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ARTICLE INFO ABSTRACT

Keywords: In this paper, a bike repositioning problem with multiple depots, multiple visits, and multiple
Free-floating bike sharing heterogeneous vehicles for the free-floating bike-sharing system (FFBSS) is studied. Two types of
Static bike repositioning problem nodes (i.e., easily and hardly access nodes) with different penalties are defined to represent

Multiple heterogeneous vehicles
Multiple depots
Multiple visits

different convenience levels of getting bikes from the FFBSS. The objective of the repositioning is
to minimize the weighted sum of the inconvenience level of getting bikes from the system and the
total unmet demand and the total operational time. To solve this problem, an enhanced version of
chemical reaction optimization (CRO) is developed. A loading and unloading quantity adjust-
ment procedure with the consideration of the node characteristics, including the type of node and
its current state (i.e., in a balanced, surplus, or deficit state) is proposed and incorporated into
this version to improve its solution quality. A concept of the nearby-node set is also proposed to
narrow the search space. Numerical results are presented and indicate that compared to the
traditional CRO and CPLEX, the enhanced CRO improves solution quality and has potential to
tackle the repositioning problem for larger, longer repositioning duration, and more vehicle
instances. The results also demonstrate the effectiveness of the proposed adjustment procedure.

1. Introduction

A bike-sharing system (BSS) is a short rental service to provide customers with bikes for shared use. It has developed rapidly and
worldwide. As of 28 November 2017, public bike-sharing systems were available in about 1488 cities and included approximately
18,740,100 bikes around the world (Meddin and DeMaio, 2017).

There are currently two types of BSSs operated worldwide: traditional BSS and free-floating BSS (FFBSS). In a traditional BSS, users
have to rent bikes from the designated docking stations and return them to the available lockers in the docking stations after use. In some
FFBSSs, bike racks or any solid frame or standalone can be used to lock bikes instead of docking stations, which are also the most costly
component in a traditional BSS. The bike rack cost is low and hence the setup cost is lower than that of a traditional BSS and the number of
racks in an FFBSS can be very large. Some FFBSSs (e.g., the Mobike system, China) removed the concept of bike racks or related concept.
The locks in those systems simply immobilize the rear wheels and a smartphone provides the user interface for locating, checking out,
returning, locking, and payment. With the help of global positioning system (GPS), users can reserve or directly rent the nearest available
bike and return it almost anywhere in the operating area at the end of the trip. With this feature, users of FFBSS do not need to spend time
on searching for an available locker at a docking station to return a bike. This feature makes an FFBSS more flexible and user-friendly,
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compared to a traditional BSS. However, it also results in a more dispersed distribution of the bikes and raises a problem that some bikes
are parked at the locations uneasy to observe by the public (Abdullah, 2017). Users find difficulties in searching for an available bike based
on its location provided by GPS as the system continues to operate (Abdullah, 2017). Same as a traditional BSS, reallocating the bikes in an
FFBSS is a necessity to improve the system performance, such as the convenience of users in getting bikes from the sharing system and the
demand dissatisfaction. This relocation problem is called a bike-sharing repositioning problem (BRP).

The BRPs for traditional BSSs have been examined and solved by many existing studies. Among them, very few studies (Caggiani and
Ottomanelli, 2012; Contardo et al., 2012; Regue and Recker, 2014; Brinkmann et al., 2015a, 2015b; Labadi et al., 2015; Zhang et al., 2017
Shui and Szeto, 2018) deal with the dynamic bike repositioning problem that captures the demand variation over the repositioning period.
Most existing studies (Benchimol et al., 2011; Nair and Miller-Hooks, 2011; Chemla et al., 2013; Di Gaspero et al., 2013a, 2013b, 2016; Nair
et al., 2013; Papazek et al., 2013, 2014; Raviv et al., 2013; Rainer-Harbach et al., 2013, 2015; Dell’Amico et al., 2014, 2016; Erdogan et al.,
2014, 2015; Ho and Szeto, 2014, 2017; Brinkmann et al., 2015a, 2015b; Forma et al., 2015; Alvarez-Valdes et al., 2016; Casazza, 2016; Kadri
et al., 2016; Li et al., 2016; Szeto et al., 2016; Cruz et al., 2017; Schuijbroek et al., 2017) focus on the static bike repositioning problem in
which it is commonly assumed that there is no or negligible demand during the repositioning operation and the objective is to arrange bikes
in the system for the next working day. To solve the real-life BRPs, most of these existing studies developed inexact solution methods,
including approximation methods, heuristics, metaheuristics, and hybrid heuristic and exact methods.

To have a good relocation strategy, accurate estimation of bike demand is necessary. Some effort focused on bike demand
forecasting. For example, Rudloff and Lackner (2014) developed demand models for bikes and available lockers, which can predict
the times when stations tend to full or empty over the course of the coming week. Singhvi et al. (2015) predicted the bike usage
pattern of Citi Bike in New York during morning peak hours and bike demand by considering taxi usage, weather, and spatial
variables. However, these studies focus on traditional BSSs.

Compared to the studies for traditional BSSs, very few papers focused FFBSSs, including forecasting demand for FFBSSs and free-
floating BRPs (FFBRPs). For example, to enhance the bike reallocation, Reiss and Bogenberger (2016) identified the mobility patterns
of the bike usage and forecasted the upcoming demand, while Caggiani et al. (2016) proposed a method to generate spatiotemporal
clusters and forecasted the bike use trend.

As the time of this writing, only one study deals with an FFBRP. Pal and Zhang (2017) considered a multiple-vehicle static
repositioning for the FFBSS. The objectives are to make the FFBSS at its optimal state (i.e., no stations are in a deficit state) and
minimize the makespan of the vehicles. Multiple-visits to a station with monotone loading or unloading operation are allowed. Their
formulation is only modified from the formulation proposed by Erdogan et al. (2015) for handling the multiple-vehicle repositioning
as if a traditional BRP. To solve this problem, a hybrid nested large neighborhood search with variable neighborhood descent
algorithm is proposed. However, they do not consider any unique feature of an FFBSS such as the inconvenience level of getting bikes
when formulating and solving the problem. According to Abdullah (2017), it is sometimes difficult for bike users to find unused bikes
in an FFBSS as they are put in inconvenience, difficult to see, or uncommon locations. The utilization rates of those bikes are
relatively low, which does not allow the demand dissatisfaction in the system to be fully minimized. To improve the utilization rate
and demand dissatisfaction, a new methodology is needed to model this unique feature and determine a repositioning strategy.

In this study, we consider the convenience level of getting bikes from the FFBSS. Two types of nodes are defined based on the
convenience level: Easily accessed nodes represent the locations well-known to the public (e.g., the designated locations of bike racks or
popular locations), whereas hardly accessed nodes are defined as the locations not popular to the public, not easy to be found, or
introducing long search time to the public (e.g., the locations of dispersed bikes). In this FFBRP, bikes at hardly accessed nodes are
transported to easily accessed nodes, especially to those in deficit. Thus, reallocating bikes for this FFBSS is not only to reduce the total
unmet demand, but also to increase the convenience level of getting bikes from the system. This relocation is assumed to be performed
in the night time by multiple vehicles and hence the problem is formulated as a multiple-vehicle static FFBRP. To solve this BRP, an
enhanced version of chemical reaction optimization (CRO) is proposed. Compared with the traditional version, the enhanced version
has four major differences: First, the enhanced CRO considers the characteristics of the FFBRP, i.e., two types of nodes. Second, the
enhanced CRO applies a newly proposed operator to adjust loading/unloading quantities, especially at hardly accessed nodes, to
improve its solution quality. Third, a solution adjustment strategy is adopted in the enhanced version to ensure the feasibility and good
quality of the solutions. Fourth, the enhanced version uses different neighborhood operators and criteria to obtain new routes. To
demonstrate the effectiveness of the enhanced CRO, different test scenarios were used and the results obtained from IBM ILOG CPLEX,
the original CRO, and the enhanced CRO were compared. In addition, the performance of the proposed subroutine is discussed.

The contributions of this paper are as follows:

o This paper formulates an FFBRP with the consideration of the convenience level, in which this special feature associated with an

FFBSS has not been modeled before.

This problem considers (1) multiple depots; (2) multiple heterogeneous vehicles; (3) fixed starting depot and flexible ending depot

for each vehicle; (4) multiple-visits of nodes by the same vehicle, and (5) non-monotone loading and unloading operations at

nodes, which is more complicated than existing traditional BRPs.

® An enhanced version of CRO is proposed. It considers the node characteristics in developing a subroutine to adjust the loading or
unloading quantities at nodes, especially for hardly accessed nodes. These quantities are adjusted based on the type of node and its current
state (i.e., in a balanced, surplus, or deficit state). The results from our experiments show that this subroutine contributes to better
solutions.

o This study improves the traditional CRO to solve the FFBRP. A concept of the nearby-node set is proposed to narrow the search
space. The results indicate that the enhanced CRO obtains better solutions than the traditional CRO.
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2. Formulation

The free-floating bike-sharing system (FFBSS) is represented by a complete directed graph G, = (14, Ag), where V; and A, are sets
of nodes and arcs, respectively. In this study, multiple depots are considered. Vehicles may not start and end the repositioning at the
same depot. All nodes can be visited multiple times and treated as buffer nodes. That is, the non-monotone loading and unloading
operations at each of these nodes are allowed. We also assume that the demand at hardly accessed nodes is 0. The repositioning
duration is discretized into many equal intervals called periods. The repositioning problem is formulated as a multiple period problem
using the following notations.

Sets

D A set of depots.

Ve A set of nodes which are easily accessed by customers (e.g., bike racks/stations in the FFBSS).
Vg A set of nodes which are hardly accessed by customers (e.g., dispersed bikes in the FFBSS).
VA set of nodes, including easily and hardly accessed nodes, i.e., V = Vg U Vg.

Vo A set of nodes, including depots, and easily and hardly accessible nodes, i.e., Vo, = D U Vg U V.
K A fleet of heterogeneous vehicles K = {1, 2, ..., IKl}.

Parameters

50 The initial inventory level at node i € V;.

g,  The optimal inventory level at nodei € V.

aj  The parameter indicating the starting depot of each vehicle k € K;
If ay = 1, vehicle k starts the repositioning operation at depot i € D, 0 otherwise.

cP  The penalty factor of convenience per bike assigned to each node i € V. It is used to
measure the convenience of getting bikes from the FFBSS.

Qi The capacity of vehicle k.

The length of a short period (in s).

The repositioning duration (in s).

Travel time from node i to node j (in s).

The time required to load a bike onto the vehicle.

The time required to unload a bike from the vehicle.

The number of periods in the repositioning duration, i.e., T' = |T/z].

[ty/T] @ # j, i, j €V

1 i=ji,jeV ’

N QS 8

~
[CAS

Discretized travel time between nodes, i.e., t; = {

Decision variables

Xg A binary variable that defines the route of vehicle k.
If x;j4 = 1, vehicle k departs from node i to node j during period t; O otherwise.

si  The inventory level at node i € Vj at the end of period t, t = 1, ..., T".
yuLk The number of bikes picked up at node i by vehicle k during period t.

o The number of bikes dropped off at node i by vehicle k during period t.
j;jtk The number of bikes on vehicle k when traveling from node i to node j during period t.

Y,  The auxiliary variable associated with node i € Vz used to obtain the unmet demand.
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s.t.

bikes parked at hardly accessed nodes calculated by },
travel times between nodes and the service time for loading and unloading operations. Note that }, v ¥ is equivalent to >
where " is the minimum value of i, because the objective function is minimized. 3" represents the unmet demand at node i at the

The repositioning problem is formulated as follows.
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The objective (1) aims to minimize the sum of following: (1) the total number of the unsatisfied customers (or total unmet
demand) reflected by }, v ¥ (2) the inconvenience of getting a bike from the FFBSS, which is reflected by the total penalties for

eVy

end of the repositioning operation, i.e., )" = max(q,—s;r, 0). Constraint (2) defines 3.
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Constraints (3) and (4) are inventory related constraints. Constraint (3) defines the initial inventory at each node. Constraint (4)
depicts the conservation of bikes at each node during period ¢ if t = T’, it defines the inventory level at each node at the end of the
repositioning operation.

Constraints (5)—(8) are used to define vehicle routes. Constraint (5) limits that each vehicle must start the repositioning operation
at its starting depot. Constraint (6) restricts that each vehicle cannot start the repositioning operation at any node other than its
starting depot. Constraint (7) indicates that each vehicle must return to a depoti € D (which may be different from its starting depot)
at the end of the repositioning operation. Constraint (8) means that if vehicle k arrives at node i during period ¢, it must depart from
node j to node i during period t—t;. Constraints (5)-(8) imply that each node including depots, easily accessed nodes, and hardly
accessed nodes can be visited multiple times by a single vehicle.

Constraints (9)-(12) are related to bike loads on vehicles. Constraint (9) states the conservation of bicycles on vehicle k in period t.
Constraint (10) is the vehicle capacity constraint. It ensures that the number of bikes on vehicle k should not exceed its capacity.
Constraint (11) indicates the initial state of vehicles to be empty before the repositioning operation starts (t = 0). (However, bikes can
be loaded onto vehicles at depots when t > 0.) Constraint (12) requires that there is no bike on each vehicle after the operation ends
(t = T). It implies that all of the bikes loaded onto the vehicles are unloaded at the end of the repositioning operation.

Constraints (13) and (14) are used to restrict loading and unloading quantities. Constraint (13) ensures that the loading quantity
at each node i within each period t should not exceed both twice the actual maximum number (i.e., L and U) and vehicle capacity if
node i is visited by vehicle k in period t. Similarly, constraint (14) confines the unloading quantities at node i € D U V. Constraints
(13) and (14) imply that the temporary storage/supply at any node is allowed. Using twice the actual maximum number enables the
utilization of the time slack that may have been created by actual (rather than rounded up) travel time.

Constraints (15) and (16) define the upper and lower bounds of the total operational time, including route travel time and service
time for loading and unloading operations, for each period and vehicle. The actual travel time t; (which can be a real number) is used
on the left-hand sides of these constraints. Constraint (15) implies that the repositioning operation carried out by each vehicle must
finish within the repositioning duration for the case w = T’. Constraint (16) is used to keep the time of the planned schedule close to
its execution (Raviv et al., 2013).

Constraints (17)-(22) are the domain constraints.

Unlike the classical arc-indexed formulation, the formulation stated above can capture multiple visits to a node by a single vehicle
and the synchronization of vehicles and is modified from the time-indexed formulation proposed by Raviv et al. (2013). The main
modifications are stated as follows:

(i) A different objective function that considers total unmet demand, total penalty for bikes at hardly accessed nodes and total
operational time (including travel time and loading/unloading time) is used (refer to objective (1), and constraints (2) and (22)).
(ii) In our problem, multiple-depot and multiple-vehicle are considered. Vehicles start the repositioning operation from their
starting depot where they are parked (They may not be parked at the same depot). Constraint (5) is added to define the starting
depot for each vehicle.
(iii) It is assumed that each vehicle can return to a different depot from the one it starts the repositioning operation. Constraint (7) is
added to define that the vehicle must return to any depot at the end of the repositioning operation.
(iv) It is assumed that all vehicles are empty before and after the repositioning operation (refer to constraints (11) and (12)).
(v) In this problem, it is assumed that the bikes can be parked anywhere in the sharing system. Therefore, the station capacity
constraint is removed.
(vi) When X ity is used in constraint (15), we must ensure that t—t}fi > 0 so that X itk is well-defined.
(vii) When Xj,iy =tk and t—tjfi > 0 were used in defining constraint (16), extra loading and unloading of bikes at a station could occur
during t—t; < 0 because these extra operations were used to induce operational time to ensure that the lower bound requirement
is satisfied. Therefore, in the revised constraint, x;; is used instead to avoid such problems.

Fig. 1 illustrates that our problem allows multiple visits to a node by a single vehicle and the synchronization of different vehicles
to reduce the unmet demand and total penalty as much as possible within a time limit. Moreover, it illustrates that the starting depot

A3)7 (6180) 7 |+1
1740, {

\, 1680

0., = 100/ \ 100
+5 fz\'n (e % 0 /\(7020)
0 \EJ 2100 \'/J 760 100 _1 -1200 / 9
0~ /
/1320 150\ /150

+10 (6550) g |+1

Fig. 1. Problem illustration.
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Table 1
The properties of a molecule and their corresponding mathematical meaning.
Notation Chemical meaning Mathematical meaning in the BRP
0] Molecular structure A solution
PE Potential energy The objective function value of a solution
KE Kinetic energy The tolerance of having a worse solution than the current solution

of a vehicle can be different from the ending depot. Triangle nodes represent depots, circle nodes represent easily accessed nodes, and
square nodes represent hardly accessed nodes. The numbers inside those nodes are node numbers. The number not in brackets next to
each node represents the loading or unloading quantity; a positive sign means loading and a negative sign means unloading. The
numbers in brackets next to some nodes are vehicle’s arrival times at those nodes. For clarity, not all arrival times are presented. The
number next to each arc is the travel time in seconds. The repositioning duration is 7200 s. The loading or unloading time for a bike is
60 s. There are two vehicles. Vehicle 1 has a capacity of 10 and vehicle 2 has a capacity of 20. The route of vehicle 1 (in dashed lines)
starts and ends at the same depot while the other one (in solid lines) does not. Both vehicles are initially empty and start their
operation at the same time. Vehicle 1 leaves node 0 at time zero while vehicle 2 picks up 5 bikes at node 0 at time zero and leaves
node 0 at 300 s. At node 2, 4 extra bikes can be provided to serve other nodes without introducing demand dissatisfaction there but
vehicle 2 picks up 3 more bikes there to serve node 4 (the largest demand station), which requires 12 bikes to reach a balanced state
Node 2 is then supplied 3 bikes by vehicle 1 after vehicle 2 leaves node 2. Node 2 is, therefore, a temporary supply node. Vehicle 2
also visits node 6 three times to pick up all the bikes at (adjacent) hardly accessed nodes to minimize the total penalty. In this
example, it can be easily checked that the vehicle capacity constraint is satisfied for each vehicle throughout the repositioning
operation and the operational time of each of the two vehicles is less than 7200 s.

3. Enhanced chemical reaction optimization

CRO loosely mimics what happens to molecules in a chemical reaction system microscopically (Lam and Li, 2010). It tries to
capture the phenomenon that reactions give products with the lowest energy. CRO has two major components: molecules and
elementary reactions. Each molecule, denoted by M, is characterized by the properties listed in Table 1.

Elementary reactions mimic the occurrence of sequences of collisions among molecules to get their lowest energy state. Collisions
under different conditions lead to different elementary reactions, each of which may have a different way of manipulating the
energies of the involved molecule(s). In CRO, there are four types of elementary reactions: (1) on-wall ineffective collision, (2)
decomposition, (3) intermolecular ineffective collision, and (4) synthesis. The operators used in these reactions guide the way of
obtaining resultant solutions from reactant solutions. The classical reaction operators can be referred to Lam and Li (2010).

In this paper, an enhanced version of CRO is proposed to solve the multi-vehicle FFBRP and has the same algorithmic framework
as the original CRO (see Fig. 2). The remainder of this section will describe the algorithmic details and further discuss the differences
of the implementation details between the original and enhanced CRO.

3.1. Solution representation

A solution w is represented by w = (r, O), where r and O are vectors to store vehicle routes and the loading/unloading quantity at
each visited node. Let ny be the total number of nodes (excluding the starting and ending depots) visited by vehicle k, where
k =1, 2..,IKl. The nodes visited by vehicle k are denoted as r" € V,, h = Z’;;ll (ny +2)+1,1=0,1, ..,n + 1 and hence r = (rh).
Vehicles are assumed to start and end repositioning at depots. The depots are therefore the first and last elements in the vehicle
routes, (i.e., 7" € D, where h = Z’;;ll (ny +2)orh = I;:; 11 (ng + 2) + ng + 1). For illustrative purposes, in this section, two depots
are considered, denoted by O and 1; stations are numbered from 2 onwards. However, the generalization of this representation to
multiple depot scenarios is straightforward.

The elements of O are defined as O" = 3 —y, where 3 and y/ denote the loading and unloading quantities at node r", re-
spectively. A positive integer represents a loading operation, while a negative integer indicates an unloading operation.

Note that the formulation introduced in Section 2 is time-based, whereas the solution representation in our CRO is sequence-
based. Therefore, instead of the time index t, we use h to indicate the position of a node visited by a vehicle in a solution, which is
used to deduce the order of visits. Based on the order, the arrival time at each node can be computed. Hence, for notational
convenience, the time and vehicle indices, i.e., t and k, are sometimes omitted.

A feasible solution for the repositioning operation performed by two vehicles with the capacities of 10 and 20 bikes is shown in
Fig. 3. In this example, n; = 6 and n, = 5 ; vehicle 1 starts and ends the repositioning at depot 0, while vehicle 2 starts at depot 1 at the
same time as vehicle 1 and returns to depot O at the end of the repositioning.

3.2. Nearby-node set

To narrow the search space and speed up the search algorithm, the concept of the nearby-node set is proposed, which considers
the problem’s characteristics. Define Q; as the capacity of vehicle type ¢ € {1, ..,K}, where K is the number of vehicle types. For each

213



Y. Liu et al. Transportation Research Part C 92 (2018) 208-242
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Fig. 2. Flow chart for both the original CRO and enhanced CRO (Lam and Li, 2010).
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\ \Z
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Fig. 3. Solution representation.

vehicle k, its vehicle type is denoted as ¢ = k; (e.g., if the capacities of a fleet of 3 vehicles are Q, = 10, Q, = 10, and Q; = 20, then,
K=2,k=1Ik=1,k=2,Q =10, and Q, = 20). The nearby-node set Nearby,. (i € Vj, ¢ € {1, ..,K}) can then be defined as
Nearby,, = {j € Vp\{i}ly nodes with the smallest temp; }, where the value of temp, is calculated by

[ij/CP, ] (S VH
temp, . = L L
Dij.e ty/min(Q, Is;)—qjl), jeED U (23)

The value of y is determined by Eq. (24). [T/t'] represents the estimated maximum number of nodes that a vehicle can visit within
the repositioning duration T, where ¢’ is the average travel time between nodes. Since the service time for loading and unloading
operations is counted in the time constraint (refer to constraint (15)), [T/t'] is large enough for estimation. Regarding the multiple-
vehicle case, IK| + 1 is the factor applied to[T/t'] instead of IK| to allow the inclusion of more nodes in the set in our FFBRP compared
to the set in traditional BRPs, because the loading and unloading times required at nodes i’ € V}; are always shorter than those at the
nodes i” € D U Vg. In addition, the value of y should not be larger than the total number of nodes excluding the considered node i.
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y = min(1%I-1, [(KI + D-[T/t]), where t'= Y t; / (VP=IV)
ijeVo.i #j (24)

3.3. Initial solution construction
To depict how to obtain the initial solutions, the following notations are defined:

(1) F" (where h = SumN + I, SumN = Et;ll (ny +2),1=0,1, ..,n, + 1, and k € K) represents the number of bikes on ve-
hicle k when it leaves node r" for r**1. If 1 = 0, F" is the number of bikes on vehicle k when it leaves the starting depot.
Therefore, if | = 0, then F" = O". If | = 1, ..., n, the value of F" is obtained by F" = F'~! + O".

(2) s; (i € Vp) is the current inventory level at node i after that node is visited by a vehicle and is used to determine the current
state of a node. Node i is in a surplus, deficit, and balanced state if s;—g; is positive, negative, and zero, respectively.

(3) TraTimey is the travel time of vehicle k and OprTime, is the service time for loading and unloading operated by vehicle k.

(4) For all nodes i € Vi U Vi, NearDepot, = argmin;cpt; is used to denote the nearest depot from node i.

(5) For each vehicle k € K, StartDepot, is used to represent the depot where vehicle k must start the repositioning operation. If
ax =1 @ € D and k € K), StartDepot, = i.

An initial solution to the described problem is constructed as follows:

Step 1: Set s; = s5° (Vi € V) and SumN = 0. Set k = 1.

Step 2: Set rS“mN = StartDepot, and | = 1. Set TraTimey = 0, OprTime, = 0, and Temp, = 0 (Tempy is used to identify whether vehicle
k can visit more nodes. If T—(TraTimey + OprTime,) < L + U, set Temp, = 1, which indicates that no more nodes can be
visited by vehicle k).

Step 3: If Tempy = 0, nodes are added to the vehicle route and the loading/unloading quantities at added nodes are calculated
simultaneously.

Step 4: If Tempy = 1, then set SumN = SumN + n, + 2 and k = k + 1.

Step 5: If k < IK]l, go to Step 2.

Step 6: If k > IKI, stop the procedure.

In Step 3, nodes and their loading/unloading quantities are added as follows:

Step 3.1: Insert a random node i€ Nearby,, (where v= pSumN+l=1  and ¢ =k,) into position SumN + 1 and set
TraTimey, = TraTimey + t,; only if it satisfies the following:
1) Isi—g;l # O;
(2) Time constraint: tempT = TraTimey + OprTime, + ty + & Nearpepor, < T—(L + U).
If no node can be inserted, set l = 1 — 1 and Temp; = 1. Go to Step 3.5.
Step 3.2: Calculate the loading/unloading quantities at the inserted node:
Case 1 If s;—q; >0 and i€V, the number of bikes loaded onto vehicle k from node i is determined by
OSumN+l = min (Q—FS“mN+-1, 5,—g,, MaxOpt), where MaxOpt = |(T—tempT)/(L + U)| is the maximum number of
bikes that can be handled within the remaining repositioning time. (To ensure that all the bikes loaded onto the
vehicle can be unloaded at the end of the repositioning, the unloading times are reserved when bikes are picked up.)
Set OprTime, = OprTime, + (L + U)-05“"N+! and tempT = tempT—(L + U)-OSw"N+!,
Case 2 If s;—q; > 0 and i € D, OSwmN+l = 0.
Case 3 If 5;—g; < 0, the number of bikes unloaded from the vehicle to node i is OS*"N+! = —min(FSN+-1 g —g)).
Step 3.3: Set 5= Si_oSumN+l and FSumN+l - FSumN+l—1 + OSumN+l.
Step 3.4: If tempT < L + U, set Tempy, = 1.
Step 3.5: If Temp, = 1, set | = [ + 1, "N+l = NearDepot,, OS“mN+! = —FSumN+I=1 TrqTime, = TraTimey + b, Nearpepor,» and ny = I-1.
Go to Step 4.
Step 3.6: If tempT > L + U, setl =1 + 1. Go to Step 3.1.

After obtaining the initial solutions, the operators stated in the following Sections 3.3.1 and 3.3.2 are executed to adjust the
loading and unloading quantities at the nodes or the depots one by one based on the bike loads along the route.

3.3.1. Adjustment on loading operations

In Step 3 of the initial solution construction procedure, bikes at the visited hardly and easily accessed nodes in a surplus state are
loaded onto the vehicle if it has enough space. However, those bikes are only unloaded to the easily accessed nodes which are in the
deficit state before the vehicle returns to the ending depot. Therefore, it is possible that the number of bikes loaded onto the vehicle is
larger than the number of bikes unloaded. In this case, an excessive number of bikes are loaded and have to be unloaded at the ending
depot. FlowBackRevise is executed to adjust the loading or unloading quantity at the visited nodes to mitigate the problem of loading
an excessive number of bikes. It redistributes the bikes at hardly accessed nodes to easily accessed nodes (either in surplus or deficit)
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or reduce the number of bikes loaded at easily accessed nodes.

Before depicting the checking procedure, we define the following notations. minf;, represents the minimum number of bikes on
vehicle k when the vehicle travels from the checked node v to the ending depot at the end of repositioning. The depot is denoted as
rtnDepot, = rS“mN+n+1 (where SumN = Zi; 11 (ny + 2)). For vehicle k € K, the procedure is depicted as follows:

Step 1: Set | = ny, v = rS*"N+! and tempInd = 0 (If tempInd = 1, it means that there exists an easily accessed node where the bikes
loaded at hardly accessed nodes can be unloaded; 0 otherwise.). Set minf, = FSumN+l_

Step 2: If any one of the following conditions is violated, stop the procedure.

M 1> 0; (2) minf, > 0; (3) OSumN+metl = (,

Step 3: If v € V; and templnd = 0, then set tempInd = 1 and tempP = [ (tempP is the position where the easily accessed node is saved
in the vehicle route).

Step4: If veVy and templnd=1, the maximum allowable change in loading/unloading quantities is
A = min(minf,, OSW"N+L |OSumN+m+1]) - For  node v = rSwnN+iempP e\, and  depot  rtnDepot,, set (1)
OSumN+tempP — SumN+tempP_ A  gnd OSumN+nk+1 — OSumN+nk+1 + A; (2) Sy =Sy + A and SrntDepotk — Srnchpolk_A; (3)
FSumN+U — pSumN+l_A - where I' = tempP, ..., ny; and (4) minf, = minf,—A.

Step 5: If ve VzUD and O%"N+l >0, set A = min(minf,, OS¥"N+L |OSwmN+n+1]) For node v and depot rtnDepot,, set (1)
OSumN+l - OSumNH_A and OSumN+n+1 — SumN+ni+1 + A (2) S, =8+ A and SmtDBpork - sm[Derk_A; (3)
FSUmN+l — pSumN+U_ A where I = I, ...,ny; (4) minf, = minf,—A; and (5) OprTime, = OprTime,~(L + U)-A.

Step 6: Set I = [ — 1 and minf, = min(minf,, F5*"N+!)_ Go to Step 2.

In the above procedure, Step 4 attempts to unload the bikes picked up from hardly accessed nodes to easily accessed nodes. Step 5
aims to reduce the excessive number of bikes loaded at depots or easily accessed nodes.

If QSumN+ni+1 £ after implementing the above procedure, some of the loading operations carried out at the hardly accessed
nodes need to be removed by the procedure below:

Step 1: Set | = ny and v = rSumN+L,

Step 2: This procedure stops if OS¥™N+m+l = (,

Step 3: If v € Vi and OS“"N+! > 0, set A = min(O"N+L, |OSumN+me+1]) For node v and depot rtnDepot,, set (1) QSN+l = QSumN+l_A
and OSumN+mictl = QSumN+mctl 4 As (2) 5, = 8, + A and Spupepoy, = Sreepor,—A; (3) FSUmN+l — pSumN+U_ A where I = 1, ..., ny;
and (4) OprTime, = OprTime,—(L + U)-A.

Step 4: Setl =1— 1, go to Step 2.

3.3.2. Additional calculation for the loading operation at depots

To give priority to handling the bikes at easily and hardly accessed nodes, loading operations at depots are not considered in the
construction of initial solutions. Herein, DepotOperCalculation is executed to load bikes at depots if there is still space available on the
vehicle when it travels to the nodes in deficit. To depict the procedure, we define two more notations: minrQy is defined as the
minimum residual capacity of vehicle k on the route from the starting depot, denoted as StartDepot,, to the checked nodes.
MaxAdjustT is the maximum number of bikes that can be handled within the remaining repositioning time (i.e.,
T—(TraTime, + OprTime,)). The procedure is stated below.

Step 1: Setl =1, v = rSv"N*l minrQ, = Qu—F5"N, and MaxAdjustT = |(T—TraTime,—OprTime,)/(L + U)).
Step 2: The procedure continues until any of the following conditions is violated.
(1) minrQy > 0; (2) Sswriepoy, > 05 (3) MaxAdjustT > 0; and (4) I < ny + 1.

Step 3: If v € Vg and s,—q, < 0, set A = min(minrQy, Is,—q, |, Ssiarepor,» MaxAdjustT). For depot StartDepot, and node v, set (1)
OSumN = QSumN 4 A and OS“mN+! = OSW"NH_A; 2) SStartDepoty = sStartDeputk_A and s, = s, + 4; (3) FS“MNH, = FSumN+l’ + A,
wherel' =0, ...,I-1; (4) OprTime, = OprTime, + (L + U)-A; (5) MaxAdjustT = MaxAdjustT—A; and (6) minrQy = minrQ,—A.

Step 4: Set [ = [ + 1 and minrQ, = min(minrQy, Q—F5"N+1). Go to Step 2.

3.4. Solution evaluation

Each solution w obtained by the enhanced CRO is evaluated by the evaluation function

7' = Z max(g;—s;, 0) + Z cP-s; + u- Z (TraTimey + OprTime,) + P
ieVg ievy kek (25)
ZieVE (max(g;—s?, 0)) + ZieVH cP-s? + u-T, if w is infeasible;

where P =
0, if w is feasible.

The first three terms considered in the evaluation function (25) are the same as those in the objective function (1), including the
unmet demand, the total penalty for bikes at hardly accessed nodes, and the weighted vehicles’ total operational time. P in (25) is the
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penalty associated with an infeasible solution w due to the temporary supply. Temporary supply means that the bikes at a node are
picked up first regardless of its demand and then its unmet demand is satisfied by other vehicles later. Here is an example of an
infeasible solution caused by temporary supply. The initial inventory at a node is 6 bikes. Vehicle 1 first picks up 8 bikes at that node
and then vehicle 2 unloads 6 bikes there. Although the final inventory level at that node is 4, which is non-negative, the non-negative
constraint is violated when bikes are first picked up by vehicle 1.

To determine whether w is feasible, the following is performed.

Step 1: If there is no node at which a loading operation is carried out by a vehicle while unloading is operated by another vehicle, the
solution is feasible and stop.
Step 2: Check whether the solution with temporary supply is feasible.
Step 2.1: Select a node i where both loading and unloading operations occur there.
Step 2.2: Calculate the arrival time arrTime, at node i by each vehicle k € K. If the node is not visited by vehicle k, set
arrTime, = T.
Step 2.3: Determine the firstly arrived vehicle at node i by k' = argmingcgarrTimey.
Step 2.4: The non-negativity inventory constraints (i.e., s; > 0) is checked by simply considering the loading/unloading
operated by vehicle k" at node i.
Step 2.5: If the constraint is violated, the solution is infeasible and stop checking.
Step 2.6: If all of the nodes with both loading and unloading operations there are checked, stop. Otherwise, go to Step 2.1.

3.5. Four revised elementary reactions

They all incorporate the solution adjustment operators introduced in Section 3.6.
3.5.1. On-wall ineffective collision

One of the vehicle routes in a solution w is randomly picked and modified when the operator NewOnwall is applied. Suppose k is
the selected vehicle, k € K. A new solution «’ is obtained without changing the number of nodes saved in the routing sequence. The

details of how the operator works are stated below:

Step 1: Identity the position [ of the node that leads to the most reduction of evaluation function value if the node is removed from

the route by I = argmin {Op + (tph=1 1=t h=1,h + k1 + 1OM-(L + U)))-ul,
h=SumN+1, ..., SumN+nj
|Oh| rh e Vg k—1
where Op = ’ , and SumN =Y, . ng.
P {cP~IOhI, rte vy L M

If more than one node can lead to the same maximal reduction of the evaluation function value, the first node visited by the
vehicle is selected and denoted as v = r.

Step 2: An unbalanced node v’ is randomly selected from Nearby, . (i = r'~! and ¢ = k) and is used to replace v. The selected node v’
must not be the same as r'*! (i.e., v’ # r!*1) to avoid having the same node in the consecutive positions in a route, and must
satisfy either one of the following two conditions:

(1) If the loading/unloading quantity at station v is zero, node v’ # r'*! must satisfy the following: if s,—q, > 0, then
sy—q, < 05 if s,—q, < 0, then s,—q, > 0; if s,—q, = 0, then s,/—q,; # 0.

(2) If the loading/unloading quantity at station v is non-zero, node v’ # r'*! must satisfy the following: if O' > 0, then
sy—q, > 0; if O' < 0, then s,/—q, < 0.

Step 3: Set TraTime, = TraTimey + (t,1-1, + ty d+1)—=(t, -1, + L, 1+1).

Step 4: If the time constraint is violated (i.e., TraTimey, + OprTime, > T), RemovalOfNodesT (introduced in Section 3.6.3) is applied.

Step 5: OperationAdj (Subroutine 5 introduced in Section 3.6.1) is implemented to revise the loading/unloading quantities along the
route of vehicle k based on position L

Fig. 4 shows an example of how NewOnwall(w) works. In this example, vehicle route 1 is modified to get a new solution.
Nodes 7, 9, and 10 are hardly accessed nodes and each can provide 1 bike to other nodes. In Step 1, node 10 is identified as the
node that leads to the most reduction of evaluation function value and selected to be replaced. Node 8, which is an easily
accessed node in the nearby-node set of node 10, is randomly selected in Step 2. Without violating the time constraint, node 10 is
replaced by node 8. In Step 5, after OperationAdj is executed, both the loading quantities at nodes 7 and 9 are 1 and the
unloading quantity at node 10 is 2.
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Molecular structure of M (i.e., @)
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Molecular structure of M' (i.e., @")
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orl10]| 3| -7 1 1120|1549 -2|3]-3|20

Vehicle 1 Vehicle 2

Fig. 4. NewOnwall(w) for the on-wall ineffective collision.

The pseudocode of the revised on-wall ineffective collision is given in Subroutine 1.

Subroutine 1 NewOnwalllneffCollision(M, buffer)

Input: A molecule M with its profile (i.e., the structure w, PE,, and KE,) and the central energy buffer buffer

© ® N AW

._.
e

11.

Get random k € {1, .., IKl}
@' = NewOnwall (w)
Calculate PE,,
(«, PE,’) = SolutionAdjustment («', PE,, k)
if PE, + KE, > PE, then
Get q randomly in interval [KELossRate, 1]
KE, = (KE, + PE,~PE,) X q
Update buffer = buffer + (KE, + PE,—PE,) X (1—q)
Update the profile of M by w = &, PE, = PE,, and KE,, = KE,/
end if
Output M’ and buffer

Remarks: Lines 1 and 4 are not executed in the subroutine OnwalllneffCollision in the original CRO, and line 2 in the modified CRO uses the proposed
NewOnwall operator instead of the original Onwall operator introduced by Lam and Li (2010). KELossRate refers to the maximum fraction of KE lost.
Buffer is the central energy buffer which cumulates the energy loss from the on-wall ineffective collision (calculated by the equation in line 8) and is
used to ensure the occurrence of decomposition.

3.5.2. Decomposition
Different from NewOnwall, NewDecom applies to all routes in an original solution w to obtain two new solutions @, and w,. These
new solutions are obtained by the following:

Step 1:

Step 2:

Step 3:

Cut each vehicle route into two sub-sequences, subri and subr? (V k € K) based on the same position. That position is
determined by | min (n; + 2)/2].
k=1,..., Kl

Get new routes r{ for w;: Fork = 1, ...,IKl, assign sub; to the corresponding position of vehicle k in r{. Then, add nodes selected
from the nearby-node set Nearby, . (where i is currently the last node in the route of vehicle k and ¢ = k;) one by one starting

from the first position after the cutting point until the number of nodes in the route reaches min n,. Based on the last
k=1,..., Kl
visited node, add its nearest depot to the end of the route.

Get new routes r; for wj: For k = 1, .., K|, assign StartDepot, to the beginning of each route, and assign sub? to the corre-
sponding position of vehicle k in r; except for the ending depot. Then, the nodes selected from the nearby-node set Nearby, .
(where i is currently the last node in the route of vehicle k and ¢ = k;) are added to the route one by one until the number of
nodes reaches min n,. Based on the last visited node, add its nearest depot to the end of the route.
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Routes in the molecular structure of M (i.e., rin @)

Cutting point Cutting point

h 0 1 2"3 4 5 6 7 8 9 10‘ 11 12 13 14

0| 3 2 7 5 1 6 [ 0 1 9 5 04 8]0

\ \

Vehicle 1 @ Vehicle 2

Routes in the molecular structure of M| (i.e., " in @)

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 3 2 8 6 9 0 1 9 5 6 5 2 1

\ v

Vehicle 1 Vehicle 2
Routes in the molecular structure of M, (i.e., , in @))

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13

o 715 1 6 [ 910 1 0] 4 (8] 3 710

Vehicle 1 Vehicle 2

Fig. 5. NewDecom(w) for decomposition.

Step 4: For each new route, calculate the loading/unloading quantity at each node and update OprTime, by OperationDetermination
(Subroutine 8 introduced in Section 3.7).

Fig. 5 shows how the operator NewDecom(w) works on the vehicle routes (i.e., Steps 1-3). In the original solution,
| min (n + 2)/2| = 3. Therefore, in Fig. 5, the sub-sequences in light grey are the sub-sequences sub; and sub,, whereas the sub-
k=1,..., Kl

sequences in grey are sub? and subj. The lengths of the two subsequences sub; and sub, are both equal to 3. Moreover,

min n, = 5. Hence, the length of each route in the two new solutions is min n, + 2 = 7. For the first new solution, 7 - 3 more
k=1,.., Kl k=1,..., Kl

nodes are added to both vehicle routes 1 and 2 separately, and for the second new solution, 7 — 5 more nodes are added to both
vehicle routes 1 and 2 separately. The nodes in the dotted boxes in Fig. 5 are the newly added. After decomposition, vehicle route 1 is
shorter and has the same length as vehicle route 2. This operator allows making a route shorter, giving more time for loading and
unloading at the other visited nodes.

The pseudocode of the decomposition in the enhanced CRO is presented in Subroutine 2.

Subroutine 2 NewDecomposition(M, buffer)

Input: A molecule M with its profile (i.e., the structure w, PE,, and KE,) and the central energy buffer buffer

1. (w{, w3) = NewDecom (w)

2. Calculate PE,,; and PE,,;

3. for each vehicle k € {1, ...,IKl} do

4. (w{, PE,;) = SolutionAdjustment (w{, PE,,, k)
5. (w;, PE,;) = SolutionAdjustment (w;, PE,;, k)
6. end for

7. Let temp, = PE, + KE,—PE,—PE,;

8. Create a Boolean variable Success

9. if temp, > 0 then

10. Success = TRUE

11. Create two new molecules M, and M,

12. Get m randomly in interval [0, 1]

13. KE,; = temp, X m

14. KE,; = temp, X (1-m)
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15.
16.
17.
18.
19.

20.
21.
22.

23.
24.
25.
26.

Assign w/, PE,;, and KE,,, to the profile of Mj, and w;, PE,,;, and KE,,; to the profile of M,
else if temp, + buffer > 0 then

Success = TRUE

Get my m,, mz, and m, independently randomly in interval [0,1]

KE,; = (temp, + buffer) X m X m,

KE,; = (temp, + buffer) X mz X m,

Update buffer = temp, + buffer—KE,—KE,,;

Assign w], PE,;, and KE,, to the profile of M;, and w,, PE,;, and KE,,; to the profile of M,
else

Success = FALSE
end if
Output M/, M;, Success, and buffer

Remarks: Lines 3 through 6 are not executed in the subroutine Decomposition in the original CRO, and line 1 in the modified CRO uses the proposed
NewDecom operator instead of the original Decom operator. The original Decom operator uses the circular shift operator introduced by Lam and Li
(2010) to obtain new solutions.

3.5.3. Intermolecular ineffective collision

The NewInter operator guides the procedure on how to get two new solutions from two original solutions. For each original
solution, only one vehicle route is modified. Let it be the route of vehicle k. From each original solution, a new solution is obtained by
swapping two sub-sequences (subr and subr) with equal length. The method works as follows:

Step 1:
Step 2:
Step 3:

Step 4:

Step 5:

Determine the maximum length of the sub-sequences for swapping by |n;/2]|-1.

Determine the common length of sub-sequences randomly, length € {1, ...,|nx/2]-1}.

If length = 1, two non-adjacent nodes are selected from the route and swapped. Their positions are L and L, where

L, L efl, ..,n}.

If length > 1, two sub-sequences are randomly selected and swapped. Then,

(i) Randomly select the starting position b, of subr, by L, € {1 + length, ...,n,—1—length}.

(i) Randomly select the starting position 4 of subr by L € {1, ...,L—length}.

Update the travel time.

The first nodes in the two sub-sequences subr, and subr, are denoted as v, = rS4"N+h and v, = rSwmN+k _respectively. Their last

nodes are defined as 7; = rSwnN+h+length—1 and g, = pSumN+h+length—1 " respectively. If | + length # L, perform the steps in case

1, and perform the steps in case 2 otherwise.
Case 1: [} + length # 1,

(i) If length = 1, set ¥, = v; and ¥, = v,.

(ii) The preceding nodes of v, and v, are respectively pred(v,) = rS"N+h=1 and pred(v,) = rSumN+b=1,

(iii) The succeeding nodes of 7, and 7, are respectively sucd (v;) = rSumN+h+length and sycd (v,) = pSumN+h+length
The travel time of vehicle k is updated by TraTimey, = TraTime,—tDif, where
tle: tpred(vl),vz + tvz,sucd(ﬁl) + tpred(vz),vl + tlﬁ,sucd(ﬁz)_(tpred(vl),vl + tﬁl,sucd(ﬁ) + tpred(vz),vz + tﬁz,sucd(ﬁz))-
Case 2: I} + length = I,

(i) Set sucd (1) = v, and pred(v,) = 7.

(ii) The travel time of vehicle k is updated by TraTimey, = TraTimex—tDif, where

IDIf = (pred vy + Logwn + Eoysucd 52 )~ Upred iy + Loyvy F Lopsucd 52))-

Routes in the molecular structure of M, (i.e., 7, in o,)

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

o 3 2 7 5 1 6 0 1 9 5 0 4 8 0

\'% \Z

Vehicle 1 @ Vehicle 2

Routes in the molecular structure of M| (i.e., 1’ in @])

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 5 1 7 3 2 6 0 1 9 5 0| 4 8 0

\ A

Vehicle 1 Vehicle 2

Fig. 6. NewInter(w;, w,) for the inter-molecular ineffective collision.
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Step 6: If T—(TraTime, + OprTime,) > L + U, calculate the loading/unloading quantity at each node and update the total service
time OprTime, by OperationDetermination (Subroutine 8 introduced in Section 3.7); otherwise, no feasible solution can be
obtained from NewlInter and the reaction will not occur.

Fig. 6 gives an example for Newlinter. In this example, vehicle route 1 is selected and modified. The lengths of the swapped sub-
sequences are both equal to 2.
The pseudocode of the intermolecular ineffective collision is given in Subroutine 3.

Subroutine 3 NewlInterMolelneffCollision(M;, M)

Input: Molecule M; with its profile and M, with its profile
Get random k;, k;, € {1, ..., IKl}
(w{, w;) = Newlnter (w;, w,)
Calculate PE,,; and PE,;
(w1, PE,) = SolutionAdjustment (w;, PE,,;, ki)
(w;, PE,;) = SolutionAdjustment (w;, PE,;, k)
Let temp, = PE,, + KE,, + PE,, + KE,,—PE,/—PE,;
if temp, > 0 then
Get m randomly in interval [0, 1]
KE,; = temp, X m

©O® N Wb

._.
=4

KE,; = temp, X (1-m)

Update the profile of M, by @, = w{, PE,, = PE,;, and KE,, = KE,;, and the profile of M, by w, = w,, PE,, = PE,,;, and
KE,, = KEwZ'

12. end if

13.  Output M/, M,

=
—

Remarks: Lines 1, 4 — 5 are not executed in the subroutine InterMolelneffCollision in the original CRO, and line 2 in the modified CRO uses the
proposed Newlnter operator instead of the original Inter operator introduced by Lam and Li (2010).

Routes in the molecular structure of M, (i.e., 7, in @)
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Fig. 7. NewSynth(w,, w,) for the synthesis.
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3.5.4. Synthesis

NewSynth(w,, w,) is used to generate a new solution by combining the routes in two existing solutions w; and w,, and then
determine the corresponding loading and unloading quantities at each visited node. The method to obtain the new solution is
described as follows:

Step 1: For solutions w, and w,, each route is cut into two sub-sequences, denoted as wlsubr} and wlsubr? for w,, and w2subr} and

w2subr? for w, (k = 1, .., 1K) based on the same position. That position is determined by lk min (ng + 2)/2J.
=1,..., IKI

Step 2: As illustrated in Fig. 7, for each vehicle k = 1, ..., K|, combine wlsubri and w2subr? to get new routes and calculate TraTimey.

Step 3: For each new route, if T—TraTime, < 0, RemovalOfNodesT (introduced in Section 3.6.3) is executed to remove node(s).

Step 4: For each new route, OperationDetermination (Subroutine 8 introduced in Section 3.7) is applied to determine the loading and
unloading quantities and the operational time of the vehicle.

The pseudocode of synthesis is presented in Subroutine 4.

Subroutine 4 NewSynthesis(M;, M)

Input: Molecule M; with its profile and M, with its profile
' = NewSynth (w;, w,)
Calculate PE,,
for each vehicle k do
(«, PE,) = SolutionAdjustment (o', PE,, k)
end for
Create a Boolean variable Success
if PE,, + KE,, + PE,, + KE,, > PE,; then
Success = TRUE
Create one molecule M’
KE, = PE,, + KE,, + PE,, + KE,,,—PE,;
Assign o', PE,, and KE,, to the profile of M’
else
Success = FALSE
end if
Output M’ and Success

O®P® NSO AW

e e e e
b= o

Remarks: Lines 3 - 5 are not executed in the subroutine Synthesis in the original CRO, and line
1 in the modified CRO uses the proposed NewSynth operator instead of the original Synth
operator introduced by Lam and Li (2010).

3.6. Solution adjustments

In this section, five operators are introduced to adjust routes or loading/unloading quantities in the elementary reactions men-
tioned in Section 3.5. Among these five operators, the operator introduced in Section 3.6.1 is used to improve loading/unloading
quantities and the other four operators introduced in Sections 3.6.2-3.6.5 are used to adjust routes. The main ideas of route ad-
justment include (1) adjusting route lengths (i.e., the number of nodes in routes), including insertions and removals of nodes (2)
repairing infeasible solutions (due to the violation of the operational time constraint) by deleting nodes, and (3) rearranging the order
of the visited nodes by 2-Opt to improve the solution quality.

3.6.1. Adjustments to loading and unloading quantities

The quality of a solution w may be improved by adjusting the loading/unloading quantities assigned to the nodes in r. The applied
adjustments differ based on the type of node. Subroutine 5 shows the adjustment framework. If the node concerned is an easily
accessed and imbalanced node, OperationAdjEasy is first implemented, followed by OperationAdjHard (see Subroutine 5, line 1 — 4).
OperationAdjHard is also used because a large penalty is assigned to each bike parked at hardly accessed nodes and improvements in
the loading/unloading quantities at visited hardly accessed nodes lead to a reduction in the total penalty assigned to bikes at hardly
accessed nodes in the objective function. If the node is a hardly accessed node, its loading or unloading quantity will only be checked
by OperationAdjHard (see Subroutine 5, line 5). The details of OperationAdjEasy and OperationAdjHard are respectively depicted in
Sections 3.6.1.1 and 3.6.1.2, where they involve the following notations defined below:

(1) adjust, represents the maximum allowable increment (in terms of bikes) in the loading/unloading quantity at the checked node v.

(2) SumAdjust, is the cumulative increment in the loading/unloading quantity at node v.
(3) MaxAdjust, limits the maximum increment in the loading/unloading quantity at node v to the number of bikes at which node v
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can provide or receive within the remaining time in order to increase demand satisfaction, i.e., min(Is,—q,|, MaxAdjustT). By
definition, SumAdjust, < MaxAdjust,

(4) minrQy is defined as the minimum residual capacity of vehicle k on the route segment considered.

(5) minf, is the minimum number of the bikes on vehicle k on the route segment considered.

Subroutine 5 OperationAdj()

Input: A molecular structure w, vehicle k, and the position of considered node [
ifv =rSmN+l € V; and 5,—q, # O then
w' = OperationAdjEasy (w, k, 1)
' = OperationAdjHard (o', k)
else if v = rSumN+l ¢
w' = OperationAdjHard (w, k)
end if
Output o’

No oD

3.6.1.1. Loading and unloading adjustments invoked by an easily accessed node. Suppose node v € Vj is the [-th node visited by vehicle k
(i.e., v = rSumN+l where SumN = ZI;:I (ny + 2)). The inventory level at that node after the repositioning s, is calculated and used to
determine the current condition of each node. If node v is balanced (i.e., s,—q, = 0), no adjustment on loading/unloading is necessary;
otherwise, the operator OperationAdjEasy is applied. For an imbalanced node v, either one of the following two states (i.e., surplus and
deficit states) depicted in Sections 3.6.1.1.1 and 3.6.1.1.2 will occur.

3.6.1.1.1. At surplus node v. If node v = rS“"N*! (i.e., h = SumN + D) is currently in a surplus state (i.e., s,—g, > 0), node v can
provide some additional bikes to its succeeding stations (i.e., sucd (v) = pSumN +’/, I'=1+1, ..,n) in a deficit state to reduce the unmet
demand. The adjustments of loading and unloading at node v and the succeeding stations depends on
MaxAdjust, = min(ls,—q,|, MaxAdjustT), where MaxAdjustT is determined by Eq. (26) stated below.

| (T—TraTime,—OprTime,)/(L + U)|, ifo">0

MaxAdjustT = { ) ) PR
| (T—TraTime,—OprTime,)/(L + U)| + 10", if 0" <0 (26)

For the case O" > 0 at a currently surplus node, MaxAdjustT is simply calculated by the remaining repositioning time divided by the
time required by loading and unloading a bicycle. For the case O" < 0, unloading at a surplus node means that extra bikes are
unloaded at node v. |0"| fewer bikes should be unloaded at node v and |0"| more bikes should then be transported to other deficit
nodes. Therefore, |0" is added back to MaxAdjustT when O" < 0.

If there is still space available on vehicle k after the vehicle passes node v, node v can provide some additional bikes to its
succeeding stations in a deficit state. The succeeding nodes are checked one by one and their unloading quantities are adjusted based
on the following steps:

Step 1: Set i’ = h + 1, SumAdjust, = 0, sucd(v) = rh,, and minrQ, = Q—F".
Step 2: If any one of the following conditions is satisfied, stop checking the succeeding nodes of node v and move to check its
preceding nodes.
(1) minrQy = 0;
@ nW=2n+1
(3) SumAdjust, = MaxAdjust,.
Step 3: If Ssucd )~ Gsucdwy < 0> do the following:
Step 3.1: Set adjust, = min(minrQy, MaxAdjust,—SumAdjust,,, 1Ssucd vy~ sucd vy )-
Step 3.2: Update the total loading and unloading time by the following equations:

(L + U)-adjust,, ifo">0

OprTime, = OprTime, +
P W= 5P k {(L + U)-max(0" + adjust,, 0), if 0" <0 27)

— (L + U)-min Oh,, adjust,), if Oh/ >0
OprTime, = OprTime, + [ ( ) ( just,)

0, if 0" <0 (28)

Step 3.3: Set s, = s,—adjust,,  Swedw) = Swedv) + adjust,,  O" = O" + adjust,, o' = Oh,—adjustv, SumAdjust, =
SumAdjust, + adjust,, minrQy = minrQy—adjust,, F8 = F8 + adjust,, where g = h, ...,h’—1.
Step 4: Set minrQy = min(minrQy, Qu—F") and W = i + 1. Go to Step 2.
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Note that according to Eq. (27), if O" > 0, the time needed for loading and unloading extra adjust, bikes is directly added to
OprTime,. If O" < 0, two cases are considered: (i) O" + adjust, < 0 means that the unloading operation is still carried out at node v
after the adjustment. Some of the unloaded bikes at node v are shifted to the checked deficit node sucd(v) on the route, and the total
number of bikes loaded onto vehicle k remains unchanged. Therefore, OprTime, does not change. (ii) O" + adjust, > 0 means that the
operation at node v turns out to be a loading instead of unloading one. It implies that the total number of bikes loaded along the route
increases and so is OprTime,. From Eq. (28), if loading originally occurs at the checked deficit node sucd(v), the deficit condition of
sucd(v) is at least partially caused by loading an excessive number of bikes. Therefore, after the adjustment, these extra bikes should
not be loaded at sucd(v) and the handling time for these bikes should be deducted and is modeled by the minus term in Eq. (28). If
unloading originally occurs at node sucd(v), more bikes are unloaded after the adjustment. The time required for the additional
unloading operation is already counted in Eq. (27), and therefore there is no change in OprTime, for the case Oh’ <0.

If there are some bikes on vehicle k before it arrives at node v and SumAdjust, < MaxAdjust,, some of the bikes on the vehicle
should be first unloaded to supply bikes to the preceding nodes in a deficit state and the same number of bikes should be loaded from
node v later. The preceding nodes and their loading quantities are determined by the following steps:

Step 1: Set h’ = h—1. The node at position h’ is pred (v) = . Set minf, = F¥.
Step 2: If any one of the following conditions is satisfied, stop.
(1) minf, = 0;
(2 <0
(3) SumAdjust, = MaxAdjust.
Step 3: If Spred )~ Gpredvy < 0> do the following
Step 3.1: Set adjust, = min(minf,, MaxAdjust,—SumAdjust,, Isp,ed(v)—qpred(v)l).
Step 3.2: Update OprTime, by Egs. (27) and (28).
Step 3.3: Set s, = sy—adjust,,  Sprea) = Spreav) + adjust,,  O" = O" + adjust,, o = Oh,—adjustv, SumAdjust, =
SumAdjust, + adjust,, minf, = minf—adjust,, and F8 = Fé—adjust,, where g = I/, ...,h—1.
Step 4: Set minf, = min(minf, F"™Y, W' = W'—1. Go to Step 2.

3.6.1.1.2. At deficit node v. If node v = rS“"N*l js currently in a deficit state (i.e., s,—g, < 0), the adjustment on the loading
quantities at the succeeding and preceding stations in a surplus condition can contribute to reducing the unmet demand at node v.
Like Section 3.6.1.1.1, h = SumN + L Unlike that subsection, MaxAdjustT is determined by Eq. (29) stated below.

[(T—TraTime,—OprTime,)/(L + U)] + O%, if O" > 0

MaxAdjustT = { ) . e
| (T—-TraTime,—OprTime,)/(L + U)|, ifo" <0 (29)

For the case O" > 0, the deficit condition at node v is caused by loading an excessive number of bikes. To reduce the unmet
demand at node v, O" fewer bikes are loaded and therefore O" is added to MaxAdjustT. For O" < 0, no adjustment on MaxAdjustT is
needed.

If vehicle k carries bikes after it leaves node v, some bikes should first be unloaded at node v and the same number of bikes should
be loaded onto the vehicle from the succeeding nodes of node v later. The detailed adjustment procedure for this case is stated as
follows:

Step 1: Set ' = h + 1, sucd(v) = rh’, minf, = F", and SumAdjust, = 0.
Step 2: If any one of the following conditions is satisfied, stop.
(1) minf, = 0;
@KW+
(3) SumAdjust, = MaxAdjust,,.
Step 3t If Ssucd)~Gsucawy > 0> do the following:
Step 3.1: Set adjust, = min(minf,, MaxAdjust,—SumAdjust,, Ssucd vy~ Gsucd (v))-
Step 3.2: Update OprTime, by the following equations:

(L + U)-max(adjust,—O", 0), if O" > 0
v

OprTime, = OprTime, +
pritme, = ST {a~+U)aWMg, if 0" <0 (30)

. _ 0, if 0" >0
OprTime, = OprTime, + B ) W ) W
(L + U)-min(10"|, adjust,), if 0" <0 (31)

Step 3.3: Set s, = s, + adjust,, Squcdw) = Ssucdwy—adjust,, O" = O"—adjust,, o" = o" + adjust,, minf, = minf—adjust,,
SumAdjust, = SumAdjust, + adjust,, and F8 = Fé—adjust,, where g = h, ...,h’—1.
Step 4: Set minf, = min(minf, F"Yyand W' = i + 1. Go to Step 2.
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Regarding Eq. (30), if O" > 0 and O"—adjust, > 0, loading bikes occurs at node v before and after the adjustment. After the
adjustment, adjust, bikes originally loaded at node v are loaded at node sucd(v), and thus the total number of bikes loaded onto
vehicle k remains the same, so does the OprTime,. If O"* > 0 and O"—Adjust, < 0, the loading operation at node v turns out to be an
unloading operation at node v after the adjustment. This change implies that additional adjust,—O" bikes are loaded from node sucd
(v) in a surplus state and OprTime, increases by (adjustv—Oh)~(L + U). If O" < 0, the time needed for loading and unloading extra
adjust, bikes is directly added to OprTime, since more bikes are handled by the vehicle after the adjustment. From Eq. (31), there is no
change in OprTime, if loading is operated at the checked surplus node sucd(v). This is because more bikes are loaded after the
adjustment and the time required for loading is already counted in Eq. (30). If unloading occurs at the checked surplus node, the
surplus condition is at least partially caused by unloading an excessive number of bikes. Thus, after the adjustment, a decrease in the
unloading quantity at node sucd(v) leads to a reduction in the loading and unloading time.

If there are some spaces available on vehicle k for loading more bikes on its way to node v and SumAdjust, < MaxAdjust,, more
bikes should be loaded onto that vehicle from the preceding nodes in a surplus state. The detailed adjustment procedure is stated as
follows:

Step 1: Set h’ = h—1. The node at position h’ is pred(v) = . Set minrQy = Qk—Fh/.
Step 2: If any one of the following conditions is satisfied, stop.
(1) minrQ, < 0;
2 n<-1
(3) SumAdjust, = MaxAdjust,,.
Step 3: If Spred )~ preay > 0 do the following:
Step 3.1: Set adjust, = min(minrQy, MaxAdjust,—SumAdjust,, Spred vy~ qpred(v))-
Step 3.2: Update the loading and unloading time by Egs. (30) and (31).
Step 3.3: Set s, =S5, + adjust,,  Spredw) = Spreay—adjust,,  O" = O"—adjust,, o" =0" + adjust,,  SumAdjust, =
SumAdjust, + adjust, minrQ, = minrQ—adjust,, and F8 = F& + adjust,, where m = I, ...,h—1.
Step 4: Set minrQ, = min(minrQy, Qk—Fh/_l), h' = h'-1. Go to Step 2.

3.6.1.2. Loading and unloading adjustments invoked by a hardly accessed node. Let R be the set that contains all the nodes visited by
vehicle k. Define the ordered sets H? ={i € Vy N Rls; = 0}, H* = {i € Vy N Rls; > 0}, and H~ = {i € V4 N Rls; < 0}. The nodes are
saved in the ascending order based on their position [ in the route of vehicle k. HI°, HI*, and Hi~ store the corresponding position [ of
the nodes in H°, H*, and H-, respectively. For example, Hy = pSUmN+HIE where SumN = Z’;:l (ny +2) and g € {1, ..., IH}.

The adjustment procedure in this section considers three cases: H® # @, H" # @ and H- # @. H° # @ means that there
exist some hardly accessed nodes with non-zero inventories after repositioning. In this case, there is no need to check those nodes,
since no penalties are induced from those nodes. H* # ¢ indicates that some bikes are stored at the hardly accessed nodes visited by
vehicle k and it may be possible to redistribute these bikes to easily accessed nodes. H- # @ implies that there exist some nodes
where the number of bikes loaded at each of these nodes is larger than the number of bikes provided there. This infeasible solution
may be caused by the implementation of the reaction operator (introduced in Section 3.5.1). Thus, it may be fixed by loading more
bikes from other nodes visited by vehicle k. The loading/unloading quantities at nodes in H* and H~ are all checked in this procedure.
This is because if the loading/unloading quantities at the nodes in H* and H~ can be improved, the objective function value is
reduced greatly.

The adjustment details for the cases H* # @ and H- # ¢ are depicted in Sections 3.6.1.2.1 and 3.6.1.2.2, respectively, where
the initial value for MaxAdjustT is determined directly by the remaining repositioning time.

3.6.1.2.1. For the case H* # @. In each step of the procedure of this case, all the nodes in H* are checked one by one. The
checking procedure is stated as follows.

Step 1: Check from the considered node v € H* to the end of the route: If minrQ, > 0 and MaxAdjustT > 0, it is possible to load more
bikes onto the vehicle from node v and transport them to its succeeding node(s) in a deficit state to reduce the unmet demand
and total penalty assigned to bikes parked at v € V.

Step 2: If H* # @, check from the considered node v € H* to the beginning of the route. If minf, > 0, it is possible that fewer bikes
at the preceding node(s) of v are loaded and the bikes at v are loaded instead to reduce the total penalty assigned to bikes
parked at v € V. In this step, the unmet demand is not reduced.

Step 3: If Ht # @, check from the considered node v € H* to the end of the route. If the succeeding node of v is a depot, it is possible
that the bikes at node v are loaded first and fewer bikes are loaded at the depot without an increment in OprTime,. If the
succeeding node of v is an easily accessed node, it is possible that the bikes at node v are redistributed to the easily accessed
node with OprTime, increased to reduce the total penalty assigned to bikes parked at v € Vj;, but not the unmet demand.

In Step 1, the succeeding nodes of v € H* are checked as follows:

Step 1.1: Set g = 1 and Temph' = 0. (Temph' represents the last position of all the nodes in the route which has been checked, and it is
used to avoid repeated checking.)
Step 1.2: Set v = Hy, [ = HIf, h = SumN + I, b’ = max(SumN + [ + 1, Temph'), sucd(v) = ", and minrQ = Q—F".
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Step 1.3: If minrQ, = 0, g =g + 1 and go to Step 1.2.
Step 1.4: If either of the following conditions is satisfied, go to Step 2.

MW=+ 1;

(2) MaxAdjustT = 0.
Step 1.5: If Squed v)—Gsucaqy < 0> Set adjust, = min(sy, ISsucd ()~ Gsucawy|> MINTQx, MaxAdjustT).
Step 1.6: Update the total loading and unloading time and MaxAdjustT by the following:

_ _ (L + U)-max(adjust,—O", 0), if 0" >0
OprTime, = OprTime, + ,

(L + U)-adjust,, ifo" <o (32)

max(adjustv—Oh/, 0), if o* >0
MaxAdjustT = MaxAdjustT— ,
adjust,, if 0" <0 (33)

Set s, = s,—adjust,, Swcde) = Ssucdw) + adjust,, O" = O" + adjust,, o = Oh/—adjustv, minrQy = minrQg—adjust,, and
F™ = F™ + adjust,, where m = h, ...,h'-1.

Step 1.7: If s, > 0, set b’ = K’ + 1, minrQ, = min(minrQy, Q—F™), and go to Step 1.3.

Step 1.8: If s, = 0, remove node v from H* and set Temph' = h'.

Step 1.9: If H* # @, go to Step 1.2.

In Step 2, the preceding nodes of v € H* are checked as follows:

Step 2.1: Set g = |IH*| and Temph' = 0.

Step 2.2: Set v = Hy, | = HIf, h = SumN + I, b’ = max(SumN + 11, Temph'), pred(v) = rh’, and minf, = F"

Step 2.3: If minf, = 0, set g = g — 1 and go to Step 2.2.

Step 2.4: If i’ < 0, stop checking the preceding nodes of node v and go to Step 3.

Step 2.5: If Ohl > 0 and pred (v) ¢ Vy, set adjust, = min(s,, minf, Oh/).

Step 2.6: Set s, = s,—adjust,,  Spredv) = Spredvy + adjust,, O" = O" + adjust,, o = Oh,—adjustv, minf, = minf,—adjust,, and
F¢ = Fg,—adjustv, where g’ = W/, ...,h—1.

Step 2.7: If 5, > 0, set k' = h'—1, minf, = min(minf,, F" '), and go to Step 2.3.

Step 2.8: If 5, = 0, remove node v from H*, and set g = g — 1 and Temph' = h'.

Step 2.9: If H* # @, go to Step 2.2.

Similar to Step 1, in Step 3, the succeeding nodes of v € H* are checked as follows:

Step 3.1: Set g = 1 and Temph' = 0.
Step 3.2: Set v = Hy, l = HIj, h = SumN + I, b’ = max(SumN + [ + 1, Temph'), sucd (v) = rh,, and minrQ; = Q—F".
Step 3.3: If minrQ, = 0, set g = g + 1 and go to Step 3.2.
Step 3.4: If W’ > ny + 1, stop the adjustment procedure for the case H* # @.
Step 3.5: If sucd(v) € D and o > 0, set adjust, = min(s,, Oh,, minrQy).
Step 3.6: If sucd(v) € Vi and O > 0, set MaxAdjustT = MaxAdjustT + O" .
Step 3.7: If sucd(v) € Vg, set adjust, = min(s,, minrQy, MaxAdjustT) and update the total loading and unloading time and
MaxAdjustT by the Egs. (32) and (33), respectively.
Step 3.8: Set s, = s,—adjust,, Swycde) = Ssucdw) + adjust,, O" = O" + adjust,, o' = Oh,—adjustv, minrQ, = minrQe—adjust,, and
F¢ = F¢ + adjust,, where g’ = h, ..,h'-1.
Step 3.9: If 5, > 0, W' = b’ + 1, minrQ, = min(minrQy, Qk—Fh,), and go to Step 3.3.
Step 3.10: If 5, = 0, remove node v from H* and set Temph' = h'.
Step 3.11: If H* # @, go to Step 3.2.
3.6.1.2.2. Forthe case H- # @. In this section, the loading/unloading operations at the nodes in H- # @ are adjusted to make
the infeasible solution feasible. The checking idea is that from the considered node v € H~ to the end of the route, it is possible to load
more bikes or unload fewer bikes at the succeeding nodes of v to reduce the number of bikes loaded at node v.
The succeeding nodes of v € H~ are checked as follows:

Step 1: Set g = 1 and Temph' = 0.
Step 2: Setv = Hy, I = Hl,, h = SumN + I, h' = max(SumN + | + 1, Temph'), and sucd (v) = .

Step 3: If i’ > ny + 1, stop checking the succeeding nodes of node v.

226



Y. Liu et al. Transportation Research Part C 92 (2018) 208-242

Step 4: If sucd(v) ¢ Vi and Oh, < 0, set MaxAdjustT = MaxAdjustT—Oh,.
Step 5: If sucd(v) € Vi and Sqcaw) > 0, set adjust, = min(s,, Sgucdv), MaxAdjustT).
Step 6: Update the total loading and unloading time and MaxAdjustT by the following:

_ , ifo" >0
OprTime, = OprTime, + , .
(L + U)-min(adjust,, 10"1), if O" <0 (34)
if 0" >0
MaxAdjustT = MaxAdjustT + L ez
min(adjust,, 10" 1), if O" <0 (35)

Set s, =s, + adjust,, Swucdw) = Ssucdwy—adjust,, OF = O"—adjust,, o' =o" + adjust,, and F¢ = Fg,—adjustv, where
g =h, ., -1

Step 7: If s, < 0, set k' = h’ + 1 and go to Step 3.

Step 8: If s, = 0, remove node v from H- and set Temph' = h'.

Step 9: If H- # @, go to Step 2, and stop otherwise.

3.6.2. Adjustment on route lengths

The length adjustment on a route considers the removal and insertion of nodes, denoted as InsertionOfNodesR( ) and
RemovalOfNodesR( ), respectively. Subroutine 6 shows the framework of the adjustment on route lengths. The details of the operators
are respectively introduced in Sections 3.6.2.1 and 3.6.2.2.

Subroutine 6 RoutelengthAdj( )

Input: A molecular structure w, PE,, and vehicle k
Obtain («', PE,’) = RemovalOfNodesR (w, PE,, k)
if T—(TraTimey + OprTime,) > t'
Obtain («', PE,’) = InsertionOfNodesR (o', PE,,, k)
end if
Output ' and PE,,

s W

Remarks: PE, is the evaluation function value of the solution w. t’ is the average travel time
between each pair of nodes in the network, and it is calculated by t' = 3 L/ (Vo P=1V, ).

ijevoi # j
3.6.2.1. Removal of nodes. RemovalOfNodesR is executed to remove node(s) (excluding the starting and ending depots) in a given
route of vehicle k in w, with the objective of maximizing the approximate reduction in the evaluation function value. The

approximate maximal reduction AMR is calculated by min Reduy, = {Op +
h=SumN+1, ..., SumN+nj

|OH, rhe v
CP'thl, rhEVH
be improved by removal, and therefore RemovalOfNodesR is performed and the node at ' = argmin Reduy, is removed. Then,

SumN+1, ..., SumN+nj
the evaluation function value of the new solution is calculated. If the evaluation function value of the new solution is improved, the

new solution is kept and the removal operation continues until the evaluation function value cannot be further reduced; otherwise
discarded the new solution and stop the procedure.

Once a node is removed from the route, the method proposed by Ho and Szeto (2014) is applied to obtain new feasible solutions.
Suppose K’ is the position of the node to be removed. 0S“"N 0" =1, or O"*! is adjusted. If o = 0, 0" can be removed directly without
changing OS“"N, Oh/’l, or O"*1 1f 0" # 0, the criteria for the adjustment listed in the first row of Table 2 (for o> 0) and Table 3
(for Oh, < 0) are checked. Therefore, at most three feasible solutions can be obtained. One of the feasible solutions is randomly
selected and treated as the resultant solution «'. However, if none of the three criteria in the first row of Tables 2 and 3 is satisfied, the
removal of nodes is not allowed to occur and the procedure stops.

Based on the change in 0, the relevant variables are updated. If o = 0, set
TraTime, = TraTimey, + (trh'—l'rh’+1—(t W rh’,rh'+l)) and remove F h', Oh', and r. I Oh, > 0or Oh/ < 0, the applied adjustments are
tabulated in Tables 2 and 3.

(tph=1 phr—=(E,h=1 0 + Eph 1 + I0"-(L + U)))-u}, where Op = . If AMR < 0, the evaluation function value may

3.6.2.2. Insertion of nodes. Given a solution w, the operator InsertionOfNodes( ) only considers adding node(s) to the route of vehicle k
if T—(TraTimey + OprTime,) > t', where ¢’ = Ewew oy t;i/(IVo 2=V, 1). The following is the detailed procedure with four main steps:
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Table 2
Adjustments applied for the case 0" > 0 in the operators RemovalOfNodesR and RemovalOfNodesT.

Adjusting OS¥mN (at the Adjusting 0"~ (at the preceding node) Adjusting 0"*! (at the succeeding node)
starting depot)

Cmen'{_l for 0" < minrQy and 0" < 5o o <s oy 0" <s w1
adjust- " " o L
ment The above conditions allow This criterion ensures that the final inventory at ,H=1 This condition ensures that the final inventory at

that extra " bikes are is non-negative after the adjustment flas
loaded onto vehicle k at the
starting depot without

violating the vehicle capacity

is non-negative after the adjustment

constraint
Adjustment of 5o = SO_Oh' Swo1=s h’—l—oh’ Sp=sy or
current r r r r
inventory, Sp=spy+ o" Sp=Sp+ oh SH+1 =S h/+1—0h
5" r r r r r r
i
Adjustment of For h = SumN, ..,h'—1, Fi-1 2 g1 o Remove B
bicycle Fh— ph 4 OV
flow array, , .
F Remove F" Remove F"
Adjustment of OprTime, = OprTime (i.e., fo" 10 ot o0
OprTime* no need to update) OprTime, = OprTimey; OprTime, = OprTime;
ifo" <o, If 0"+ <o,
OprTime, = OprTime,—(L + U)-min(10" =Y, 0" OprTime, = OprTime,~(L + U)-min(10" *1, 0"
Adjustment of TraTimex = TraTimey + (t,h’—l ,h’+1—(t,h’—1 N rh’+1)).
TraTimey" ’ ’ ’
Ad(_])L:Stment of  gsumN _ gsumN 4 ol of=1— oh'-14 ot oM+l = oh'+1 4 of
Remove o" Remove o" Remove o”
Adjustment of Remove

r

Remarks:

(i) minrQy is the minimum residual capacity of vehicle k before visiting node 7 and is obtained by miny—sumn. ... sumn+r—11Qe—F"}
(ii) Only if the criteria of adjustment are satisfied, the adjustments with (*) can be applied.

(iii) SumN is calculated by SumN = Zt; 11 (ny + 2).

Step 1: Randomly pick a position g € [1, ny + 1] for inserting a node.

Step 2: Node v is a currently unbalanced node (i.e., s,—q, # 0) randomly selected from Nearby,,, ) ., Where pred (v) = rS#"N+¢~1 and
e = Ek.

Step 3: Node v is inserted into position g if the insertion does not violate the time constraint (i.e.,
TraTimey + OprTime, + (tpreayy + by sucdv))—tpred,sucav) < T), where sucd (v) = rSumN+¢ The adjustments applied to other
related variables are listed below:

Step 3.1: For g’ = n, ng = 1, ....g, set ré+! = 8, 08+ = O &+l = F¥: set 18 = v, 08 = 0, and F& = F&1,

Step 3.2: Set ny = ni + 1.

Step 3.3: Set TraTimey, = TraTimey + (tpred v + to,sucdv))—Epred v),sucd ) -

Step 3.4: OperationAdj (Subroutine 5 introduced in Section 3.6.1) is executed to adjust the loading/unloading quantity at
inserted node v.

Step 3.5: Calculate the evaluation function value of the new solution «'.

Step 4: If the evaluation function value of «’ is better than that of the original solution w, w’ is kept and go to Step 1; otherwise, «’ is
discarded and the procedure stops.

3.6.3. Route repairing

For each route, once the time constraint is violated, the operator RemovalOfNodesT is executed to remove the node associated with
AMR until the travel time of the considered route no longer violates the time constraint. The ways of selecting nodes and adjusting
relevant variables are the same as RemovalOfNodesR introduced in Section 3.6.2.1. However, the stopping criterion of the two
operators is different: RemovalOfNodesR is executed until the objective value is no longer improved or none of the adjustment criteria
(listed in the first row of Tables 2 and 3) can be satisfied; RemovalOfNodesT is executed until the total operational time of the route no

longer violates the time constraint. If no feasible solution can be obtained by removing the node at i’ = argmin Reduy, and
h=SumN+1, ..., SumN+ny
the total operational time is still longer than T, then set Redu,’ = T and continue the procedure to remove node(s).
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Table 3
Adjustments applied for the case 0" < 0 in the operators RemovalOfNodesR and RemovalOfNodesT.

Adjusting OR*=D (at Adjusting 0"~ (at the preceding node) Adjusting 0"*1 (at the succeeding node)
the starting depot)

Crlterla'l for 10" < minf, and s wo1=0" < ¢ oy S w1=0" < e i
adjustment W " " " '
so—0" < ¢o

The above two This condition ensures that the final inventory at =1is  The above criterion ensures that the capacity constraint

conditions allow that  yjthin jts capacity after the adjustment at node " *1 is not violated after the adjustment is
fewer bikes are applied
pplie
loaded onto vehicle k
at the starting depot
without violating any
constraint
Adjustment of Same as Table 2 Same as Table 2 Same as Table 2
current
inventory,
Sf
Adjustment of Same as Table 2 Same as Table 2 Same as Table 2
bicycle
flow array,
F
Ad]ustment}of Same as Table 2 fo"1xo0, o+ > o,

OprTime, W1 W W4l AW
OprTime, = OprTime,—(L + U)-min(0" ~7, 10" 1); OprTime, = OprTime,—(L + U)-min(0" ™, 10" 1);
fo" <o, OprTime, = OprTime, fo"*l <o, OprTime, = OprTime,

Adjustment of Same as Table 2

TraTimek*

Adjustment of Same as Table 2 Same as Table 2 Same as Table 2

0"

Adjustment of Same as Table 2
e
Remarks:

(i) minf, is the minimum number of bikes on vehicle k before visiting node w and is obtained by minj—sumn. . sumn+n—1{F"}.
(ii) Only if the criteria of the adjustment are satisfied, the adjustments with (*) can be applied.
(iii) SumN is calculated by SumN = E:; Y (e +2).

3.6.4. 2-Opt

2-Opt is applied to a selected route obtained from the elementary reactions. This procedure considers the inversion of all possible
sub-sequences (consisting of at least two nodes) excluding the starting and ending depots in the route. Once a route that satisfies the
time constraint is obtained, the loading/unloading quantities are determined by OperationDetermination (Subroutine 8 introduced in
Section 3.7). The best improved feasible solution found according to the evaluation function replaces w, and the procedure stops. This
is different from a traditional local search where the search continues until no improvement can be found.

3.6.5. Removal of adjacent repeated nodes

Given the route of vehicle k, RemovalOfRepeatedN is used to remove one of the identical adjacent nodes. Suppose
v = pSumN+h — pSumN+b (), + 1 =] and 0 < < L, < ny), node v at |, is removed from the route. The relevant variables, including the
loading and unloading quantities, bike loads on vehicle k, and OprTime,, are updated as follows:

(1) For the case OS¥mN+h.QSumN+l > (_ either loading or unloading is operated at both I; and L, and no update of OprTime, is needed;
for the case OSW"N+h.QSumN+L < o in total, fewer bikes are handled by the vehicle after combining OS“"N*h and OSW"N+k, Set
OprTime, = OprTime,—~(L + U)-min(|OS#mN+h|  |QSumN+L]),

(2) OSumN+11 — oSumN+11 + OSumN+lz and remove OSumN+lz;

(3) Remove FSumN+l,

(4) ng = l’lk—l.
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3.6.6. Implementation of solution adjustment
Subroutine 7 shows the framework of the solution adjustment and it is implemented once a new solution is obtained by reaction
operators introduced in Section 3.5.

Subroutine 7 SolutionAdjustment( )

Input: A solution w, PE,, and vehicle k
if TraTime, + OprTime, > T
(«, PE,’) = RemovalOfNodesT (w, PE,, k)
if mod(cHit,,, OptStep) = 0 then
(«', PE,) = 2—Opt(«', PE,, k)
end if
end if
if mod(cHit,,, OptStep) = 0 then
(«, PE,) = 2—0pt (&', PE,, k)
end if
(«', PE,’) = RemovalOfRepeatedN (', PE,;, k)
(', PE,’) = RoutelengthAdj (', PE,, k)
Output o' and PE,,

© © N AW

I
=

._.
N

Remarks: cHit;, records the total number of consecutive iterations to undergo either on-
wall ineffective collisions or intermolecular ineffective collisions. OptStep is a para-
meter that indicates the frequency of running 2-Opt in terms of the number of itera-
tions undergo either on-wall ineffective collisions or the inter-molecular ineffective
collisions. Lines 3 and 7 are not executed for the solutions obtained from the reactions
of decomposition and synthesis (introduced in Section 3.5), i.e., 2-Opt is applied to the
newly obtained solution(s) from decomposition or synthesis without any condition
requirements. However, for the solutions obtained from on-wall ineffective collisions
and inter-molecular ineffective collisions, the criterion in both Lines 3 and 7 must be
satisfied to execute 2-Opt.

3.7. Calculation of loading and unloading quantities

For the solutions in 2-Opt (introduced in Section 3.6.4) or the reaction operators other than on-wall ineffective collision (in-
troduced in Section 3.5), the loading/unloading quantities along the route of vehicle k need to be updated.

Given the current state of each node, the method for initial solution construction (i.e., Step 3.2 in Section 3.3) is used to calculate
the loading and unloading quantities at each visited node. This procedure is denoted as OperationCalculation. The only difference
between OperationCalculation and the initial solution construction heuristic is that in OperationCalculation, all nodes in the route are
given and there is no need to add more to it.

Subroutine 8 shows the framework of how to calculate and adjust the loading and unloading quantities for a given route.

Subroutine 8 OperationDetermination( )

Input: A molecular structure o and vehicle k

Table 4
Interpretations of the parameters used in the original CRO and the enhanced CRO.
Parameter Interpretation
PopSize The initial number of solutions in Pop
InitialKE The initial KE value assigned to each solution in the initialization stage
KELossRate Maximum fraction of the reduction in KE in on-wall ineffective collisions
MoleColl Fraction of all elementary reactions corresponding to inter-molecular reactions
B A parameter in the occurrence criterion of synthesis (a parameter that represents the least amount of KE in a molecule)
a A parameter in the occurrence criterion of decomposition (a parameter that represents the maximum number of consecutive iterations to
undergo either on-wall ineffective collisions or inter-molecular ineffective reactions if the current best solution is not updated)
MaxIteration The maximum number of iterations.
OptStep” A parameter in the occurrence criterion of 2-Opt (a parameter that indicates the frequency of running 2-Opt in terms of the number of iterations

undergo either on-wall ineffective collisions or inter-molecular ineffective collisions)

" OptStep is only used in the enhanced CRO.
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@' = OperationCalculation (w, k)
@' = FlowBackRevise (&', k)

«' = DepotOperCalculation (', k)
w' = OperationAdjHard (o', k)
Output

a s wd =

Remarks: The operator OperationAdjHard is used to adjust the loading/unloading quantities at all the visited nodes
i € Vy (introduced in Section 3.6.1.2). Line 1 is not executed in the stage of initialization (Subroutine 9, in-
troduced in Section 3.6.6) in the enhanced CRO.

3.8. Implementation of the enhanced CRO

The initialization is performed by Subroutine 9. The overall procedure of the enhanced CRO is described by Algorithm 1. The
meanings of the parameters are also listed in Table 4.

Subroutine 9 Initialization( )

Input: Problem-specific information (evaluation function, constraints)
Assign parameter values
Generate PopSize initial feasible solutions.
for each solution w do
Calculate PE, by setting it to be the evaluation function value z'(w)
' = OperationDetermination (w)
Assign KE,; with the value of InitialKE
Assign Hit,y = 0
end for
Let the central energy buffer be buffer and buffer = 0
Determine the current best solution among all the initial solutions
11. Output Pop

OO NG WD

[y
S

Remarks: Line 5 is not executed in the subroutine Initialization in the original CRO.

Algorithm 1 Enhanced CRO

1. Pop = Initialization( )

2. Let iter = 0

3. while iter < maxIteration do

4. Get random molet in the interval (0,1)

5. if molet > MoleColl then

6. Select a molecule M from Pop randomly

7. if Hit,—a > 0 then

8. (M{, M;, Success) = NewDecomposition(M, buffer)
9. if Success = TRUE then

10. Remove M from Pop

11. Add M and M; to Pop

12. Hit;; = 0 and Hit,; = 0

13. end if

14. else

15. (M', buffer) = NewOnwalllneffCollision (M, buffer)
16. end if

17. else

18. Select two molecules M; and M, from Pop randomly
19. if KE,, < 8 and KE,, < 3, and PopSize > 2 then
20. (M’, Success) = NewSynthesis(M;, M,)

21. if Success = TRUE then

22. Remove M; and M, from Pop

23. Add M’ to Pop

24. Hit{;/ =
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25. end if

26. else

27. (M{, M;) = NewlInterMolelneffCollision (M,, M,)

28. end if

29. end if

30. iter = iter + 1

31. end while

32. Output the overall best solution and its evaluation function value

Similar to the original CRO, the enhanced version has four principle reactions. However, these reactions are different in the
following:

1. For the enhanced CRO, NewOnwall is adopted in the on-wall ineffective collision to deal with both routes and loading/unloading
quantities, whereas only the swapping operator is used to get new routes in the original CRO.

2. Unlike NewDecom in the enhanced CRO, a circular shift is applied to obtain new routes from the decomposition in the original
CRO.

3. For intermolecular ineffective collisions, the swapping of two sub-sequences with equal length in a route is used in the enhanced
CRO, whereas the swapping of any two nodes is applied to the original CRO to obtain new routes. Moreover, the calculation and
adjustment of the loading/unloading quantities are considered in NewInter.

4. For synthesis, the enhanced CRO and the original CRO adopt the same method to handle vehicle routes, but only the enhanced
CRO considers the adjustments on the loading/unloading quantities at visited nodes.

The following are also the differences between the original and enhanced CRO.

e In the enhanced CRO, the definition of Hit and decomposition criterion proposed by Szeto et al. (2016) are used, not those in Lam
and Li (2010). In the enhanced CRO, Hit, in the decomposition criterion (line 7) refers to the total number of consecutive
iterations for either on-wall ineffective collisions or the intermolecular ineffective collisions (i.e., the total number of searches
among the neighbor solutions) before the current best solution is updated. For each molecular structure w, if the current best
solution is not updated after either an on-wall ineffective collision or an intermolecular ineffective collision occurs, Hit, increases
by one; otherwise, Hit,, is reset to zero. The decomposition criterion Hit,—a > 0 means that no better solution is obtained after
searching the neighbor solutions of the solution w a times. If such a criterion is met, the decomposition will be carried out to
obtain a very different solution (non-neighbor). Hit, is set to zero after the decomposition or synthesis has occurred.

After the occurrence of any reaction, the current best solution is updated if a new solution with a lower evaluation function value

is obtained. This current best solution is the best value obtained by comparing all solutions in the pool. However, the original CRO

determines the current best solution obtained by comparing all of the solutions generated from a specific solution.

o In the enhanced CRO, cHit, is introduced to record the total number of consecutive iterations to undergo either on-wall ineffective
collisions or intermolecular ineffective collisions. Only if the decomposition or synthesis occurs, cHit,, is set to zero; otherwise, it
increases by one. To avoid getting many replicated solutions from 2-Opt, “mod(cHit,, OptStep) = 0” is added to control the oc-
currence of 2-Opt to the new neighbor solutions obtained from on-wall ineffective collisions and intermolecular ineffective re-
actions. It means that 2-Opt is performed in every OptStep iterations for on-wall ineffective collisions and the intermolecular
ineffective collisions.

e In the enhanced CRO, the condition (PopSize > 2) is added to the synthesis criterion (line 19) to avoid Pop being too small to
allow any reaction, especially an inter-molecular ineffective collision, in the subsequent iteration.

4. Numerical studies

To tune our proposed heuristic and illustrate its efficiency and accuracy, three sets of instances were used, which are available at
http://web.hku.hk/~ceszeto/instances.zip. The first set of instances of different sizes were created based on the instance sets used by
Ho and Szeto (2017), which was generated based on the largest bike-sharing system in the United States, Citi Bike in New York. The
details of instance sets are listed in Table 5. For the instance of |[V] = 60, 60 stations were randomly selected from 302 stations and the
depot in the file name n302 at https://sites.google.com/site/drsinho/instances/hlns-set3.zip. Two nodes were randomly selected as
depots. 60 X 0.4 nodes are hardly accessed nodes and 60 X 0.6 nodes are easily accessed nodes. Other instances were generated

Table 5

Instance set based on Citi Bike.
14l Percentage of hardly accessed nodes (1Vj,1/IV] X 100%) Instances
60 40% n302
90 40% n302
300 40% n471
400 40% n471
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Table 6

Details of the instance set based on SAB.
Vi |DI Vel Vil
42 1 33 9
78 1 57 21
95 1 65 30

similarly. In these instances, the travel times between nodes (in seconds) are asymmetric. The demand at each node is derived based
on the penalty cost, i.e., the inventory that gives the lowest penalty cost. The time required for loading/unloading a bike is 60 s.

The second set of instances was created based on those used by Pal and Zhang (2017). It was generated based on the FFBSS
operated in the University of South Florida’s Tampa campus named Share-A-Bull (SAB). Each instance contains one depot, easily
accessed nodes, and hardly accessed nodes. The nodes whose demand is zero and capacity is relatively low were selected as the hardly
accessed nodes. The details of the second set of instances are listed in Table 6.

The third instance was derived from the instance of 30 nodes provided by Rainer-Harbach et al. (2015), which was in turn
generated based on 2011 real-world data provided by Citybike Vienna. Besides the depot, 11 nodes were randomly selected from
those 30 nodes. One, six and four of these 11 nodes were randomly selected as the second depot, easily accessed nodes, and hardly
accessed nodes, respectively.

Two to three vehicles with a capacity of 10 or 20 bikes are deployed for the repositioning operation. Different combinations of
vehicle capacities in a fleet are considered. For K| = 2, three combinations are considered, including (10, 10), (10, 20), and (20, 20);
For K| = 3, four combinations are considered, including (10, 10, 10), (10, 10, 20), (10, 20, 20), and (20, 20, 20).

The weight u = 0.00001, which implies that the main objective is to minimize total unsatisfied demand. The heuristic was written
in C+ +, compiled by Visual Studio, and ran on a computer with an Intel i7-3770 CPU @ 3.4 GHz and 32 GB RAM.

4.1. Parameter tuning

In this section, the parameters listed in Table 4 are tuned in the following order: InitialKE, f3, PopSize, MoleColl, KELossRate, a, and
MaxlIteration. Among them, InitialKE and f3 control the ability to get new solutions and have a direct and close relationship with the PE
of the problem (Szeto et al., 2014). Thus, as in their study, these values were tuned based on the initial objective value, denoted as
InitialObj = %, Vi (max(g—s’, 0)) + ZieVH cP-s? (i.e., the total number of unsatisfied customers before repositioning is performed
plus the total penalty assigned to the bikes parked at all nodes i € Vy). The trial values for tuning the ratios of these two parameters
were the multiples of InitialObj. As in most of the existing studies, twenty random seeds were used. The average of the best objective
values from 20 runs determined the parameter values.

The Citi Bike instance used for parameter tuning has 60 stations. Two vehicles were used to perform repositioning. The capacity of
each vehicle is 10. The repositioning duration is 9000 s. The loading or unloading time for a bicycle is 60 s. The initial objective value
(InitialObj) is 302. The initial parameter values were as follows: InitialKE = 302; 8 = 302; PopSize = 30; MoleColl = 0.5;
KELossRate = 0.5; a = 300; and MaxIteration = 10,000. InitialKE was first tuned. It took on different values from the set
{151, 302, ...,1812} whereas the other parameter values remained unchanged. According to the first plot of Fig. 8, the best average
result was found when InitialKE = 755. Then, f € {151, 302, ...,1510} was tuned with an InitialKE of 755 and the remaining para-
meters were kept at their initial values. According to the second plot of Fig. 8, the best average result was found when f3 = 453. This
procedure was repeated for other parameters.

Other tuning results are plotted in Fig. 8. The parameter values are set as follows: InitialKE = 755 (i.e., 2.5 X InitialObj); f = 453
(i.e., 1.5 X InitialObj); PopSize = 30; MoleColl = 0.3; KELossRate = 0.2; o = 400; and MaxlIteration = 13,000. These parameter values
were applied in the following numerical experiments, except for InitialKE and f3, in which the deduced ratios of 2.5 and 1.5 were used.
Regarding the value of MoleColl, it implies that about 70% of the overall reactions are uni-molecular reactions (i.e., either decom-
position or on-wall ineffective collision). This also implies that the operators for the decomposition and on-wall ineffective collision
reaction are more efficient than those for the synthesis and inter-molecular ineffective collision.

4.2. Comparison between CPLEX and the enhanced CRO

To illustrate the effectiveness of the enhanced CRO, the comparisons of the performance of the enhanced CRO and CPLEX were
conducted. For the first experiment, SAB instances were used. Two repositioning durations (T = 4,500 s and T = 9,000 s), two
vehicle types (Q; = 10 and Q, = 20), two fleet sizes (K| = 2 and IK| = 3), and all the combinations of vehicle capacities were con-
sidered. For each scenario (i.e., a given combination of an instance, a repositioning duration, a fleet size, and vehicle capacities) and
each seed, the enhanced CRO was executed with a maxIteration value of 13,000. The best and average of the best solutions from 20
runs were used to evaluate their performance. These scenarios were also solved with IBM ILOG CPLEX 12.63 with the default settings.
A running time of 2h was imposed on CPLEX. However, CPLEX only checks the time at certain points. Therefore, some of the
computing times reported here are longer than 2 h. The optimality tolerance of CPLEX was set to 0.01%. Thus, if the optimal gap,
Gap,pt, is less than 0.01%, CPLEX gives an “optimal” objective value; otherwise, CPLEX only gives an upper bound on the objective
value of an optimal solution.
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Fig. 8. Parameter tuning for the enhanced CRO.
Table 7
A comparison of the results between CPLEX and the enhanced CRO (instances based on SAB, IK| = 2 and T = 4,500 s).
4l Vehicle case CPLEX Enhanced CRO Gap; Gapa
UB/Opt. Gapopt. CPU Best Average CPU
42 10, 10 47.07810 19.65 7200.29 41.08622 42.78785 5.73 —12.73 -9.11
10, 20 47.07892 21.10 7200.23 38.10348 43.03868 6.59 —19.06 —8.58
20, 20 46.07884 17.87 7200.23 41.09360 43.23765 5.68 —10.82 -6.17
78 10, 10 115.07872 71.54 7200.29 86.08172 93.88233 4.14 —25.20 —18.42
10, 20 100.09061 68.95 7200.38 86.08172 94.23210 4.07 —14.00 -5.85
20, 20 98.08020 61.18 7200.23 86.08172 93.88231 4.13 —12.23 —4.28
95 10, 10 159.07966 75.57 7200.90 133.07854 148.03071 6.56 —-16.34 —6.95
10, 20 161.08002 78.17 7200.77 133.08118 149.73177 6.33 —17.38 —7.05
20, 20 159.07834 78.74 7200.32 140.07914 146.08161 5.39 —11.94 -8.17
Avg 7200.40 5.40 —15.52 —-8.29

Tables 7-10 show the results obtained by CPLEX and the enhanced CRO under different repositioning durations, fleet size,
capacities, and numbers of stations. Gap; and Gap, (in percent) indicate the performance of the enhanced CRO relative to that of
CPLEX based on the averages of the best and average objective values, respectively. The CPU (in seconds) denotes the average
computing time of 20 runs for the enhanced CRO or the computing time for CPLEX. From the results, we observe that CPLEX cannot
obtain any optimal solutions with a 2-h time limit, and can only provide an upper bound for the problem.

Unlike the enhanced CRO, CPLEX cannot obtain feasible solutions in many cases when the repositioning duration becomes longer,
the size of the instance becomes larger, or more vehicles are considered. For example, for the case IKl = 2 and T = 4,500s (see
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Table 8
A comparison of the results between CPLEX and the enhanced CRO (instances based on SAB, IK| = 3 and T = 4,500 s).
4l Vehicle case CPLEX Enhanced CRO Gap; Gap,
UB/Opt. Gapopt. CPU Best Average CPU
42 10, 10, 10 39.12136 29.53736 7200.24 29.15882 34.14185 5.31 —25.47 —-12.73
10, 10, 20 41.12320 33.96897 7200.24 28.17058 33.54634 5.80 —31.50 —18.42
10, 20, 20 43.12396 37.49066 7200.19 29.17004 33.99615 5.88 —-32.36 -21.17
20, 20, 20 46.11774 41.65552 7200.13 27.19572 33.94494 5.24 —41.03 —26.40
78 10, 10, 10 149.13393 93.88670 7200.19 63.12480 76.17304 6.68 —57.67 —48.92
10, 10, 20 149.12523 93.88630 7200.29 63.12480 75.17276 6.81 —57.67 —49.59
10, 20, 20 149.13054 93.88656 7201.77 63.12480 75.32262 6.98 —-57.67 —49.49
20, 20, 20 - - 7200.24 70.11562 78.12230 6.72 - -
95 10, 10, 10 - - 7200.43 115.12138 124.67074 7.01 - -
10, 10, 20 - - 7200.59 115.12138 124.67074 6.98 - -
10, 20, 20 - - 7200.59 108.12218 120.82158 7.87 - -
20, 20, 20 - - 7200.28 108.11820 123.56887 7.43 - -
Avg 7200.43 6.56 —53.51 —43.60
Table 9
A comparison of the results between CPLEX and the enhanced CRO (instances based on SAB, IK| = 2 and T = 9,000 s).
4l Vehicle case CPLEX Enhanced CRO Gap; Gap,
UB/Opt. Gapopt. CPU Best Average CPU
42 10, 10 - - 7200.49 12.16932 14.51672 11.50 - -
10, 20 81.16892 99.79 7200.34 13.16960 14.96387 9.91 —83.78 —81.56
20, 20 - - 7200.35 11.16534 13.26514 11.83 - -
78 10, 10 - - 7200.65 22.17136 26.91653 13.89 - -
10, 20 - - 7200.60 23.16744 27.21810 13.73 - -
20, 20 - - 7200.65 22.17290 26.01462 13.83 - -
95 10, 10 - - 7200.77 53.16420 59.51566 13.08 - -
10, 20 - - 7201.35 56.14816 60.21612 12.56 - -
20, 20 - - 7200.80 53.15608 59.86439 12.55 - -
Avg 7200.67 12.54 —83.78 —81.56
Table 10
A comparison of the results between CPLEX and the enhanced CRO (instances based on SAB, IK| = 3 and T = 9,000 s).
14l Vehicle case CPLEX Enhanced CRO Gap; Gap,
UB/Opt. Gapopt. CPU Best Average CPU
42 10, 10, 10 - - 7200.37 5.24622 6.89244 13.06 - -
10, 10, 20 - - 7200.29 2.25912 5.79637 13.19 - -
10, 20, 20 80.26082 99.68602 7200.49 3.25192 6.29109 13.09 —95.95 —92.16
20, 20, 20 - - 7200.69 2.24228 5.64692 13.00 - -
78 10, 10, 10 - - 7200.27 12.24298 15.83869 17.87 - -
10, 10, 20 - - 7201.35 12.24298 16.09286 17.81 - -
10, 20, 20 - - 7201.27 11.24318 16.33620 17.69 - -
20, 20, 20 - - 7200.15 12.24606 15.49208 17.57 - -
95 10, 10, 10 - - 7201.85 25.25544 30.39860 15.88 - -
10, 10, 20 - - 7201.69 19.24142 30.44708 15.93 - -
10, 20, 20 - - 7201.66 28.22136 31.49918 15.83 - -
20, 20, 20 - - 7201.69 26.24524 32.54856 15.49 - -
Avg 7200.98 15.53 —95.95 —-92.16

Table 7), CPLEX can obtain feasible solutions for all the considered scenarios, while for the case |[K|l = 2 and T = 9,000 s (see Table 9),
a feasible solution can only be found for 1 scenario. For the results obtained for the case K| = 3 and T = 4,500 s (see Table 8), fewer
feasible solutions are obtained by CPLEX compared with the results shown in Table 7. When only considering the results for the case
IKl = 3 and T = 4,500 s (see Table 8), CPLEX cannot obtain feasible solutions for the scenarios related to |[V| = 95. In contrast, the
enhanced CRO always obtains good feasible solutions much faster than CPLEX for larger, longer repositioning time, or more vehicle
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Table 11
A comparison of the results between CPLEX and the enhanced CRO (VI = 10 and T = 6,000 s).
Vehicle case CPLEX Enhanced CRO Gap; Gap,
UB/Opt. Gapopt. CPU Best Average CPU
10, 10 14.11220 0.00 398.05 14.11220 14.11304 6.06 0.00 0.01
20, 20 14.11220 0.00 914.32 14.11220 14.11304 5.96 0.00 0.01
Avg 656.19 6.01 0.00 0.01
Table 12

A comparison of the results between the original CRO and the enhanced CRO (K| = 2, T = 9,000, and the stopping criterion is generating the same
number of solutions).

14l Vehicle case Original CRO Enhanced CRO Gap; Gap,
Best Average CPU Best Average CPU

60 10, 10 231.17015 250.21927 0.13 112.17280 116.97547 35.16 —51.48 —53.25
10, 20 232.17761 251.22100 0.12 108.17486 111.02654 31.88 —53.41 —55.81
20, 20 222.17529 240.87149 0.11 102.17672 105.87640 29.83 —54.01 —56.04

90 10, 10 453.17589 471.32520 0.16 291.17548 299.67495 39.88 —35.75 —36.42
10, 20 452.17770 469.37751 0.13 290.17796 298.62567 34.84 —35.83 —36.38
20, 20 446.17831 457.77790 0.13 292.17041 300.57581 32.60 —34.52 —34.34

300 10, 10 1326.17617 1335.67047 0.19 1115.17683 1137.37516 41.27 -15.91 —14.85
10, 20 1311.17839 1334.77393 0.17 1124.17174 1142.57451 36.07 -14.26 —14.40
20, 20 1314.17790 1331.17372 0.16 1130.17829 1148.07498 32.84 —14.00 —13.75

400 10, 10 1743.17776 1767.22281 0.29 1525.17791 1535.42420 54.72 -12.51 -13.12
10, 20 1751.16993 1763.02691 0.24 1531.17682 1542.27630 45.81 -12.56 —12.52
20, 20 1742.17788 1757.87657 0.21 1530.17834 1544.02659 41.18 —-12.17 —-12.17

Avg 0.17 38.01 —28.87 —29.42

Table 13

A comparison of the results between the original CRO and the enhanced CRO (K| = 3, T = 9,000, and the stopping criterion is generating the same
number of solutions).

14 Vehicle case Original CRO Enhanced CRO Gap; Gap,
Best Average CPU Best Average CPU

60 10, 10, 10 219.24978 231.00229 0.20 77.26660 81.96296 40.25 -64.76 —64.52
10, 10, 20 211.24247 229.94898 0.19 71.26161 75.81382 37.01 —66.27 -67.03
10, 20, 20 210.26669 228.56069 0.18 66.25963 69.51339 35.81 —68.49 —69.59
20, 20, 20 212.26654 227.61173 0.17 65.25746 68.06247 34.59 -69.26 —70.10

90 10, 10, 10 435.24627 452.55847 0.22 246.26301 250.76392 42.06 —43.42 —44.59
10, 10, 20 423.26672 447.95853 0.20 236.26507 244.36407 40.12 —44.18 —45.45
10, 20, 20 437.25621 447.76301 0.19 234.26618 240.36462 37.40 —46.42 —46.32
20, 20, 20 427.26660 446.51397 0.19 232.26132 236.91253 36.76 —45.64 —46.94

300 10, 10, 10 1311.23481 1320.20781 0.27 1037.26274 1053.21149 45.64 —20.89 —20.22
10, 10, 20 1294.25494 1316.35426 0.25 1043.25561 1054.51197 41.85 -19.39 -19.89
10, 20, 20 1295.26680 1314.41071 0.24 1024.26178 1053.96332 39.91 —20.92 —19.81
20, 20, 20 1297.26122 1311.31338 0.23 1030.25930 1051.91333 38.75 —20.58 -19.78

400 10, 10, 10 1731.25747 1749.90701 0.35 1434.26095 1448.36306 56.98 -17.15 -17.23
10, 10, 20 1718.26687 1745.81137 0.32 1431.26238 1451.96377 50.94 -16.70 —16.83
10, 20, 20 1720.26505 1746.30814 0.30 1441.26225 1452.76297 48.31 -16.22 —16.81
20, 20, 20 1725.25861 1743.36614 0.29 1435.26232 1453.36146 44.95 —16.81 —16.63

Avg 0.24 41.96 —37.32 —37.61

scenarios.

Regarding the results obtained for a fixed repositioning duration and number of vehicles, the average computing time of the
enhanced CRO varies from 5.40 to 15.53 s, while the average computing time of CPLEX is around 7,200 s. Moreover, all negative
values of Gap; and Gap, indicate that the enhanced CRO obtains a better upper bound for each of the considered scenarios. Therefore,
the enhanced CRO could obtain better solutions much faster than CPLEX.

For the results obtained under a fixed repositioning duration, the absolute values of the average Gap, and Gap, values obtained by
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Table 14
A comparison of the results between the original CRO and the enhanced CRO (K| = 2, T = 18,000, and the stopping criterion is generating the
same number of solutions).

4l Vehicle Case Original CRO Enhanced CRO Gap; Gap,
Best Average CPU Best Average CPU

60 10, 10 207.35761 222.84449 0.39 63.32259 63.39512 96.94 —69.46 —71.55
10, 20 208.35762 220.38612 0.36 63.30038 63.32182 89.55 —69.62 —-71.27
20, 20 207.35763 214.35133 0.31 63.28383 63.30535 79.29 —69.48 —70.47

90 10, 10 438.35761 449.70071 0.46 219.35821 224.00496 113.46 —49.96 —50.19
10, 20 423.35762 441.39746 0.44 209.35491 213.85554 107.89 —50.55 —51.55
20, 20 419.35763 439.68853 0.36 202.35983 202.37438 90.41 -51.75 —53.97

300 10, 10 1296.35765 1312.92968 0.61 958.35598 971.40337 134.31 —26.07 —26.01
10, 20 1267.33377 1305.29833 0.56 953.35427 968.95299 126.21 —24.77 —25.77
20, 20 1271.35772 1295.90764 0.55 944.35900 961.15427 125.74 —25.72 —25.83

400 10, 10 1714.35271 1737.08615 0.85 1346.35943 1361.05461 170.25 —21.47 —21.65
10, 20 1719.35761 1739.83848 0.76 1355.35202 1366.10346 153.10 -21.17 —21.48
20, 20 1698.35761 1734.10548 0.72 1344.35718 1363.95545 144.01 —20.84 -21.35

Avg 0.53 119.26 —41.74 —42.59

Table 15

A comparison of the results between the original CRO and the enhanced CRO (K| = 3, T = 18,000s, and the stopping criterion is generating the
same number of solutions).

4l Vehicle case Original CRO Enhanced CRO Gap; Gapy
Best Average CPU Best Average CPU

60 10, 10, 10 207.43801 212.70927 0.43 63.32035 63.33574 74.66 —69.48 —70.22
10, 10, 20 208.53642 213.71197 0.40 63.29693 63.31964 67.53 —69.65 —-70.37
10, 20, 20 207.53642 213.44371 0.36 63.28080 63.30380 57.92 —69.51 —70.34
20, 20, 20 207.53642 212.96663 0.32 63.28446 63.29512 52.07 —69.51 —70.28

920 10, 10, 10 418.46600 429.85526 0.63 202.41757 202.42999 109.82 —51.63 -52.91
10, 10, 20 418.53641 429.40236 0.60 202.38466 202.40230 102.19 —51.64 —52.86
10, 20, 20 420.53640 430.65388 0.57 202.36742 202.38281 95.35 —51.88 —53.01
20, 20, 20 422.53641 427.51873 0.53 202.35983 202.37438 90.41 -52.11 —52.66

300 10, 10, 10 1257.53649 1286.42262 0.97 790.53080 814.58124 164.39 —37.14 —36.68
10, 10, 20 1247.53651 1281.91774 0.91 798.52652 814.72886 154.03 —35.99 —36.44
10, 20, 20 1264.53646 1282.28451 0.90 768.53003 803.58047 153.28 —39.22 —37.33
20, 20, 20 1256.53650 1281.83386 0.85 777.52425 800.68165 150.36 —38.12 —37.54

400 10, 10, 10 1679.53645 1712.16385 1.21 1199.53702 1213.23127 197.47 —28.58 —29.14
10, 10, 20 1690.53645 1709.11237 1.12 1187.53293 1210.78296 183.52 —29.75 —29.16
10, 20, 20 1685.48204 1713.82547 1.07 1178.52748 1202.18112 175.62 —30.08 —29.85
20, 20, 20 1673.53641 1700.02278 1.04 1181.53555 1201.58037 178.69 —29.40 —29.32

Avg 0.74 125.46 —47.11 —47.38

the enhanced CRO for the scenarios with IK| = 3 are always larger than those for the scenarios with IK| = 2. For example, when
T = 4,500s, the average values of Gap; and Gap, are respectively —15.52% and —8.29% for the case IK| = 2, while they are
respectively —53.51% and —43.60% for the case IK| = 3. This implies that the enhanced CRO performs better than CPLEX when
solving the FFBRP with more vehicles involved.

For the results of a constant fleet size, the absolute values of the average Gap; and Gap, values obtained by the enhanced CRO for
the scenarios with long repositioning durations are larger than those with short repositioning durations. For example, when K| = 2,
|Vl = 42, and the vehicle case is (10, 20), Gap; and Gap, are respectively —19.06% and —8.58% for T = 4,500 s but —83.78% and
—81.56% for T = 9,000 s. This implies that the enhanced CRO performs better than CPLEX when solving the FFBRP with a longer
repositioning duration.

Table 11 presents a comparison of the results between CPLEX and the enhanced CRO for the second experiment using the small
Vienna instance. This comparison aims to prove that the enhanced CRO can obtain optimal solutions. The repositioning duration is
set to 6,000 s. For the scenarios considered in Table 11, the solutions obtained by CPLEX are optimal. From Table 11, the enhanced
CRO can also obtain optimal solutions with an average computational time of 6.01 s, which is much shorter than that of CPLEX
(656.19s). These results show that the enhanced CRO can find optimal solutions much faster than CPLEX.

237



Y. Liu et al. Transportation Research Part C 92 (2018) 208-242

Table 16
A comparison of the results between the original CRO and the enhanced CRO (K| = 2, T = 9,000s, and the stopping criterion is the same running
time).

4l Vehicle case Original CRO Enhanced CRO Gap; Gap,
Best Average CPU Best Average CPU

60 10, 10 226.17883 247.81964 35.16 16107289.00 112.17280 116.97547 35.16 —50.41
10, 20 230.17782 247.72454 31.88 14601486.00 108.17486 111.02654 31.88 —53.00
20, 20 222.17529 236.27303 29.83 13949974.00 102.17672 105.87640 29.83 —54.01

90 10, 10 444.17496 466.62278 39.88 17380840.00 291.17548 299.67495 39.88 —34.45
10, 20 450.15999 466.57317 34.84 15096475.00 290.17796 298.62567 34.84 —35.54
20, 20 443.17814 455.17648 32.60 14316050.00 292.17041 300.57581 32.60 —34.07

300 10, 10 1325.17411 1333.62199 41.27 13948831.00 1115.17683 1137.37516 41.27 —15.85
10, 20 1311.17839 1332.37431 36.07 11740718.00 1124.17174 1142.57451 36.07 -14.26
20, 20 1311.17816 1326.07392 32.84 10871203.00 1130.17829 1148.07498 32.84 —13.80

400 10, 10 1743.17776 1764.47220 54.72 16071682.00 1525.17791 1535.42420 54.72 —12.51
10, 20 1749.17651 1762.27436 45.81 13384879.00 1531.17682 1542.27630 45.81 -12.46
20, 20 1742.17788 1757.32660 41.18 12824482.00 1530.17834 1544.02659 41.18 -12.17

Avg 38.01 38.01 —28.54

Table 17

A comparison of the results between the original CRO and the enhanced CRO (K| = 3, T = 9,000s, and the stopping criterion is the same running
time).

4l Vehicle case Original CRO Enhanced CRO Gap; Gapy
Best Average CPU Best Average CPU

60 10, 10, 10 219.24978 228.90130 40.25 13555299.00 77.26660 81.96296 40.25 —64.76
10, 10, 20 211.24247 228.04426 37.01 13081337.00 71.26161 75.81382 37.01 —66.27
10, 20, 20 210.23110 227.35990 35.81 12642521.00 66.25963 69.51339 35.81 —68.48
20, 20, 20 209.26659 221.36451 34.59 12445609.00 65.25746 68.06247 34.59 —68.82

90 10, 10, 10 433.22606 447.75224 42.06 13834971.00 246.26301 250.76392 42.06 —43.16
10, 10, 20 423.26672 445.95679 40.12 13500666.00 236.26507 244.36407 40.12 —44.18
10, 20, 20 425.26654 445.41055 37.40 12394650.00 234.26618 240.36462 37.40 —44.91
20, 20, 20 427.26660 442.81591 36.76 12353212.00 232.26132 236.91253 36.76 —45.64

300 10, 10, 10 1298.23987 1317.60505 45.64 11958994.00 1037.26274 1053.21149 45.64 —20.10
10, 10, 20 1294.25494 1311.95668 41.85 10976166.00 1043.25561 1054.51197 41.85 —19.39
10, 20, 20 1291.24456 1310.55910 39.91 10711198.00 1024.26178 1053.96332 39.91 —20.68
20, 20, 20 1295.25490 1309.11460 38.75 10271538.00 1030.25930 1051.91333 38.75 —20.46

400 10, 10, 10 1728.25791 1744.95074 56.98 13315916.00 1434.26095 1448.36306 56.98 -17.01
10, 10, 20 1713.25535 1744.81095 50.94 11934522.00 1431.26238 1451.96377 50.94 —-16.46
10, 20, 20 1716.24918 1743.70686 48.31 11659193.00 1441.26225 1452.76297 48.31 —-16.02
20, 20, 20 1719.26648 1740.16309 44.95 10625775.00 1435.26232 1453.36146 44.95 —16.52

Avg 41.96 41.96 —37.05

4.3. Comparison between the enhanced CRO and the original CRO

To compare the performance of the performance of the enhanced CRO and the original CRO, various Citi Bike instances with sizes
ranged from 60 to 400 nodes were considered. Two repositioning durations (T = 9,000 s and T = 18,000 s), two vehicle capacities
(Q: = 10 and Q, = 20), and two fleet sizes (K| = 2 and IK| = 3) were considered.

To ensure a fair comparison, for each scenario and each seed, the enhanced CRO was first executed with a maxIteration value of
13,000. The number of solutions generated by the enhanced CRO and the computational time were then recorded and set as the
stopping criterion for the original CRO. The best and average of the best solutions from 20 runs were used to evaluate their per-
formance.

Tables 12-15 show the results comparison between the original CRO and the enhanced CRO with the stopping criterion of
generating the same number of solutions, and Tables 16-19 show the results of the original CRO and the enhanced CRO with the same
running time. Gap; and Gap, (in percent) indicate the performance of the enhanced CRO relative to that of the original version based
on the averages of the best and average objective values, respectively. The CPU (in seconds) denotes the average computing time of
20 runs for the enhanced or original CRO. From Tables 12-15, all Gap; and Gap, values are negative, meaning that the solution
quality of the enhanced CRO is better than that of the original version. Under a fixed fleet size, when the repositioning duration
becomes longer, the average values of |Gap; | and |Gap.| become larger. For example, for the case K| = 2, the average values of Gap,
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Table 18
A comparison of the results between the original CRO and the enhanced CRO (K| = 2, T = 18,000 s, and the stopping criterion is the same running
time).

4l Vehicle case Original CRO Enhanced CRO Gap; Gap,
Best Average CPU Best Average CPU

60 10, 10 207.35761 220.06308 96.94 63.32259 63.39512 96.94 —69.46 —-71.19
10, 20 207.35761 217.47063 89.55 63.30038 63.32182 89.55 —69.47 —70.88
20, 20 207.35763 213.90307 79.29 63.28383 63.30535 79.29 —69.48 —70.40

90 10, 10 429.30226 443.03326 113.46 219.35821 224.00496 113.46 —48.90 —49.44
10, 20 422.35760 439.69026 107.89 209.35491 213.85554 107.89 —50.43 —51.36
20, 20 419.35762 434.53997 90.41 202.35983 202.37438 90.41 —-51.75 —53.43

300 10, 10 1282.33069 1309.82265 134.31 958.35598 971.40337 134.31 —25.26 —25.84
10, 20 1263.35761 1300.05077 126.21 953.35427 968.95299 126.21 —24.54 —25.47
20, 20 1271.35772 1293.25198 125.74 944.35900 961.15427 125.74 —25.72 —25.68

400 10, 10 1704.28059 1733.87347 170.25 1346.35943 1361.05461 170.25 —21.00 —21.50
10, 20 1703.31647 1735.88836 153.10 1355.35202 1366.10346 153.10 —20.43 -21.30
20, 20 1698.35761 1730.85554 144.01 1344.35718 1363.95545 144.01 —20.84 -21.20

Avg 119.26 119.26 —41.44 —42.31

Table 19

A comparison of the results between the original CRO and the enhanced CRO (K| = 3, T = 18,000 s, and the stopping criterion is the same running
time).

4l Vehicle case Original CRO Enhanced CRO Gap; Gapy
Best Average CPU Best Average CPU

60 10, 10, 10 207.36406 210.90667 74.66 63.32035 63.33574 74.66 —69.46 —69.97
10, 10, 20 207.33490 210.77735 67.53 63.29693 63.31964 67.53 —69.47 —69.96
10, 20, 20 207.45118 210.51747 57.92 63.28080 63.30380 57.92 —69.50 —69.93
20, 20, 20 207.44039 210.19923 52.07 63.28446 63.29512 52.07 —69.49 —69.89

920 10, 10, 10 418.45288 428.48960 109.82 202.41757 202.42999 109.82 —51.63 -52.76
10, 10, 20 418.47718 426.74761 102.19 202.38466 202.40230 102.19 —51.64 —52.57
10, 20, 20 418.53642 429.41324 95.35 202.36742 202.38281 95.35 —51.65 —52.87
20, 20, 20 419.53713 426.15917 90.41 202.35983 202.37438 90.41 -51.77 —52.51

300 10, 10, 10 1257.53649 1283.60878 164.39 790.53080 814.58124 164.39 —37.14 —36.54
10, 10, 20 1235.50515 1277.41008 154.03 798.52652 814.72886 154.03 —35.37 —36.22
10, 20, 20 1243.49265 1276.01464 153.28 768.53003 803.58047 153.28 —38.20 —37.02
20, 20, 20 1229.53642 1278.18156 150.36 777.52425 800.68165 150.36 —36.76 —37.36

400 10, 10, 10 1679.53645 1706.49943 197.47 1199.53702 1213.23127 197.47 —28.58 —28.91
10, 10, 20 1690.53645 1706.11659 183.52 1187.53293 1210.78296 183.52 —29.75 —29.03
10, 20, 20 1685.48204 1709.92272 175.62 1178.52748 1202.18112 175.62 —30.08 —29.69
20, 20, 20 1667.53649 1696.97619 178.69 1181.53555 1201.58037 178.69 —29.14 —-29.19

Avg 125.46 125.46 —46.85 —47.15

and Gap, are respectively —28.87% and —29.42% if T =9,000s, while they are respectively —41.74% and —42.59% if
T = 18,000 s. Under a fixed repositioning duration, when the fleet size becomes larger, the absolute values of the average Gap; and
Gap, values become larger. Here, we take T = 9,000 s as an example. If K| = 2, the average values of Gap, and Gap, respectively are
—28.87% and —29.42%, whereas if IK| = 3, the average values of Gap; and Gap, are respectively —37.32% and —37.61%. This
indicates that the enhanced CRO is more effective than the original CRO to solve multi-vehicle FFBRPs with a larger fleet size.
Nevertheless, under a fixed repositioning duration, a fixed number of vehicles, and a fixed capacity combination, both Gap; and Gap,
become less negative when the size of the instance is larger.

The results shown in Tables 16-19 indicate the same trends as the results in Tables 12-15. With longer running time, the results
obtained by the original CRO in Tables 16-19 are slightly improved compared to the results obtained by the original CRO in Tables
12-15. However, all gap values are still negative. Therefore, these reflect that the enhanced CRO is more effective than the original
CRO to solve multi-vehicle BRPs with a longer repositioning duration, more vehicles, and smaller instances.

4.4. The effectiveness of introducing OperationAdj into the enhanced CRO

In our study, the operator OperationAdj (refer to Section 3.6.1), which considers the characteristics of the FFBRP, is introduced to
improve the solution quality obtained by the proposed heuristic. In this section, the discussed scenarios for the instance |VI = 400
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Table 20
A comparison of the results of the enhanced CRO with and without the operator OperationAdj (V| = 400 and the stopping criterion is generating the
same number of solutions).

T (h) IKI Vehicle case Enhanced CRO without OperationAdj Enhanced CRO Gap
Best Average CPU Best Average CPU

2.5 2 10, 10 1631.15254 1647.35954 39.45 1525.17791 1535.42420 54.72 -7.29
10, 20 1626.17743 1649.46032 32.85 1531.17682 1542.27630 45.81 —6.95
20, 20 1622.17743 1655.76265 31.67 1530.17834 1544.02659 41.18 -7.24

2.5 3 10, 10, 10 1565.26539 1589.35483 38.28 1434.26095 1448.36306 56.98 —-9.73
10, 10, 20 1565.25036 1595.15372 33.40 1431.26238 1451.96377 50.94 —9.86
10, 20, 20 1570.26349 1596.65165 32.76 1441.26225 1452.76297 48.31 -9.90
20, 20, 20 1573.25695 1595.15093 31.13 1435.26232 1453.36146 44.95 -9.76

5 2 10, 10 1507.31935 1526.87703 93.74 1346.35943 1361.05461 170.25 -12.18
10, 20 1501.29484 1525.93543 90.86 1355.35202 1366.10346 153.10 -11.70
20, 20 1483.35451 1517.33385 84.85 1344.35718 1363.95545 144.01 -11.25

5 3 10, 10, 10 1378.52554 1415.51453 117.29 1199.53702 1213.23127 197.47 —-16.67
10, 10, 20 1384.53608 1409.15560 106.34 1187.53293 1210.78296 183.52 —-16.38
10, 20, 20 1390.52401 1413.21801 103.19 1178.52748 1202.18112 175.62 —17.55
20, 20, 20 1379.53191 1406.71620 107.71 1181.53555 1201.58037 178.69 -17.07

Avg 67.39 110.40 -11.68

Table 21

A comparison of the results of the enhanced CRO with and without the operator OperationAdj (V1 = 400 and the stopping criterion is the same
running time).

T (h) Kl Vehicle case Enhanced CRO without OperationAdj Enhanced CRO Gap
Best Average CPU Best Average CPU

2.5 2 10, 10 1631.15254 1647.35938 54.72 1525.17791 1535.42420 54.72 -7.29
10, 20 1626.17743 1649.46009 45.81 1531.17682 1542.27630 45.81 -6.95
20, 20 1622.17743 1655.76265 41.18 1530.17834 1544.02659 41.18 —-7.24

2.5 3 10, 10, 10 1565.26539 1589.35483 56.98 1434.26095 1448.36306 56.98 -9.73
10, 10, 20 1565.25036 1595.15372 50.94 1431.26238 1451.96377 50.94 —9.86
10, 20, 20 1570.26349 1596.65165 48.31 1441.26225 1452.76297 48.31 —9.90
20, 20, 20 1573.25695 1595.15025 44.95 1435.26232 1453.36146 44.95 -9.76

5 2 10, 10 1507.31935 1526.87703 170.25 1346.35943 1361.05461 170.25 -12.18
10, 20 1501.29484 1525.93543 153.10 1355.35202 1366.10346 153.10 -11.70
20, 20 1483.35451 1517.33385 144.01 1344.35718 1363.95545 144.01 -11.25

5 3 10, 10, 10 1378.52554 1415.51453 197.47 1199.53702 1213.23127 197.47 —16.67
10, 10, 20 1384.53608 1409.15560 183.52 1187.53293 1210.78296 183.52 —16.38
10, 20, 20 1390.52401 1413.21801 175.62 1178.52748 1202.18112 175.62 —-17.55
20, 20, 20 1379.53191 1406.71620 178.69 1181.53555 1201.58037 178.69 -17.07

Avg 110.40 110.40 -11.68

(described in Section 4.3) were also solved by the enhanced CRO without OperationAdj to illustrate the effectiveness of introducing
this operator into the heuristic. The best and average of the best solutions from 20 runs were used to evaluate the performance of the
considered heuristic. To ensure a fair comparison, for each scenario and each seed, the enhanced CRO without OperationAdj was
executed to generate the same number of solutions as the enhanced CRO (discussed in Section 4.3).

The results are shown in Table 20. Gap (in percent) herein refers to the difference in the average of the best objective values of the
concerned scenario obtained from 20 runs by the enhanced CRO and that without OperationAdj, normalized by the average objective
value obtained from the enhanced CRO. The value of Gap implies the relative improvement (or deterioration) on the objective value
of the enhanced CRO to that of the enhanced CRO without OperationAdj. If it is negative, the performance of the enhanced CRO is
improved by the introduction of OperationAdj; it is weakened otherwise. CPU denotes the average running time in seconds.

From Table 20, the average running time of the enhanced CRO without OperationAdj (67.39 s) is much shorter than that of the
enhanced CRO (110.40 s). Since the difference of the running time between the enhanced CRO without OperationAdj and the en-
hanced CRO (with OperationAdj) is large, the enhanced CRO without OperationAdj was run again with the stopping criterion as the
same running time as the enhanced CRO. The results are shown in Table 21. Comparing the results shown in Tables 20 and 21, the
gap values are the same, which indicate that there is no significant improvement in the results obtained from the enhanced CRO
without OperationAdj even the heuristic runs longer.

From Tables 20 and 21, the Gap values for all discussed scenarios are negative, and the average Gap value is —11.63%. This
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implies that although the implementation of the operator OperationAdj takes time, the general performance of the enhanced CRO is
improved by incorporating the operator OperationAdj into the CRO to solve the FFBRP. The absolute value of Gap becomes larger
when T or/and fleet size increase. This indicates that the operator OperationAdj provides competitive advantages to the enhanced
CRO to obtain solutions of multiple-vehicle FFBRPs with long repositioning durations. The operator OperationAdj aims to adjust the
loading/unloading quantities at nodes along the route, meet the demand at easily accessed nodes, and reduce the penalty for the
bikes at hardly accessed nodes to the maximum extent, thereby improving solution quality. It can be concluded that the enhanced
CRO proposed in this paper should incorporate the operator OperationAdj to improve its solution quality.

5. Conclusion

In this paper, a static free-floating bike repositioning problem with multiple heterogeneous vehicles, multiple depots, and multiple
visits is proposed. An enhanced version of CRO is introduced to solve this problem. It incorporates a concept of the nearby-node set to
narrow the search space and encapsulates an operator to adjust the loading and unloading quantities at visited nodes by making use
of the node characteristics. The computation experiments were conducted on instances up to 400 nodes and 2 depots. The com-
putational results demonstrate that the enhanced CRO gets better solutions than the original CRO and CPLEX for all discussed
scenarios and has potential to tackle the repositioning problem for larger, longer repositioning duration, and more vehicle instances.
The results also prove that the incorporation of the loading and unloading quantity adjustment procedure is beneficial.

It is noted that in our formulation, the number of nodes highly depends on the number of bikes in the system. The number of
nodes can be large if there are many bikes in the system. To reduce the number of nodes considered, one can form a cluster for those
bicycles nearby and a node is used to represent a cluster. Moreover, this study only introduced an enhanced CRO to solve the
problem. The effectiveness of this heuristic compared with traditional meta-heuristics, such as variable neighborhood search, tabu
search, and genetic algorithm, is not known. This comparison is left to future studies.

Acknowledgements

This research was supported by a grant from the National Natural Science Foundation of China (71771194). The authors are
grateful to the three reviewers for their constructive comments.

References

Abdullah, Z., 2017. Bike-sharing: Users share perks, gripes. The Straits Times, 26 March 2017 < http://www.straitstimes.com/singapore/bike-sharing-users-share-
perks-gripes > .

Alvarez-Valdes, R., Belenguer, J.M., Benavent, E., Bermudez, J.D., Muioz, F., Vercher, E., Verdejo, F., 2016. Optimizing the level of service quality of a bike-sharing
system. Omega 62, 163-175.

Benchimol, M., Benchimol, P., Chappert, B., de la Taille, A., Laroche, F., Meunier, F., Robinet, L., 2011. Balancing the stations of a self service “bike hire” system.
RAIRO - Operat. Res. 45 (1), 37-61.

Brinkmann, J., Ulmer, M.W., Mattfeld, D.C., 2015a. Inventory routing for bike sharing systems. Working Paper (2015-01-12) < https://www.tu-braunschweig.de/
Medien-DB/winfo/publications/wp_brinkmann_inventory_routing_bike_sharing.pdf > .

Brinkmann, J., Ulmer, M.W., Mattfeld, D.C., 2015b. Short-term strategies for stochastic inventory routing in bike sharing systems. In: Proceedings of the 18th EURO
Working Group on Transportation, Transportation Research Procedia, vol. 10, pp. 364-373.

Caggiani, L., Ottomanelli, M., 2012. A modular soft computing based method for vehicles repositioning in bike-sharing systems. Proc. — Social Behav. Sci. 54, 675-684.

Caggiani, L., Ottomanelli, M., Camporeale, R., Binetti, M., 2016. Spatio-temporal clustering and forecasting method for free-floating bike sharing systems. In: Swiatek,
J., Tomczak, J.M. (Eds.), Advances in Systems Science: Proceedings of the International Conference on Systems Science 2016 (ICSS 2016). Springer International
Publishing, pp. 244-254.

Casazza, M., 2016. Exactly solving the split pickup and split delivery vehicle routing problem on a bike-sharing system. Retrieved from: http://hal.upme.fr/hal-
01304433.

Chemla, D., Meunier, F., Wolfler Calvo, R., 2013. Bike sharing systems: Solving the static rebalancing problem. Discr. Optim. 10 (2), 120-146.

Contardo, C., Morency, C., Rousseau, L.-M., 2012. Balancing A Dynamic Public Bike-Sharing System, Technical Report CIRRELT 2012. Montréal.

Cruz, F., Subramanian, A., Bruck, B.P., Iori, M., 2017. A heuristic algorithm for a single vehicle static bike sharing rebalancing problem. Comp. Operat. Res. 79, 19-33.

Dell’Amico, M., Hadjicostantinou, E., Iori, M., Novellani, S., 2014. The bike sharing rebalancing problem: mathematical formulations and benchmark instances. Omega
45, 7-19.

Dell’Amico, M., lori, M., Novellani, S., Stiitzle, T., 2016. A destroy and repair algorithm for the bike sharing rebalancing problem. Comp. Operat. Res. 71, 149-162.

Di Gaspero, L., Rendl, A., Urli, T., 2013a. Constraint-based approaches for balancing bike sharing systems. In: Schulte, C. (Ed.), Principles and Practice of Constraint
Programming. Springer Berlin Heidelberg, pp. 758-773.

Di Gaspero, L., Rendl, A., Urli, T., 2013b. A hybrid ACO + CP for balancing bicycle sharing systems. In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels, M. (Eds.),
Hybrid Metaheuristics. Springer Berlin Heidelberg, pp. 198-212.

Di Gaspero, L., Rendl, A., Urli, T., 2016. Balancing bike sharing systems with constraint programming. Constraints 21 (2), 318-348.

Erdogan, G., Battarra, M., Wolfler Calvo, R., 2015. An exact algorithm for the static rebalancing problem arising in bicycle sharing systems. Euro. J. Operat. Res. 245
(3), 667-679.

Erdogan, G., Laporte, G., Wolfler Calvo, R., 2014. The static bicycle relocation problem with demand intervals. Euro. J. Operat. Res. 238 (2), 451-457.

Forma, L.A., Raviv, T., Tzur, M., 2015. A 3-step math heuristic for the static repositioning problem in bike-sharing systems. Transport. Res. Part B: Methodol. 71,
230-247.

Ho, S.C., Szeto, W.Y., 2014. Solving a static repositioning problem in bike-sharing systems using iterated tabu search. Transport. Res. Part E: Logist. Transport. Rev. 69,
180-198.

Ho, S.C., Szeto, W.Y., 2017. A hybrid large neighborhood search for the static multi-vehicle bike-repositioning problem. Transport. Res. Part B: Methodol. 95, 340-363.

Kadri, A.A., Kacem, L., Labadi, K., 2016. A branch-and-bound algorithm for solving the static rebalancing problem in bicycle-sharing systems. Comp. Indust. Eng. 95,
41-52.

Labadi, K., Benarbia, T., Barbot, J.P., Hamaci, S., Omari, A., 2015. Stochastic Petri net modeling, simulation and analysis of public bicycle sharing systems. IEEE Trans.
Autom. Sci. Eng. 12 (4), 1380-1395.

Lam, A.Y.S., Li, V.O.K,, 2010. Chemical-reaction-inspired metaheuristic for optimization. IEEE Trans. Evolution. Comput. 14 (3), 381-399.

241


http://www.straitstimes.com/singapore/bike-sharing-users-share-perks-gripes
http://www.straitstimes.com/singapore/bike-sharing-users-share-perks-gripes
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0010
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0010
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0015
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0015
https://www.tu-braunschweig.de/Medien-DB/winfo/publications/wp_brinkmann_inventory_routing_bike_sharing.pdf
https://www.tu-braunschweig.de/Medien-DB/winfo/publications/wp_brinkmann_inventory_routing_bike_sharing.pdf
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0030
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0035
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0035
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0035
http://hal.upmc.fr/hal-01304433
http://hal.upmc.fr/hal-01304433
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0045
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0055
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0060
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0060
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0065
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0070
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0070
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0075
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0075
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0080
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0085
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0085
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0090
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0095
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0095
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0100
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0100
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0105
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0110
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0110
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0115
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0115
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0120

Y. Liu et al. Transportation Research Part C 92 (2018) 208-242

Li, Y., Szeto, W.Y., Long, J.C., Shui, C.S., 2016. A multiple type bike repositioning problem. Transport. Res. Part B 90, 263-278.

Meddin, R., DeMaio, P., 2017. The Bike-Sharing World Map < http://www.bikesharingworld.com/ > (access on 28 November 2017).

Nair, R., Miller-Hooks, E., 2011. Fleet management for vehicle sharing operations. Transport. Sci. 45 (4), 524-540.

Nair, R., Miller-Hooks, E., Hampshire, R.C., Busi¢, A., 2013. Large-scale vehicle sharing systems: analysis of Vélib'. Int. J. Sustain. Transport. 7 (1), 85-106.

Pal, A., Zhang, Y., 2017. Free-floating bike sharing: solving real-life large-scale static rebalancing problems. Transport. Res. Part C: Emerg. Technol. 80, 92-116.

Papazek, P., Raidl, G.R., Rainer-Harbach, M., Hu, B., 2013. A PILOT/VND/GRASP hybrid for the static balancing of public bicycle sharing systems. In: Moreno-Diaz, R.,
Pichler, F., Quesada-Arencibia, A. (Eds.), Computer Aided Systems Theory - EUROCAST 2013. Springer Berlin Heidelberg, pp. 372-379.

Papazek, P., Kloimiillner, C., Hu, B., Raidl, G.R., 2014. Balancing bicycle sharing systems: an analysis of path relinking and recombination within a GRASP hybrid. In:
Bartz-Beielstein, T., Branke, J., Filipi¢, B., Smith, J. (Eds.), International Conference on Parallel Problem Solving from Nature. Springer International Publishing,
pp. 792-801.

Rainer-Harbach, M., Papazek, P., Hu, B., Raidl, G.R., 2013. Balancing bicycle sharing systems: A variable neighborhood search approach. In: European Conference on
Evolutionary Computation in Combinatorial Optimization. Springer Berlin Heidelberg, pp. 121-132.

Rainer-Harbach, M., Papazek, P., Raidl, G.R., Hu, B., Kloimiillner, C., 2015. PILOT, GRASP, and VNS approaches for the static balancing of bicycle sharing systems. J.
Glob. Optim. 63 (3), 597-629.

Raviv, T., Tzur, M., Forma, 1., 2013. Static repositioning in a bike-sharing system: models and solution approaches. EURO J. Transport. Logist. 2 (3), 187-229.

Regue, R., Recker, W., 2014. Proactive vehicle routing with inferred demand to solve the bikesharing rebalancing problem. Transport. Res. Part E: Logist. Transport.
Rev. 72, 192-209.

Reiss, S., Bogenberger, K., 2016. Validation of a relocation strategy for Munich's bike sharing system. Transport. Res. Proc. 19, 341-349.

Rudloff, C., Lackner, B., 2014. Modeling demand for bikesharing systems: neighboring stations as source for demand and reason for structural breaks. Transport. Res.
Rec.: J. Transport. Res. Board 2430, 1-11.

Schuijbroek, J., Hampshire, R.C., van Hoeve, W.-J., 2017. Inventory rebalancing and vehicle routing in bike sharing systems. Euro. J. Operat. Res. 257 (3), 992-1004.

Singhvi, D., Singhvi, S., Frazier, P.I., Henderson, S.G., O'Mahony, E., Shmoys, D.B., Woodard, D.B., 2015. Predicting bike usage for New York City’s bike sharing
system. In: AAAI 2015 Workshop on Computational Sustainability.

Shui, C.S., Szeto, W.Y., 2018. Dynamic green bike repositioning problem — a hybrid rolling horizon artificial bee colony algorithm approach. Transport. Res. Part D:
Transp. Environ. 60, 119-136.

Szeto, W.Y., Wang, Y., Wong, S.C., 2014. The chemical reaction optimization approach to solving the environmentally sustainable network design problem. Comput.-
Aided Civil Infrastruct. Eng. 29 (2), 140-158.

Szeto, W.Y., Liu, Y., Ho, S.C., 2016. Chemical reaction optimization for solving a static bike repositioning problem. Transport. Res. Part D: Transp. Environ. 47,
104-135.

Zhang, D., Yu, C., Desai, J., Lau, H.Y.K,, Srivathsan, S., 2017. A time-space network flow approach to dynamic repositioning in bicycle sharing systems. Transport. Res.
Part B: Methodol. 103, 188-207.

242


http://refhub.elsevier.com/S0968-090X(18)30176-1/h0125
http://www.bikesharingworld.com/
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0135
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0140
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0145
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0150
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0150
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0155
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0155
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0155
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0160
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0160
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0165
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0165
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0170
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0175
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0175
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0180
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0185
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0185
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0190
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0200
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0200
http://refhub.elsevier.com/S0968-090X(18)30176-1/h9000
http://refhub.elsevier.com/S0968-090X(18)30176-1/h9000
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0205
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0205
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0210
http://refhub.elsevier.com/S0968-090X(18)30176-1/h0210

	A static free-floating bike repositioning problem with multiple heterogeneous vehicles, multiple depots, and multiple visits
	Introduction
	Formulation
	Enhanced chemical reaction optimization
	Solution representation
	Nearby-node set
	Initial solution construction
	Adjustment on loading operations
	Additional calculation for the loading operation at depots

	Solution evaluation
	Four revised elementary reactions
	On-wall ineffective collision
	Decomposition
	Intermolecular ineffective collision
	Synthesis

	Solution adjustments
	Adjustments to loading and unloading quantities
	Loading and unloading adjustments invoked by an easily accessed node
	At surplus node v
	At deficit node v
	Loading and unloading adjustments invoked by a hardly accessed node
	For the case H+≠∅
	For the case H-≠∅
	Adjustment on route lengths
	Removal of nodes
	Insertion of nodes
	Route repairing
	2-Opt
	Removal of adjacent repeated nodes
	Implementation of solution adjustment

	Calculation of loading and unloading quantities
	Implementation of the enhanced CRO

	Numerical studies
	Parameter tuning
	Comparison between CPLEX and the enhanced CRO
	Comparison between the enhanced CRO and the original CRO
	The effectiveness of introducing OperationAdj into the enhanced CRO

	Conclusion
	Acknowledgements
	References




