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Abstract. Recently, although advances were made on modeling multivariate count data,

existing models really has several limitations: (i) The multivariate Poisson log-normal

model (Aitchison and Ho, 1989) cannot be used to fit multivariate count data with ex-

cess zero-vectors; (ii) The multivariate zero-inflated Poisson (ZIP) distribution (Li et al.,

1999) cannot be used to model zero-truncated/deflated count data and it is difficult to ap-

ply to high-dimensional cases; (iii) The Type I multivariate zero-adjusted Poisson (ZAP)

distribution (Tian et al., 2017) could only model multivariate count data with a special

correlation structure for random components that are all positive or negative. In this

paper, we first introduce a new multivariate ZAP distribution, based on a multivariate

Poisson distribution, which allows the correlations between components with a more flex-

ible dependency structure, i.e., some of the correlation coefficients could be positive while

others could be negative. We then develop its important distributional properties, and

provide efficient statistical inference methods for multivariate ZAP model with or with-

out covariates. Two real data examples in biomedicine are used to illustrate the proposed

methods.

Keywords: Data augmentation algorithm; Expectation–maximization algorithm; Hy-

pothesis testing; Multivariate zero-adjusted Poisson; Stochastic representation.
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1. Introduction

The univariate zero-truncated and zero-inflated models are well studied in the past decades.

In literature, a class of univariate zero-truncated discrete models such as zero-truncated

Poisson (ZTP) distribution (David and Johnson, 1952; Moore, 1952; Rider, 1953; Cohen,

1954, 1960a; Finney and Varley, 1955; Rao and Chakravarti, 1956; Irwin, 1959; Dahiya

and Gross, 1973; Gurmu, 1991; Meng, 1997; Best et al., 2007), zero-truncated binomial

distribution (Finney, 1949; Rider, 1955), zero-truncated negative-binomial distribution

(Rider, 1955; Sampford, 1955; Hartley, 1958; Grogger and Carson, 1991), zero-truncated

generalized negative-binomial distribution (Gupta, 1974), zero-truncated generalized Pois-

son (Medhi, 1975; Consul, 1989), and intervened Poisson distribution (Shanmugam, 1985)

were developed to model count data without zero value. On the other hand, the zero-

inflated Poisson (ZIP) model (Cohen, 1960b; Singh, 1963; Martin and Katti, 1965; John-

son and Kotz, 1969; Goraski, 1977; Kemp, 1986; Mullahy, 1986; Lambert, 1992; Böhning

et al., 1999; Cheung, 2002; Deng and Paul, 2000, 2005; Winkelmann, 2004; Min and A-

gresti, 2005; Min and Czado, 2010; Neelon et al., 2010; Li, 2012), zero-inflated generalized

Poisson model (Angers and Biswas, 2003; Famoye and Singh, 2006; Cui and Yang, 2009;

Xie et al., 2009), zero-inflated negative binomial model (Ridout et al., 2001; Yau et al.,

2003; Bago d’Uva, 2006; Neelon et al., 2010) were proposed to fit count data with extra

zeros.

However, the univariate models are not appropriate for multivariate cases while mul-

tivariate count data frequently arise in clinical health care, survival analysis, industrial

production, accident analysis & prevention, and other fields. In practice, such count data

often exhibit some characteristics: (i) There is no category of zero-vectors. One example

is the relative effectiveness of three air samplers 1, 2, 3 to detect pathogenic bacteria in

“sterile” rooms, where the data set is collected as triplets of bacterial colony counts from

the three samplers in each of 50 different sterile locations (Aitchison and Ho, 1989). The

second example is about the health center visit study of California (Gurmu, 1997), which

reports the number of the doctor office/clinic and health center visits during a period of
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4 months and the number of children in a household. The third example is about the

number of accidents in 24 roads of Athens for the period 1987–1991 (Karlis, 2003), where

information was recorded when accidents occurred. (ii) There exist excess zero-vectors

than usual. For instance, the number of consultations with a doctor or a specialist and the

total number of prescribed medications used collected during a period of time (Cameron

and Trivedi, 2013), for most of the people, are both 0 because some minor ailment can

be cured by themselves and it is not necessary to visit a doctor or a specialist. It is quite

a challenge for us to propose a unified statistical distribution to model such multivariate

count data with a flexible dependency structure.

In the past decades, several bivariate zero-truncated Poisson (ZTP) distributions

(Hamdan, 1972; Dahiya, 1977; Charalambides, 1984; Deshmukh and Kasture, 2002;

Piperigou and papageorgiou, 2003; Jung et al., 2007) were proposed to model such cor-

related paired count data. However, all these papers are based on the density form of

the correlated bivariate Poisson distribution introduced by Campbell (1934) and it seems

quite difficult to generalize them to multivariate (m > 3) zero-truncated versions. On the

other hand, for the zero-inflated multivariate count data, although Li et al. (1999) first

proposed a multivariate ZIP model as a mixture of m + 2 components of m-dimensional

discrete distributions with mixing probabilities, it still has some limitations: (i) There

are too many parameters to be estimated simultaneously; (ii) The complexity of this

multivariate ZIP distribution leads to less helpful distribution properties and inefficient

algorithms for estimation. Tian et al. (2017) proposed a so-called Type I multivariate

zero-adjusted Poisson (ZAP) distribution and Liu and Tian (2015) considered the Type I

multivariate ZIP that can be used to fit the multivariate count data without or with ex-

cess zero-vectors but all the Poisson components should be independent and it could only

allow a special correlation structure among random components. Hall (2000) considered

to model the multivariate zero-inflated count data by using specific random effects in the

regression model so that the within-subject correlation and between-subject heterogeneity

in repeated measures data can be accommodated. Hall and Zhang (2004) extended the

work of Hall (2000) to zero-inflated clustered data. Lee et al. (2006) and Wang (2010)
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tried to model the correlated count data with excess zeros via the multi-level ZIP model.

The longitudinal zero-inflated count data had received much attention in the last 20 years

and can be fitted by the two-part model or the hurdle model. Alfò and Maruotti (2010)

discussed a semi-parametric estimation method for the dynamic two-part models to han-

dle the longitudinal zero-inflated count data, based on their previous works (Alfò and

Trovato, 2004; Alfò and Aitkin, 2006; Alfò, Maruotti and Trovato, 2011), and presented

a comparison with other well-established alternatives. Belloc et al. (2013) proposed an

approximate conditional dynamic finite mixture hurdle model for panel count data with

excess of zeros and endogenous initial conditions. Maruotti and Raponi (2014) described a

mixed-effect hurdle model for zero-inflated longitudinal count data with a baseline effect

as a different form of dependence in the model. The canonical link among longitudi-

nal zero-inflated counts for each subject is described by the generalized linear regression

model but the inherent correlation among the outcomes at each time point is not really

examined.

Therefore, the first objective of this paper is to propose a new multivariate discrete

distribution (which is called multivariate ZAP distribution) based on the traditional mul-

tivariate Poisson distribution to model dependent count data with a zero-adjusted ob-

servation vector. The multivariate ZTP distribution, multivariate zero-deflated Poisson

(ZDP) distribution, multivariate Poisson distribution and multivariate ZIP distribution

are included as its special cases. The most important feature for the proposed multivari-

ate ZAP distribution is that it can be employed to model zero-truncated /zero-deflated

/zero-inflated count vectors with a more flexible dependency structure, i.e., some of the

correlation coefficients could be positive while others could be negative. Furthermore, to

analyze the aforementioned count data, we stochastically represent the multivariate ZAP

random variable y as a mixture of a ZTP random vectorw and a zero-vector 00 as shown in

(2.4). Based on this stochastic representation (SR), we could derive some important distri-

bution properties for multivariate ZAP distribution, develop an expectation–maximization

(EM) algorithm to calculate the MLEs and posterior modes of parameters of interest and

provide the data augmentation (DA) algorithm in the Bayesian analysis. The second
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objective of this paper is to investigate the multivariate ZAP regression model, which

expands the application of the proposed distribution to a certain extent.

The rest of the paper is organized as follows. In Section 2, we propose a new multi-

variate ZAP distribution. In Section 3, we develop likelihood-based methods, Bayesian

methods and hypothesis testing approaches for the proposed distribution without covari-

ates. In Section 4, we introduce the multivariate ZAP regression model. In Section 5, two

real data examples in biomedicine are used to illustrate the proposed methods. Section

6 provides a discussion. The definitions of several useful distributions, some important

distributional properties for the proposed multivariate ZAP distribution are given in the

Appendices.

2. The multivariate ZAP distribution

To model dependent count data with a zero-adjusted observation vector, in this section

we propose a new multivariate discrete distribution (which is called the multivariate ZAP

distribution) with a flexible correlation structure based on the traditional multivariate

Poisson distribution (see, Appendix A.1). For this purpose, we first introduce a so-called

multivariate ZTP distribution.

2.1 The multivariate ZTP distribution

Definition 1 Let x ∼ MP(λ0, λ1, . . . , λm). A discrete random vectorw = (W1, . . . ,Wm)
⊤

is said to follow the multivariate ZTP distribution with the parameter λ0 > 0 and the

parameter vector λ = (λ1, . . . , λm)
⊤ ∈ Rm

+ , denoted by w ∼ ZTP(λ0, λ1, . . . , λm) or

w ∼ ZTPm(λ0,λ), if

x
d
= U w =

{
00, with probability ψ,

w, with probability 1− ψ,
(2.1)

where U ∼ Bernoulli (1− ψ) with ψ = e−λ0−λ+ , λ+ =
∑m

i=1 λi =̂ ∥λ∥1 , and U ⊥⊥ w. ¶
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From (2.1) and (A.1), the joint probability mass function (pmf) of w ∼ ZTPm(λ0,λ)

is

f(w;λ0,λ) = Pr(w = w)
(2.1)
=

Pr(x = w)

Pr(U = 1)

(A.1)
=

1

1− e−λ0−λ+

min(w)∑
k=0

λk0e
−λ0

k!

m∏
i=1

λwi−k
i e−λi

(wi − k)!
, (2.2)

where ∥w∥1 ̸= 0 and min(w) =̂ min(w1, . . . , wm).

It is clear that the multivariate ZTP reduces to the Type I multivariate ZTP distribu-

tion (see, Appendix A.3) of Tian et al. (2017) if and only if λ0 = 0. Let w ∼ ZTPm(λ0,λ),

then, we have Pr(w = 00) = 0 and

w
d
= x|(x ̸= 00), (2.3)

where x ∼ MP(λ0, λ1, . . . , λm). The SR (2.3) can be used to generate the ZTP random

vector w via the generation of the multivariate Poisson random vector x, while the SR

(2.1) is useful in deriving important distributional properties below and in developing a

novel EM algorithm in Section 3.1. Moreover, besides coming from the missing zero vector,

the correlation between any two components of thew may come from the common random

variable X∗
0 ∼ Poisson(λ0). Other important distributional properties of the multivariate

ZTP distribution are provided in Appendix C.

2.2 The multivariate ZAP distribution

Next, in Appendix B, we define the univariate ZAP distribution. Motivated by (B.1), we

naturally introduce its multivariate generalization on the basis of Definition 1 as follows.

Definition 2 A discrete random vector y = (Y1, . . . , Ym)
⊤ is said to have the multivariate

ZAP distribution with parameters φ ∈ [0, 1), λ0 > 0 and λ = (λ1, . . . , λm)
⊤ ∈ Rm

+ , denoted

by y ∼ ZAP(φ ;λ0, λ1, . . . , λm) or y ∼ ZAPm(φ ;λ0,λ), if

y
d
= Z ′w =

{
00, with probability φ,

w, with probability 1− φ,
(2.4)
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where Z ′ ∼ Bernoulli(1−φ), w ∼ ZTP(λ0, λ1, . . . , λm), and Z
′ ⊥⊥ w. The random vector

w is called the base vector of the y. ¶

When λ0 = 0, the multivariate ZAP is reduced to the Type I multivariate ZAP (Tian

et al., 2017). It is easy to show that the joint pmf of y ∼ ZAP(φ ;λ0, λ1, . . . , λm) is

Pr(y = y) = φI(y = 00) +

 1− φ

1− e−λ0−λ+

min(y)∑
k=0

λk0e
−λ0

k!

m∏
i=1

λyi−k
i e−λi

(yi − k)!

 I(y ̸= 00). (2.5)

We consider the following special cases of (2.4) or (2.5):

(i) If φ = 0, then y
d
= w ∼ ZTP(λ0, λ1, . . . , λm), i.e., the multivariate ZTP distribution

is a special member of the family of the Type multivariate ZAP distributions;

(ii) If φ ∈ (0, e−λ0−λ+), then y follows the multivariate ZDP distribution with parameters

(φ, λ0,λ), denoted by y ∼ ZDP(φ ;λ0, λ1, . . . , λm) or y ∼ ZDPm(φ ;λ0,λ);

(iii) If φ = e−λ0−λ+ , then y follows the multivariate Poisson distribution with parameters

λ0 > 0 and λ ∈ Rm
+ , i.e., y ∼ MPm(λ0,λ);

(iv) If φ ∈ (e−λ0−λ+ , 1), then y follows the multivariate ZIP distribution with param-

eters ϕ =̂ (φ − e−λ0−λ+)/(1 − e−λ0−λ+), λ0 > 0 and λ ∈ Rm
+ , denoted by y ∼

ZIP(ϕ;λ0, λ1, . . . , λm).

From (2.4) and (C.1), we immediately obtain

E(y) =
1− φ

1− ψ
(λ0 · 11+ λ),

E(yy⊤) =
1− φ

1− ψ
[λ0 · 1111⊤+ diag(λ) + (λ0 · 11+ λ)(λ0 · 11+ λ)⊤],

Var(y) =
1− φ

1− ψ

[
λ0 · 1111⊤+ diag(λ)− ψ − φ

1− ψ
(λ0 · 11+ λ)(λ0 · 11+ λ)⊤

]
.

(2.6)

Thus, i, j = 1, . . . ,m and i ̸= j, we have

Corr(Yi, Yj) =

λ0 − (λ0 + λi)(λ0 + λj)(ψ − φ)/(1− ψ)√
[λ0 + λi − (λ0 + λi)2(ψ − φ)/(1− ψ)] [λ0 + λj − (λ0 + λj)2(ψ − φ)/(1− ψ)]

. (2.7)
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From (2.7), we can see that the multivariate ZAP distribution can be used to model zero-

adjusted count vectors with a more flexible dependency structure, i.e., the correlation

coefficient between Yi and Yj could be positive or negative depending on the values of the

parameters (φ, λ0,λ). In particular, if λ0 = 0, we obtain

Corr(Yi, Yj) =
λiλj(φ− ψ)/(1− ψ)√

[λi − λ2i (ψ − φ)/(1− ψ)]
[
λj − λ2j(ψ − φ)/(1− ψ)

] .
Furthermore, if λi = λj = λ, then

Corr(Yi, Yj) =
λ(φ− ψ)/(1− ψ)

[1− λ(ψ − φ)/(1− ψ)]
.

For any r1, . . . , rm > 0, the mixed moments of y are given by

E

(
m∏
i=1

Y ri
i

)
= (1− φ)E

(
m∏
i=1

W ri
i

)
=

1− φ

1− ψ
E

(
m∏
i=1

Xri
i

)
. (2.8)

By using the formula of E(ξ) = E[E(ξ|Z ′)], the moment generating function (mgf) of y

is

My(t) = E[exp(t⊤y)] = E[exp(Z ′ · t⊤w)] = E
{
E[exp(Z ′t⊤w)|Z ′]

}
= E[Mw(Z

′t)] = φMw(00) + (1− φ)Mw(t) = φ+ (1− φ)Mw(t)

= φ+
1− φ

1− ψ

[
exp

(
m∑
i=1

λie
ti + λ0e

t+ − λ+ − λ0

)
− e−λ0−λ+

]
. (2.9)

Other important distributional properties of the multivariate ZAP distribution are sum-

marized in Appendix D.

3. Statistical methods for the multivariate

ZAP distribution without covariates

Suppose that yj
ind∼ ZAP(φ ;λ0tj, λ1tj, . . . , λmtj), where yj = (Y1j, . . . , Ymj)

⊤ for j =

1, . . . , n and {tj}nj=1 are positive and known constants. Let yj = (y1j, . . . , ymj)
⊤ denote

the realization of the random vector yj, and Yobs = {tj,yj}nj=1 be the observed data.
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Furthermore, let J = {j|yj = 00, j = 1, . . . , n} and m0 =
∑n

j=1 I(yj = 00) denote the

number of elements in J. Then, the observed-data likelihood function is proportion to

L(φ, λ0,λ|Yobs) ∝ φm0(1− φ)n−m0 (3.1)

×

∏
j /∈J

e−(λ0+λ+)tj

1− e−(λ0+λ+)tj

min(yj)∑
k=0

(λ0tj)
k

k!

m∏
i=1

(λitj)
yij−k

(yij − k)!

 .

Thus, we can write the log-likelihood function into two parts:

ℓ(φ, λ0,λ|Yobs) = ℓ1(φ|Yobs) + ℓ2(λ0,λ|Yobs),

where

ℓ1(φ|Yobs) = m0 logφ+ (n−m0) log(1− φ) and

ℓ2(λ0,λ|Yobs) = −(λ0 + λ+)
∑
j /∈J

tj −
∑
j /∈J

log[1− e−(λ0+λ+)tj ]

+
∑
j /∈J

log

min(yj)∑
k=0

(λ0tj)
k

k!

m∏
i=1

(λitj)
yij−k

(yij − k)!

 . (3.2)

In other words, the parameter φ and the parameter vector (λ0,λ) can be estimated

separately. Obviously, the MLE of φ has an explicit solution

φ̂ =
m0

n
, (3.3)

but the closed-form MLEs of (λ0,λ) are not yet available.

3.1 MLEs via the EM algorithm

The objective of this subsection is to find the MLEs of (λ0,λ) based on (3.2). The SR

(2.1) can motivate a novel EM algorithm, where some latent variables are independent

of the observed variables. For each yj = (y1j, . . . , ymj)
⊤ ̸= 00m, j /∈ J, we introduce

latent variables Uj
ind∼ Bernoulli(1 − ψj) with ψj = e−(λ0+λ+)tj , X∗

0j
ind∼ Poisson(λ0tj),

X∗
ij

ind∼ Poisson(λitj) for i = 1, . . . ,m, and X∗
0j ⊥⊥ X∗

ij, such that

(x∗0j + x∗1j, . . . , x
∗
0j + x∗mj)

⊤= ujyj,
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where uj and x∗ij denote the realizations of Uj and X∗
ij, respectively. We denote the

latent/missing data by Ymis = {uj, x∗0j, x∗1j, . . . , x∗mj}j /∈J, so that the complete data are

Ycom = Yobs ∪ Ymis = {tj,yj, uj, x
∗
0j, x

∗
1j, . . . , x

∗
mj}j /∈J

= {tj, x∗0j, x∗1j, . . . , x∗mj}j /∈J = {tj, x∗0j, uj,yj}j /∈J,

where x∗ij = ujyij − x∗0j for j /∈ J and i = 1, . . . ,m. Thus, the complete-data likelihood

function for the non-zero vectors is given by

L2(λ0,λ|Ycom) =
∏
j /∈J

[
(λ0tj)

x∗
0je−λ0tj

x∗0j!

m∏
i=1

(λitj)
x∗
ije−λitj

x∗ij!

]

=
∏
j /∈J

[
(λ0tj)

x∗
0je−λ0tj

x∗0j!

m∏
i=1

(λitj)
ujyij−x∗

0je−λitj

(ujyij − x∗0j)!

]

∝ λ
(n−m0)x̄∗

0
0 e−λ0

∑
j /∈J tj

m∏
i=1

λ
∑

j /∈J ujyij−(n−m0)x̄∗
0

i e−λi
∑

j /∈J tj , (3.4)

where x̄∗0 =
∑

j /∈J x
∗
0j/(n − m0) and the complete-data log-likelihood function for the

non-zero vectors is

ℓ2(λ0,λ|Ycom) = (n−m0)x̄
∗
0 log(λ0)− λ0

∑
j /∈J

tj

+
m∑
i=1


∑

j /∈J

ujyij − (n−m0)x̄
∗
0

 log(λi)− λi
∑
j /∈J

tj

 .

The M-step is to calculate the complete-data MLEs:

λ̂0 =

∑
j /∈J x

∗
0j∑

j /∈J tj
and λ̂i =

∑
j /∈J ujyij∑
j /∈J tj

− λ̂0, i = 1, . . . ,m, (3.5)
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and the E-step is to replace {uj}j /∈J and {x∗0j}j /∈J in (3.5) by their conditional expectations:

E(Uj|Yobs, λ0,λ) = E(Uj) = 1− e−(λ0+λ+)tj , and (3.6)

E(X∗
0j|Yobs, λ0,λ)

(C.23)
=

[1− e−(λ0+λ+)tj ]

min(yj)∑
kj=1

(λ0tj)
kj

(kj − 1)!

m∏
i=1

(λitj)
yij−kj

(yij − kj)!

min(yj)∑
kj=0

(λ0tj)
kj

kj!

m∏
i=1

(λitj)
yij−kj

(yij − kj)!

× I(min(yj) > 1), (3.7)

respectively. An important feature of this EM algorithm is that the latent variables

{Uj}j /∈J are independent of the observed variables {yj}j /∈J.

3.2 Bootstrap confidence intervals

When other approaches are not available, the bootstrap method is a useful tool to find

confidence intervals (CIs) for an arbitrary function of (φ, λ0,λ), say, ϑ = h(φ, λ0,λ). Let

(φ̂, λ̂0, λ̂) be the MLEs of (φ, λ0,λ) calculated by (3.3) and by the EM algorithm (3.5)–

(3.7), then ϑ̂ = h(φ̂, λ̂0, λ̂) is the MLE of ϑ. Based on (φ̂, λ̂0, λ̂), we can independently

generate y∗
j

ind∼ ZAP(φ̂, λ̂0tj, λ̂1tj, . . . , λ̂mtj) via the SR (2.4) and the SR (2.3) for j =

1, . . . , n. Having obtained Y ∗
obs = {tj,y∗

j}nj=1, we can calculate the bootstrap replication

(φ̂∗, λ̂∗0, λ̂
∗
) and get ϑ̂∗ = h(φ̂∗, λ̂∗0, λ̂

∗
). Independently repeating this process G times, we

obtain G bootstrap replications {ϑ̂∗
g}Gg=1. Consequently, the standard error, se(ϑ̂), of ϑ̂

can be estimated by the sample standard deviation of the G replications, i.e.,

ŝe(ϑ̂) =

{
1

G− 1

G∑
g=1

[ϑ̂∗
g − (ϑ̂∗

1 + · · ·+ ϑ̂∗
G)/G]

2

}1/2

. (3.8)

If {ϑ̂∗
g}Gg=1 is approximately normally distributed, the first (1− α)100% bootstrap CI for

ϑ is [
ϑ̂− zα/2 · ŝe(ϑ̂), ϑ̂+ zα/2 · ŝe(ϑ̂)

]
. (3.9)

Alternatively, if {ϑ̂∗
g}Gg=1 is non-normally distributed, the second (1 − α)100% bootstrap

CI of ϑ can be obtained as

[ϑ̂
L
, ϑ̂

U
], (3.10)
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where ϑ̂
L
and ϑ̂

U
are the 100(α/2) and 100(1− α/2) percentiles of {ϑ̂∗

g}Gg=1, respectively.

3.3 Bayesian methods

3.3.1 Posterior modes via the EM algorithm

Without loss of generality, let J = {1, 2, . . . ,m0}. Then, the EM algorithm introduced in

Section 3.1 can be re-expressed as follows. The observed data Yobs were augmented by the

latent variables {Uj}nj=m0+1
ind∼ Bernoulli(1−e−(λ0+λ+)tj) and {X∗

0j}nj=m0+1
ind∼ Poisson(λ0tj)

to form the complete data

Ycom = {00, . . . ,00︸ ︷︷ ︸
m0

, {yj, tj}nj=m0+1; {uj, x∗0j}nj=m0+1}.

From (3.4) and the observed-data likelihood function (3.1), we know that the complete-

data likelihood function is proportional to

L(φ, λ0,λ|Ycom) ∝ φm0(1− φ)n−m0 · λ
∑n

j=m0+1 x
∗
0j

0 e−λ0
∑n

j=m0+1 tj

×
m∏
i=1

λ
∑n

j=m0+1(ujyij−x∗
0j)

i e−λi
∑n

j=m0+1 tj . (3.11)

If we adopt Beta(a, b) as the prior distribution of φ and Gamma(ai, bi) as the priors of

λi, i = 0, 1, . . . ,m, from (3.11), the complete-data posterior distributions are given by

φ|(Yobs,u,x∗
0) ∼ Beta(a+m0, b+ n−m0),

λ0|(Yobs,u,x∗
0) ∼ Gamma

(
a0 +

n∑
j=m0+1

x∗0j, b0 +
n∑

j=m0+1

tj

)
, (3.12)

λi|(Yobs,u,x∗
0)

ind∼ Gamma

(
ai +

n∑
j=m0+1

(ujyij − x∗0j), bi +
n∑

j=m0+1

tj

)
,

for i = 1, . . . ,m, where u = (um0+1, . . . , un)
⊤ and x∗

0 = (x∗0,m0+1, . . . , x
∗
0n)

⊤. The M-step

of the EM algorithm is to calculate the complete-data posterior modes of φ, λ0 and λ,

which are given by

φ̃ =
a+m0 − 1

a+ b+ n− 2
, λ̃0 =

a0 +
∑n

j=m0+1 x
∗
0j − 1

b0 +
∑n

j=m0+1 tj
,

λ̃i =
ai +

∑n
j=m0+1(ujyij − x∗0j)− 1

bi +
∑n

j=m0+1 tj
, i = 1, . . . ,m. (3.13)
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And the E-step is to replace {uj}nj=m0+1 and {x∗0j}nj=m0+1 by their conditional expectation

(3.6) and (3.7).

3.3.2 Generation of posterior samples via the DA algorithm

The conditional predictive distributions of {Uj}nj=m0+1 and the conditional predictive dis-

tributions of {X∗
0j}nj=m0+1 based on (C.21) are given by

Uj|(Yobs, φ, λ0,λ)
ind∼ Bernoulli(1− e−(λ0+λ+)tj), and (3.14)

X∗
0j|(Yobs, φ, λ0,λ)

ind∼ Finite(l, pl(yj, λ0tj,λtj); l = 0, 1, . . . ,min(yj)), (3.15)

for j = m0+1, . . . , n, where the functions {pl(w, λ0,λ)} are defined by (C.24). To make a

full Bayesian inference on the parameters (φ, λ0,λ), we need to generate posterior samples

from the observed posterior distribution f(φ, λ0,λ|Yobs) by using the DA algorithm. The

I-step is to independently draw the latent variables {uj}nj=m0+1 from (3.14) for given

(Yobs, φ, λ0,λ) and {x∗0j}nj=m0+1 from (3.15), and the P-step is to independently draw φ,

λ0 and λ from (3.12) for given (Yobs,u,x
∗
0).

3.4 Hypothesis testing

Let yj
ind∼ ZAP(φ ;λ0tj, λ1tj, . . . , λmtj), where yj = (Y1j, . . . , Ymj)

⊤ for j = 1, . . . , n and

{tj}nj=1 are positive and known constants. In this subsection, we first consider to test

whether the Poisson components in x are independent; i.e., to test whether H0: λ0 =

0 is true. If H0 is rejected, then, we need to confirm the status of the zero-adjusted

distribution, i.e., whether it is zero-inflated or zero-deflated.

3.4.1 Hypothesis testing on λ0 = 0

Suppose we want to test the null hypothesis

H0: λ0 = 0 against H1: λ0 > 0. (3.16)

Under H0, the likelihood ratio test statistic

T1 = −2{ℓ(φ̂0, 0, λ̂0|Yobs)− ℓ(φ̂, λ̂0, λ̂|Yobs)}
.∼ χ2(1), (3.17)
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where (φ̂0, λ̂0) are the MLEs of (φ,λ) under H0, and (φ̂, λ̂0, λ̂) are the unconstrained

MLEs of (φ, λ0,λ). Since the null hypothesis corresponds to λ0 being on the boundary

of the parameter space, the reference distribution for T1 should be an equal mixture of a

χ2
0 (a constant at zero) and a χ2

1 distribution, and thus the corresponding p-value is

pv1 =
1

2
Pr(T1 > t1|H0) =

1

2
Pr(χ2(1) > t1). (3.18)

3.4.2 Hypothesis testing on inflation or deflation

In this subsubsection, we only consider the special case of t1 = · · · = tn = 1; that is,

we assume that y1, . . . ,yn
iid∼ ZAP(φ ;λ0, λ1, . . . , λm). We first consider to test whether

(Y1j, . . . , Ymj)
⊤∼ MP(λ0, λ1, . . . , λm); i.e., to test the following hypotheses:

H0: φ = e−λ0−λ+ against H1: φ ̸= e−λ0−λ+ . (3.19)

Under H0, the likelihood ratio test statistic

T2 = −2{ℓ(φ̂0, λ̂00, λ̂0|Yobs)− ℓ(φ̂, λ̂0, λ̂|Yobs)}
.∼ χ2(1), (3.20)

where (φ̂0, λ̂00, λ̂0) are the MLEs of (φ, λ0,λ) under H0, and (φ̂, λ̂0, λ̂) are the uncon-

strained MLEs of (φ, λ0,λ). The corresponding p-value is given by

pv2 = Pr(T2 > t2|H0). (3.21)

If pv2 > α, we cannot reject the null hypothesis H0 at the α level of significance. How-

ever, if H0 specified by (3.19) is rejected, we should consider to test whether y follows a

multivariate ZDP distribution, i.e., to test the following hypotheses:

H ′
0: φ < e−λ0−λ+ against H ′

1: φ > e−λ0−λ+ . (3.22)

Let θ = φ − e−λ0−λ+ . Then, testing H ′
0 is equivalent to testing H ′′

0 : θ < 0. We can

construct 100(1− α)% bootstrap CIs of θ and could use the nonnormal-based bootstrap

CI [θ̂L, θ̂U] as the acceptable interval. If θ̂L > 0, then H ′′
0 should be rejected at the α

level of significance, i.e., y follows a multivariate ZIP distribution; if θ̂U < 0, it cannot be

rejected, i.e., y follows a multivariate ZDP distribution.
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4. The multivariate ZAP regression model

4.1 Model formulation

We consider the following regression model

yj
ind∼ ZAP(φj ;λ0j, λ1j, . . . , λmj), j = 1, . . . , n,

log

(
φj

1− φj

)
= v⊤1jβ,

log(λ0j) = v⊤2jη,

log(λij) = v⊤3jγi, i = 1, . . . ,m,

(4.1)

where v1j = (1, v11j, . . . , v1pj)
⊤, v2j = (1, v21j, . . . , v2sj)

⊤ and v3j = (1, v31j, . . . , v3qj)
⊤ are

not necessarily identical covariate vectors associated with the subject j, β = (β0, β1, . . . , βp)
⊤,

η = (η0, η1, . . . , ηs)
⊤ and γi = (γi0, γi1, . . . , γiq)

⊤ are regression coefficients. The primary

purpose of this section is to estimate the parameter vector θ = (β⊤,η⊤,γ⊤1, . . . ,γ
⊤
m)

⊤.

4.2 MLEs via the EM algorithm

4.2.1 Latent variables and complete-data likelihood function

Let yj = (y1j, . . . , ymj)
⊤denote the realization of the random vector yj, and Yobs = {yj}nj=1

be the observed data. To derive the MLEs of θ, we employ the EM algorithm again.

• For each yj for j ∈ {1, . . . , n}, based on (2.4), we first introduce latent variables

Z ′
j
ind∼ Bernoulli(1− φj), latent vectors wj

ind∼ ZTP(λ0j, λ1j, . . . , λmj) and Z
′
j ⊥⊥ wj,

such that yj = z′jwj, where z
′
j and wj denote the realizations of Z

′
j and wj, respec-

tively. Furthermore, we define

J = {j|yj = 00, j = 1, . . . , n} = {j|z′j = 0, j = 1, . . . , n} and

Jc = {j|yj ̸= 00, j = 1, . . . , n} = {j|z′j = 1, j = 1, . . . , n}. (4.2)

• For each wj for j ∈ Jc, based on (2.1), we then introduce latent variables

Uj
ind∼ Bernoulli(1− e−λ0j−λ+j) with λ+j =

m∑
i=1

λij, (4.3)
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X∗
0j

iid∼ Poisson(λ0j), X
∗
ij

ind∼ Poisson(λij) for i = 1, . . . ,m, and X∗
0j ⊥⊥ X∗

ij, such that

(x∗0j + x∗1j, . . . , x
∗
0j + x∗mj)

⊤= ujwj,

where uj and x
∗
ij denote the realizations of Uj and X

∗
ij, respectively.

We denote the latent/missing data by Ymis = {z′j}nj=1 ∪ {wj, uj, x
∗
0j, x

∗
1j, . . . , x

∗
mj}j∈Jc , so

that the complete data are

Ycom = Yobs ∪ Ymis = {yj, z
′
j}nj=1 ∪ {wj, uj, x

∗
0j, x

∗
1j, . . . , x

∗
mj}j∈Jc

= {yj, z
′
j}nj=1 ∪ {uj, x∗0j}j∈Jc ,

where x∗ij = ujyij − x∗0j for j ∈ Jc and i = 1, . . . ,m. Therefore, the complete-data

likelihood function is given by

L(θ|Ycom) ∝

[
n∏

j=1

φ
1−z′j
j (1− φj)

z′j

]
·

(∏
j∈Jc

λ
x∗
0j

0j e−λ0j

m∏
i=1

λ
ujyij−x∗

0j

ij e−λij

)

=
n∏

j=1

φ
1−z′j
j (1− φj)

z′j

(
λ
x∗
0j

0j e−λ0j
∏m

i=1 λ
ujyij−x∗

0j

ij e−λij

)z′j
,

and the log-likelihood function can be decomposed into 2 +m parts:

ℓ(θ|Ycom) = ℓ1(β|Ycom) + ℓ2(η|Ycom) +
m∑
i=1

ℓ3i(γi|Ycom),

where

ℓ1(β|Ycom) =
n∑

j=1

[(1− z′j) logφj + z′j log(1− φj)]

=
n∑

j=1

[
(1− z′j)v

⊤
1jβ − log(1 + ev

⊤
1jβ)
]
,

ℓ2(η|Ycom) =
n∑

j=1

[−λ0jz′j + z′jx
∗
0j log(λ0j)] =

n∑
j=1

z′j

[
− ev

⊤
2jη + x∗0jv

⊤
2jη
]
,

ℓ3i(γi|Ycom) =
n∑

j=1

z′j[−λij + (ujyij − x∗0j) log(λij)]

=
n∑

j=1

z′j

[
− ev

⊤
3jγi + (ujyij − x∗0j)v

⊤
3jγi

]
.
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4.2.2 M-step via the Newton–Raphson iteration

The first partial derivatives of the log-likelihood function are given by

∂ℓ1(β|Ycom)
∂β

=
n∑

j=1

(1− z′j − φj)v1j = V⊤
1(11− z′ −φ),

∂ℓ2(η|Ycom)
∂η

=
n∑

j=1

[z′jx
∗
0j − z′jλ0j]v2j = V⊤

2[z
′ ◦ x∗

0 − z′ ◦ λ(0)],

∂ℓ3i(γi|Ycom)
∂γi

=
n∑

j=1

[(z′juj)yij − z′jx
∗
0j − z′jλij]v3j

= V⊤
3[(z

′ ◦ u) ◦ y(i) − z′ ◦ x∗
0 − z′ ◦ λ(i)], i = 1, . . . ,m,

(4.4)

where

V1 = (v11, . . . ,v1n)
⊤, z′ = (z′1, . . . , z

′
n)

⊤, φ = (φ1, . . . , φn)
⊤,

V2 = (v21, . . . ,v2n)
⊤, u = (u1, . . . , un)

⊤, y(i) = (yi1, . . . , yin)
⊤,

V3 = (v31, . . . ,v3n)
⊤, x∗

0 = (x∗01, . . . , x
∗
0n)

⊤, bla(0) = (λ01, . . . , λ0n)
⊤,

λ(i) = (λi1, . . . , λin)
⊤, i = 1, . . . ,m,

and a new operator “◦” is defined by a ◦ b = (a1b1, . . . , anbn)
⊤.

From (4.4), closed-form MLEs of (β,η,γ1, . . . ,γm) based on the complete-data are

not yet available. Since the complete-data observed information matrices are given by

Icom(β) = −∂
2ℓ1(β|Ycom)
∂β∂β⊤ = V⊤

1 diag[φ ◦ (1−φ)]V1,

Icom(β) = −∂
2ℓ2(η|Ycom)
∂η∂η⊤

= V⊤
2 diag(z

′ ◦ λ(0))V2,

Icom(γi) = −∂
2ℓ3i(γi|Ycom)
∂γi∂γ

⊤
i

= V⊤
3 diag(z

′ ◦ λ(i))V3, i = 1, . . . ,m,

(4.5)

the M-step is to separately calculate the MLEs of (β,γ1, . . . ,γm) via the Newton–Raphson

algorithm as follows:

β(t+1) = β(t) + I−1
com(β

(t))V⊤
1

[
11− z′ −φ(t)

]
,

η(t+1) = η(t) + I−1
com(η

(t))V⊤
2

[
z′ ◦ x∗

0 − z′ ◦ λ(0)

]
,

γ
(t+1)
i = γ

(t)
i + I−1

com(γ
(t)
i )V⊤

3

[
(z′ ◦ u) ◦ y(i) − z′ ◦ x∗

0 − z′ ◦ λ(t)
(i))
]
,

(4.6)
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for i = 1, . . . ,m.

4.2.3 E-step with explicit expressions

When j ∈ Jc, we have

E(Uj|Yobs,θ)
(4.3)
= 1− e−λ0j−λ+j (4.7)

and

E(X∗
0j|Yobs,θ) = E(X∗

0j|yj = yj,θ)
(4.2)
= E(X∗

0j|wj = yj,θ)

(C.23)
= (1− e−λ0j−λ+j) ·

min(yj)∑
k=1

λk0j
(k − 1)!

m∏
i=1

λ
yij−k
ij

(yij − k)!

min(yj)∑
k=0

λk0j
k!

m∏
i=1

λ
yij−k
ij

(yij − k)!

· I(min(yj) > 1). (4.8)

Therefore, the E-step is to replace z′, z′ ◦ u and z′ ◦ x∗
0 in (4.6) by their conditional

expectations

E(Z ′
j|Yobs,θ) = E(Z ′

j|yj = yj)
(D.9)
= I(yj ̸= 00)

(4.2)
= I(j ∈ Jc), (4.9)

E(Z ′
jUj|Yobs,θ) = E(Z ′

j|Yobs,θ) · E(Uj|Yobs,θ)

(4.9)
= I(j ∈ Jc) · E(Uj|Yobs,θ)

(4.7)
= (1− e−λ0j−λ+j) · I(j ∈ Jc), (4.10)

and

E(Z ′
jX

∗
0j|Yobs,θ) = E(Z ′

j|Yobs,θ) · E(X∗
0j|Yobs,θ)

(4.9)
= I(j ∈ Jc) · E(X∗

0j|Yobs,θ)

(4.8)
= (1− e−λ0j−λ+j)

min(yj)∑
k=1

λk0j
(k − 1)!

m∏
i=1

λ
yij−k
ij

(yij − k)!

min(yj)∑
k=0

λk0j
k!

m∏
i=1

λ
yij−k
ij

(yij − k)!

· I(j ∈ Jc, min(yj) > 1). (4.11)

The CIs of the components of θ can be constructed by the bootstrap method.

18



5. Real data analysis

In this section, a two-dimensional health center visit data set of California is studied

by fitting the proposed bivariate ZTP model, while a three-dimensional physician office

visit data set is analyzed by fitting the multivariate ZAP distribution without considering

covariates and by fitting the corresponding regression model.

5.1 Health center visit data of California

Gurmu (1997) studied a doctor visit data set by using a semi-parametric hurdle regres-

sion model. This data set came from the Medicaid Consumer Survey which was sponsored

by the Health Care Financing Administration. The survey conducted in 1986 was part

of the data-collection activity of the Nationwide Evaluation of Medicaid Competition

Demonstrations. The data items included in the survey are: beneficiary demographics,

health-care utilization, health status, health habits, attitudes on access to and satisfac-

tion with health services. Gurmu selected two sites in California—Santa Barbara and

Ventura counties—to form his data set. The California survey was conducted in per-

sonal interviews with samples of demonstration enrollees in Santa Barbara county and a

fee-for-service comparison group of non-enrollees from nearby Ventura county. The man-

aged programme enrolled adults qualifying for Aid to Families with Dependent Children

(AFDC) and non-institutionalized Supplementary Security Income (SSI) recipients. Gur-

mu (1997) treated the number of children in the household as an explanatory/independent

variable, while viewing the number of the doctor office/clinic and health center visits as

the response/dependent variable. Note that the number of children in the household is

also a discrete variable, we fit the paired counts with a bivariate discrete model. In this

subsection, we use Gurmu’s AFDC data set by letting W1 denote the number of the doc-

tor office/clinic and health center visits during a period of 4 months (120 days) and W2

the number of children in the household. A total of 243 enrollees and 242 non-enrollees

were interviewed and the two samples are mixed. The sample mean, standard deviation,

minimum and maximum for W1 are 1.6103, 3.3468, 0 and 48, respectively, while those
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for W2 are 2.2639, 1.3191, 1 and 9, respectively. Since the zero vector (0, 0)⊤ does not

occur in this data set shown in Table 1, we would like to fit the data set by the proposed

bivariate ZTP model.

Table 1 The health center visit data of California in USA (Gurmu, 1997)

W1\W2 1 2 3 4 5 6 7 9 Total

0 78 73 44 27 11 4 3 1 241

1 33 25 23 12 3 0 0 0 96

2 26 15 9 2 2 0 1 0 55

3 9 9 5 4 3 0 0 0 30

4 5 5 2 1 0 1 0 0 14

5 3 3 1 1 0 0 0 0 8

6 3 5 3 1 0 0 0 0 12

7 3 3 1 0 0 0 0 0 7

8 0 0 4 0 0 1 0 0 5

9 5 1 1 1 0 0 0 0 8

10 1 2 0 0 0 0 0 0 3

11 1 0 0 0 0 0 0 0 1

12 1 0 0 0 0 0 0 0 1

15 1 0 0 0 0 0 0 0 1

16 0 1 0 0 0 0 0 0 1

24 1 0 0 0 0 0 0 0 1

48 1 0 0 0 0 0 0 0 1

Total 171 142 93 49 19 6 4 1 485

5.1.1 Likelihood-based inferences

Let wj = (W1j,W2j)
⊤ iid∼ ZTP(λ0, λ1, λ2), where W1j and W2j denote the number of the

doctor office/clinic and health center visits during a period of 4 months (120 days) and

the number of children in the household, respectively, for j = 1, . . . , n (n = 485). To find

the MLEs of λ0 and λ = (λ1, λ2)
⊤, we choose λ

(0)
0 = 1 and λ(0) = 112 as their initial values.

The MLEs of (λ0,λ) converged to λ̂0 = 8.3731× 10−10 ≈ 0 and λ̂ = (1.5738, 2.2126)⊤ as

shown in the second column of Table 2 in 177 iterations for the EM algorithm (3.5)–(3.7)
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with m = 2, m0 = 0, tj = 1 and yj = wj. Since the common Poisson parameter λ0 is

approximately equal to 0, it indicates that the proposed bivariate ZTP model reduces to

the Type I bivariate ZTP model. In other words, the number of children in the household

is independent of the number of the doctor office/clinic and health center visits under

the bivariate Poisson structure but is correlated with the latter through the missing zero-

vector. With G = 6, 000 bootstrap replications, the means, standard deviations and

two 95% bootstrap CIs of (λ0,λ) are showed in the other columns of Table 2. Table 2

shows that the bootstrap means are very close to the MLEs and the bootstrap standard

deviations are relatively small, indicating that estimates from the parametric bootstrap

methods in Section 3.2 are stable.

Table 2 MLEs and CIs of parameters for the health center visit data of California in

USA (Gurmu, 1997)

Parameter MLE Mean stdB 95% bootstrap CI† 95% bootstrap CI‡

λ0 0.0000 0.0006 0.0129 [−0.0253, 0.0253] [5.3028 ×10−10, 1.2781 ×10−9]

λ1 1.5738 1.5720 0.0589 [1.4583, 1.6893] [1.4594, 1.6865]

λ2 2.2126 2.2125 0.0696 [2.0761, 2.3490] [2.0760, 2.3427]

stdB: The estimated standard deviation of the bootstrap samples, cf. (3.8).
CI†: Normal-based bootstrap CI, cf. (3.9).
CI‡: Non-normal-based bootstrap CI, cf. (3.10).

Based on the data in Table 1, we calculate the sample correlation coefficient matrix,

which is given by

R =

(
1.0000 −0.0993

−0.0993 1.0000

)
,

while the population correlation coefficient matrix ρ, based on (C.2), is estimated to be

ρ̂ =

(
1.0000 −0.0453

−0.0453 1.0000

)
.

Note that ρ̂ is close to the sample correlation coefficient matrix R. In addition, both

the sample and the estimated population correlation between the number of the doctor

office/clinic and health center visits and the number of children in the household are
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negative, indicating that the former decreases with the latter. This result is consistent

with that obtained by Gurmu (1997).

5.1.2 Bayesian methods

In Bayesian analysis, we adopt independent Gamma(1, 1) as the prior distributions of

{λi}2i=0, respectively. Using λ
(0)
i = 1 (i = 0, 1, 2) as the initial values, the EM algorithm,

specified by (3.13), (3.6) and (3.7) with m = 2, m0 = 0, tj = 1 and yj = wj, converged

to the posterior modes in 181 iterations, which are listed in the second column of Table

3.

Based on (3.12), (3.14) and (3.15), we use the DA algorithm to generate L = 60,000

posterior samples of (λ0, λ1, λ2). By discarding the first half of the samples, we can calcu-

late the posterior means, the posterior standard deviations and the 95% Bayesian credible

intervals of (λ0, λ1, λ2), which are given in Table 3. Figure 1 shows the corresponding pos-

terior densities of (λ0, λ1, λ2) via a kernel density smoother and their histograms based

on the second half posterior samples generated by the DA algorithm.

Table 3 Posterior estimates of parameters for the health center visit data of California

(Gurmu, 1997)

Parameter
Posterior Posterior Posterior 95% Bayesian

mode mean std credible interval

λ0 0.0000 0.0161 0.0147 [0.0005, 0.0543]

λ1 1.5702 1.5578 0.0635 [1.4317, 1.6814]

λ2 2.2076 2.1947 0.0713 [2.0567, 2.3349]

[Insert Figure 1 here]

5.2 Physician office visit data

Deb and Trivedi (1997) used the physician office visit data to study the demand for

medical care by elderly. Information of 4406 subjects (1778 male and 2628 female) in the

United States aged between 66 and 109 were recorded. These individuals were covered
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by Medicare, a public insurance programme that offers substantial protection against

health care costs. In their study, six mutually exclusive measures of utilization (visits of

utilization, visits to a setting, visits to a non-physician in an office setting, visits to hospital

outpatient setting, visits to a non-physician in an outpatient, visits to an emergency room)

and the number of hospital stays were considered and were fitted by six finite mixture

negative binomial count model, respectively. However, some of the number of health care

visits may be correlated with each other, a multivariate discrete count model should be

employed to fit them. In this subsection, let Y1 denote the number of physician office visits,

Y2 denote the number of emergency room visits, Y3 denote the number of hospitalizations.

The sample means, standard deviations, minimums and maximums for Y1, Y2 and Y3 are

listed in Table 4. Note that the zero-vector (0, 0, 0)⊤ is not missing, it is reasonable to fit

the data set by the the proposed multivariate ZAP model with dimension m = 3.

Table 4 Summary statistics for the physician office visit data (Deb and Trivedi, 1997)

Variable Mean Standard deviation Minimum Maximum

Y1 5.7744 6.7592 0 89

Y2 0.2635 0.7037 0 12

Y3 0.2960 0.7564 0 8

5.2.1 Likelihood-based inferences

Let yj = (Y1j, Y2j, Y3j)
⊤ ind∼ ZAP(λ0, λ1, λ2, λ3), where Y1j, Y2j, Y3j for j = 1, . . . , n (n =

4406). To find the MLEs of λ0 and λ = (λ1, λ2, λ3)
⊤, we choose λ

(0)
0 = 2 and λ(0) = 2 · 113

as their initial values. The MLEs of (λ0,λ) converged to (λ̂0, λ̂) as shown in the second

column of Table 5 in 17 iterations for the EM algorithm (3.5)–(3.7) with m = 3 and

m0 = 581. With G = 6, 000 bootstrap replications, the two 95% bootstrap CIs of (λ0,λ)

are showed in the last two columns of Table 5. From the Table 5, we can see that bootstrap

means are very close to the MLEs and the bootstrap standard deviations are relatively

small, showing that estimates from the parametric bootstrap methods described in Section

3.2 are stable.
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Based on the data, we calculate the sample correlation coefficient matrix, which is

given by

R =

 1.0000 0.1587 0.2408

0.1587 1.0000 0.4761

0.2408 0.4761 1.0000

 ,

while the population correlation coefficient matrix ρ, based on (C.2), is estimated to be

ρ̂ =

 1.0000 0.1754 0.1792

0.1754 1.0000 0.3603

0.1792 0.3603 1.0000

 .

Table 5 MLEs and CIs of parameters for the physician office visit data (Deb and Trivedi,

1997)

Parameter MLE Mean stdB 95% bootstrap CI† 95% bootstrap CI‡

φ 0.1319 0.1318 0.0051 [0.1219, 0.1418] [0.1219, 0.1416]

λ0 0.0937 0.0937 0.0058 [0.0824, 0.1051] [0.0824, 0.1054]

λ1 5.6123 5.6122 0.0391 [5.5356, 5.6891] [5.5352, 5.6899]

λ2 0.1671 0.1670 0.0073 [0.1528, 0.1814] [0.1529, 0.1817]

λ3 0.2026 0.2029 0.0078 [0.1873, 0.2179] [0.1873, 0.2181]

stdB: The estimated standard deviation of the bootstrap samples, cf. (3.8).
CI†: Normal-based bootstrap CI, cf. (3.9).
CI‡: Non-normal-based bootstrap CI, cf. (3.10).

First, we want to test whether the physician office visits data follow the proposed

multivariate ZAP model or the Type I multivariate ZAP model, which is equivalent to

testing the null hypothesis H0: λ0 = 0 against the alternative hypothesis H1: λ0 > 0.

According to (3.17), we calculate the value of the likelihood ratio test statistic T1, which is

given by t1 = 1165.829. Hence, from (3.18), we obtain pv1 = 0.0000 ≪ α = 0.05. Thus, we

should reject H0 at the 0.05 significant level. In other words, yj = (Y1j, Y2j, Y3j)
⊤ follows

the proposed multivariate ZAP model, i.e., ZAP(φ;λ0, λ1, λ2, λ3), rather than the Type

I multivariate ZAP model, i.e., ZAP(I)(φ;λ1, λ2, λ3). In other words, using the proposed

multivariate ZAP model to fit this data set is reasonable and satisfactory.

Furthermore, we would like to see whether the physician office visits data set is zero-

inflated or zero-deflated, that is to test the null hypothesis H0: φ = e−λ0−λ+ against
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the alternative H1: φ ̸= e−λ0−λ+ . According to (3.20), we calculate the value of the

likelihood ratio test statistic T2, and obtain t2 = 4086.0514. Then from (3.21), we have

pv2 = 0.0000 ≪ 0.01. Thus, we should reject the H0 at the significance level of 0.01. We

further calculate the 95% nonnormal-based bootstrap CI of θ = φ − e−λ0−λ+ , which is

given by [0.1219, 0.1419]. Since the lower bound is larger than 0, we can conclude that y

follows a multivariate ZIP model rather than a multivariate ZDP model.

5.2.2 Bayesian methods

In Bayesian analysis, we adopt Beta(1, 1) as the prior distribution of φ and independent

Gamma(1, 1) as the prior distributions of {λi}4i=0, respectively. Using λ
(0)
i = 2 (i =

0, 1, 2, 3) as the initial values, the EM algorithm, specified by (3.13), (3.6) and (3.7) with

m = 3 and m0 = 581, converged to the posterior modes in 17 iterations, which are listed

in the second column of Table 6.

Table 6 Posterior estimates of parameters for the physician office visit data (Deb and

Trivedi, 1997)

Parameter
Posterior Posterior Posterior 95% Bayesian

mode mean std credible interval

φ 0.131866 0.132014 0.0050809 [0.1223, 0.1421]

λ0 0.093726 0.093940 0.0055216 [0.0834, 0.1050]

λ1 5.610835 5.611122 0.0391270 [5.5345, 5.6876]

λ2 0.167042 0.167355 0.0070389 [0.1538, 0.1814]

λ3 0.202507 0.202718 0.0076845 [0.1879, 0.2181]

Based on (3.12), (3.14) and (3.15), we use the DA algorithm to generate L = 60,000

posterior samples of (φ, λ0, λ1, λ2, λ3). By discarding the first half of the samples, we can

calculate the posterior means, the posterior standard deviations and the 95% Bayesian

credible intervals of (φ, λ0, λ1, λ2, λ3), which are given in Table 6. Figure 2 shows the cor-

responding posterior densities of (φ, λ0, λ1, λ2, λ3) via a kernel density smoother and their

histograms based on the second half posterior samples generated by the DA algorithm.
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[Insert Figure 2 here]

5.2.3 Model selection

We therefore concentrate on the comparison between the Type I and our proposed multi-

variate ZAP models by the AIC and BIC, based on the full likelihood function, in Table 7.

We could see that both the AIC and BIC of the proposed multivariate ZAP model are less

than those of the Type I multivariate ZAP model, indicating that fitting the physician

office visits data with the proposed multivariate ZAP model is more appropriate than with

the Type I multivariate ZAP model. This conclusion is consistent with that obtained by

the first hypothesis testing in Section 5.2.1.

Table 7 Comparisons of AIC and BIC for the two multivariate ZAP models

Model
Criterion

AIC BIC

Type I multivariate ZAP model 48577.43 48596.60

The proposed multivariate ZAP model 47413.60 47439.16

5.2.4 Regression analysis

In this subsection, we try to fit the data set by the multivariate ZAP regression model

presented in Section 4. Three covariates (i.e., sex, the number of chronic conditions and

age in years) are considered. Let V1 denote sex, where V1 = 1 for female and V1 = 0 for

male. Let V2 denote the number of chronic conditions and V3 denote age in years, which

is divided by 100. The sample mean, standard deviation, minimum and maximum for the

number of chronic conditions of the respondents are 1.5420, 1.3496, 0 and 8, respectively,

while the mean age for such individuals are 74.0241. Let v1 = v2 = (1, V1, V2)
⊤ and

v3 = (1, V1, V2, V3)
⊤. Let yj

ind∼ ZAP(φj ;λ0, λ1j, λ2j, λ3j) and yj = (y1j, y2j, y3j)
⊤ denote

the observed values of yj = (Y1j, Y2j, Y3j)
⊤ for j = 1, . . . , n (n = 4406), where

log

(
φj

1− φj

)
= v⊤1jβ,

log(λ0j) = v⊤2jη,

log(λij) = v⊤3jγi, i = 1, . . . ,m (m = 3).
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Table 8 MLEs and bootstrap CIs of regression coefficients for the physician office visit

data (Deb and Trivedi, 1997)

Para Coefficient MLE stdB 95% bootstrap CI† 95% bootstrap CI‡ t-Statistic

φ

Constant −0.8978 0.0780 [−1.0506, −0.7450] [−1.0538, −0.7465] −11.5168

Sex(F) −0.3888 0.0915 [−0.5681, −0.2094] [−0.5660, −0.2061] −4.2481

Chronic −0.6513 0.0483 [−0.7460, −0.5566] [−0.7536, −0.5679] −13.4839

λ0

Constant −2.9431 0.1360 [−3.2096, −2.6767] [−3.2297, −2.6903] −21.6485

Sex(F) −0.2139 0.1398 [−0.4880, 0.0601] [−0.5005, 0.0671] −1.5303

Chronic 0.3322 0.0440 [ 0.2459, 0.4185] [ 0.2436, 0.4147] 7.5464

λ1

Constant 2.0482 0.0764 [ 1.8986, 2.1979] [ 1.8920, 2.1935] 26.8245

Sex(F) 0.0604 0.0133 [ 0.0344, 0.0864] [ 0.0336, 0.0864] 4.5478

Chronic 0.1505 0.0042 [ 0.1423, 0.1587] [ 0.1424, 0.1584] 35.9358

Age −0.6427 0.1030 [−0.8446, −0.4408] [−0.8444, −0.4359] −6.2386

λ2

Constant −3.6622 0.4298 [−4.5046, −2.8198] [−4.5646, −2.8095] −8.5207

Sex(F) 0.0916 0.0833 [−0.0717, 0.2548] [−0.0683, 0.2605] 1.0992

Chronic 0.2567 0.0269 [ 0.2040, 0.3093] [ 0.2031, 0.3087] 9.5515

Age 2.0920 0.5747 [ 0.9656, 3.2184] [ 0.9546, 3.2737] 3.6401

λ3

Constant −3.7460 0.3766 [−4.4841, −3.0079] [−4.4661, −2.9763] −9.9469

Sex(F) −0.1182 0.0724 [−0.2602, 0.0238] [−0.2575, 0.0266] −1.6317

Chronic 0.2897 0.0236 [ 0.2434, 0.3360] [ 0.2433, 0.3329] 12.2529

Age 2.4881 0.5001 [ 1.5079, 3.4682] [ 1.4612, 3.4587] 4.9753

stdB: The estimated standard deviation of the bootstrap samples, cf. (3.8).
CI†: Normal-based bootstrap CI, cf. (3.9).
CI‡: Non-normal-based bootstrap CI, cf. (3.10).

To calculate the MLEs of (β,η,γ1,γ2,γ3), we choose (β
(0)
0 , β

(0)
1 , β

(0)
2 ) = (1,−1,−1),

(η
(0)
0 , η

(0)
1 , η

(0)
2 ) = (2,−1, 1) and γ

(0)
1 = γ

(0)
2 = γ

(0)
3 = (−1,−1, 1, 1)⊤ as their initial values.

The MLEs of (β, µ,γ1,γ2) converged to (β̂, η̂, γ̂1, γ̂2, γ̂3) as shown in the third column

of Table 8 in 33 iterations for the EM algorithm specified by (4.6), (4.9)–(4.11). The

two 95% bootstrap CIs of (β,η,γ1,γ2,γ3) are listed in the fifth and sixth columns of

Table 8. The last column of Table 8 shows the corresponding t-statistics. From Table 8,

we can see that (for α = 0.05): (i) both sex and the number of chronic conditions are

significant and negatively correlated with φ; (ii) sex does not have a significant effect on
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the common parameter for the multivariate Poisson part λ0 while the number of chronic

conditions does and when it increases one unit, λ0 increases 33.22%; (iii) λ1 increases with

sex but decreases with age, both relationships are significant, while the number of chronic

conditions has a significant positive effect on λ1; (iv) all the three covariaes—sex, number

of chronic conditions and age in years—are positively correlated with λ2, however, only

sex is insignificant; (v) except for the insignificant and negatively correlated covariate sex,

the others are significant and are non-negatively correlated with λ3.

6. Discussion

By employing the SR method, we in this paper introduced a new multivariate ZAP

distribution based on a multivariate Poisson random vector. This new distribution is

useful because it possesses the following advantages: (a) Some existing multivariate zero-

inflated distributions are too complicated so that it is very difficult to apply them to

the cases of dimension larger than 3. For instance, the multivariate zero-inflated Poisson

model proposed by Li et al. (1999) contains too many parameters and the corresponding

computing method for MLEs is not easy to implement for cases of dimension larger

than 3. Furthermore, duo to its complexity, Li et al.’s multivariate ZIP distribution

does not possess helpful distributional properties (see, Liu and Tian, 2015). However,

by using the SR, our proposed multivariate ZAP distribution (i) has a simple structure

relationship and is easy to apply to the high-dimensional cases; (ii) is easy to derive

its distributional properties (see Appendices C & D). In addition, we provided efficient

statistical methods including the calculation of the MLEs of parameters via the EM

algorithm with explicit M- and E-step. (b) To our best knowledge, the majority of the

existing references only focus on some kind of specific count data, e.g., univariate zero-

truncated data, univariate zero-inflated data, or multivariate zero-inflated data. However,

the proposed models in this paper aim at the construction of a general framework for

fitting a class of zero-adjusted multivariate discrete data, with the zero-truncated, zero-

deflated, zero-inflated data as special cases and thus has a wider application range. (c) It
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allows a more flexible correlation structure than the Type I multivariate ZAP model for

some of the correlation coefficients could be positive while others could be negative. We

have further provided systemic unified and efficient statistical inference methods including

bootstrap CI construction, Bayesian calculation, and hypothesis testing on independency

and whether truncation, deflation or inflation.

In this paper, we have also considered the multivariate ZAP regression model with

covariates. In the real data analysis of physician office visit data, the number of chronic

conditions and age in years are significantly contribute to all these three outcomes—the

number of physician office visits, the number of emergency room visits, and the number of

hospitalizations, while sex only has non-ignorable effect on the number of physician office

visits. Note that the proposed regression model only available for fixed effects, one of the

future studies is to consider the multivariate ZAP regression model with random/mixed

effects.
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Appendix A. Three multivariate discrete distributions

A.1 Multivariate Poisson distribution

Let {X∗
i }mi=0

ind∼ Poisson(λi) and define Xi = X∗
0 + X∗

i for i = 1, . . . ,m. Then, x =

(X1, . . . , Xm)
⊤ is said to follow an m-dimensional Poisson distribution with parameter-

s λ0 > 0 and λ = (λ1, . . . , λm)
⊤ ∈ Rm

+ , denoted by x ∼ MP(λ0, λ1, . . . , λm) or x ∼

MPm(λ0,λ), accordingly. The joint pmf of x is

Pr(x = x) = e−(λ0+λ1+···+λm)

min(x)∑
k=0

λk0
k!

m∏
i=1

λxi−k
i

(xi − k)!
, (A.1)

where x = (x1, . . . , xm)
⊤ is the realization of x and min(x) =̂ min(x1, . . . , xm).

A.2 Conditional multivariate Poisson distribution

Let x = (X1, . . . , Xm)
⊤ ∼ MP(λ0, λ1, . . . , λm). Partition the random vector x into two

random sub-vectors x(1) = (X1, . . . , Xr)
⊤ and x(2) = (Xr+1, . . . , Xm)

⊤. Given x(2) = x(2),

x(1) is said to have an r-dimensional conditional Poisson distribution with parameters

λ0 > 0 and λ = (λ1, . . . , λm)
⊤ ∈ Rm

+ , denoted by x(1)|x(2) ∼ CPr(λ0, λ1, . . . , λm) with pmf

Pr(x(1) = x(1)|x(2) = x(2)) =

e−(λ1+···+λr)

min(x(1),x(2))∑
k=0

λk0
k!

m∏
i=1

λxi−k
i

(xi − k)!

min(x(2))∑
k=0

λk0
k!

m∏
i=r+1

λxi−k
i

(xi − k)!

, (A.2)

where x(1) = (x1, . . . , xr)
⊤ and x(2) = (xr+1, . . . , xm)

⊤.

A.3 Type I multivariate ZTP distribution

Definition 3 (Tian et al., 2017). Let x = (X1, . . . , Xm)
⊤, where Xi

ind∼ Poisson(λi)

for i = 1, . . . ,m. A discrete random vector w = (W1, . . . ,Wm)
⊤ is said to follow the

Type I multivariate ZTP distribution with the parameter vector λ = (λ1, . . . , λm)
⊤ ∈ Rm

+ ,

denoted by w ∼ ZTP(I)(λ1, . . . , λm) or w ∼ ZTP(I)
m (λ), if

x
d
= U w =

{
00, with probability ψ,

w, with probability 1− ψ,
(A.3)
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where U ∼ Bernoulli (1− ψ) with ψ = e−λ+ , λ+ =
∑m

i=1 λi =̂ ∥λ∥1 , and U ⊥⊥ w. ¶

Given U = 1, from (A.3), we can see that x and w have the same distribution; i.e., w

d
= x|(U = 1), indicating that the components of w are “partially” (in the sense only giving

U = 1 rather than giving the whole U) conditionally independent. Tian et al. (2017) have

shown that

Corr(Wi,Wj) = −

√
λiλj

(eλ+ − 1− λi)(eλ+ − 1− λj)
, i ̸= j. (A.4)

Therefore, the unique source resulting in the correlation between any two components of

w comes from the missing zero vector.

Appendix B. Univariate zero-adjusted Poisson distri-

bution

A non-negative discrete random variable Y is said to have a ZAP distribution with pa-

rameters φ ∈ [0, 1) and λ > 0, denoted by Y ∼ ZAP(φ, λ), if

Y
d
= Z ′W, (B.1)

where Z ′ ∼ Bernoulli(1 − φ), W ∼ ZTP(λ), and Z ′ ⊥⊥ W . It is clear that the pmf of

Y ∼ ZAP(φ, λ) is given by

Pr(Y = y) = φI(y = 0) +

[
(1− φ)

λye−λ

(1− e−λ)y!

]
I(y ̸= 0). (B.2)

Several important special cases of (B.1) or (B.2) include

(a) If φ = 0, then Y
d
=W ∼ ZTP(λ);

(b) If φ ∈ (0, e−λ), then Y follows the ZDP distribution with parameters φ and λ > 0,

denoted by Y ∼ ZDP(φ, λ);

(c) If φ = e−λ, then Y ∼ Poisson(λ); and
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(d) If φ ∈ (e−λ, 1), then Y follows the ZIP distribution with parameters ϕ =̂ (φ −

e−λ)/(1 − e−λ) and λ > 0, denoted by Y ∼ ZIP(ϕ, λ). The SR of Y ∼ ZIP(ϕ, λ) is

(Meng, 1997)

Y
d
= ZX,

where Z ∼ Bernoulli(1− ϕ), X ∼ Poisson(λ), and Z ⊥⊥ X. The corresponding pmf

is given by (Lambert, 1992)

Pr(Y = y) = [ϕ+ (1− ϕ)e−λ]I(y = 0) +

[
(1− ϕ)

λye−λ

y!

]
I(y ̸= 0).

Appendix C. Properties of the proposed multivariate

ZTP distribution

C.1 Moments and moment generating function

From the SR (2.1), it is easy to show that

E(w) =
λ0 · 11+ λ

1− ψ
,

E(ww⊤) =
λ0 · 1111⊤+ diag(λ) + (λ0 · 11+ λ)(λ0 · 11+ λ)⊤

1− ψ
,

Var(w) =
1

1− ψ

[
λ0 · 1111⊤+ diag(λ)− ψ

1− ψ
(λ0 · 11+ λ)(λ0 · 11+ λ)⊤

]
,

(C.1)

where 11 = 11m = (1, . . . , 1)⊤. Thus, for i ̸= j, we have

Corr(Wi,Wj) =
λ0 − (λ0 + λi)(λ0 + λj)ψ/(1− ψ)√

[λ0 + λi − (λ0 + λi)2ψ/(1− ψ)] [λ0 + λj − (λ0 + λj)2ψ/(1− ψ)]
,

(C.2)

i.e., the correlation coefficient betweenWi andWj could be positive or negative depending

on the values of the parameters λ0 and λ. In particular, if λ0 = 0, we obtain (A.4) again.

Furthermore, if λi = λj = λ, then Corr(Wi,Wj) = λ/(λ+ 1− ψ−1).

For any r1, . . . , rm > 0, the mixed moments of w are given by

E

(
m∏
i=1

W ri
i

)
= (1− ψ)−1E

(
m∏
i=1

Xri
i

)
= (1− ψ)−1E

[
m∏
i=1

(X∗
i +X∗

0 )
ri

]
. (C.3)
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Using the identity of E(ξ) = E[E(ξ|U)], the mgf of x is

Mx(t) = E[exp(t⊤x)] = E[exp(U · t⊤w)] = E
{
E[exp(Ut⊤w)|U ]

}
= E[Mw(Ut)] = ψMw(00) + (1− ψ)Mw(t) = ψ + (1− ψ)Mw(t).

Thus, the mgf of w ∼ ZTP(λ0, λ1, . . . , λm) is given by

Mw(t) =
Mx(t)− ψ

1− ψ
=
MX∗

0
(t+)

∏m
i=1MX∗

i
(ti)− ψ

1− ψ

=
exp(

∑m
i=1 λie

ti + λ0e
t+ − λ+ − λ0)− e−λ0−λ+

1− e−λ0−λ+
,

where t+ =
∑m

i=1 ti.

C.2 Marginal distributions

We first consider the marginal distribution of each component for the random vector fol-

lowing the proposed multivariate ZTP distribution. These results are showed in Theorem

1 below, indicating that each random component follows a ZDP distribution which is a

special case of a ZAP distribution (B.2).

Theorem 1 (Marginal distribution ofWi). Letw = (W1, . . . ,Wm)
⊤∼ ZTPm(λ0,λ), then,

the marginal distributions of Wi is

Wi ∼ ZDP(φi, λ0 + λi), i = 1, . . . ,m, (C.4)

where

φi =
e−λ0−λi − e−λ0−λ+

1− e−λ0−λ+
. (C.5)
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Proof of Theorem 1. If wi > 0, then

Pr(Wi = wi) =
∞∑

w1=0

· · ·
∞∑

wi−1=0

∞∑
wi+1=0

· · ·
∞∑

wm=0

Pr(w = w)

(2.2)
=

(λ0 + λi)
wie−λ0−λi

(1− e−λ0−λ+)wi!

∞∑
w1=0

· · ·
∞∑

wi−1=0

∞∑
wi+1=0

· · ·
∞∑

wm=0

fi(w)

=
(λ0 + λi)

wie−λ0−λi

(1− e−λ0−λ+)wi!

wi∑
k=0

(
wi

k

)(
λ0

λ0 + λi

)k (
λi

λ0 + λi

)wi−k

=
1− e−λ0−λi

1− e−λ0−λ+
· (λ0 + λi)

wie−λ0−λi

(1− e−λ0−λi)wi!
, (C.6)

where

fi(w) =

min(w)∑
k=0

(
wi

k

)(
λ0

λ0 + λi

)k (
λi

λ0 + λi

)wi−k m∏
j=1,j ̸=i

λ
wj−k
j e−λj

(wj − k)!
.

Hence,

Pr(Wi = 0) = 1−
∞∑

wi=1

Pr(Wi = wi)

(C.6)
= 1− 1

1− e−λ0−λ+

∞∑
wi=1

(λ0 + λi)
wie−λ0−λi

wi!

= 1− 1− e−λ0−λi

1− e−λ0−λ+
=

e−λ0−λi − e−λ0−λ+

1− e−λ0−λ+

=̂ φi ∈ [0, e−λ0−λi) ⊂ (0, 1). (C.7)

By combining (C.7) with (C.6) and noting that a ZDP distribution is a special case of a

ZAP distribution (B.2), we obtain Wi ∼ ZDP(φi, λ0 + λi), i = 1, . . . ,m. 2

Next, we consider the marginal distributions of w(1) and w(2), where

w(1) =

W1
...
Wr

 , w(2) =

Wr+1
...
Wm

 and w =

(
w(1)

w(2)

)
.

Similar to the proof of (C.4), we can obtain

w(1) ∼ ZDP(φ(1);λ0, λ1, . . . , λr) and w(2) ∼ ZDP(φ(2);λ0, λr+1, . . . , λm), (C.8)
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where

φ(k) =
e−λ0−λ

(k)
+ − e−λ0−λ+

1− e−λ0−λ+
∈
(
0, e−λ0−λ

(k)
+

)
⊂ (0, 1), k = 1, 2, (C.9)

λ
(1)
+ =

∑r
i=1 λi and λ

(2)
+ =

∑m
i=r+1 λi.

In fact, for any positive integers i1, . . . , ir satisfying 1 6 i1 < · · · < ir 6 m, we haveWi1
...
Wir

 ∼ ZDP(φ∗;λ0, λi1 , . . . , λir), (C.10)

where

φ∗ =
e−λ0−(λi1

+···+λir ) − e−λ0−λ+

1− e−λ0−λ+
∈
(
0, e−λ0−(λi1

+···+λir )
)
⊂ (0, 1). (C.11)

C.3 Conditional distributions

We first consider the conditional distribution of w(1)|w(2). These results are summarized

in Theorem 2 below, indicating that given w(2) ̸= 00m−r, w
(1) follows the r-dimensional

conditional Poisson distribution CPr(λ0, λ1, . . . , λm), which is defined by (A.2).

Theorem 2 (Conditional distribution ofw(1)|w(2)). Letw = (w(1)⊤,w(2)⊤)⊤∼ ZTPm(λ0,λ),

then, the conditional distribution of w(1)|w(2) is given by

w(1)|(w(2) = w(2))


d
= x(1)|x(2) ∼ CPr(λ0, λ1, . . . , λm), if w(2) ̸= 00m−r,

∼ ZTP(I)(λ1, . . . , λr), if w(2) = 00m−r,
(C.12)

where x = (x(1)⊤,x(2)⊤)⊤∼ MP(λ0, λ1, . . . , λm).

Proof of Theorem 2. From (2.2), (C.8) and (2.5), the conditional distribution of

w(1)|w(2) is

Pr{w(1) = w(1)|w(2) = w(2)} =
f(w;λ0,λ)

Pr{w(2) = w(2)}

=

e−λ0−λ+

1− e−λ0−λ+

min(w)∑
k=0

λk0
k!

m∏
i=1

λwi−k
i

(wi − k)!

φ(2)I(w(2) = 00) +

 1− φ(2)

1− e−λ0−λ
(2)
+

min(w(2))∑
k=0

λk0e
−λ0

k!

m∏
i=r+1

λwi−k
i e−λi

(wi − k)!

I(w(2) ̸= 00)

. (C.13)
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We first consider Case I: w(2) ̸= 00. Under Case I, it is possible that w(1) = 00 or w(1) ̸= 00.

From (C.13), it is easy to show that

Pr(w(1) = w(1)|w(2) = w(2)) =

e−λ
(1)
+

min(w)∑
k=0

λk0
k!

m∏
i=1

λwi−k
i

(wi − k)!

min(w(2))∑
k=0

λk0
k!

m∏
i=r+1

λwi−k
i

(wi − k)!

,

indicating

w(1)|(w(2) ̸= 00)
d
= x(1)|x(2) ∼ CPr(λ0, λ1, . . . , λm),

where x = (x(1)⊤,x(2)⊤)⊤∼ MP(λ0, λ1, . . . , λm), see (A.2).

Case II: w(2) = 00. Under Case II, it is obviously that w(1) ̸= 00. From (C.13), we have

Pr{w(1) = w(1)|w(2) = 00} =
1

1− e−λ
(1)
+

r∏
i=1

λwi
i e−λi

wi!
,

implying w(1)|(w(2) = 00) ∼ ZTP(I)(λ1, . . . , λr). 2

Next, we are interested in deriving the conditional distribution of X∗
0 |w, which will

be used in the E-step of the EM algorithm (see, Section 3.1) and the I-step of the DA

algorithm (see, Section 3.3.2). Note that (2.1) can be rewritten as

x = (X1, . . . , Xm)
⊤= (X∗

0 +X∗
1 , . . . , X

∗
0 +X∗

m)
⊤ d
= Uw, (C.14)

where {X∗
i }mi=0

ind∼ Poisson(λi). To derive the conditional distribution of X∗
0 |w (which is

summarized in Theorem 4 below), we first need to derive the conditional distribution of

X∗
0 |(w, U), which is given in Theorem 3 below.

Theorem 3 (Conditional distribution ofX∗
0 |(w, U)). Let (X∗

0 , U,w) be specified by (C.14)

and w ∼ ZTPm(λ0,λ). Then, the conditional distribution of X∗
0 |(w, U) is given by

X∗
0 |(w = w, U = u) ∼

 Finite(l, ql(w, λ0,λ); l = 0, 1, . . . ,min(w)), if u ̸= 1,

Degenerate(0), if u = 0,
(C.15)
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where Finite(xk, pk; k = 0, 1, . . . , K) denotes the general finite distribution and

ql(w, λ0,λ) =

λl0
l!

m∏
i=1

λwi−l
i

(wi − l)!

min(w)∑
k=0

λk0
k!

m∏
i=1

λwi−k
i

(wi − k)!

(C.16)

for l = 0, 1, . . . ,min(w).

Proof of Theorem 3. When U = 1, the conditional distribution of X∗
0 |(w, U) is given

by

Pr(X∗
0 = l|w = w, U = 1) =

Pr(X∗
0 = l, X∗

1 = w1 − l, . . . , X∗
m = wm − l)

Pr(X1 = w1, . . . , Xm = wm)

(A.1)
=

λl0
l!

m∏
i=1

λwi−l
i

(wi − l)!

min(w)∑
k=0

λk0
k!

m∏
i=1

λwi−k
i

(wi − k)!

= ql(w, λ0,λ), (C.17)

for l = 0, 1, . . . ,min(w), which implying1

X∗
0 |(w = w, U = 1) ∼ Finite(l, ql(w, λ0,λ); l = 0, 1, . . . ,min(w)). (C.18)

When U = 0, we obtain Pr(X∗
0 = 0|w = w, U = 0) = 1, i.e.,

X∗
0 |(w = w, U = 0) ∼ Degenerate(0). (C.19)

Hence, for any l, we have

Pr(X∗
0 = l|w = w, U = 0) = I(l = 0). (C.20)

1A discrete random variable X is said to have the general finite distribution, denoted by X ∼
Finite(xk, pk; k = 0, 1, . . . ,K), if Pr(X = xk) = pk ∈ [0, 1] and

∑K
k=0 pk = 1.
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Theorem 4 (Conditional distribution of X∗
0 |w). Let (X∗

0 ,w) be specified by (C.14) and

w ∼ ZTPm(λ0,λ). Then, the conditional distribution of X∗
0 |w is given by

X∗
0 |(w = w) ∼ Finite(l, pl(w, λ0,λ); l = 0, 1, . . . ,min(w)), (C.21)

where

pl(w, λ0,λ) = e−λ0−λ+ · I(l = 0) + (1− e−λ0−λ+) · ql(w, λ0,λ), (C.22)

I(·) is the indicator function and ql(w, λ0,λ) is defined by (C.16). And more importantly,

the conditional expectation of X∗
0 |w is given by

E(X∗
0 |w = w) = (1− e−λ0−λ+) ·

min(w)∑
k=1

λk0
(k − 1)!

m∏
i=1

λwi−k
i

(wi − k)!

min(w)∑
k=0

λk0
k!

m∏
i=1

λwi−k
i

(wi − k)!

· I(min(w) > 1). (C.23)

Proof of Theorem 4. By using (C.19) and (C.18), the conditional distribution of X∗
0 |w

is

Pr(X∗
0 = l|w = w) =

1∑
u=0

Pr(X∗
0 = l, U = u|w = w)

=
1∑

u=0

Pr(U = u|w = w) · Pr(X∗
0 = l|w = w, U = u)

= Pr(U = 0) · Pr(X∗
0 = l|w = w, U = 0)

+ Pr(U = 1) · Pr(X∗
0 = l|w = w, U = 1)

(C.20)
= e−λ0−λ+ · I(l = 0) + (1− e−λ0−λ+) · ql(w, λ0,λ)

= pl(w, λ0,λ), (C.24)

for l = 0, 1, . . . ,min(w), where ql(w, λ0,λ) is defined by (C.4). Thus,

X∗
0 |(w = w) ∼ Finite(l, pl(w, λ0,λ); l = 0, 1, . . . ,min(w)). (C.25)
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Especially, when min(w) = 0, we have X∗
0 |(w = w) ∼ Degenerate(0). Thus, the condi-

tional expectation of X∗
0 |w is given by

E(X∗
0 |w = w) = (1− e−λ0−λ+) ·

min(w)∑
k=1

λk0
(k − 1)!

m∏
i=1

λwi−k
i

(wi − k)!

min(w)∑
k=0

λk0
k!

m∏
i=1

λwi−k
i

(wi − k)!

· I(min(w) > 1). 2

Appendix D. Properties of the proposed multivariate

ZAP distribution

D.1 Marginal distributions

Now we consider the marginal distributions of y(1) and y(2), where

y(1) =

Y1...
Yr

 , y(2) =

Yr+1
...
Ym

 and y =

(
y(1)

y(2)

)
.

Based on (2.4) and (C.8), we have

y(k) d
= Z ′w(k) d

= Z ′Z(k)ξ(k), k = 1, 2,

where Z ′ ∼ Bernoulli(1 − φ), Z(k) ∼ Bernoulli(1 − φ(k)), φ(k) is given by (C.9), ξ(1) ∼

ZTP(λ0, λ1, . . . , λr) and ξ(2) ∼ ZTP(λ0, λr+1, . . . , λm). Note that Z ′Z(k) ⊥⊥ ξ(k) and

Z ′Z(k) ∼ Bernoulli((1− φ)(1− φ(k))). According to the SR (2.4), we can obtain

y(1) ∼ ZAP(ν(1);λ0, λ1, . . . , λr) and y(2) ∼ ZAP(ν(2);λ0, λr+1, . . . , λm), (D.1)

where

ν(k) = 1− (1− φ)(1− φ(k)) = 1− (1− φ)
1− e−λ0−λ

(k)
+

1− e−λ0−λ+
∈ (0, 1), k = 1, 2, (D.2)

λ
(1)
+ =

∑r
i=1 λi and λ

(2)
+ =

∑m
i=r+1 λi.

In fact, for any positive integers i1, . . . , ir satisfying 1 6 i1 < · · · < ir 6 m, we haveYi1...
Yir

 ∼ ZAP(ν∗;λ0, λi1 , . . . , λir), (D.3)
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where φ∗ is given by (C.11) and

ν∗ = 1− (1− φ)(1− φ∗) = 1− (1− φ)
1− e−λ0−(λi1

+···+λir )

1− e−λ0−λ+
∈ (0, 1). (D.4)

D.2 Conditional distributions

D.2.1 Conditional distribution of y(1)|y(2)

Theorem 5 (Conditional distribution of y(1)|y(2)). Let y = (y(1)⊤,y(2)⊤)⊤∼ ZAP(φ;λ0, λ1,

. . ., λm), then, the conditional distribution of y(1)|y(2) is given by

y(1)|(y(2) = y(2))


d
= x(1)|x(2) ∼ CPr(λ0, λ1, . . . , λm), if y(2) ̸= 00m−r,

∼ ZAP(I)(τ (2);λ1, . . . , λr), if y(2) = 00m−r,
(D.5)

where x = (x(1)⊤,x(2)⊤)⊤∼ MP(λ0, λ1, . . . , λm), τ
(2) =̂ φ

ν(2)
, and ν(2) is defined by (D.2).

Proof of Theorem 5. From (2.5) and (D.1), the conditional distribution of y(1)|y(2) is

Pr{y(1) = y(1)|y(2) = y(2)} =
Pr(y = y)

Pr{y(2) = y(2)}

=

φI(y = 00) +

 1− φ

1− e−λ0−λ+

min(y(1),y(2))∑
k=0

λk0e
−λ0

k!

m∏
i=1

λyi−k
i e−λi

(yi − k)!

 I(y ̸= 00)

ν(2)I(y(2) = 00) +

 1− ν(2)

1− e−λ0−λ
(2)
+

min(y(2))∑
k=0

λk0e
−λ0

k!

m∏
i=r+1

λyi−k
i e−λi

(yi − k)!

 I(y(2) ̸= 00)

. (D.6)

We first consider Case I: y(2) ̸= 00. Under Case I, it is clear that y ̸= 00. From (D.6), it is

easy to obtain

Pr{y(1) = y(1)|y(2) = y(2)} =

e−λ
(1)
+

min(y(1),y(2))∑
k=0

λk0
k!

m∏
i=1

λyi−k
i

(yi − k)!

min(y(2))∑
k=0

λk0
k!

m∏
i=r+1

λyi−k
i

(yi − k)!

,

indicating

y(1)|(y(2) ̸= 00)
d
= x(1)|x(2) ∼ CPr(λ0, λ1, . . . , λm),
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where x = (x(1)⊤,x(2)⊤)⊤∼ MP(λ0, λ1, . . . , λm), see (A.2).

Case II: y(2) = 00. Under Case II, it is possible that y(1) = 00 or y(1) ̸= 00. When

y(1) = 00, from (D.6), we obtain

Pr{y(1) = 00|y(2) = 00} =
φ

ν(2)
. (D.7)

When y(1) ̸= 00, from (D.6), we have

Pr{y(1) = y(1)|y(2) = 00} =
(1− φ)e−λ0−λ

(2)
+

ν(2)(1− e−λ0−λ+)

r∏
i=1

λyii e
−λi

yi!
=

1− φ/ν(2)

1− e−λ
(1)
+

r∏
i=1

λyii e
−λi

yi!
. (D.8)

By combining (D.7) with (D.8), we obtain

y(1)|(y(2) = 00) ∼ ZAP(I)(τ (2);λ1, . . . , λr),

where τ (2) =̂ φ/ν(2). 2

D.2.2 Conditional distribution of Z ′|y

Since Z ′ ∼ Bernoulli(1−φ), Z ′ only takes the value 0 or 1. Note that y = 00 is equivalent

to Z ′ = 0. Thus, Pr(Z ′ = 0|y = 00) = Pr(Z ′ = 0)/Pr(y = 00) = 1. And when y ̸= 00, we

have Pr(Z ′ = 1|y = y) = Pr(Z ′ = 1,w = y)/Pr(y = y) = 1. Therefore,

Z ′|(y = y) ∼

 Degenerate(0), if y = 00,

Degenerate(1), if y ̸= 00,
(D.9)

i.e., Z ′|(y = y) ∼ Degenerate(I(y ̸= 00)).

D.2.3 Conditional distribution of w|(y = y ̸= 00)

If y ̸= 00, we have

Pr(w = w|y = y) =
Pr(w = w,y = y)

Pr(y = y)
=

Pr(w = y, Z ′ = 1)

Pr(y = y)
= I(w = y).

Thus, given y = y ̸= 00, we have

w|(y = y ̸= 00) ∼ Degenerate(y). (D.10)
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D.2.4 Conditional distribution of Wi|(Yi = yi = 0), i = 1, . . . ,m

Theorem 6 (Conditional distribution of Wi|(Yi = yi = 0)). The conditional distribution

of Wi|(Yi = yi = 0) is given by

Wi|(Yi = 0) ∼ ZAP(τi, λ0 + λi), i = 1, . . . ,m, (D.11)

where τi =̂ φi/νi, φi is defined by (C.5), and

νi =̂ 1− (1− φ)(1− φi)
(C.5)
= 1− (1− φ)

1− e−λ0−λi

1− e−λ0−λ+
. (D.12)

Proof of Theorem 6. For i = 1, . . . ,m, from (2.4), we know the relationship between

Yi and Wi is Yi
d
= Z ′Wi, where Wi ∼ ZDP(φi, λ0 + λi) with

φi = (e−λ0−λi − e−λ0−λ+)/(1− e−λ0−λ+),

see (C.13) and (C.5), and Yi ∼ ZAP(νi, λ0 + λi) with

νi = 1− (1− φ)
1− e−λ0−λi

1− e−λ0−λ+
,

see (D.3) and (D.12). Thus,

Pr(Wi = wi|Yi = 0) =
Pr(Wi = wi, Yi = 0)

Pr(Yi = 0)

=
Pr(Wi = 0, Yi = 0)

νi
I(wi = 0) +

Pr(Wi = wi, Z
′ = 0)

νi
I(wi ̸= 0)

=
Pr(Wi = 0)

νi
I(wi = 0) +

φPr(Wi = wi)

νi
I(wi ̸= 0)

=
φi

νi
I(wi = 0) +

φ(1− φi)

νi

(λ0 + λi)
wie−λ0−λi

wi!(1− e−λ0−λi)
I(wi ̸= 0)

= τiI(wi = 0) + (1− τi)
(λ0 + λi)

wie−λ0−λi

wi!(1− e−λ0−λi)
I(wi ̸= 0),

i.e., Wi|(Yi = 0) ∼ ZAP(τi, λ0 + λi), where τi =̂ φi/νi. 2
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D.2.5 Conditional distribution of Wi|(Yi = yi > 0), i = 1, . . . ,m

From (D.3), we have Yi ∼ ZAP(νi, λ0 + λi), where νi is defined by (D.12). Since

Pr(Wi = wi|Yi = yi > 0) =
Pr(Wi = wi, Yi = yi)

Pr(Yi = yi)
=

Pr(Wi = yi, Z
′ = 1)

Pr(Yi = yi)
= I(wi = yi).

we obtain Wi|(Yi = yi > 0) ∼ Degenerate(yi).
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Alfò, M. and Maruotti, A. (2010). Two-part regression models for longitudinal zero-

inflated count data. The Canadian Journal of Statistics 38, 197–216.
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lUniversité de Paris 12, 45–53.

Grogger, J.T. and Carson, R.T. (1991). Models for truncated counts. Journal of Applied

Econometrics 6(3), 225–238.

Gupta, R.C. (1974). Distribution of the sum of independent decapitated generalized

negative binomial variables. Sankhyā: The Indian Journal of Statistics, Series B

36(1), 67–69.

Gurmu, S. (1991). Tests for detecting overdispersion in the positive Poisson regression

model. Journal of Business & Economic Statistics 9(2), 215–222.

Gurmu, S. (1997). Semi-parametric estimation of hurdle regression models with an ap-

plication to medicaid utilization. Journal of Applied Econometrics 12(3), 225–242.

Hall, D. (2000). Zero-inflated Poisson and binomial regression with random effects: A

case study. Biometrics 56, 1030–39.

Hall, D. and Zhang, Z. (2004). Marginal models for zero inflated clustered data. Statis-

tical Modelling 4, 161–180.

Hamdan, M.A. (1972). Estimation in the truncated bivariate Poisson distribution. Tech-

45



nometrics 14(1), 37–45.

Hartley, H.J. (1958). Maximum likelihood estimation from incomplete data. Biometrics

14(2), 174–194.

Irwin, J.O. (1959). On the estimation of the mean of a Poisson distribution from a sample

with the zero class missing. Biometrics 15(2), 324–326.

Johnson, N., Kotz, S., 1969. Distributions in Statistics: Discrete Distributions. Houghton

Mifflim, Boston.

Jung, B.C., Han, S.M. and Lee, J. (2007). Score tests for testing independence in the

zero-truncated bivariate Poisson models. Communications in Statistics—Theory

and Methods 36, 599–611.

Karlis, D. (2003). An EM algorithm for multivariate Poisson distribution and related

models. Journal of Applied Statistics 30(1), 63–77.

Karlis, D. and Ntzoufras, I. (2005). Bivariate Poisson and diagonal inflated bivariate

Poisson regression models in R. Journal of Statistical Software 14(10), 1–36.

Kemp, A.W. (1986). Weighted discrepancies and maximum likelihood estimation for

discrete distribution. Communications in Statistics—Theory and Methods 15, 783–

803.

Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in

manufacturing. Technometrics 34(1), 1–14.

Lee, A. H., Wang, K., Scott, J. A, Yau, K. K. W., and McLachlan, G. J. (2006). Multi-

level zero-inflated Poisson regression modelling of correlated count data with excess

zeros. Statistical Methods in Medical Research 15, 47–61.

Li, C.S. (2012). Score tests for semiparametric zero-inflated Poisson models. Interna-

tional Journal of Statistics and Probability 1(2), 1–7.

Li, C.S., Lu, J.C., Park, J., Kim, K., Brinkley, P.A. and Peterson, J.P. (1999). Multi-

variate zero-inflated Poisson models and their applications. Technometrics 41(1),

29–38.

Liu, Y. and Tian, G.L.(2015). Type I multivariate zero-inflated Poisson distribution with

applications. Computational Statistics & Data Analysis 83, 200–222.

46



Martin, D., Katti, S. (1965). Fitting of some contagious distributions to some available

data by the maximum likelihood method. Biometrics 21, 34–48.

Maruotti, A. and Raponi, V. (2014). On baseline conditions for zero-inflated longitudinal

count data. Communications in StatisticsSimulation and Computation 43, 1–18.

Medhi, J. (1975). On the convolutions of left-truncated generalised negative binomial
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Figure 1 Posterior densities of (λ0, λ1, λ2) via a kernel density smoother based on L = 60,000
i.i.d. posterior samples generated by the DA algorithm with independent Gamma(1, 1) as the
prior distributions of (λ0, λ1, λ2). (a1)–(c1) The posterior densities of (λ0, λ1, λ2); (a2)–(c2) the
histograms of (λ0, λ1, λ2).
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Figure 2 Posterior densities of (φ, λ0, λ1, λ2, λ3) via a kernel density smoother based on L =
60,000 i.i.d. posterior samples generated by the DA algorithm with independent Gamma(1, 1) as
the prior distributions of (φ, λ0, λ1, λ2, λ3). (a1)–(e1) The posterior densities of (φ, λ0, λ1, λ2, λ3);
(a2)–(e2) the histograms of (φ, λ0, λ1, λ2, λ3).
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