[ 2∑
j=1

(1− qj)2(µ2j + σ2j )
m∑
k=1

λkpkj

+
m∑
l=1

2∑
k=1

2∑
j 6=k

µjµk(1− qj)(1− qk)λlpljplk
]}
r

−
m∑
k=1

λk

2∏
j=1

[Mj(qjr)pkj + 1− pkj ] + λ. (3.16)

Differentiating f(q1, q2) with respect to q1 and q2, we obtain

∂f(q1, q2)

∂q1
= rµ1

m∑
k=1

λkpk1 − 2rΛ1q1(µ
2
1 + σ21)

m∑
k=1

λkpk1

+2rΛ1(µ
2
1 + σ21)

m∑
k=1

λkpk1 + 2rΛ1µ1µ2(1− q2)
m∑
l=1

λlpl1pl2

−
m∑
k=1

λk [rM ′1(q1r)pk1] [M2(q2r)pk2 + 1− pk2] ,

∂f(q1, q2)

∂q2
= rµ2

m∑
k=1

λkpk2 − 2rΛ1q2(µ
2
2 + σ22)

m∑
k=1

λkpk2

+2rΛ1(µ
2
2 + σ22)

m∑
k=1

λkpk2 + 2rΛ1µ1µ2(1− q1)
m∑
l=1

λlpl1pl2

−
m∑
k=1

λk [rM ′2(q2r)pk2] [M1(q1r)pk1 + 1− pk1] ,

and

∂2f(q1, q2)

∂q21
= −2rΛ1(µ

2
1 + σ21)

m∑
k=1

λkpk1 −
m∑
k=1

λk
[
r2M ′′1 (q1r)pk1

]
[M2(q2r)pk2 + 1− pk2] < 0,

∂2f(q1, q2)

∂q22
= −2rΛ1(µ

2
2 + σ22)

m∑
k=1

λkpk2 −
m∑
k=1

λk
[
r2M ′′2 (q2r)pk2

]
[M1(q1r)pk1 + 1− pk1] < 0,

∂2f(q1, q2)

∂q1∂q2
= −2rΛ1µ1µ2

m∑
l=1

λlpl1pl2 −
m∑
k=1

λk [rM ′1(q1r)pk1] [rM ′2(q2r)pk2] < 0.

Lemma 3.5. The function f(q1, q2) defined in (3.16) is a concave function with respect to q1 and

q2.

Proof. Similar to the proof of Lemma 3.1, it is sufficient to prove that the Hessian matrix of

f(q1, q2) is negative definite. Denote by HV the Hessian matrix of f(q1, q2) under the variance
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premium principle. It can be shown that

HV =


∂2f(q1, q2)

∂q21

∂2f(q1, q2)

∂q1∂q2
∂2f(q1, q2)

∂q1∂q2

∂2f(q1, q2)

∂q22

 = r2A + 2rΛ1B,

where A is defined in (3.4) and

B =

−(µ21 + σ21)
m∑
k=1

λkpk1 −µ1µ2
m∑
l=1

λlpl1pl2

−µ1µ2
m∑
l=1

λlpl1pl2 −(µ22 + σ22)
m∑
k=1

λkpk2

 .

Since the proof of |A| > 0 is given in the proof of Lemma 3.1, we only need to show that

|B| > 0, i.e.,

(µ21 + σ21)
m∑
k=1

λkpk1(µ
2
2 + σ22)

m∑
k=1

λkpk2 −
(
µ1µ2

m∑
l=1

λlpl1pl2

)2
> 0. (3.17)

By Hölder’s inequality, the left-hand side of (3.17) becomes

(µ21 + σ21)
m∑
k=1

λkpk1(µ
2
2 + σ22)

m∑
k=1

λkpk2 −
(
µ1µ2

m∑
l=1

λlpl1pl2

)2
≥(µ21 + σ21)(µ22 + σ22)

( m∑
k=1

λk
√
pk1pk2

)2
−
(
µ1µ2

m∑
l=1

λlpl1pl2

)2
>0,

where the last inequality is obtained using
µ2j + σ2j > µ2j , for j = 1, 2,

m∑
k=1

λk
√
pk1pk2 >

m∑
l=1

λlpl1pl2, for k = l ∈ {1, . . . ,m}.

Thus, B is a negative definite matrix, and hence HV is also negative definite.

Consequently, (q1, q2) which maximizes f(q1, q2) satisfies the following equations

rµ1
m∑
k=1

λkpk1 − 2rΛ1q1(µ
2
1 + σ21)

m∑
k=1

λkpk1 + 2rΛ1(µ
2
1 + σ21)

m∑
k=1

λkpk1

+2rΛ1µ1µ2(1− q2)
m∑
l=1

λlpl1pl2 −
m∑
k=1

λk[rM
′
1(q1r)pk1][M2(q2r)pk2 + 1− pk2] = 0,

rµ2
m∑
k=1

λkpk2 − 2rΛ1q2(µ
2
2 + σ22)

m∑
k=1

λkpk2 + 2rΛ1(µ
2
2 + σ22)

m∑
k=1

λkpk2

+2rΛ1µ1µ2(1− q1)
m∑
l=1

λlpl1pl2 −
m∑
k=1

λk[rM
′
2(q2r)pk2][M1(q1r)pk1 + 1− pk1] = 0,

(3.18)
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which can be simplified as

µ1
m∑
k=1

λkpk1 + 2Λ1(1− q1)(µ21 + σ21)
m∑
k=1

λkpk1 + 2Λ1µ1µ2(1− q2)
m∑
l=1

λlpl1pl2

−
m∑
k=1

λk[M
′
1(q1r)pk1][M2(q2r)pk2 + 1− pk2] = 0,

µ2
m∑
k=1

λkpk2 + 2Λ1(1− q2)(µ22 + σ22)
m∑
k=1

λkpk2 + 2Λ1µ1µ2(1− q1)
m∑
l=1

λlpl1pl2

−
m∑
k=1

λk[M
′
2(q2r)pk2][M1(q1r)pk1 + 1− pk1] = 0.

(3.19)

Let t1 = q1r and t2 = q2r. Then, (3.19) can be rewritten as

µ1
m∑
k=1

λkpk1 + 2Λ1(1−
t1
r

)(µ21 + σ21)
m∑
k=1

λkpk1 + 2Λ1µ1µ2(1−
t2
r

)
m∑
l=1

λlpl1pl2

−
m∑
k=1

λk[M
′
1(t1)pk1][M2(t2)pk2 + 1− pk2] = 0,

µ2
m∑
k=1

λkpk2 + 2Λ1(1−
t2
r

)(µ22 + σ22)
m∑
k=1

λkpk2 + 2Λ1µ1µ2(1−
t1
r

)
m∑
l=1

λlpl1pl2

−
m∑
k=1

λk[M
′
2(t2)pk2][M1(t1)pk1 + 1− pk1] = 0.

(3.20)

The following lemmas are useful for proving the existence and uniqueness of the solution to (3.20).

Lemma 3.6. There is a unique positive solution to each of the following equations

µ1

m∑
k=1

λkpk1 + 2Λ1(1−
t1
r

)(µ21 + σ21)
m∑
k=1

λkpk1 + 2Λ1µ1µ2

m∑
l=1

λlpl1pl2

=
m∑
k=1

λkM
′
1(t1)pk1, (3.21)

and

µ1

m∑
k=1

λkpk1 + 2Λ1(µ
2
1 + σ21)

m∑
k=1

λkpk1 + 2Λ1µ1µ2(1−
t2
r

)

m∑
l=1

λlpl1pl2

=

m∑
k=1

λkµ1pk1[M2(t2)pk2 + 1− pk2]. (3.22)

Proof. We first consider equation (3.21). Let
g1(t1) =

m∑
k=1

λkM
′
1(t1)pk1,

g2(t1) = µ1
m∑
k=1

λkpk1 + 2Λ1(1−
t1
r

)(µ21 + σ21)

m∑
k=1

λkpk1 + 2Λ1µ1µ2

m∑
l=1

λlpl1pl2.
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Then, we have

g1(0) =µ1

m∑
k=1

λkpk1,

g′1(t1) =

m∑
k=1

λkpk1E(X2
1e
t1X1) > 0,

g′′1(t1) =

m∑
k=1

λkpk1E(X3
1e
t1X1) > 0.

These imply that g1(t1) is an increasing convex function. On the other hand, g2(t1) is a decreasing

linear function with respect to t1 with

g2(0) = µ1

m∑
k=1

λkpk1 + 2Λ1(µ
2
1 + σ21)

m∑
k=1

λkpk1 + 2Λ1µ1µ2

m∑
l=1

λlpl1pl2 > g1(0).

It is not difficult to see that g1(t1) and g2(t1) have a unique point of intersection at some t̄1 > 0.

That is, equation (3.21) has a unique positive solution.

We now consider equation (3.22). Let
g3(t2) =

m∑
k=1

λkµ1pk1[M2(t2)pk2 + 1− pk2],

g4(t2) = µ1
m∑
k=1

λkpk1 + 2Λ1(µ
2
1 + σ21)

m∑
k=1

λkpk1 + 2Λ1µ1µ2(1−
t2
r

)
m∑
l=1

λlpl1pl2.

It is easy to see that

g3(0) =µ1

m∑
k=1

λkpk1,

g′3(t2) =µ1

m∑
k=1

λkpk1pk2E(X2e
t2X2) > 0,

g′′3(t2) =µ1

m∑
k=1

λkpk1pk2E(X2
2e
t2X2) > 0.

So, one can conclude that g3(t2) is an increasing convex function. Also, it is easily seen that g4(t2)

is a decreasing linear function with respect to t2 with

g4(0) = µ1

m∑
k=1

λkpk1 + 2Λ1(µ
2
1 + σ21)

m∑
k=1

λkpk1 + 2Λ1µ1µ2

m∑
l=1

λlpl1pl2 > g3(0).

As a consequence, g3(t2) and g4(t2) have a unique point of intersection at some t̄2 > 0. That is,

equation (3.22) has a unique positive solution.
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Lemma 3.7. There is a unique positive solution to each of the following equations

µ2

m∑
k=1

λkpk2 + 2Λ1(µ
2
2 + σ22)

m∑
k=1

λkpk1 + 2Λ1µ1µ2(1−
t1
r

)
m∑
l=1

λlpl1pl2

=

m∑
k=1

λkµ2pk2[M1(t1)pk1 + 1− pk1], (3.23)

and

µ2

m∑
k=1

λkpk2 + 2Λ1(1−
t2
r

)(µ22 + σ22)

m∑
k=1

λkpk2 + 2Λ1µ1µ2

m∑
l=1

λlpl1pl2

=

m∑
k=1

λkM
′
2(t2)pk2. (3.24)

Proof. Similar to the proof of Lemma 3.6, one can show that equations (3.23) and (3.24) have a

unique positive root t̃1 and t̃2, respectively.

The next lemma states the existence and uniqueness of the solution to equation (3.20).

Lemma 3.8. Let t̄1, t̄2, t̃1 and t̃2 be the unique positive roots of equations (3.21),(3.22),(3.23) and

(3.24), respectively. If 
t̄1 > t̃1,

t̄2 < t̃2,

or 
t̄1 < t̃1,

t̄2 > t̃2

hold, then equation (3.20) has a unique positive solution (t1, t2).

Proof. The proof is similar to that of Lemma 3.4.

Put t1 = t1(r) and t2 = t2(r). Plugging these into (3.15) yields[
(Λ− Λ1)

2∑
j=1

(µ2j + σ2j )
m∑
k=1

λkpkj + 2(Λ− Λ1)µ1µ2

m∑
k=1

λkpk1pk2

]
r2

+
[ 2∑
j=1

µjtj(r)

m∑
k=1

λkpkj + 2Λ1

2∑
j=1

tj(r)(µ
2
j + σ2j )

m∑
k=1

λkpkj

+2Λ1µ1µ2

(
t1(r) + t2(r)

) m∑
k=1

λkpk1pk2 −
m∑
k=1

λk

2∏
j=1

[Mj(tj(r))pkj + 1− pkj ]

+λ
]
r − Λ1

2∑
j=1

tj(r)
2(µ2j + σ2j )

m∑
k=1

λkpkj − 2µ1µ2Λ1t1(r)t2(r)

m∑
k=1

λkpk1pk2 = 0.

(3.25)
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The maximized adjustment coefficient Rq
∗

can be obtained by solving (3.25). The optimal strategies

for both lines of business are then given by
q∗1 =

t1(R
q∗)

Rq∗
,

q∗2 =
t2(R

q∗)

Rq∗
.

(3.26)

Remark 3.1. If reasonable parameter values are used (for example, Λ and Λ1 are close to each

other), one should be able to obtain the solution to equation (3.25) numerically. A few examples are

presented in the next section. Also, many previous results have shown that retention levels under

the variance premium principle fall inside the interval [0, 1]. See, for example, [7] and [13].

4 Numerical examples

In this section, we carry out a few numerical studies using the results obtained in the previous

sections for two classes of insurance business and two groups of stochastic sources, i.e., n = m = 2.

For illustration purpose, it is assumed that the claim sizes for both lines, X1 and X2, are

exponentially distributed with mean µ1 and µ2, respectively.

Example 1. We set θ = 0.3, η = 0.4, p11 = p22 = 1, p12 = p21 = 0.5, µ1 = µ2 = 1, Λ = 0.3,

Λ1 = 0.4, σ1 = σ2 = 1 and λ2 = 2. The results are shown in Tables 1 and 2.

Table 1: Effect of λ1 on optimal reinsurance strategies under expected value premium principle

λ1 1 2 3 4 5 6 7 8 9 10

q∗1 0.436458 0.463596 0.477171 0.485302 0.490711 0.494566 0.497452 0.499692 0.501481 0.502942

q∗2 0.485302 0.463596 0.448081 0.436458 0.427431 0.420219 0.414326 0.409421 0.405274 0.401722

Table 2: Effect of λ1 on optimal reinsurance strategies under variance premium principle

λ1 1 2 3 4 5 6 7 8 9 10

q∗1 0.209473 0.212291 0.213776 0.214701 0.215334 0.215796 0.216149 0.216427 0.216652 0.216838

q∗2 0.214701 0.212291 0.210659 0.209473 0.208569 0.207856 0.207280 0.206804 0.206403 0.206062

It is exhibited in Tables 1 and 2 that as λ1 increases, the optimal retention level for the first line

increases while the optimal retention level for the second line decreases. This implies that when

the intensity of the claim number for the first line becomes larger, the insurer would like to retain

a greater share of each claim in the first line but a smaller share of each claim in the second line. A

21



possible explanation is that a greater λ1 yields a greater reinsurance premium which in turn leads

to a higher reinsurance cost. 2

Example 2. Let θ = 0.3, η = 0.4, Λ = 0.3, Λ1 = 0.4, p11 = p22 = 1, λ1 = 1, λ2 = 2, µ1 = µ2 = 1,

σ1 = σ2 = 1 and p21 = 0.5. The results are shown in Tables 3 and 4.

Table 3: Effect of p12 on optimal reinsurance strategies under expected value premium principle

p12 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

q∗1 0.458931 0.454358 0.449084 0.443114 0.436458 0.429122 0.421114 0.412442 0.403116

q∗2 0.466809 0.471109 0.475648 0.480390 0.485302 0.490356 0.495530 0.500802 0.506155

Table 4: Effect of p12 on optimal reinsurance strategies under variance premium principle

p12 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

q∗1 0.212259 0.211611 0.210928 0.210215 0.209473 0.208705 0.207912 0.207097 0.206262

q∗2 0.213187 0.213533 0.213904 0.214294 0.214701 0.215120 0.215550 0.215989 0.216435

Tables 3 and 4 give the values of q∗1 and q∗2 when p12 changes. Given other things being equal, as

p12 moves from 0.1 to 0.9, the optimal retention level for the first line decreases while the optimal

retention level for the second line increases. Note that p12 represents the probability that the

stochastic source from the first group causes claims in the second class of insurance business. A

greater value of p12 may yield a larger number of claims in the second line. Therefore, the results

imply that the greater the probability of having claims in the second line caused by the first group

of stochastic sources is, the less share of each claim in the first line but the larger share of each

claim in the second line the insurance company would like to retain possibly due to the reason

mentioned in Example 1. 2

Along the same lines, one can perform similar numerical analysis to assess the effects of λ2 and

p21 on the optimal reinsurance strategies. It is expected that when the value of λ2 gets larger, the

optimal retention level for the first line becomes smaller while the optimal retention level for the

second line becomes bigger, and that a greater value of p21 yields a higher optimal retention level

for the first line but a lower optimal retention level for the second line.

Example 3. Let θ = 0.3, η = 0.4, Λ = 0.3, Λ1 = 0.4, p11 = p22 = 1, p12 = 0.5, λ1 = 1, λ2 = 2,

µ1 = µ2 = 1 and σ1 = σ2 = 1. The results are shown in Figure 1.
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(b) Variance premium principle

Figure 1: Optimal reinsurance strategies maximize the adjustment coefficient

Under the expected value premium principle, the optimal reinsurance strategies are q∗1 =

0.436458 and q∗2 = 0.485302, and under the variance premium principle, the optimal reinsurance

strategies are q∗1 = 0.209473 and q∗2 = 0.214701. For comparison, we arbitrarily choose another

three groups of reinsurance strategies. Based on these four reinsurance strategies, we plot R against

p21 under the expected value premium principle in Figure 1(a) and under the variance premium

principle in Figure 1(b). We see from both figures that the curve on the top refers to the case

where optimal reinsurance strategies are applied. These are consistent with the results obtained

in the previous section, i.e., when the optimal reinsurance strategies are applied, the adjustment

coefficient attains its maximum under both the expected value premium principle and the variance

premium principle.

2

5 Concluding remarks

This paper examines the problem of optimal proportional reinsurance in a risk model with correlated

classes of insurance business. It is assumed that the claim-number processes among classes possess

the thinning-dependence structure. For this risk model, we derive the optimal reinsurance strate-

gies with the objective of maximizing the adjustment coefficient for two commonly-used premium

principles. Under the expected value premium principle, we are able to obtain explicit expressions

for q∗1 and q∗2. To restrict these values to the unit interval, we propose a method to recalculate the
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optimal values. On the other hand, under the variance premium principle, the associated equations

for finding the optimal values are more complicated than those under the expected value premium

principle, and hence explicit expressions for the optimal reinsurance strategies cannot be derived.

Finally, we carry out a few numerical examples to illustrate the impact of the model parameters

on the optimal reinsurance strategies.

It is expected that our method can still be applied to derive the optimal strategy for the thinning

model with more than two lines of insurance business. Undoubtedly, the derivation of the main

results becomes much more challenging in this case. For further research, one may incorporate

some investment features into the model of study, and then investigate the corresponding optimal

investment and reinsurance problem with thinning dependence. Another interesting topic is to

consider a similar optimal problem with another objective of optimization such as maximizing the

expected utility of terminal wealth.
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