
 
 

1 
 

Optimal Bus Service Design with Limited Stop Service in a Travel Corridor 

David Z.W. Wang1*, Ashish Nayan1, W.Y. Szeto2 

 
1 School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 

639798, Singapore 
2 Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong 

*Corresponding Author 

 
ABSTRACT 
 
This paper seeks to answer questions from the combined bus operator’s and users’ perspective on how 
to design limited stop service operation strategies when they are offered along with the normal bus 
services. The passengers’ service choice is determined by the common line calculation. The problem is 
formulated as a Mixed Integer Nonlinear Program (MINLP) with equilibrium constraints. Thereafter, a 
global optimal solution method applying various linearization and convexification techniques is 
proposed. Numerical studies are then performed to evaluate the model validity and solution efficiency 
followed by concluding remarks.  

Keywords: Limited stop service, line setting, attractive lines, mixed-integer nonlinear programming, global 
optimization 
 
1. Introduction 
 
Public transit services are lifelines for daily commute in many major cities in the world. In order to 
increase the service quality, constant improvement in operation and design is of paramount importance. 
In the presence of increasing daily travel demand, public transit service operators now seek to improve 
their service quality to efficiently satisfy the travel demand while maintaining operation in a 
financially sustainable manner. In many cities, bus transit services have become more convenient with 
the inclusion of differential services such as normal, express, and limited stop services which are 
operated to cater to various demand patterns. While a normal service serves all the bus stops/nodes on 
a route, an express service travels end to end without or with very few intermediate stoppages. A 
limited stop service serving a selected subset of nodes in a corridor provides another alternative and 
helps transit operators in reducing overall passenger travel time. Hence, a limited stop service is of 
reasonable financial and social importance to bus transit operation and due academic attention needs to 
be given to developing methodologies for  bus operators to design  their operation strategies.  
 

In the literature, transit corridor design problems have attracted much research attention. Ceder and 
Wilson (1986) discussed the bus route planning problem that minimizes total system operation cost 
while also addressing the scheduling problem. Since then, a vast body of literature on transit corridor 
design has emerged which involves optimal decisions of routing and scheduling, service frequency 
design, inter-node spacing, fleet size design, etc. Curtin and Biba (2011) proposed a mathematical 
model that maximizes the service value of a route, rather than minimizing its cost, and the cost 
(distance) is considered as a budget constraint on the extent of the route.  
 
Wang and Lo (2008) presented a related work on a multi-fleet ferry routing and scheduling problem 
that considered ferry services with different operational characteristics. Cortés et al. (2011) presented a 
methodology to optimise costs while integrating two kinds of services in the transit network with 
deadheading and short turning services. Yadan et al. (2012) proposed a robust optimization model 
for the bus route schedule design problem by taking into account the bus travel time uncertainty and 
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the bus drivers’ schedule recovery efforts.  A few studies discussed the bus dwelling time which is 
critical towards determining the total travel time of passengers (e.g., Meng and Qu, 2013; Sun et al., 
2013). Bus transit generally operates under different market regimes and a few studies in the literature 
have also contributed towards this aspect (e.g., Li et al., 2010; Li et al., 2008). Liu and Meng (2012) 
modelled the network flow equilibrium problem on a multimodal transport network with a bus-based 
park-and-ride system and congestion pricing charges. Li et al. (2011) addressed the design problem of 
a rail transit line located in a linear urban transportation corridor where the service variables include a 
combination of rail line length, number and locations of stations, headway, and fare. In addition to the 
above mentioned studies, there exist many other published works on transit service design; but 
unfortunately, few studies focus on the methodological design of a limited stop service in bus transit.  
 
Limited stop services have been operating in cities like Bogota, Chicago, Montreal, New York City, 
Santiago. Afanasiev and Liberman (1983) described a limited stop service as a service with stops at 
intervals of about 0.8 km. Silverman (1998) proposed a few important considerations while designing 
a limited stop service: wider roadways, not too close to rapid transit corridors, operationally more 
successful over long distances. Conlon et al. (2001) noted that implementing a limited stop service 
parallel to a normal bus service drew appreciation from users in Chicago where user satisfaction for 
both the services increased after the inclusion of the former. El-Geneidy and Surprenant-Legault (2010) 
observed that a limited stop service is the most preferred choice of passengers as they tend to 
overestimate their time savings while using this service. Tétreault and El-Geneidy (2010) proposed a 
stop selection methodology for limited stop services based on archived Automatic Vehicle Location 
(AVL) and Automatic Vehicle Classification (AVC) data obtained from a travel behaviour survey in 
Montreal, Canada. This included different scenarios wherein stops were selected based on passenger 
activity and transfers. As it can be concluded, studies mentioned above mainly focused on the 
operational aspect of limited stop services which is data-driven and descriptive while no analytical 
approach was proposed for the service design.  
 
In designing a limited stop service, bus stop selection is the prime decision variable, i.e., to determine 
which stops the bus service should stop or skip in the transit corridor. In addition, other operation 
strategies like optimal fleet size, service frequency and bus capacity should be determined with 
consideration of the passengers’ service choices. Some research studies have been conducted to 
develop methodological frameworks to prescribe guidelines for their operation in terms of optimal 
service design. Larrain et al. (2010) proposed the methodology to select optimal express services for a 
bus corridor with capacity constraints considering various demand criteria, whereas, Larrain et al. 
(2015) designed zonal bus services which skip all intermediate nodes over a segment of the transit 
route while serving all nodes in the initial and final segment. Ulusoy et al. (2010) presented a 
methodology to optimize the operation of integrated normal, short turn, and express services. Leiva et 
al. (2010) presented an optimization approach to design a limited stop service with capacity constraints. 
However, in this work, the selection of bus stops for the limited stop service is given in priori, and the 
service frequency of limited stop services lines is the only operation strategy determined by the model, 
despite the fact that they discard some of the services assigning zero frequency. Using only several 
given subsets of bus stops as the candidate service design plan for the limited stop service, one cannot 
obtain the truly “best” bus service design for limited stop services. Chiraphadhanakul and Barnhart 
(2013) proposed a design of the limited stop service by optimally reassigning certain bus trips rather 
than providing additional trips. However, this work does not consider transfers or multiple lines 
operating over common route corridors where passengers could make a choice. Besides, it allows only 
one limited stop service to be operated over the transit network and the frequency of the limited stop 
service is not taken into account for passenger assignment on the respective services. Recently, Larrain 
and Muñoz (2016) proposed a design algorithm for limited stop services in a corridor to optimise a 
number of services and then calibrated a regression model to estimate the benefits. Hart (2016) 
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developed a methodology for transit agencies to evaluate the potential for limited stop service along 
existing bus routes where net benefits of travel time savings would outweigh the net costs as a result of 
implementation of limited stop service. Zhang et al. (2016) proposed a methodology to determine 
frequencies and skip-stop strategy; however, genetic algorithm was used to develop the model. A 
detailed comparison between some of the above mentioned studies on limited stop services which are 
closer to the contribution in this study is illustrated in Table 1.  
 
In this paper, we present a mathematical model formulation to explicitly design a limited stop service 
with optimal decisions on bus line configurations (the set of bus stops served by the limited stop 
service) along with other operation strategies including operating frequencies and the optimal fleet size 
assignment. The model developed primarily considers the perspective of operators. Basically, given a 
fixed bus fleet size, the bus operators who decide to offer a limited stop service other than the normal 
bus service need to determine optimal operation strategies pertaining to service fleet size, line setting 
for limited stop services, and the service frequencies so as to minimize the total operation cost. At the 
same time, due consideration must be given to the service performance from the perspective of 
passengers as poor service performance may lead to a drop in demand or the possibility of losing the 
franchise of operating the routes altogether. Therefore, the objective function also incorporates 
passengers’ travel and waiting time as important factors which are to be adjusted by appropriate 
weights. Although this study assumes that the bus services are operated in a monopolistic market with 
fixed total demand, it should be noted that the model framework (which focuses on how to model and 
solve the optimal operation strategies for limited stop services) can be easily extended to consider 
elastic demand or competition with existing alternative bus services.   
 
 
Table 1 Comparison between a few published studies on limited stop service design and this work 
Factors\Studies Leiva et al. 

(2010) 
Ulusoy et al. 
(2010) 

Chiraphadhanakul 
et al. (2013) 

This work 

Assumptions     
Origin-
destination 
(O-D) matrix 

Fixed Fixed Fixed Fixed 

Transfers Allowed Allowed Not Allowed Allowed 
Number of 
limited stop 
services 
allowed 

Unlimited Unlimited 1 Unlimited 

Objective Minimize social 
costs 

Minimize social 
costs 

Maximize social 
welfare 

Minimize social  
costs 

Decision 
variables 

    

Fleet size      
Frequency    -----  

 
 

Explicit design 
of a new limited 
stop service 

-----  
(Given a 
predefined set of 
candidate 
services) 

-----  
(Given a 
predefined set of 
candidate 
services) 

  

Constraints     

Choice behavior  DUE SUE (stochastic System Optimal  DUE (deterministic 
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(deterministic 
user 
equilibrium) 

user equilibrium) user equilibrium) 

Common line 
approach 

 ----- -----  

Capacity     
Fleet size     
Assignment Proportional to 

frequency of 
each attractive 
line 

Logit based 
model 
considering wait, 
transfer, in-
vehicle times 

A linear function of 
frequency share and 
in-vehicle travel 
time savings 

Proportional to 
frequency of each 
attractive line 

Multiple 
services along 
route segments 

  -----  

Shorter running 
times of limited 
stop services 

  -----  

Incorporating 
limited stop 
service(s) 
frequency in 
demand model  

  -----  

 
In designing the transit corridor with the normal service and limited stop service, one intrinsic issue to 
be considered is the travellers’ choice behaviour between different services. In this study, such 
passenger choices are described by the classical common line problem. Specifically, it is assumed that 
the travellers choose a subset of bus services that minimizes the expected total travel time which was 
defined as the common line problem in Chriqui and Robillard (1975). The common line problem has 
been investigated in many other research works in the literature such as Spiess and Florian (1989), De 
Cea and Fernandez (1993),  Cepeda et al. (2006).  
 
In this study, the model is formulated into a MINLP. One may consider this bus service design 
problem with limited stop services as a bi-level mathematical program; the lower level program 
describes the passenger assignment problem whereas the upper level program is the bus service design 
problem. Alternatively, in this study, we formulate the lower level passenger assignment problem as 
equivalent mathematical conditions, thus reducing the bi-level program into a mathematical program 
with equilibrium constraints (MPEC). The formulated MINLP is inherently non-convex and even if 
the integrality is solved, the problem still remains non-convex. Hence, we devise a solution algorithm 
applying various linearization and convexification techniques to find the global optimal solution.  A 
global optimal solution guarantees the best possible operation strategy and, therefore, it is necessary 
for bus service operators to have such a solution if the objective of minimizing the total operation cost 
is to be achieved. It should be noted that most of the previous research works on transit service design 
did not guarantee a global optimal solution. One can further note that the constraints in the model 
formulations of some bus service design problems in the literature were simply removed or relaxed to 
facilitate obtaining the solution efficiently; but unfortunately, this does affect the solution validity to a 
certain extent.  
 

In summary, this paper contributes to the literature in two major aspects. First, we develop a 
mathematical model to fully address the optimal design of limited stop bus services which explicitly 
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determines bus line configurations (the set of bus stops served by the limited stop services), operation 
frequencies and fleet size assignment while considering passengers’ service choices. Previous research 
assumed pre-determined limited stop bus services, which simplified the problem and circumvented 
complicated model formulation, however, compromised the model’s capability of determining the 
truly best limited stop bus services. Second, a global optimal solution method is developed to solve the 
model formulation. Due to the inherent non-convexity of the formulated problem, previous studies in 
transit service design did not achieve a global optimal solution. 
 
The paper is structured as follows: Section 2 presents the problem with the model formulation. Section 
3 discusses solution methodology. Section 4 is the numerical study which illustrates the accuracy of 
the methodology and problem properties and finally, section 5 gives the concluding remarks.  
 
 
2. Model formulation 
 
In this section, we present a model formulation to optimally design the limited stop service. Before the 
model formulation; we define the general corridor setting and notation, make a few preliminary 
assumptions and state the general mathematical constraints for a limited stop service. 
 
2.1. Corridor setting 
 
The transit corridor considered is single corridor, linear and numbered such that the last node number 
is equal to the total number of nodes in the corridor. A bus cycle refers to one complete trip from the 
first node to the last node of the corridor. A loop service may be considered if the first and the last 
nodes are the same. For the purpose of illustration, we show an example transit corridor of 5 nodes 
numbered from 1 to 5 as in Figure 1.  

 
Fig. 1 Transit corridor 

 
In this corridor, passengers can utilize the transit services to travel from any origin node i to any other 
destination node j (for all j that is greater than i). The normal services cater to every node of the 
corridor whereas the limited stop services serve only a certain subset of all the bus stops which are to 
be determined through optimization and are referred to as special nodes. However, all services to be 
considered in our model start at node 1 and end at  the last node which can be referred to as node b, 
which is node 5 here in Fig. 1. The operator has a fixed fleet of buses which is to be split amongst the 
operating services.  
 
In Fig.1, let us consider the O-D pair (1-5) connected by an arc as shown. For travelling between this 
O-D pair, passengers use multiple route sections (sets of transfer nodes) such that they can transfer at 
intermediate nodes.  Hence, starting at node 1, passengers can travel on various route sections to reach 
to their destination node. One of the strategies could be as follows: take route section 1-3, transfer at 
node 3, take route section 3-5 and finally reach the destination. On each of these chosen route sections, 
the passengers can select any of the bus transit services. As already mentioned, the normal service 
serves all the nodes and, hence, every route section. However, the limited stop service would serve 
only selected route sections depending on the optimal line setting. Hence, depending on whether the 
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limited stop service serves a particular route section or not, the passengers travelling on that route 
section would decide on which bus service/line to take. This is indeed the “common line” problem, as 
is further explained in the later part of this section.  

2.2. Variable definitions  
 

Sets and notations 
  
N  Set of nodes in the transit corridor, i N     
W  Set of O-D pairs w W    
o,d Indices for origin and destination of any O-D pair w W     

ijS   Set of node pairs  

L  Set of all transit lines l L     
'L  Subset of limited stop services, 'L L          

ij Route section joining nodes (i,j)  

sl   Limited stop service '
s

l L     

rl  Normal service    

ijl  Any transit line serving route section ij 

  
Parameters   

cW  Value of waiting time 
cT  Value of travel time 

k Parameter whose value depends on the distribution of bus arrival times at stops 
hT Fixed dwelling time at node h 

ijT  Non-stop running time between node pair ( , )i j   

lK  Bus ownership cost of any line l 
wX  Exogenous demand for O-D pair w    

B  Available fleet size 
l

Cap  Passenger capacity of a bus on any line l 

trans  Coefficient to convert the number of transfers to cost terms 
 b Cardinality of the set N (number of nodes in the bus service corridor) 

lF  Operating cost per cycle of any transit line l 
,    Time delay due to the alighting or boarding activity per passenger 

  
Definitional variables 

, si ly  Binary variable, it equals one if the limited stop service sl  serves node i .   
l

ijt Travel time between node pair (i, j) on line l 
w

ijV
 

Passenger flow over route section i j  for an O-D pair w    
l
ijx
 

Line l over route section i j  in the common line problem is attractive if it takes a 
value of one, binary variable 

,w l
ijv  Passenger flow on any line l over route section ij  for an O-D pair w    
,l cyclet  Travel time for one bus cycle on any line l 

 
Decision variables 
 ln  Fleet size allocated to any line l 

lf  Operating frequency of any line l 
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sl
ijy  Binary variable, denoting the direct service between node pair (i, j) for a limited 

stop service sl  exists if it equals one 
 
2.3. Assumptions 
 
2.3.1. Passenger demand  
Exogenous demand for each OD pair is assumed to be given. However, the demand for a particular 
bus service depends on its service quality and is determined by the choice behaviour of passengers.  
 
2.3.2. In-vehicle travel time 
It is assumed that the running time between two consecutive stops along the service is exogenously 
given; the standard bus dwelling time at each stop is given. For a given node pair in a given route, the 
total in-vehicle travel time is determined by the running time plus dwelling times at the stops located 
between these nodes. Therefore, the in-vehicle travel time for a limited-stop service is determined by 
its line setting, i.e., which stops to be served by the limited stop service; whereas for the normal 
service which serves all intermediate nodes, the in-vehicle travel time is fixed if the dwelling time at 
each bus stop is assumed to be fixed and given. In this study, effects of boarding and alighting on bus 
stop dwell time are also considered.    
 
2.3.3. Choice behaviour 
The model formulation captures choice behaviour through the attractive/common line approach 
(Chriqui and Robillard, 1975). It assumes that passengers consider only a subset of lines serving a pair 
of nodes and the first arriving bus among the subset of lines is chosen by the passengers. The factors 
primarily affecting bus service choice include service waiting time and in-vehicle travel time of the 
lines. The model formulation also takes bus service capacity into account to assign passengers to each 
of the operating services.  
 
2.3.4. Total costs 
As in Leiva et al. (2010), the total costs for the bus corridor comprise of operator costs and user costs. 
Operator costs in our model formulation are a combination of (i) bus ownership costs which is 
basically the cost of owning or renting a bus for operation on a particular service (the total ownership 
cost of a particular service is the product of the number of buses and the unit ownership cost of the 
type of bus given by l lK n ) (ii) bus operating costs which accounts for variable operation costs such as 

employment costs, taxes, licenses and insurance (total operating cost for a service l can be given by
l lF f ). Hence, it is noted that the total operating cost term for a service l does not directly include 

cycle time and hence, is kept independent of the number of stops and the cycle time of any transit line 
l. However, if it is desired to include the effect of cycle time into the operating cost, the operating cost 
per cycle lF  can be easily expressed as a linear function of the cycle times, which are further defined 
in constraints (13) and (14) in the model formulation. As regards the user costs, they are a combination 
of passenger waiting time costs and passenger travel time costs over route sections for each O-D pair.  
 
2.4. General mathematical constraint for a limited stop service 
 
In this section, we model the service corridorof the limited stop service through a mathematical 
formulation. For the limited stop service ls, the possible direct service ( sl

ijy ) between any node pair (i, j) 

can be shown as below in Fig. 2: 
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Fig. 2 Possible direct limited stop services between different node pairs in the transit corridor 

 
The service corridor of the limited stop service can be modelled by the following conditions: 

,
, \{1, }, '.1s s

s

j i

i l l

ijy y i N b l L


      (1) 

1, , ' .1, 1,
s

s sl b l l Ly y     (2) 

 0,1 '.,s

s

l

ijy l L   (3) 

The binary variable sl
ijy  represents the direct limited stop service, which takes the value 1 if there is a 

direct limited stop service between node pair (i, j) with no intermediate stoppages in between and 0 
otherwise.  The variable , si ly   defined in constraint (1) describes whether there is a limited stop service 

from this particular node i towards any node j located further in the corridor. Eq. (2) ensures that the 
limited stop service starts from the first node 1 and ends its service at the last node b. Hence, at any 
intermediate node i, the maximum value of the flow variable , si ly  is equal to 1 for a certain limited stop 

service ls, as defined in constraint (1). Constraint (3) defines that sl
ijy is indeed a binary variable. 

 
2.5. Model formulation for the design of limited stop services 
 
2.5.1. Problem Description  
 
In this section, a methodology is presented to design the limited stop service operating in conjugation 
with the normal service in terms of line setting, operating frequency and the fleet size with the 
attractive/common line approach. The problem description in this study is similar to that presented in 
Leiva et al. (2010).To describe the passengers’ service choices, the concept of route sections (e.g., De 
Cea and Fernandez (1993)) is applied (each route section connecting nodes i,j denoted as ij). The 
normal service operates over all route sections throughout the corridor while a limited stop service 
operates over certain route sections depending on its line setting. At a particular node, a passenger 
intending to travel on a route section in the direction towards the destination node only boards a 
service that is attractive over that route section. As was defined in Chriqui and Robillard (1975), the 
attractiveness of a particular service over a route section is determined by the total expected travel 
time including the waiting time and in-vehicle travel time. Allowing for the transfers, the model 
assumes that passengers have the liberty to travel in stages over route sections towards their respective 
destinations. Starting from his/her origin node, a passenger boards the first bus from the set of 
attractive lines over a certain route section and transfers to the next route section until he/she reaches 
the destination node. 
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Fig. 3 Example transit corridor with line setting for different limited stop services 

Consider the above example with two limited stop services 1l  and 2l , and the normal service 0l , as 

shown in Fig. 3. The line settings of 1l  and 2l  are 1->5 and 1->4->5 respectively. Table 2 shows the set 

of lines serving different route sections as per the given transit line settings. A passenger can choose 
one of these lines to travel over the route section depending on whether it is serving the route section 
and whether it is attractive. A particular bus line serving a route section is attractive when the 
passenger's travel time cost over this line is smaller than the combined travelling and waiting time cost 
of all other lines serving the same route section. 

Table 2 Route sections and operating lines  
Route 
section 

1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5 

Lines 
0l  0l  0l , 2l  0l , 1l , 2l  0l  0l  0l  0l  0l  0l , 2l  

 
De Cea and Fernandez (1993) presented a hyperbolic programming problem to find the set of 
common/attractive lines operating over a route section. If sA  constitutes the set of transit lines 

operating over a route section s and ( , )l lt f  defines the in-vehicle travel time and frequency of a bus 

line l operating over s, then the following optimization problem determines the set of common lines 
on route section s: 

'

1
'

{ }

1

1
min

l

k
l l l

l
k

x l l

l

t f x

f x








  (4)

 

subject to {0,1},l
sx l A   , where 'k = sA  is the number of lines operating over s and lx  equals one 

if line l  is an attractive line to the passengers and zero otherwise. In formulation (4), the objective 
function to be minimized describes the expected total travel time if passengers board on the first 
arriving bus service within the set of common/attractive lines. Specifically, the first term (inverse of 

the frequency, i.e., '

1

1
k

l l

l

f x



) denotes the expected waiting time at bus stop; while the second term (i.e., 

'

1
'

1

k
l l l

l
k

l l

l

t f x

f x








) depicts  the expected in-vehicle travel time. Hence, the set of common lines are determined 

such that the combined waiting and travelling time for passengers using these lines is minimized. 
More detailed information on this formulation can be referred to De Cea and Fernandez (1993). 
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While travelling over a particular route section, passengers might face a situation wherein they need to 
choose between the different lines/services serving the route section. The common line problem 
determines how passengers select the set of common lines such that passengers can board any of these 
lines, whichever comes first. It is interesting to note that, as congestion on the common lines increases, 
the lines which are not attractive also become attractive. This is because, the congestion on the 
common lines increases their dwell time at nodes and the expected waiting time at the downstream 
nodes, making the less attractive lines more attractive. It is noted that the bus service congestion is not 
considered in this study. 

2.5.2. Model Formulation  
 

         The model formulation for the design of limited stop services is defined through an optimization 
problem as given below.  

 
,

, ,
min ( )

ll
l ij ij ij ij

s

w w l lc
l l ij c ij ijl

l L w W ij S w W ij S l L

l L

l l w w
trans ijl

n f y l L w W ij Sij

Wk
K n V T v t

x f
Z F f V X

     


  

                  (5) 

Subject to: 
 

 

.l
l L

n B



 

(6) 

, .,l cycle

l

lf n l Lt        (7)   

, , .,
l

w

ij l

l L

l
ijw l

ij l
ij

l L w W
x f

V
x f

v



   


           (8) 

.

; ( )

; ( )

0;

,
i i

w

w

ij S ij S

w w
ij ij

otherwise

V V w W

X i o w

X i d w
 

   



 

 
 
 
 
 

          (9) 

1
, , ,

\ 1

1
,

\ 1

', .

.

,

,

s s s s

s

r r

r

l

l

l

l

b b
i l j l w l

ij s
i N b j i N w W

b b
w l
ij

i N b j i N w W

Cap

Cap

y l L i N

i N

y f

f

v

v



    



    





   

 

  

  
     (10-i,ii) 

,
, \ {1, }, '.1

s

s s

j i

i l l
ij i N b l Ly y



     (11) 

1, ,1, 1,s sl b ly y  ' .
s

l L     (12)   

1

1

, , '.
ij

s s

h j
h

h i

s
l h l
ij T Tt y l L

 

 

     (13) 

1

1

.
h j

h i

r h

ij

l
ijt T T

 

 

        (14) 

.1 ,

h k

c c ij

h L ll

c ij h

h L l

ij ij

ij ijij ij

ij

ij ij

l

ij ij

kW T t f

T t
f

l Lx
 

 



   



        (15)   
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, ,
, ' .

s
s s sl i l j l

ij y y l Lx     (16) 

;0,l l Lf   0,w

ijV  .w W                                                                                                                           (17) 

  .0,1 ,l
ijx l L    

  ' .0,1 ,
s

sl
ij l Ly                                                                                                                                              (18)

 

 

In the objective function (5), the first term is the total ownership cost of the fleet size allocated to all 
services; the second term is the total operating cost of all services, proportional to the line service 
frequency; the third term is the waiting time cost for all passengers, the fourth term is the passenger 
travel time cost and the fifth term is the penalty for transfers. Constraint (6) states that the total fleet 
size of all operating lines is lesser than or equal to the available fleet size. Constraint (7) ensures that 
the fleet size assigned to each service can fulfil the service frequency requirement. It should be noted 
that the total travel time for the full cycle of the bus service ,l cyclet  for limited-stop service is 
determined by the optimal design of the subset of stops to be served while for normal service, ,l cyclet  is 
fixed, as we assume that the in-vehicle traveling time between bus stops and bus dwelling time at bus 
stops are both fixed and exogenously given. Indeed, ,l cyclet  can be defined by equations (13) and (14) 
by letting i and j represent the first and last node respectively.  
 
Equation (8) computes the passenger flow on individual lines over a route section depending on 
whether they are attractive or not. Passenger flow is assigned to a line only if it is attractive over the 
route section (i.e., when 1l

ijx  ). Constraint (9) defines passenger demand conservation at all nodes of 

the corridor. Constraint (10) states that the capacity of a line is greater than or equal to its total 
passenger demand (in this constraint, (i,j) refer to any node pair in the transit corridor). Constraints 
(11), (12) describe the binary variables for transit line setting of the limited stop services as in 
conditions (1)-(2). Constraints (13) and (14) compute the travel time over route sections for the limited 
stop service and the normal service respectively. Constraint (15) is used to determine the attractive 
lines over a route section as in the common line problem explained in section 2.5.1. It is assumed that 
the passengers choose a subset of attractive lines with the minimum expected total travel time cost 
including both waiting time and in-vehicle travel time to travel towards their destination. Constraint 
(15) implies that, if a transit line is attractive over a route section, then the travel time cost on that line 
must be less than or equal to the combined waiting and travel time cost of all other lines serving the 
same route section and vice versa. A similar formulation can be found in Leiva et al. (2010). The 
constraint does not consider the case when the line is not attractive as passenger flow over a route 
section is assigned to only those lines which are found attractive and hence, waiting time and travel 
time costs are computed with respect to only those lines. Constraint (16) states that if the bus stops i 
and j are not served by the limited stop service, it is certain that the limited stop service will not be 
attractive over route section ij  as the limited stop service between the two stops does not even exist. 
Hence, constraints (15) and (16) entail that a limited stop service is attractive over a route section only 
if it serves the route section and its travel time cost is lesser than the combined waiting and travelling 
times of all other lines that operate on the same route section. Constraint (17) defines the non-
negativity condition of the operating frequency of each line and the route section flow respectively. 
Constraint (18) defines the binary variables. One can notice that the prominent characteristic of this 
model formulation is that, all the possible line settings for limited stop services are clearly 
incorporated in the model, which avoids the tedious and inefficient enumeration. In addition, the 
common line problem that determines the attractive lines in route sections is depicted in logic 
condition as in (15), which will later be cast into an equivalent set of linear conditions. 
 
Hence, it should be noted that this model formulation is indeed a bi-level problem wherein the upper 
level problem is to design an optimal limited stop service operation strategy and the associated lower 
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level problem is to find the attractive set of lines on each route section which describes the passengers’ 
service choice behaviour and also accounts for the trip assignment process. The lower-level problem is 
essentially a common-line problem assuming passengers choose a set of attractive lines so that the 
expected total travel time is minimized. 
  
2.5.3. Incorporating the effects of boarding and alighting into bus dwell time  
 
In the above formulation, we assume that bus dwell time at bus stops is fixed and the congestion level 
is low. This would mean that either the demand is low or that the marginal impact of an extra 
passenger on the dwell time is low. But since limited stop services are implemented considering high 
demand, hence the above assumption holds only if the marginal impact of passengers boarding and 
alighting is negligible. This is suitable when vehicles have multiple doors, level boarding and not 
highly crowded on-board or on the platforms. In this subsection, the effects of boarding and alighting 
on bus dwell time are explicitly considered by assuming that the bus dwell time spent at stops is 
linearly dependent on the boarding or alighting passenger flow. Basically, the boarding time or 
alighting time, whichever is bigger, will be treated as the bus dwell time at stops. Here, we re-define 
the travel time on the limited stop service and the normal service respectively by incorporating the 
effects of alighting and boarding.  

1,
, , ,

1, , ,

0max ( ), ( ) , , 0s s ss

h j h N
h l w l w l

ij kh hk
w W h i h N k h k N h k k N

l
ij Tt y v v  

  

       

  
 
  

                                                (19) 

1,
, ,

1, , ,

max ( ), ( ) , 0, 0r rr

h j h N
w l w l

ij kh hk
w W h i h N k h k N h k k N

l
ij Tt v v  

  

       

 
 

 
 

                                                                 (20) 

In the above equations (19) and (20), the travel time for the two services between a node pair (i,j) takes 
into account the effects of alighting and boarding. As passengers travel between various O-D pairs w   
and different route sections ij , at each node h, the greater of the boarding time and alighting time 
would determine the dwell time at h. The positive coefficients  and   describe the alighting time 
and boarding time per passenger respectively. 
 
It should be noted that incorporating the boarding and alighting effects would lead to the common-line 
equilibrium problem (e.g., Cominetti and Correa, 2001; Larrain and Munoz, 2008), which will make 
the problem significantly more complicated. In this study, the equilibrium common lines are not 
considered by assuming low level of congestion. Capturing the boarding and alighting effects, as well 
as the congested common-line equilibrium, could be addressed in the future study.  
 
3. Solution Method 
 
The model formulation in the previous section is indeed an MINLP. Due to the inherent nonlinear and 
nonconvex property, it is very hard to solve the MINLP. In this study, we seek to obtain a global 
optimal solution of the problem rather than only a local optimal solution. To achieve so, we first 
transform the nonlinear terms into linear ones by applying various linearization techniques so that the 
original MINLP can be transformed into a mixed integer linear program (MILP). Then, many existing 
solution algorithms like the branch and bound method can be used to solve the MILP which can 
guarantee a global optimal solution.  
 
One can notice that the nonlinearity of the model formulation arises from the objective function (5) 
and the nonlinear constraints (7), (8), (10)-(i), (15), (16), (19) and (20). Constraint (7) is converted into 
equivalent linear conditions by using a Reformulation Linearization Technique (RLT) as demonstrated 
in section 3.1, constraint (8) is linearized by using the multidimensional piecewise linearization 
method mentioned in section 3.3, constraint (10)-(i) is linearized using a combination of linear 
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transformation for product of binary variables and RLT as shown in section 3.2, constraint (15) is 
replaced with an equivalent set of linear conditions by  using a linear inequality constraint as 
mentioned in section (3.4), constraint (16) is  handled in section 3.2 and finally, constraints (19)-(20) 
are also treated by using the linear inequality method shown in section 3.5. The objective function (5) 
is linearized and subsequently reformulated using a combination of the various linearization 
techniques used to linearize the constraints.  
 

3.1. Linearization with RLT 
 
Constraint (7) is linear when considering the normal service as the cycle time for the normal service is 
known, but it is nonlinear for the limited stop service due to the product of a continuous variable 
(service frequency) and the travel time which includes binary variable representing the limited stop 
service as shown in constraint (13). Hence, a RLT as introduced in  
Sherali and Alameddine (1992) is used to represent this bilinear term through an equivalent set of 

linear conditions. Denote au  as binary and ax  as continuous such that aa ax x x  , where ax  and ax  

are a sufficiently small positive number and a sufficiently large upper bound on ax , respectively. If

a a ax u x  , the equivalent linear transformation of the bilinear term can be expressed as: 

0

0

0

0.

aa a

aa a

a aa a a

a aa a a

x u x

x u x

x x x u x

x x x u x

 


 
    
    





                                                                             (21) 

Substituting equation (13) into constraint (7) for the case of limited stop services, the following can be 
obtained: 

1
,

2

,( )
ij

s s s s

s s

h b
l cycle h

l s l
h

l h l lT Tf n y f nt
 



           (22) 

Here, the nonlinearity of (22) arises from the product of service frequency variable slf and binary 

variable , sh ly for the limited stop service. Further substitution can be done as follows to represent this 

bilinear term , s sh l lfy :  

, ,s s sh l h l lfg y  (23) 

Using (23) in constraint (22), the resultant expression becomes:  

1

2

,
ij

s s

s

h b
h

s
h

l h l
lT Tf g n

 



   (24) 

Here, the bilinear term , sh lg  as the product of service frequency variable slf  and binary variable , sh ly  

can be transformed into equivalent linear conditions as in (21). That is to say, the nonlinear constraint 
(7) is now completely converted into equivalent linear constraints by applying the RLT method. 
Indeed, the same RLT method can be used to linearize the nonlinear travel time function as given in 
(19) if effects of boarding and alighting need to be considered. 
 
If the operating cost per cycle lF  is defined as a linear function of the cycle time as in (13) and (14), 
then the total operating cost term in the objective function will be nonlinear for the limited stop service 
involving the same nonlinear term of ,s sl cycle lft  as in (22), which can be easily linearized by using the 
RLT method.  
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3.2. Linear transformation to linearize a product of binary variables 
 
For nonlinearity in (16) involving the product of two binary variables, the following equivalent linear 
transformation can be applied for its linearization. Without loss of generality, if A=cd where c and d 
are binary,  this bilinear term can be expressed equivalently by the following linear constraints which 
can be easily verified by enumerating all the possible cases as  c and d are binary variables.  

1.

A c

A d

A c d


 
   

         (25) 

The nonlinear capacity constraint (10)-(i) for the limited stop service can be linearized by first using 

(25) to linearize the product of the binary variables , ,,s si l j ly y   and then using the RLT in (21) to 

linearize the product of binary variables and continuous variables. 

3.3. Multidimensional piecewise linearization method  

 
This section deals with the nonlinearity in (8) and the objective function. To handle the nonlinearity in 
constraint (8), a multidimensional piecewise linear approximation technique as proposed by Misener 
and Floudas (2009) is adopted. The basic idea of this piecewise linear approximation technique to first 
partition the feasible domain (for this study, the nonlinear term has two variables) into a number of 
small rectangles and then use the linear convex combination to approximate the two-variable function 
within the small rectangles. The solution of the optimization with the piecewise linearization 
constraints will find the rectangle within which the optimal solution lies. This rectangle is referred to 
as the active rectangle. In this subsection, the constraint (8) is nonlinear in two dimensions and once it 

is linearized by using this technique, the third term in the objective function
ij

w c
ij l

w W ij S

l L

l
ij

W k
V

x f 



 
 can be 

reformulated into a linear form and the travel time cost term ,

ij

w l l

c ij ij
w W ij S l L

T v t
  
 in the objective function 

can be further linearized by using the RLT as shown in (21).  
 
Considering the objective function : 

,min ( ).
ij ij ij

w w l lc
l l ij c ij ijl

l L w W ij S w W ij S l L

l L

l l w w
trans ijl

l L w W ij Sij

W k
K n V T v t

x f
Z F f V X

     


  

          
 

This can be reformulated as: 
,min ( ).

ij ij ij

w w l lc
l l ij c ij ij

l L w W ij S w W ij S l Lij

l l w w
trans ij

l L w W ij S

W k
Z K n V T v t

q
F f V X

       

           
 (26)  

In (26), we introduce new terms  l
ijq  and ijq to represent:  

l l l
ij ijq x f , and  (27) 

l l l
ij ij ij

l L l L

q q x f
 

   . 
 (28) 

Equation (27) and (28) can be linearized using the RLT approach as shown above in the previous sub-
section. Based on (27) and (28), constraint (8) can be written as: 
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, , .,
l

ijw l w
ij ij

ij

l L w W
q

v V
q

      (29)
 

The constraint (29) is nonlinear as the right-hand side of this equation involves multiplication and 
division of multiple variables. Now, we will apply the multi-dimensional piecewise linearization 
method as proposed by Misener and Floudas (2009) to linearize the reformulated constraint (29). 

Consider the two variables, i.e., w
ijV , passenger flow over route section ij for an O-D pair w, and l

ijq , 

route section line frequency for line l, both of which fall into bounded intervals partitioned into M1 and 
N1 smaller segments. These intervals can be explicitly stated as below respectively: 

1 1
, 1 , , 1 ,; .[ , ], 1,..., [ , ], 1,...,w m w m l n l nw l

ij ij ij ij ij ijV V V m M q q q n N       

Also, the bounds of the feasible domain for the two variables are explicitly shown as follows: 

1,0 w M

ij

w
ijV V  , ;w W   

1,0 ,l Nl
ij ijq q l L   . 

(30) 

The segments given by , 1 , , 1 ,[ , ],[ , ]w m w m l n l n
ij ij ij ijV V q q   are not necessarily equal in size. If M1 and N1 are 

sufficiently large such that the distance between any two consecutive points of each segment is very 
small, the true values of the following functions can be closely approximated by using piecewise 
linear functions. In this study, we can take the lower bounds of both the variables to be zero and the 
upper bound values to be equal to the total exogenous demand and maximum allowable route section 
frequency value, respectively.  Now, consider the following two nonlinear functions:  

, ,
w

ijw
ij

ij

w W
V

C
q

    (31) 

, , , ,
w

ijl w l
ij ij

ij

l L w W
V

C q
q

     (32)  

The feasible domains of functions (31) and (32) cover the bounded intervals of the variables and are 
divided into 1 1M N  rectangles. Each corner point (m,n) of these rectangles is associated with a 

particular value of variables in (31) and (32) which is explicitly computed by (34) and (35) below. 
Consider two sets of SOS1 variables (special ordered set of type 1 of which at most one variable is 
strictly positive whereas all others are at zero) i.e., S1 and S2 proposed by Beale and Tomlin (1970), 
to determine the active rectangle where the optimal values of the two variables are located.  

1

1

1: [0,1], 1,...,

2 : [0,1], 1,..., .

,m

ij

n

ij

S m M

S n N





 

 
 

(33) 

Each candidate rectangle has four corner points, denoted by a set of co-ordinates (m,n). Then, the 
functions (31) and (32) can be expressed as :  

,
,( , ) ,

w m
ijw m n

ij n
ij

V
C

q
  

 
(34) 

,
, ( , ) , .

l n
ijl w m n w m

ij ij n
ij

C
q

V
q

    (35) 

A convex combination of these points is used to determine the value of the two functions within that 
rectangle. Denoting the coefficient of convex combination ranging between 0 and 1 by: 

1 1
, , ,

0 0
1 1: [0,1], 0,..., , 0,..., ; 1.

M N
m n m n m n

ij ij ij
m n

m M n N  
 

   
 

(36) 
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Hence, with the above described, the following equations are used to conduct the two-dimensional 
piecewise linearization: 

1 1
,

0 0

, , ( , ) ,, ,
M N

m n

ij
m n

l w l w m n
ij ij w Wl LC C

 

     (37) 

1 1
,

0 0

, , ( , ) ,, ,
M N

m n

ij
m n

l w l w m n
ij ij w WC C l L

 

     (38) 

1 1
, ,

0 0

,,
M N

w m n w m

ij ij ij
m n

w WV V
 

   (39) 

1 1
, ,

0 0

, ,
M N

l m n l n

ij ij ij
m n

q q l L
 

    (40) 

,

1, 0,..., ,n l n

ij ij
l L

q q n N


   (41) 

1 1
,

0 0

1,
M N

m n

ij
m n


 

  (42) 

,

1 1[0,1], 1,..., ; 1,..., ,m n

ij m M n N   
 (43) 

1
0, 1

0

,
N

n

ij ij
n




  (44) 

1
, 1

0
1, 1,.., 1,

N
m n m m

ij ij ij
n

m M  



     (45) 

1

1 1,

0
1, [0,1], 1,.., ,

N
M n M m

ij ij ij
n

m M 


    (46) 

1
,0 1

0

,
M

m

ij ij
m




  (47) 

1
, 1

0
1, 1,.., 1,

M
m n n n

ij ij ij
m

n N  



     (48) 

1

1 1,

0
1, [0,1], 1,.., .

M
m N N n

ij ij ij
m

n N 


    (49) 
 

In equations (37)-(40), the value of each of the variables ,l w
ijC , ,l w

ijC , w

ijV , l

ijq   is computed as the convex 

combination of its values at the corner points of each of the 1 1M N  rectangles that the domain was 

originally partitioned into. Equation (41) represents the combined frequency of all attractive lines 
serving a particular route section. Equations (44)-(49) lay the conditions of interdependence between 

the SOS1 variables ( ,m n

ij ij  ) and the coefficient for convex combination ,m n

ij . Hence, the two 

nonlinear functions in (31) and (32) are linearized with this multidimensional piecewise linearization 
approach. In this way, the nonlinear constraint (8) is converted into linear constraints; the nonlinear 
terms in the reformulated objective function (26) are also linearized. 

The fourth term of the reformulated objective function (26) involves the product of the service 
passenger flow and the travel time. Using (32), this term can be expressed as: 

, ,l w l w l
ij ij ijC t                                                                       (50) 
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Since the travel time for the normal service is exogenously known, the product of passenger flow over 
normal service and travel time is linear. We consider the product of the passenger flow and travel time 
of the limited stop service over a route section i j as below:  

1

1

, , , ,( ).
ij

s s s s s

h j
h

s
h i N

l w l w l l w h l
ij ij ij ij pT Tt yC C

 

  

  
 

  (51)

In the above equation, the product of the passenger flow on line l and binary variable is nonlinear, but 
can be easily represented by equivalent linear conditions as is shown in (21).  

3.4. Treatment for logic constraints 
 
Further, constraint (15), describing the common line problem, is expressed in the form of logic 
constraints, which cannot be tackled directly in a mathematical programming problem. Constraint (15) 
can also be written as: 

,,

( ) 0 .1 ,l k k k

c ij c c ij

k L k l

l
ij

k L k l

T t f kW T t f l Lx
  

          (52) 

This logical condition can be transformed into the following inequality constraint: 

( ) ( ) (1 )l k k k

c ij c c ij
k L l k L l

l l
ij ijT t f kW T t f ULx x

   

     
 

                                                                          (53) 

In constraint (53), L and U are sufficiently large negative and positive constants, respectively. As per 

this constraint, when the binary variable l
ijx   is equal to 1, the left-hand side inequality is always true 

(as L is a sufficiently large negative constant) while only the right-hand side inequality is effective, 
entailing the condition for attractiveness of line l as in (52). Conversely, when the right-hand side 
inequality holds, to ensure constraint (53) is true, the binary variable has to be equal to 1. In another 

case, i.e., when the binary variable l
ijx  is equal to 0, the right-hand side inequality is always true (as U 

is a sufficiently large positive constant) while only the left-hand side inequality is effective, indicating 
the line l is not attractive in accordance with constraint (52). Hence, one can observe that constraint 
(53) is the equivalent reformulated inequality for constraint (15). The middle term in (53) can be easily 
transformed into equivalent linear constraints by applying the RLT approach as shown in (21). By 
doing so, the logic constraint (15) can be cast into an equivalent set of linear inequality constraints. 

3.5. Treatment for the travel time functions incorporating the effects of alighting and boarding  

We now consider the travel time functions for the limited stop service and the normal service when 

incorporating the effects of alighting and boarding as given in (19) and (20).  Let 
,

,

( )s
w l

kh

k h k N

v
 

 =a and 

,

,

( )rw l

hk
h k k N

v
 
 =b respectively. In the travel time functions (19) and (20), the “max” function implies 

 max ,a b a  if a b  and  max ,a b b if a b . Let us consider a binary variable {0,1}  such 

that 1   when a b  and 0   when a b . This can be represented by the following 
mathematical expressions: 

 max , (1 )a b a b                                                                                                                            (54) 
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(1 ) (1 )U a b a L                                                                                                                    (55)         

where U and L are very large negative and positive integers respectively. Now, when   takes the 
value of 1 in (55), then U b a   and the “max” function returns ‘a’ as the solution in (54). Similarly, 
when   takes the value of zero, then a b L  and the “max” function returns ‘b’ in (54). The 
nonlinearity in (54) and (55) can be linearized using the RLT as shown in (21).  

3.6. Reformulated problem 

Hence, the original model formulation of this limited stop service design problem has been completely 
transformed into a MILP, in which the objective function and all the constraints are linear.  

Specifically, the reformulated model can be expressed as: 

,min ( )
ij ij ij

l l c c
l L w W ij S w W ij S l L

l l w l w w w
ij ij trans ij
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                                     (56) 

which is subject to constraints (6), (7), (9)-(14), (17)-(18), (24), (27)-(55).   

As a result, the original model formulation is transformed into a MILP which can be solved by using 
many efficient solution algorithms like the branch and bound method. Most importantly, the solution 
property of global optimality of the MILP is guaranteed.  

3.7. Additional operational constraints 

For the sake of operational efficiency, a few more constraints could be added to the presented model 
formulation. At times, the operator could face a requirement of optimally selecting up to a fixed 
number of ‘special’ nodes (say P) for each operating limited stop service. Also, in case of multiple 
limited stop services, the operator might decide that a maximum of one limited stop service serves a 
particular ‘special’ node such that the benefit of travelling over limited stop service is equitable over 
all the nodes in the transit corridor. Therefore, the following constraints could be added: 
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(58) 

Constraint (57) states that for each limited stop service, there is a maximum limit of P number of 
‘special’ nodes that need to be optimally selected. Constraint (58) states that a maximum of one 
limited stop service can serve any intermediate node in the transit corridor. It should be noted that 
adding constraints (57) and (58) limits the size of the problem by reducing the search zone and the 
global optimal solution is faster to achieve, however, as mentioned earlier, the consideration of these 
constraints is upon the discretion of the operator.  
 
4. Numerical studies  

 
Fig. 4 Transit corridor for numerical study 
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Consider a corridor of 10 nodes as in Figure 4. From the example of the Singapore bus transit, two 
kinds of bus services are considered, i.e., normal bus service 0l  similar to service 179 (operating as a 

loop service from Boon Lay Interchange to NTU, Singapore campus and then terminating at the 
interchange) and limited stop services ( 1l  and 2l ) similar to service 179A(operating as limited stop 

service on the 179 route). We assume that the line setting of the limited stop service, i.e., which stops 
to be served is upon the discretion of the operator. As stated before, the problem is to determine the 
optimal line setting for limited stop services 1l  and 2l , as well as the operating frequencies and fleet 

size of all the transit lines while minimizing the total costs. We assume that nodes 6 and 10 are major 
attractors and hence, exogenous demand for these nodes is considered as given parameters. Also, in 
this study, a single corridor demand in the direction from node 1 towards node 10 is considered. .  
 
4.1. General Parameters  
1) Bus capacities (number/bus): 0l = 60 passengers/bus, 1l =60 passengers/bus, 2l = 60 passengers/bus. 

2) Intrinsic demand D at nodes for the destination node 10: 
 
Table 3 Intrinsic demand D at each node for destination node 6 per hour  
Node 1 2 3 4 5 6 7 8 9 10 
Demand 75 65 40 25 15 0 0 0 0 0 
Table 4 Intrinsic demand D at each node for destination node 10 per hour 
Node 1 2 3 4 5 6 7 8 9 10 
Demand 60 40 20 20 15 30 35 40 35 0 
3) Standard running time (minutes): For j>i where (i, j) represent a node pair, 2( )ijT j i    

(Assumed to vary linearly with distance and equal inter-node spacing) 
4) Operating cost per operational hour: 0l = 70$/bus, 1l =50$/bus, 2l = 60$/bus.    

5) Ownership cost per operational hour: 0l  =40$/bus, 1l = 40$/bus, 2l = 40$/bus.     

6) Standard dwelling time at each node hT  (mins.): 1 min 
7) Total available fleet size= 20 buses 
8) Assuming Poisson's arrivals, 1k  , 5$trans  , cW = 0.25$/min, cT  = 0.25$/min. 

9) Number of nodes in the transit corridor b = 10. 
 
4.2. Optimization Results 
 
The model was evaluated by using the solver Gurobi on the programming platform YALMIP (Löfberg 
2004) interfaced with MATLAB on a Precision T1650 Dell PC, with a 3.20 GHz processor, 16 GB 
RAM, and a 64-bit operating system. In the numerical study, we first consider a transit corridor with 
one normal service and one limited stop service followed by another example with one normal service 
and two limited stop services. The results are then analysed and inferences are discussed. For the 
generic case, we consider the constraint (58) and do not include constraint (57) in the numerical study. 
 
4.2.1. Numerical example with one limited stop service  
 
In this numerical example, we consider only one single limited stop service 1l  operating in conjugation 

with the normal service 0l . Using the input parameters from Section 4.1., the optimization model is 

solved.  
The optimal solution of this numerical example is listed as follows: 
1) Optimal limited stop service pattern: 1->2->3->4->10 
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2) Service frequency: 1l  = 5 buses/hr, 0l  = 10 buses/hr 

3) Fleet size: 1l  = 3 buses, 0l  = 6 buses  

4) Total operating cost:  2992$ 
 

 
Fig. 5 Optimized line setting for the limited stop service 1l  

 
4.2.2. Numerical example with two limited stop services 
 
In this numerical example, we assume that exactly two limited stop bus services 1l  and 2l  are provided 

along with the normal service 0l . The detailed model solutions are listed as below:  

 
 1) Optimal flow pattern:   

      1l : 1->7>8->10; 2l : 1->2->3->5->10. 

 

 
Fig.6 Optimal line setting for the limited stop service 1l  

                             

 
Fig. 7 Optimal line setting for the limited stop service 2l  

 
2) Optimal service frequency for the transit lines in buses/hr: 1l = 5 buses/hr, 2l = 6 buses/hr, 0l = 5 

buses/hr. 
3) Fleet size: 1l = 3 buses, 2l = 3 buses, 0l = 3 buses.  

4) Total cost: 3431$. 
 
 Using the model formulation and solution algorithm proposed in this study, one can further 
understand how the problem parameters like travel demand would affect the optimal design of limited 
stop services. Considering different levels of travel demand, we can obtain the following results as 
sensitivity analysis with respect to model parameters: 

Table 5 Sensitivity analysis with respect to travel demand 

Demand Optimal total Line settings for Service Fleet size for  
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w.r.t. original 

demand 

operating costs 
1l , 2l  frequency 

for  

1l , 2l , 0l  

1l , 2l , 0l  

50% $1845 1->7->8->10; 

1->2->3->10 

2 buses/hr, 3 

buses/hr, 2 

buses/hr 

2 buses, 2 

buses, 4 buses 

80% $2547 1->7->8->10;  

1->2->3->5->10 

4 buses/hr, 5 

buses/hr, 4 

buses/hr 

3 buses, 3 

buses, 4 buses 

130% $3596 1->6->7->8->10;  

1->2->3->5->10 

7 buses/hr, 8 

buses/hr, 7 

buses/hr 

4 buses, 4 

buses, 5  buses 

150% $4019 1->6->7->8->10;  

1->2->3->5->10 

8 buses/hr, 9 

buses/hr, 8 

buses/hr 

5 buses, 5 

buses, 5 buses 

 
 
4.2.3. Numerical example with only one normal service and no limited stop service 
 
In this section, we assume that only one normal service operates on the travel corridor. In this case, the 
transfers need not be considered and all passengers can reach their destination in the same normal 
service they boarded at the origin node. Since only one normal service would be used without any 
transfers, the waiting time term in the objective function would consider the overall service frequency 
for the aggregated demand and not for different route sections. Hence, as we can realise, there would 
be no choice available to passengers in this case as there exists only one operating service. Upon 
computation, we observed the following results:  
 
Total operating cost: $3318; Fleet size: 0l = 5 buses; Service frequency: 0l = 9 buses/hr. 

 
For illustration purpose, a table with the corresponding value of each term in the objective function for 
all the above three numerical cases has been given below. One can observe that, for the case when no 
limited stop service is provided, the travel time and waiting time cost are much higher due to the lack 
of choice of limited stop service, despite the transfer cost is removed. 
 
Table 6 Case based analysis of objective function and corresponding computation time 
 

 Numerical 
Case 

Total($) Term 1($) Term 2($) Term 3($) Term 4($) Term 
5($) 

1 4.2.1 2992 360 950 344 828 510 
2 4.2.2 3431 360 960 635 756 720 
3 4.2.3 3318 200 630 850 1638 - 
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4.3. Further discussions  
 
4.3.1. Comparison with enumeration approach 
 
The proposed model formulation and its solution algorithm employing convexification and 
linearization techniques seeks to find the global optimal solution of the problem of limited stop bus 
service design. In previous studies in the literature, without aid of the model formulation and the 
global optimal solution method, one has to resort to enumeration approach if global optimal solution 
of this problem is required. However, it is computationally prohibitive to enumerate all the possible 
line settings when problem size is large.  
 
In this study, additional constraints (57) and (58) could be added into the model formulation for certain 
practical considerations. It should be noted, when such constraints are not included in the model 
formulation, the number of candidate line settings is huge and to find the global optimal solution using 
enumeration approach would be very computationally intensive.  
 
For example, if we use the enumeration method, the number of possible transit line settings when only 
one limited stop service line is considered in the numerical example with 10 bus stop nodes would be 
around 300. Indeed, in our numerical test, we assume two limited stop service lines are to be 
constructed and constraint (58) is imposed. In this case, by enumeration approach, there will be around 
7,000 possible combinations of bus service line settings. One can imagine that, when problem size 
goes further up, the computational load would be prohibitively huge if enumeration method is applied. 
Specifically, in our numerical experiments conducted in subsections 4.2.1, the computational time is 
236 seconds. Meanwhile, we tried to use enumeration approach to solve this problem and the 
computational time is around 300 seconds. 
 
4.3.2. Comment on solution quality 
 
To further investigate the quality of the solution obtained by the proposed methodology, we conduct 
more numerical experiments by assuming that the candidate transit line settings are predetermined, as 
was done in previous research in the literature. In this case, in order to make the analysis tractable, we 
consider a subset of the possible combinations of transit line settings by invoking the constraints (57) 
and (58). Then, we compare the solutions with the global optimal solution obtained from our method. 
It should be noted that the number of possible transit line settings could be prohibitively large, and 
therefore considering only a small set of candidate lines might not be sufficient to obtain the global 
optimal solution, while enumerating all the possible candidate lines would be computationally tedious 
and inefficient. Let us consider the following two cases:  
 
(i) For the case of single limited stop service operating with normal service: If the additional 
operational constraints (57) and (58) are considered with a total of 2 allowable stoppages, the number 
of possible transit line setting for the limited stop service 1l  is 28 (e.g., 1-2-3-10, 1-2-4-10, 1-2-5-10 

and so on). One can expect that, if the additional constraint is not imposed (i.e., the number of 
allowable stoppages is not restricted), a much larger number of possible transit line settings would 
exist as shown in the previous sub-section.  
(ii) For the case of two limited stop services operating with the normal service: If the additional 
operational constraints (57) and (58) are considered, the possible combinations of line settings for 1l  

and  2l  are totally 420. (e.g., {(1-2-3-10),(1-4-5-10)},{(1-2-3-10),(1-4-6-10)}, and so on).  

 



 
 

23 
 

It should be noted that the number of candidate line settings is large even when we consider the 
additional operational constraints. This number increases rapidly if more limited stop transit lines are 
to be added and the additional constraints are completely relaxed as shown in the previous sub-section. 
Hence, one can envisage that, with just a few predetermined set of transit line settings, it is not 
possible to find the best solution as the number of such candidate settings could be prohibitively huge.  
 
Now, we consider the numerical study in which a single limited stop service operates with the normal 
service. We also consider the additional constraint (57) with a maximum of two allowable stoppages 
for the line 1l ; hence the total operating costs of all 28 candidate transit line settings are computed.  

 
Optimal total operating cost Z= 2965$; Optimal transit line setting for 1l : 1->3->4->10. 

 
Table 7 Total operating cost for corresponding candidate transit line setting of the limited stop service 

1l  

 Solutions closest to optimal 
solution with corresponding 

transit line setting for 1l  

Intermediate solutions with 
corresponding transit line setting 

for 1l  

Solutions farthest from optimal 
solution with corresponding 

transit line setting for 1l   

3123$; 1->2->4->10 
3735$; 1->2->4->10 
3943$; 1->4->6->10 

6136$; 1->4->5->10 
6431$; 1->3->9->10 
6494$; 1->3->8->10 

8269$; 1->6->8->10 
7687$; 1->5->8->10 
6513$; 1->4->8->10 

 
 
In Table 7, we demonstrate the optimal objective solutions resulting from some given transit line 
settings. Three groups of representative results are shown: specifically, three line settings leading to 
objectives solutions that are closest to the global optimal solution obtained from our method, as well as 
other groups of settings incurring medium and worst objective solutions as compared to the global 
optimal solution are listed. One can find that the gap between the global optimal solution and the 

second best one is 5.32% (
3123 2965

2965


  ) and that with the third best one is 25.91%. However, the 

worst-case result (with objective solution of 8269) is much worse than the global optimal solution. 
This underlines our rationale that only considering the selected set of candidate line settings will not 
guarantee the global solution; on the contrary, it is possible that the design of transit service is much 
worse than the global optimal solution if a wrong set of candidate line settings is predetermined. 
 
5. Concluding remarks 
 
This study formulates a bus service design problem in which limited stop services are provided in 
conjugation with the normal service. From the transit operators’ perspective, this model formulation 
proposes a methodology to determine optimal operation strategies in terms of service fleet size 
assignment, service frequencies, and the line setting for the limited services, i.e., which stops are 
served by the limited stop services. The common line approach is applied to determine the passenger 
assignment on the transit corridor. Mathematically, the model presented is a mixed integer nonlinear 
program. A solution method is developed to firstly transform the MINLP into an MILP with various 
linearization techniques and then solve the approximated mixed integer linear problem to attain a 
global optimal solution. Unlike most of the other published works which select the best transit line 
setting for the limited stop service from a predetermined set of candidate line settings, this study 
presents a methodology for an explicit design of the limited stop service while considering various 
operational constraints.  
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However, one limitation of the model lies in its incapability to handle very large size transit corridors 
which could be addressed in future studies. This research work contributes to the literature by building 
up an analytical framework and developing a global optimal solution method to solve the problem of 
optimal bus service design with limited stop service. In many major cities, operating differential 
services is believed to be a viable strategy to improve public transit service quality and reduce the car 
dependency. It is imperative for the public transit service operators to answer the practical question on 
how to determine the optimal operation strategies when differential services are offered. Rather than 
manually predetermining certain bus service line settings as is done in the current practice of the bus 
industry, this study provides a mathematical modelling approach to assist in optimal decision making  
for transit operation, aiming to achieve financially and socially sustainable bus transit services. The 
model formulation in this study avoids the tedious and inefficient enumeration of all possible bus line 
settings. The solution method for the model formulation as proposed in this study guarantees the 
global optimality of the solution quality, which ensures the best solution for the transit operation 
strategies. Indeed, the proposed methodology in this study can be readily applied to real-life transit 
operations. Besides, the methodology presented in this study can also be extended to solve similar 
complex system design problems in maritime studies, air-transportation, and various other engineering 
domains. 
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