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Lattice Boltzmann simulation of droplet dynamics on granular surfaces with variable wettability
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Soil-composing particles undergo wettability changes, impacting hydraulic and mechanical processes such
as erosion and landslides. Such processes evolve at very small scales, typically at the particle level. Here we
capture the evolution of liquid interfaces in a single particle and several particles with the lattice Boltzmann
(LB) method. The paper presents a three-dimensional LB study on the droplet dynamics on a layer of uniformly
packed spherical particles with varying size and intrinsic contact angle (CA) aimed at mimicking conditions
comparable to those of real soils. The numerical droplet is initialized close to the granular surface and deposited
by gravity. Three spreading and infiltration behaviors were identified: a droplet with a stable apparent CA, a
droplet with a metastable apparent CA before infiltration, and immediate infiltration. The results showed that
the formation of a droplet with a stable or metastable spherical-cap shape depends on the particle size and the
intrinsic CA. Furthermore, the initial wetted zone expansion was found to be governed by inertial effects with
its behavior characterized by a power law. Finally, the apparent CA, which is closely related to the intrinsic
CA, was found to be influenced by the particle size due to a significant portion of the droplet being embedded
into the granular surface for the larger particles and reducing the apparent CA. This paper provides a basis for
future research targeting the behavior of droplet interaction with granular surfaces with variable intrinsic CAs
(from wettable to superhydrophobic) such as soils and other granular materials for industrial applications. The
numerical approach implemented can also be extended to model other dynamic processes for a droplet, such as
evaporation, high-velocity impacting, and lateral sliding.
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I. INTRODUCTION

Droplet dynamics, such as spreading, infiltration, or stand-
ing with a spherical cap, on granular surfaces widely occurs in
nature. In soil science, water droplet infiltration is vital for crop
irrigation and productivity [1,2]. In earth surface processes,
the impact of water drops in the soil leads to splash erosion
[3], while in wildfire-affected slopes soil water repellency
inhibits infiltration with the water drops rolling on the surface
and generating rill erosion [4]. Its effects have also been
studied and mimicked by various disciplines with an economic
intent; examples include textiles [5], powder technology [6],
ink jetting [7], and new smart materials [8]. By using an
advanced numerical tool that can capture the evolution of liquid
interfaces in a single particle or several particles, this paper
provides insight into droplet interaction and dynamics with
granular surfaces.

Interaction of droplets with porous media depends on
the morphology and surface wettability of the substrate. For
granular materials such as soils, morphology refers to the size
and shape of the particles and how they are arranged to form
a surface with voids [9]. Wettability refers to the adhesive or
repulsive effects between a liquid and a particle surface. Under
different configurations of particle size and wettability, the
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interplay between these physical characteristics will dictate
whether a droplet sits on the surface, infiltrates slowly, or
infiltrates quickly. Placing a droplet onto a permeable surface
leads to an intricate solid-fluid interaction due to the interplay
between the droplet infiltration and spreading (Fig. 1). The
droplet may reach a stable configuration with the particles,
standing still above the porous surface. It may get slowly
absorbed but can still recoil to form a spherical cap. If the
infiltration is rapid enough, the droplet can remain unstable
with a distorted shape before infiltration [10].

The interaction behavior and dynamics of a droplet with
a surface are strongly linked to the surface wettability. The
interaction diverges between a rough and porous surface and a
flat and smooth surface. For a flat surface, the intersection angle
between the droplet interface and the surface can be measured
as a direct expression of wettability, which is defined by the
contact angle (CA). For a granular surface, Fig. 2(a) shows
that CAs at two different length scales are present. The CA on
a particle surface is the intrinsic CA, while that on a surface
made of many particles is the apparent CA.

The apparent CA is measured directly on a granular surface
with the sessile drop method (SDM), which is widely used in
solid surfaces and granular solids in material science [11] and
soil science [12]. The SDM procedure consists of sprinkling
particles on a double-sided tape attached to a microscope glass
slide as the base. A sessile drop is released from a syringe
close to the particle layer. The gap between the droplet and
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FIG. 1. Sketch of droplet interaction with porous surface.

the tested surface is reduced to eliminate the impacting effect
and prevent splashing of the droplet. During the subsequent
process, a sequence of side images is captured by a video
camera. If a droplet gets slowly absorbed into the granular
surface, the apparent CA shall be measured at the first frame
when the droplet displays a spherical-cap shape. For a droplet
eventually standing above the surface, the reading can be taken
after the oscillation stops. Figure 2(b) shows a side photograph
of the SDM setup, where the apparent CA is measured for
a water droplet sitting statically on a layer of hydrophobic
glass beads. Essentially, it is the intrinsic CA that governs the
bonding capillary forces [13], the liquid morphology [14], the
soil water retention [15], and capillary imbibition [16] in a
partially saturated soil. Yet, only the apparent CA on a layer
of particles can be measured. Therefore, inferring the intrinsic
CA from the apparent CA is of high importance.

The simplest approach to derive the apparent CA on
rough solid surfaces assumes the crevices filled with water
or entrapped by air, as postulated by the Wenzel model [17]
and Cassie-Baxter model [18], respectively. The Wenzel model
predicts an apparent CA smaller than the intrinsic CA since the
surface roughness increases the contact area between the liquid

FIG. 2. (a) Sketch of intrinsic CA and apparent CA on a particle
layer. (b) Image of the SDM test, showing a 10-μL water drop
standing above a layer of hydrophobic glass beads. (c) Illustration
of the Bachmann-McHale model.

and the solid. In contrast, the Cassie-Baxter model predicts
a larger apparent CA since a greater fraction of the liquid
is in contact with the immiscible air phase. However, reality
lies between the two idealized cases. Figure 2(c) illustrates
an intertwined model involving both the Wenzel and Cassie-
Baxter effects developed by Bachmann and McHale [19].
The model assumes the droplet to arch over the adjacent
particles (Cassie-Baxter effect) while the wetted surface area
at each particle is larger than its projection area (Wenzel
effect). If the particle shape is simplified as spherical, the
wetted surface area can be determined with a known intrinsic
CA. The model was adopted to interpret the apparent CA on
glass beads and sands. Nevertheless, the three models were
derived by advancing the droplet interface to the adjacent
micropillar, and the change in surface free energy is zero if
the apparent CA is at its equilibrium value. This requires the
assumption of an infinitesimal roughness scale compared to
the droplet, where the volume of the liquid embedded into
the porous media is negligible. However, a porous surface
may be composed of particles with sizes comparable to the
droplets. Previous experimental studies found that the apparent
CA was influenced by the particle size but the results are
contradictory [20–22]. These challenges cannot be clarified
with size-independent models.

Spreading dynamics has been numerically studied by two
different approaches. One approach is the lubrication-theory-
based models treating the porous media as a continuum
[23–27]. A spherical-cap or parabolic shape with no inertial
effects is assumed for a droplet with a prescribed apparent
CA while imbibition into the porous medium is described by
the Darcys flow [25]. The method is limited to modeling the
contact line motion, mostly for the media with small pores
where the details of the pore-scale morphology are not con-
sidered. However, the assumption of a pure viscous spreading
decoupled from inertia may not hold true for a real droplet with
prominent infiltration and oscillation. Neither can it be used to
study the effect of the intrinsic CA on the droplet behaviors
and the apparent CA. An alternative approach is to conduct
a pore-scale simulation [28–33]. The topography of a porous
medium defining the spatial distribution of solids and voids
with a pore-scale resolution is required as the computational
domain for solving the multiphase Navier-Stokes equations.
Though the direct numerical simulation is computationally
expensive requiring parallel implementation of the algorithm in
supercomputers, it provides the distribution of the liquid phase
inside and outside the porous media. Both the information of
a droplet spreading above the surface and the microscopic
insights into the flows in pores can be retrieved. Therefore,
it serves as a tool to investigate the effects of the pore-scale
morphology and wettability on droplet dynamics.

Droplet dynamics has been investigated by pore-scale
simulations. Hyväluoma et al. [29] simulated the droplet
infiltration into a porous matrix reconstructed from scanned
microtomographic images of paper fibers. Both the volume
above the surface and the preferential flow infiltration were
monitored. Frank et al. [30,33] explored the evolution of the
wetted zone radius and droplet height decreasing on arrays of
capillary tubes with different shapes, intrinsic CAs, and pore
fractions. They found that the power law describing the initial
wetted zone growth on flat surfaces [34] can also be extended
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to a porous surface. The droplet displayed the spherical-cap
shape, which is essential for the measurement of the apparent
CA. An advantage of the pore-scale method is its ability to
capture rapid infiltration in wettable porous surfaces. Ding and
Theofanous [31] investigated the fast infiltration of droplets
into capillary tubes. The downward pore flow was so rapid
that the liquid phase in the tubes ruptured from the droplet.
Similarly, Taghilou and Rahimian [32] simulated the droplet
infiltration into two-dimensional porous media consisting of
sparsely randomly distributed solid nodes. Since the infiltration
was fast, the droplets were distorted and no apparent CA was
exhibited. Despite the above studies, the formation mechanism
of droplets with a spherical-cap shape and its dependence on
the properties of the porous media remain unclear. Moreover,
the substrate geometry in the above studies differs from those
of granular materials, which is the focus of our research.

The present paper provides direct pore-scale insight into the
interaction and dynamics of droplets with a layer of spheres.
It uses grains that match those of medium-sized sands, which
are a very common geological material all over the world.
Likewise, the droplet size is within the range of natural rainfall
drops [35]. The numerical setup is physically based on the
experimental setup of the SDM test. While the commonly
available SDM apparatus only records the droplet spreading
above the granular surface with 83 frames per second [36], the
lattice Boltzmann (LB) simulation captures the distribution of
the liquid phase inside and outside the particle layer, with a
much higher temporal resolution, which for this paper was
in the range of a few microseconds. The apparent CA and
the evolution of the droplet shape can be precisely measured,
together with the pore-scale flow dynamics during infiltration.
By conducting simulations under different configurations of
particle size and intrinsic CA, the specific objectives are (1)
to identify the various modes of droplet dynamics, (2) to
explore the temporal evolution of the wetted zone radius to
study the lateral propagation of the droplet contact lines, and
(3) to investigate the linkage between the apparent CA and the
intrinsic CA.

II. NUMERICAL METHOD

The pore-scale numerical simulations of droplet dynamics
on a layer of particles involves dealing with the movement of
air-water interfaces on porous surfaces with variable wettabil-
ity. Such problems can be handled with various multiphase
LB methods (e.g., pseudopotential LB methods [37,38], free-
energy models [39–41], and phase-field LB method [42,43]).
The LB method, originally generated from gas kinematics, is
known for the efficient parallelization of the algorithm and
flexibility in dealing with irregular boundaries [44]. There-
fore, multiphase LB methods have been widely applied in
simulating pore-scale flows, such as unsaturated permeability
[45], wetting-drying in porous media [46], capillary rise [47],
Pickering emulsion [48], and colloid hydrodynamics [49].

In the present paper, the simulation is performed with the
phase-field LB method [43]. The system of binary fluids adopts
the one-fluid formulation where a phase index field C is defined
to describe the phase that occupies each computational cell.
The phase index C is around one for the liquid phase and is
around zero for the gas phase. The value gradually changes

from zero to one in the interface. The evolution of the phase
field is governed by the minimization of the free energy given
by

� = �b + �s =
∫

V

[
E0(C) + κ

2
|∇C|2

]
dV

+
∫

S

(
φ0 − φ1Cs + φ2C

2
s − φ3C

3
s + . . .

)
dS, (1)

where � is the total free energy, and the subscripts b and s mean
the contributions from the bulk fluids and the solid boundaries.
There are two terms within the �b, the local bulk energy E0 =
βC2(C − 1)2 and the interface-induced energy κ

2 |∇C|2. The
constants β and κ can be related to the surface tension σ and
interface thickness ξ by

σ =
√

2κβ

6
, (2)

κ = βξ 2

8
. (3)

�s is nonzero only for the fluid nodes adjacent to the solid
nodes, Cs is the composition at a solid surface, and the φs are
the constant coefficients.

Minimizing the bulk free energy �b for the fluid phase leads
to the Cahn-Hilliard (CH) equation:

∂C

∂t
+ ∇ · (uC) = M∇2μ, (4)

where u is the velocity, μ is the chemical potential, and M

is the mobility, a numerical parameter controlling the rate
of diffusion. The chemical potential is derived from the free
energy:

μ = μ0 − κ∇2C = ∂E0

∂C
− κ∇2C. (5)

The μ0 is called the local part of the chemical potential, and the
−κ∇2C is the interface-induced chemical potential. Since E0

takes the form of the double-well potential function, C will be
close to either zero or one in the pure single-phase region. The
negative sign in the nonlocal term −κ∇2C helps build a stable
diffusive gas-liquid interface. The two competing terms mean
that the phase index C is stable either completely separated as
the pure single phase or well mixed as the interface. Therefore,
the evolution of the CH equation results in the phase separation
while the total free energy in the system is decreasing.

For the fluid nodes adjacent to the solid surface, minimizing
the �b + �s leads to a partially wetting boundary condition
where the CA can be defined at the fluid-solid interface by
specifying the gradient of C [50]. The boundary condition is
established as

n · ∇C|s = − cos θ eq

√
2β

κ

(
Cs − C2

s

)
, (6)

where θ eq is the equilibrium CA at the solid surface.
Solving the CH equation provides the spatial distributions

of density ρ, the kinematic viscosity ν, and the surface
tension force Fs. Here, density and viscosity are both the
necessary material properties for solving the incompressible
NS equation. They can be calculated from the index C simply
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through linear mapping, and are written as

ρ = Cρl + (1 − C)ρg, (7)

1

ν
= C

νl

+ 1 − C

νg

, (8)

where the subscripts l and g indicate the liquid phase and the
gas phase. The surface tension force Fs applied at the inter-
facial region is proportional to the gradient of the interface-
induced chemical potential, given by

Fs = κC∇∇2C. (9)

The formulation based on the chemical potential is called the
potential form [42]. Together with the standard isotropic spatial
discretion, the nonphysical velocities at the interfacial region
in the multiphase LB method (also termed as spurious currents)
can be minimized [51].

With the information provided by the CH equation, the
LB method computes the evolution of the mesoscale particle
probability functions, from which the macroscale velocity
and pressure are obtained. The standard discrete Boltzmann
equation (DBE) with the body force term for macroscopic
motion of fluid flows is
∂fα

∂t
+ eα · ∇fα = −1

λ

(
fα − f eq

α

) + 1

c2
s

(eα − u) · F�α(u).

(10)

Here, fα is the distribution function, eα is the discrete velocity
for the direction α, cs is the lattice speed of sound, and λ is the
relaxation time which is related to the kinematic viscosity by
ν = λc2

s . F is the body force term F = Fs + ρg, including the
contributions from surface tension force and gravity. �α(u) =
f

eq
α /ρ, and f

eq
α is the equilibrium distribution function defined

by

f eq
α = tαρ

[
1 + (eα · u)

c2
s

+ (eα · u)2

2c4
s

− (u · u)

2c2
s

]
, (11)

where tα is the weight for the direction α.
The LB formulation has been proved to be equivalent to the

artificial compression method in solving the incompressible
Navier-Stokes (NS) equation by the Chapman-Enskog analysis
[52]. However, the original formulation stores the base density
with the hydrodynamic pressure as a small perturbation in
the distribution functions and only applies to the multiphase
problem with nonuniform density field. The problem is solved
by defining a new distribution function gα = fαc2

s + (p −
ρc2

s )�α(0) to split the density [38]. Similarly, the g
eq
α is

transformed as g
eq
α = f

eq
α c2

s + (p − ρc2
s )�α(0). The DBE for

the new distribution function is
∂gα

∂t
+ eα · ∇gα

= −1

λ

(
gα − geq

α

) + (eα − u) · {∇ρc2
s [�α(u) − �α(0)]

+ F�α(u)
}
,

(12)

from which the evolution of pressure and velocity
in the macroscopic NS equations can be recovered

as

∂p

∂t
+ ρc2

s ∇ · u = 0, (13)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + F + ∇ · {
ρc2

s λ[∇u + (∇u)T ]
}
.

(14)

By integrating the DBE with a trapezoidal approximation over
a small time step δt [43], the lattice Boltzmann equation for
numerical implementation is

gα(x,t) − gα(x − eαδt,t − δt)

= − 1

τ + 1/2
(gα − geq

α )|(x−eαδt,t−δt)

+ δt(eα − u) · (κC∇∇2C + ρg)�α(u)

+ δt(eα − u) · ∇ρc2
s [�α(u) − �α(0)], (15)

where τ = λ/δt . With the temporal discretion, the truncation
error is O(�t2). The velocity and the macroscopic pressure
are obtained from the distribution functions by

ρu =
∑

α

eαgα + δt

2
(κC∇∇2C + ρg), (16)

p =
∑

α

gα + δt

2
u · ∇ρc2

s . (17)

The same temporal discretion can also be applied to solve
the CH equation [42,43]. However, the LB discretion can
only recover the advection term ∇ · (uC) in Eq. (4), while
the nonlinear diffusion term M∇2μ cannot be recovered and
related to the relaxation time λ. The advantages of the LB
scheme to recover both the advection term and the linear
diffusion as in solving the NS equations cannot be exploited.
Instead, the M∇2μ shall be included as an additional term,
which still relies on the finite difference approximation with
first-order accuracy [53]. Therefore, the CH equation can
be more efficiently solved by a full finite difference (FD)
scheme [54] and then coupling with the NS equations solved
by LB. We also adopt this hybrid LB-FD formulation. The
advective term ∇ · (uC) is discretized by a second-order group
velocity control scheme. In the Cartesian coordinate system
with uniform grid, the nonlinear diffusion term is approximated
with the isotropic central difference scheme involving all
the neighborhood nodes [55]. The third-order total variation
diminishing Runge-Kutta scheme is used for the temporal dis-
cretion. For computational details for solving the CH equation,
refer to computational fluid dynamics textbooks [56].

III. MODEL VALIDATION

The benchmark numerical tests on micron-scale droplet
impact on flat and smooth dry surfaces in Lee and Liu [43] were
replicated to validate the algorithm. The droplet spreading and
recoiling dynamics is governed by the Weber number, Laplace
number, and CA of the flat surface. For the 48.8-μm water
droplet used in the numerical tests, the dimensionless Laplace
number is La = σR

ρlν
2
l

= 1776, which defines the relative magni-
tude of inertial and capillary forces to viscous forces. In terms
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of the impacting velocity, the dimensionless Weber number
defined as the ratio of the inertial force over the surface tension
is We = ρu2Ddrop

σ
= 14.8. The simulations are performed on

both the hydrophilic and the hydrophobic surfaces, of which
the CAs are 31 and 107◦, respectively.

The numerical configuration follows Lee and Liu [43],
which matches the Laplace number and the Weber number
for the droplet. In LB units, the numerical box dimensions
are set as nx = 256, ny = 256, and nz = 256. The droplet
diameter is set to 50, initially at the center of the domain. The
liquid density is ρl = 1.0, the liquid kinematic viscosity is νl =
3.33 × 10−3, and the surface tension is σ = 7 × 10−4. The
droplet is accelerated to u = 0.013, followed by the collision
in the normal direction to the flat surface. For the vapor phase,
the density is ρv = 1.188 × 10−3 and the kinematic viscosity
is νv = 0.055. So the dynamic viscosity ratio of the numerical
system is as large as 51.

Figure 3 shows the evolution of the droplet spreading
diameter and the droplet height normalized by the initial
droplet diameter for the surfaces with CAs of 31 and 107◦.
A more significant droplet bounce is observed for CA = 107◦
than for CA = 31◦. The results agree with the numerical and
experimental results in Lee and Liu [43], which demonstrates
the potential of the algorithm to model the droplet dynamics
on granular surfaces.

IV. NUMERICAL SETUP

The numerical setup follows that of the SDM for measuring
the apparent CA by depositing a droplet on a layer of soil
particles stuck to a microscope glass slide. The dimensions of
the computational domain are set asnx = 400, ny = 200, nz =
400 in LB units, and the droplet diameter is set to 96. Physically,
the diameter is equivalent to 2.67 mm, which matches the
10-μL droplet commonly used in the SDM [57]. For simplicity,
in the present paper, the substrate is a layer of spherical
particles closely packed in a triangular pattern on the xz bottom
plane (Fig. 4). The lattice nodes occupied by the particles are
marked as solid nodes, implemented with the bounce-back
boundary condition. The particle diameters are 24, 32, and 40,
corresponding to the physical values 0.67, 0.89, and 1.15 mm,
respectively. The ratios Dparticle/Ddrop are 1:4, 1:3, and 1:2.4.
The particle sizes are within the range of coarse sands. Intrinsic
CAs on the particle surface are 30, 45, 60, 75, 90, and 105◦,
ranging from wettable to water repellent particle surfaces.
Therefore, a total of 18 numerical tests were performed with
different combinations of intrinsic CA and particle size.

In each test, the liquid density is ρL = 1.0, the liq-
uid kinematic viscosity is νL = 3.33 × 10−3, and the sur-
face tension is σ = 4 × 10−3 in LB units, corresponding to
103 kg/m3, 2.34 × 10−6 m2 s−1, and 72.8 mN/m, respectively,
in physical units. The kinematic viscosity is close to the value
of 20% concentration saline water, which is 2.33 times that
of pure water (1.006 × 10−6 m2 s−1). Further reducing the
lattice viscosity νL would trigger numerical instability, so a
smaller physical viscosity can only be achieved by enlarging
the computational domain, which would demand more com-
putational power. Despite compromise, in terms of relative
magnitude of inertial and capillary forces to viscous forces,
the dimensionless Laplace number La = σR

ρlν
2
l

= 17 280 � 1

FIG. 3. Evolution of the droplet spreading diameter and the
droplet height normalized by the initial droplet diameter (denoted
by D∗ and H ∗, respectively) for a 48.8-μm droplet impacting on a
flat surface with (a) CA = 107◦ and (b) CA = 31◦.

is sufficiently large so that the droplet is considered as low
viscosity [58]. Such a large value has been seldom numerically
investigated in the literature.

The simulation involves a preparation stage and a gravity
deposition stage. First, the droplet is initiated in a spherical

FIG. 4. Perspective view of the droplet and the particle layer. The
current snapshot for illustration is for Dparticle/Ddrop = 1 : 4.
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FIG. 5. Typical behavior for mode I: time sequence for test M75 with Dparticle/Ddrop = 1 : 3; at each time, the upper layer denotes the drop
shape and contact line movement and the lower layer denotes the infiltration.

shape above the particle layer with a negligible gap. The gap
is for completely separating the diffusive droplet interface
with finite thickness from the granular surface. Otherwise,
nonphysical mass transfer from the droplet to the granular
surface will happen. The gap takes eight lattice nodes and
physically this corresponds to 0.23 mm. This is similar to
the SDM test, where the droplet is released near the granular
surface to minimize the impacting effect. The phase index
C is set as one within the droplet and is set as zero in the
surrounding air. At the interface, a smooth transition is realized
using a tanh function [43]. However, the distribution of the
phase index C is not in an equilibrium state. The correct
pressure field that fits the surface tension forces has not yet
been built up. Hence, the simulation runs with no gravity
until the system reaches equilibrium. Then, gravity can be
applied to the liquid phase so that the droplet moves downward
and touches the granular surface. The subsequent evolution
process is monitored in the form of three-dimensional image
files at specific time intervals. Depending on the properties
of the granular surface, the computation is terminated either
after the droplet fully infiltrates, or stops oscillating and stands
still the surface.

The computational time required to complete the simula-
tions with CA = 30 or 45◦ is approximately 48 h on a 20-core
workstation with the basic OpenMP parallelism, and it takes
around 96 h for CA = 60◦ as the infiltration is slower. The
droplet cannot infiltrate for a CA starting from 75◦. It takes

96 h for CA = 75◦ to damp out the oscillation and requires
a longer period for larger CAs. Therefore, for CA = 90 and
105◦, the liquid viscosity is set as a nonphysical larger value
to damp out the oscillation for speeding up convergence, after
the droplet finishes spreading on the surface. In this way, the
simulation can be finished within reasonable computational
time without affecting the equilibrium apparent CA.

V. RESULTS AND DISCUSSION

A. Droplet dynamics on granular surfaces

For clarity, a test is labeled by its particle size and the
intrinsic CA. The particle layers with the diameters 0.67,
0.89, and 1.15 mm are denoted by S, M, and L, respectively.
Therefore, M45 indicates a layer of monosized 0.89-mm
spheres closely packed in a triangular pattern, with an intrinsic
CA of 45◦.

In the present paper, three modes for the droplet interaction
with the granular surfaces are observed: a droplet with a
stable apparent CA without infiltration (mode I), a droplet
with a metastable apparent CA before infiltration (mode II),
and immediate infiltration (mode III). Figures 5–7 show the
sequences of the three-dimensional views for the representative
cases M75, M60, and M30. Supplemental videos are also
provided in the Supplemental Material [59]. In addition, Fig. 8
illustrates the temporal evolution of the side projected area
Aproj of the droplets above the soil surface normalized by the
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FIG. 6. Typical behavior for mode II: time sequence for test M60 with Dparticle/Ddrop = 1 : 3; at each time, the upper layer denotes the drop
shape and contact line movement and the lower layer denotes the infiltration.

initial projected area A0 in the three modes. The snapshots
indicate that the droplet dynamics is characterized by the
coupling between the contact line lateral propagation on the
granular surface and the imbibition of the liquid into the porous
medium. No splitting or splashing is intended or observed,
as in the studies on high-velocity impacts [60,61]. The top
views for all the three modes are also provided in Figs. 9–11,
which clearly illustrate the droplet infiltration through radial
pore-scale flows below the granular surface.

Figure 5 indicates that mode I occurs if the downward
breakthrough of the droplet into the pores can be balanced by
the upward concave water menisci. After touching the granular
surface, the droplet spreads laterally while partially saturating
the pores. The contact line crosses the pores before getting
pinned to the granular surface. Thereafter, it oscillates and
reaches the steady state after the dissipation of the kinematic
energy at 125 ms (Fig. 8). Figure 5 shows that a significant
portion of the droplet with a spherical-cap shape is maintained
above the granular surface, converging to a stable apparent CA.

In addition, Fig. 9 shows that the sequence of the top views
resembles an evolving circular shape, and the droplet does not
infiltrate into the granular surface. Since the pores are partially
intruded by the liquid with entrapped air, the final configuration
of the droplet on the granular surface can be regarded as a
transitional state between Cassie-Baxter and Wenzel.

Mode II in Fig. 6 occurs if the pore throats fail to prevent
the droplet infiltration and the imbibition process goes on
until fully saturating the pores underneath. At its final state at
118.8 ms, the droplet is entirely absorbed and displays a zero
apparent CA. Figure 6 indicates that the droplet maintains the
shape of a spherical cap, displaying a slowly evolving apparent
CA between 30.8 and 44 ms. In terms of the configuration of the
liquid with the granular surface, this stage is consistent with
mode I. Figure 10 confirms that the evolution of the droplet
during this stage is also very slow when observed from the
top view. It is therefore termed as a metastable stage which
is unique to mode II. Afterwards, from 44 to 52.8 ms, an
acceleration of the imbibition rate is observed. A closer look
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FIG. 7. Typical behavior for mode III: time sequence for test M30 with Dparticle/Ddrop = 1 : 3; at each time, the upper layer denotes the drop
shape and contact line movement and the lower layer the denotes infiltration.

at the flows through the pores sheds light on a highly nonlinear
imbibition process. While temporarily supporting the droplet,
the pores are getting filled with liquid at a relatively slow
rate. However, as some pores are nearly full, at 39.6 ms, the
intruding liquid switches to radial flow through the subsurface
channels formed between the particles and the base plane. It
is the further development of the radial subsurface flow that
triggers the speeding up of the infiltration. After 52.8 ms, as
Fig. 10 indicates, the radial flow still continues by wetting
the pores underneath the granular surface, although the wetted
zone above the surface is diminishing with the contact lines of
the droplet retreating.

Mode III in Fig. 7 occurs when the infiltration rate is
sufficiently high so that the droplet is not allowed to recoil and
form the spherical shape before completely infiltrating. The
pore-scale flow in Fig. 7 reveals that the horizontal subsurface
flow subsequent to the liquid breakthrough into the pores takes
place at an early stage, 11 ms in comparison to 39.6 ms
for model II. As a result, unlike the significant recoiling and
oscillation present in mode I and II, the projected area decreases

monotonically with time (Fig. 8), with the infiltration occurring
within 15.4 ms. This immediate infiltration is also confirmed
in Fig. 11.

B. Phase diagram

A phase diagram is established in Fig. 12 to summarize the
modes for each combination of intrinsic CA and particle size. In
general, the droplet dynamics changes from mode I to mode III
in response to a decreasing intrinsic CA. As for the effect of the
particle size, a larger particle favors the transition from mode
II to mode III for the same intrinsic CA, while the transition
from mode I to mode II is size independent. Three tests at CA
= 65◦ confirmed that the critical intrinsic CA irrespective of
particle size is between 60 and 65◦.

The transition from mode I to II can be interpreted as the
breakdown of the equilibrium state between pairs of surface
tensions at the liquid-air, liquid-solid, and solid-air interfaces
and gravity under a droplet configuration with partially filled
pores. Changing the intrinsic CA is equivalent to modifying

FIG. 8. Normalized projected areas plotted against time for tests M75, M60, and M30, which illustrate the typical behaviors of mode I, II,
and III, respectively. The markers refer to instants to take the snapshots shown in Figs. 5–7.
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FIG. 9. Top view for mode I: time sequence for test M75 with Dparticle/Ddrop = 1 : 3.

the difference between the liquid-solid and solid-air surface
tensions, which directly affects the location of the water
menisci. Further decreasing the intrinsic CA will get the
liquid moving downward and propagate laterally through the
subsurface pores. That means mode I is no longer a possible
configuration for the buildup of forces in equilibrium. As
for the effect of the particle size, it is easier for a droplet
to percolate into larger pores between larger particles under
gravity. However, within the range of the particle sizes in
this paper, the length scales of the water menisci bridging
the pores in the close triangular packing are smaller than
the capillary length (the length scale above which the gravity

affects the curvature of an interface) λc =
√

σ
ρlg

= 2.7 mm.

Thus, gravity is a minor factor while the equilibrium among
the surface tensions plays a dominant role, which may explain
the comparable critical CA between 60 and 65◦. This CA value
is different from the simulations on a porous surface with
perforated tubes, where the liquid infiltrates with an intrinsic
CA below 90◦ [30,31,33]. In our simulations, the smaller
critical intrinsic CA can be attributed to the variable pore sizes
of the granular surface. The larger pore bodies are connected to
each other through smaller pore throats. Due to the ink-bottle
effect [62], the menisci downward breakthrough is constrained
around the narrow throats even when the intrinsic CA is smaller
than 90◦.

The boundary separating mode II from mode III reveals a
threshold where the downward infiltration outpaces the lateral
spreading and prevents the recoiling of the droplet (Figs. 6
and 7). Similar to previous studies on a droplet impacting
on a patterned surface [63,64], the two competing processes
(downward infiltration versus lateral spreading) evolve in two
time scales: one related to the capillary forces during the
droplet infiltration normal to the surface, t1, and the other for
the droplet lateral spreading, t2. Therefore, mode III would
require t1 to be much smaller than t2, so that the droplet does

not have enough time for recoiling into the spherical-cap shape.
The time scale t1 decreases with increasing particle size and
decreasing intrinsic CA, both of which favor the downward
infiltration as supported by the Washburn equation [16]. With
increasing particle size, the metastable stage was shortened
for an intrinsic CA = 60◦ [Fig. 13(b)] and suppressed for an
intrinsic CA = 45◦ [Fig. 13(a)], triggering the transition from
phase II to III.

C. Inertial spreading regime

For flat surfaces, the droplet dynamics has been described
in three regimes [58]: (1) spreading independent of wettability
in which r ≈ t0.5 within the time t/τ0 � 0.04, (2) spreading
affected by the surface CA within the time 0.04 � t/τ0 �
(σR/ρlν

2
l )1/8, and (3) slow spreading governed by viscous

forces, where τ0 is the inertial time scale [65]. The first regime
is strictly governed by inertia and is characterized by a power
law with a constant exponent of 0.5, while the third regime is
a slow viscous step with negligible inertial effects. Hence, the
second regime is a transitional step influenced by both inertia
and viscosity. For low viscous droplets, the second regime is
still referred to as the inertial regime, which is also described
by a power law [34]:

r

R
≈ C0

(
t

τ0

)α

, (18)

where α is the power-law exponent and C0 is the constant.
Both coefficients depend on the intrinsic CA. This relationship
was further extended to describe the inertial spreading on
porous surfaces with perforated tubes [30,33], where both α

and C0 were found to decrease with increasing intrinsic CA
and surface porosity.

Here, we attempt to apply the above three regimes to
granular surfaces, but are only concerned with the second
inertia-dominated regime. The first regime was not observed
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FIG. 10. Top view for mode II: time sequence for test M60 with Dparticle/Ddrop = 1 : 3.

due to the limited spatial and temporal resolution, and the third
regime was not investigated since it was not regarded as a
slow viscous spreading step from our simulations in granular
surfaces. Instead, the final regime is featured by the droplet
oscillation or infiltration.

Figure 14 shows the evolution of the wetted zone radius
r normalized by the initial droplet radius R versus the time
t normalized by the inertial time scale τ0 =

√
ρlR3/σ [65].

The wetted zone expands at an early stage, followed by a
receding radius or convergences, depending on whether the
droplet will infiltrate or oscillate. The inertial regime indicated

by the linear relationship up to t/τ0 ≈ 1.8 depends on the
particle size and intrinsic CA of the granular surface. For
instance, at t = 1.8τ0, the normalized wetted zone radius r/R

expands to 1.75, 1.68, and 1.51 for S30, M30, and L30, but
only 1.36, 1.23, and 1.19 for S105, M105, and L105. The
physical time is 10.4 ms, which coincides with the instant
the three modes diverge (Fig. 8). Compared to the prediction
(σR/ρlν

2
l )1/8 = 3.4τ0 for flat surfaces, the duration of 1.8τ0

is shorter. The snapshots at 11 ms in Figs. 5–7 indicate
that the liquid infiltration into the pores has already con-
strained the droplet spreading. Therefore, the inertial regime is

FIG. 11. Top view for mode III: time sequence for test M30 with Dparticle/Ddrop = 1 : 3.
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FIG. 12. Phase diagram for different values of intrinsic CA and
particle size. Symbols represent interaction modes of droplets with
granular surface: mode I, droplet with a stable apparent CA without
infiltration (square); mode II, droplet with a metastable apparent
CA before infiltration (circle); and mode III, immediate infiltration
(triangle).

suppressed, after which droplet dynamics transits to the final
regime.

For the inertial regime, the fitted α and C0 are summarized in
Fig. 15. Figure 15(a) shows that C0 decreases with increasing
intrinsic CA, which means that a lower wettability results in
a lower driving force of spreading. C0 also decreases with
increasing particle size, since filling larger pores slows down
the spreading. The exponent α is around 0.67 as illustrated
in Fig. 15(b), and is independent of the particle size and the
intrinsic CA. The exponent α reveals the decay on the contact
line propagation. In our simulations, the Laplace number is
17 280, indicating that the relative magnitude of viscous forces

FIG. 13. Normalized projected area as a function of time at
different particle sizes for the intrinsic CA equaling (a) 45◦ and
(b) 60◦.

FIG. 14. Normalized wetted zone radius vs dimensionless time.

to inertial and capillary forces is small. Therefore, the viscous
forces from the rearrangement of liquid play a minor role, and
the generation and propagation of the capillary wave initiated
at the contact line comprise the rate limiting process [34].

D. Apparent contact angles

The apparent CA is a measurable property that quantifies
the wettability of granular materials. The direct measurement
of the apparent CA from Figs. 5–7 provides an opportunity to
establish a relation between the apparent CA and the intrinsic
CA. Note that the apparent CA can only be analyzed for the
droplets in mode I and mode II. For mode I, the reading can
be taken after the oscillation stops. For mode II, the apparent
CA is measured from the first frame when the droplet displays
a spherical-cap shape within the metastable stage [66]. At this
instant, the droplet only partially infiltrates into the particle
layer and the liquid configuration is consistent with mode I.
Since the droplet is not in contact with the bottom plate, the
surface wettability of the bottom plate has negligible effects
on the apparent CA [12].

Figure 16 shows the apparent CA against the intrinsic CA
for the three particle sizes. Despite the scattering due to the
discrete nature of particles, the apparent CA increases with
the intrinsic CA. A nonzero apparent CA is achieved with
intrinsic CAs above 26.2, 37, and 48.8◦ for the particle sizes
0.67, 0.89, and 1.15 mm, respectively. Since our simulations
can capture the transient apparent CA in the metastable stage,
those minimum intrinsic CAs are smaller than the 61◦ predicted
by the Bachmann-McHale model. Moreover, the dependence
of the apparent CA on the particle size was verified with the
apparent CA for larger particles smaller at the low intrinsic
CAs. For example, for S60, M60, and L60, the apparent CAs
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FIG. 15. Coefficients (a) C0 and (b) α in the power law vs intrinsic
CA for various particle sizes.

are 40.2, 37.3, and 21.4◦ with intrinsic CA = 60◦. To explain
this, the portion of a droplet embedded into the pores can
be interpreted as decreasing the droplet height over the base
plane, leading to a lower apparent CA. This justifies the smaller
apparent CAs from this research comparing to the Bachmann-

FIG. 16. Apparent CA vs intrinsic CA for various particle sizes.

McHale model prediction, which takes the embedded volume
as infinitesimal relative to the droplet size. For a larger particle,
the effect is more significant especially with a low intrinsic
CA, since the droplet crosses over more pores and a higher
degree of pores is saturated. As the intrinsic CA increases, not
only is the location of the contact line residing on the granular
surface changing but the less significant embedded volume also
contributes to the increase of the apparent CA. At intrinsic
CA = 105◦, the apparent CAs for S105, M105, and L105
increase to as large as 105.3, 115.6, and 108.8◦, respectively.

E. Implications for bulk granular media

The results here obtained are applicable to bulk granular
media, such as soils and other granular materials. In this paper,
the geometric setup is motivated by the SDM for measuring
the apparent CA of granular materials, which involves using a
single layer of soil particles attached to a microscope glass slide
as the base. The configuration differs from a three-dimensional
compacted granular medium, which requires more particle
layers. However, compared to multiple layers of particles,
using a single layer will not affect the dynamic droplet
interaction behavior or the apparent CA for mode I, since
the particle layer can support the entire droplet. For mode II,
the droplet interaction behavior up to the end of the metastable
stage and the corresponding apparent CA are likely not to be
affected. For mode III, the apparent CA would always be zero,
regardless of the number of layers of particles. Therefore, the
apparent CA can be properly measured with a single layer of
particles, which has also been experimentally confirmed [12].

The only parameter to be affected by the use of a single
layer is the evolution of the projected area Aproj/A0 during
infiltration in mode II and mode III. Pore-scale flows will
develop in both vertical and radial directions within multiple
layers of particles, while for a single-layered sample only the
radial flow develops through the subsurface channels formed
between the particles and the base plane. Therefore, we assume
the infiltration process will be faster with multiple layers of
particles.

VI. CONCLUSIONS

The present work investigates a realistic interaction between
a millimeter-sized droplet and an idealized granular surface.
With the LB method approach, the droplet dynamics can be
simulated on a granular surface under various geometric con-
figurations. The particle size, spacing, and shape can be varied
to construct different pore structures, which is fundamental
to porous media. In this paper, a series of three-dimensional
numerical droplet spreading tests were carried out on a granular
surface formed by a single layer of spherical particles with
different sizes and intrinsic CAs. The droplet dynamics can be
described with three modes: a droplet with a stable apparent CA
without infiltration, a droplet with a metastable apparent CA
before infiltration, and immediate infiltration. The formation
of a stable apparent CA requires the complete impedance
of the downward liquid infiltration, which only relies on a
sufficiently large intrinsic CA. In contrast, the critical con-
figuration to display a metastable apparent CA depends on
both intrinsic CA and particle size. Either the increase in the
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particle size or the decrease in the intrinsic CA will accelerate
the downward infiltration, preventing the formation of the
metastable apparent CA. The wetted zone radius expansion
during the early stage of spreading was found to be governed
by inertia and gravity, which can be characterized by a power
law. Finally, the apparent CA revealed a more realistic droplet
configuration compared with size-independent models, such
as Cassie-Baxter and Bachmann-McHale. The apparent CA
for a larger particle is generally smaller in the low CA
region but increases faster with increasing intrinsic CA due
to part of the volume of the droplet being embedded into the
granular surface. Despite the focus on the hydraulic behavior,
the implemented LB method approach is also applicable to
modeling various dynamic processes that occur in nature, such

as evaporation, high-velocity impacting, and lateral sliding
in granular materials. The current paper provides a basis to
investigate the behavior of droplets in those scenarios.
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