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Abstract

The spatial-and-temporal correlation of interference has been well studied in Poisson networks

where the interfering base stations (BSs) are independent of each other. However, there exists spatial

interdependence including attraction and repulsion among the BSs in practical wireless networks, af-

fecting the interference distribution and hence the network performance. In view of this, by modeling

the network as a Poisson clustered process, we quantify the effects of spatial interdependence among

BSs on the interference correlation and analytically prove that BS clustering increases the level of

interference correlation. In particular, it is shown that the level increases as the attraction between the

BSs increases. Furthermore, we study the effects of spatial interdependence among BSs on network

performance with a retransmission scheme via considering heterogeneous cellular networks in which

small-cell BSs exhibit a clustered topology in practice. It is shown that the interference correlation

degrades the network performance and the degradation increases as the attraction between BSs increases.

Finally, a correlation-aware retransmission scheme is proposed to improve the network performance by

taking advantage of the interference correlation and avoiding the blind retransmissions.
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I. INTRODUCTION

Small-cell BSs (SBSs) in heterogeneous cellular networks (HCNs) are deployed based on the

spatial distribution of users to improve quality-of-service. To be specific, the SBSs are clustered

at hotspots where data traffic is concentrated and the clustering phenomenon is referred to as the

intra-tier dependence. On the other hand, to avoid causing strong inter-tier interference, SBSs are

allocated sufficiently far away from Macro-cell BSs (MBSs) and the resultant repulsion between

the SBSs and MBSs is called inter-tier dependence. Such spatial interdependence including intra-

and inter-tier dependence in HCNs significantly affects the interference correlation and hence

the network performance. Nevertheless, these effects have not been quantified in the literature

as the analysis is challenging. For mathematical tractability, the BSs in HCNs are commonly

modeled as a multi-tier independent Poisson network where the nodes are mutually independent

[1], [2]. Although this model provides tractability and useful design insight, it fails to account

for the spatial interdependence in BSs. To overcome this drawback, we instead model HCNs

using spatial clustered processes to characterize the effects of BS spatial interdependence on

interference correlation and network performance.

A. Related Work

Extensive research has been conducted on analyzing the performance of HCNs using the tool of

stochastic geometry based on the most popular model of multi-tier independent Poisson network

[3], [4]. In this model, the BSs in each tier are distributed as a Poisson point process (PPP)

and tiers are independent and have different densities, transmission powers, and requirements on

signal-to-interference-plus-noise ratios (SINRs). Such a model is deployed in [1] to investigate

the outage probability and average rate for HCNs under a SINR constraint. Similar approaches

have been adopted in extensive work on studying the HCN performance under various network

operations and designs including cell association [5], resource management [6], [7], traffic

offloading [5], [8], D2D communications [9]–[11], energy efficient transmissions [12] and BS

cooperation [13]–[15]. Although the PPP models capture the irregular topologies of HCNs, they

overlook a key feature of HCN, namely the BS spatial interdependence.

In the area of stochastic geometry, there exists a rich family of spatial point processes which

are suitable candidates for modeling the BS spatial interdependence in HCNs [16], [17]. On

one hand, Poisson hole process [18], determinantal point process [19], [20], and Ginibre point

process [21] feature repulsion between points that can be deployed to model inter-tier BS
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repulsion in HCNs. The limited analytical tractability of these point processes results in complex

network performance analysis with little simple insight [18-21]. On the other hand, intra-tier SBS

clustering in HCNs can be modeled naturally using various tractable cluster point processes, such

as the Poisson cluster processes grouping Matern cluster processes (MCP) and Thomas cluster

processes [18], [22], [23]. In addition, a HCN model based on the second-order cluster processes

(SOCP) captures both the inter-tier and intra-tier interdependence [24]. While the effects of

BS clustering on interference distributions have been extensively studied for different types of

networks (see e.g., [18]–[24])”, there exist few results on its effects on interference correlation

(in both the space and time). It is important to note that the two types of results are different

with the former concerning interference measured at a single location in plane but the latter

relating interference measured at two separate locations or two separate time instants. This work

makes contributions by deriving the latter results.

In wireless networks, spatial-and-temporal interference correlation arises the random spatial

distribution of interfering BSs and the channel time-variations [25]. Ganti and Haenggi are among

the first to quantify the interference correlation in terms of correlation coefficient [26]. It was

discovered that such correlation reduces the diversity gain in retransmission and thereby degrades

the network performance [27]–[30]. In particular, the performance gain of hybrid automatic

repeat request is marginalized due to the correlation [31]. The negative effects of interference

correlation may be exacerbated by the BS spatial interdependence. This is an important issue

due to the popularity of HCNs but has not yet been investigated in prior work.

B. Contributions and Organization

First, we investigate the effects of interferer’s interdependence on the interference correlation.

Consider interference powers measure at two separate locations in the presence of an interferer

field following one of three possible distributions, namely PPP, MCP and SCOP, where the

conventional case of PPP serves as a benchmark. To facilitate the summary of results, let ζP,

ζM, and ζS denote the (spatial-and-temporal) interference correlation coefficients corresponding

to the PPP, MCP and SCOP, respectively. The mean number of points and the cluster radius in

the MCP and SOCP models are represented as {cM, RM} and {cS, RS}, respectively. Our key

findings are summarized as follows.

1) We derive the interference-correlation coefficients ζM and ζS, and show that they are greater

than ζP, given identical densities. This analytically shows that the interferer clustering
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increases the level of interference correlation. Furthermore, ζM and ζS are equal if the

two corresponding models have the same cluster radii and mean numbers of points per

cluster (cM = cS and RM = RS).

2) It is shown that the correlation coefficient ζM (or ζS) is a monotone-increasing function

of cM (or cS) and a monotone-decreasing function of RM (or RS). In addition, ζM and ζS

converge to ζP as cM
R2

M
and cS

R2
S

varnish.

Next, we analyze the effect of BS interdependence on the network performance. To this end,

we consider two scenarios of downlink HCNs with different spatial interdependence between

BSs, represented by two models where MBSs are distributed as a PPP for both models while

SBSs as a MCP in one model, called the MCP model, and as a SOCP in the other, called

the SOCP model. The MCP model captures only the intra-tier (SBSs) interdependence while

the SOCP reflects both the intra- and inter-tier interdependence. Moreover, HARQ is used to

enhance transmission reliability.

Based on the network models, we derive the numerically integrable expressions and their

bounds for the joint success probabilities, defined as the success probability in multiple successive

transmissions, for macro-cell users (MUs) and small-cell users (SUs). It is found that the joint

success probability for MUs in the SOCP model is larger than that in the MCP model. This

suggests that the inter-tier interdependence enhances the MU performance. In addition, it is found

that, interference correlation degrades the network performance and the degradation increases

as the attraction between the BSs increases. Further, a correlation-aware retransmission scheme

is proposed to improve the network performance via taking good advantage of interference

correlation and effectively avoiding the blind retransmissions.

The remainder of the paper is organized as follows. The network models and metrics are

described in Section II. The interference correlation and HCN performance are analyzed in

Section III and IV, respectively. Numerical results are provided in Section V followed by

conclusions in Section VI.

II. NETWORK MODELS AND METRICS

The network models and metrics are introduced in this section. The symbols used therein and

their meanings are tabulated in Table I.
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Table I: Summary of Notations

Symbol Meaning

Φm, Φs Point process of (MBSs, SBSs)

λm, λs Density of (MBSs, SBSs)

Pm, Ps Transmission power of (MBSs, SBSs)

βm, βs SIR threshold of (MBSs, SBSs)

Dm, Ds Coverage radius of (MBSs, SBSs)

h Rayleigh fading gain with unit mean

g(x), α Path-loss function, path-loss exponent

ΦM, ΦS Point process of SBSs in the (MCP, SOCP) model

λM, λS Density of the (MCP ΦM, SOCP ΦS)

ΦMo , λMo Parent process for the MCP model, its density

cM, RM (Mean number of points, average radius) of each cluster in the MCP model

ΦSo , λSo Parent process for the SOCP model, its density

cS′ , RS′ (Mean number of points, average radius) of the first-order cluster in the SOCP model

cS, RS (Mean number of points, average radius) of the second-order cluster in the SOCP model

A. Network Models

Consider a downlink HCN consisting of MBSs and SBSs randomly distributed in the horizontal

plane. The processes of MBSs and SBSs are denoted as Φm with density λm and Φs with density

λs, respectively. In order to characterize the intra-tier and inter-tier BS interdependence, the SBSs

are modeled as a cluster process distributed either as the MCP ΦM with density λM or as the

SOCP ΦS with density λS, which are defined in Appendix A. The corresponding network models

are called the MCP and the SOCP models as illustrated in Fig. 1. In the MCP model, the MBSs

are distributed as a PPP independent of the SBS process ΦM, which accounts for only the intra-

tier BS interdependence. In contract, both the intra-tier and inter-tier BS interdependence are

captured in the SOCP model where the MBSs form the parent points in the SOCP process ΦS

modeling SBSs. In addition, a baseline network model, called the PPP model, is constructed by

using the PPP ΦP to model the SBSs instead of ΦM or ΦS.

A typical user is called a typical macro-cell user (MU), denoted as Um, or a typical small-cell

user (SU), denoted as Us, depending on whether the serving BS is a MBS, Xm, or a SBS,

Xs. Due to the intra- and inter-tier interdependence, it is difficult to calculate the exact serving

distance distribution between the typical user and its serving BSs [18]. For tractability, we follow
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(b) SOCP Model

Figure 1: The HCN network model. (a) The MCP model with λm = 0.0001, λMo = 0.001, cM = 3, RM = 10. (b)

The SOCP model with λm = λSo = 0.0001, cS′ = 10, RS′ = 90, cS = 3, RS = 10.

[18] in defining the association region for a particular MBS (or SBS) as the region in which

all the users are associated with the MBS (or SBS) and approximating it as a circular region

centered at the serving MBS (or SBS) with radius Dm (or Ds). The MUs and SUs are uniformly

distributed in the corresponding association regions and thus the probability density function

(PDF) of the serving distance is given as

f(r) =


2r
D2 , r ≤ D,

0, otherwise,
(1)

where D = Dm for the typical MU and D = Ds for the typical SU. Though it is based on

approximation, the above model does provide a sufficiently accurate description of the stochastic

distribution of the distance between a user and its serving BS. The expressions of Dm and Ds

for MCP and SOCP models are given in Appendix B.

The commonly used backlogged assumption is made in this paper, i.e., all BSs in the network

are active. Note that in practice BS transmissions may be bursty [32], [33] and studying the

interference correlation given bursty traffic is an interesting direction for future investigation but

outside the scope of this paper. The channel model is described as follows. MBSs and SBSs

transmit at fixed power Pm and Ps, respectively. The power received at a user at U ∈ R2 in

time slot t due to transmission by a BS located at X ∈ R2, is given by PhX,U(t)g(X − U)−α,
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where g(X), for tractability, is the commonly used singular path-loss function g(X) = |X|−α,

|X| denotes the Euclidean distance from X to the origin, α is the path-loss exponent, P is

Pm (or Ps) for MBSs (or SBSs), and hX,U(t) denotes the Rayleigh fading process with unit

mean. For tractability, the channel fading is assumed to be temporally and spatially independent,

corresponding to the environment with rich scattering and sufficiently high mobility. In practice,

channel correlation in time and space may exist but modeling it makes the analysis intractable,

which is thus omitted for simplicity. As a result, the interference correlation in the current model

arise mostly from the correlation of BS locations. Based on the channel model, the expressions

for interference power at a typical user can be obtained as follows. We assume that all BSs

transmit in the same frequency band. Consequently, there exists four types of interference: 1)

from MBSs to a typical MU with power Imm =
∑

X∈Φm\Xm PmhX,Um(t)g(X − Um), 2) from

MBSs to a typical SU with power Ims =
∑

X∈Φm
PmhX,Us(t)g(X − Us), 3) from SBSs to a

typical MU with power Ism =
∑

X∈Φs
PshX,Um(t)g(X − Um), 4) from SBSs to a typical SU

with power Iss =
∑

X∈Φs\Xs PshX,Us(t)g(X − Us). HCNs are usually interference limited and

thus noise is assumed to be negligible.

Time is slotted and transmission of a data packet span a single slot. The transmission of a

packet is said to be successful if the received SIR at the typical user exceeds a fixed SIR threshold,

denoted as βm for MUs and βs for SUs. Type-I HARQ is adopted to enhance the transmission

reliability. Specifically, if a transmission fails, the BS will retransmit the same packet to its user

until the transmission succeeds or the maximum number of transmissions Nmax is reached.

B. Metrics

The first part of the paper focuses on the effects of BS interdependence (clustering) on

interference correlation. It is difficult to derive the correlation coefficient for the aggregate

interference from both SBSs (a MCP or SOCP) and MBSs (a PPP), which can also obscure

the insight into the clustering effects of the former. Thus, for tractability and to gain simple

insight, our analysis focuses on deriving the correlation coefficient for the general scenario

of a single interferer field distributed as either the MCP ΦM or the SOCP ΦS . Based on

its definition, the coefficient is independent of the transmission power of interferers that is

thus assumed to be unit without loss of generality. However, in the second part of the paper

focusing on network-performance analysis, different transmission powers for SBSs and MBSs

are considered. Let I(U, t) denote the interference power measured at the location U ∈ R2 in slot
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t. Then I(U, t) =
∑

X∈Φ hX(t)g(X−U) where unit-transmission power is assumed without loss

of generality. Due to singularity of the function g(X) at the origin, the first and second moments

I(U, t) do not exist, which, however, are needed in quantifying the interference correlation. To

overcome this difficulty, we follow the technique in [25], [26] by defining gε(X) = 1
ε+|X|−α with

ε > 0 such that g(X) = limε→0 gε(X). Let Iε(U, t) denote I(U, t) but with g(X) replaced by

gε(X). Based on the above notations, the interference correlation coefficient that quantifies the

interference correlation is denoted as ζ and defined as the normalized covariance of interference

power [25], [26]:

ζ(U1, U2, t1, t2) = lim
ε→0

E[Iε(U1, t1), Iε(U2, t2)]− E[Iε(U1, t1)]E[Iε(U2, t2)]√
var(Iε(U1, t1)) ·

√
var(Iε(U2, t2))

, (2)

where (U1, t1) 6= (U2, t2). Note that the interference power in the current scenario is only an

approximation of that in the HCN due the omission of interference from MBSs and the Palm

distribution (namely the conditioning on the given location of the typical user) for tractability.

The second part of the paper focuses on network performance analysis. Given the Type-I

HARQ transmission scheme, a suitable performance metric (see e.g., [27]), called joint success

probability is adopted. It is denoted as P(n) and defined as the probability that the typical user

successfully receives the packets from its serving BS at X within n successive transmissions.

Mathematically,

P(n) = P (SIR(X, t1) > β, SIR(X, t2) > β, · · · , SIR(X, tn) > β) , (3)

where SIR(X, tn) denotes the SIR received at the typical user in slot n and β is a fixed

threshold. Note that the metric can be translated into the delay-limited throughput (see e.g.,

[31]) or transmission capacity measuring network spatial throughput (see e.g., [4]).

III. ANALYSIS OF THE INTERFERENCE-CORRELATION COEFFICIENT

In this section, we analyze the interference-correlation coefficient for the scenario where the

interferers are distributed as a cluster point process, namely either MCP or SOCP. It is shown

that interferer clustering enhances the interference correlation.

To this end, the first and second moments of interference power are derived as shown in the

following two lemmas.
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Lemma 1. The expectations of the interference power Iε(U, t), called mean interference, for

both the MCP and SOCP models have an identical expression given as

E[Iε(U, t)] = E[h]λ

∫
R2

gε(X)dX, (4)

where λ = λM for the MCP model and λ = λS for the SOCP model.

Proof: See Appendix C. �

Remark 1 (Comparison with the PPP Model). It is interesting to note that the expression in (4)

also holds for the mean interference for the PPP model where λ is then the density of the PPP

[26]. In other words, the mean interference is invariant to point clustering.

For ease of notation, define two functions as below, which are used for stating the results in

Lemma 3 in the sequel:

F (c, R) =
c

π2R4

∫
R2

∫
R2

g(X)g(Y )AR(|X − Y |)dXdY, (5)

AR(r) =

 2R2 arccos
( r

2R

)
− r
√
R2 − r2

4
, 0 ≤ r ≤ 2R,

0, otherwise,

(6)

where (λ, c, R) is equal to (λM, cM, RM) and (λS, cS, RS) for the MCP and SOCP models,

respectively. Although the function F (c, R) can not be written in the closed-form expression,

it can be numerically calculated with standard numeric software, such as Matlab. Further, the

following lemma provides the approximation of F (c, R) for large R in closed-form.

Lemma 2. For large R, F (c, R) is given as

F (c, R) =
4cπ3

α2R2
ε4−2α/α(csc(2π/α))2 + o (1/R2) (7)

Proof: See Appendix D �

Lemma 2 provides a simpler method to approximately calculate the interference correlation

coefficient in Theorem 1 for large R. Further, the numerical results show that the approximation

of F (c, R) evaluates the interference correlation coefficient well, even in the case of small R.

Lemma 3. The mean product between the interference power Iε(U1, t1) and Iε(U2, t2) for both

the MCP and SOCP models is given by

E[Iε(U1,t1), Iε(U2,t2)]=E[h]2λ

[∫
R2

gε(X−U1)gε(X−U2)dX+λ

(∫
R2

gε(X)dX

)2

+F (c,R)

]
, (8)
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and the second moment of interference power is given as

E[I2
ε (U, t)] = E[h2]λ

∫
R2

g2
ε (X)dX+E[h]2λ

[
λ

(∫
R2

gε(X)dX

)2

+F (c, R)

]
, (9)

where the function F (·, ·) is given in (5).

Proof: See Appendix E. �

Remark 2 (Comparison with the PPP Model). Consider the PPP model, the interference mean

product and second moment are given as [26]:

E[Iε(U1,t1),Iε(U2,t2)] = E[h]2λ

[∫
R2

gε(X−U1)gε(X−U2)dX+λ

(∫
R2

gε(X)dX

)2
]
, (10)

E[I2
ε (U, t)] = E[h2]λ

∫
R2

g2
ε (X)dX+E[h]2λ

[
λ

(∫
R2

gε(X)dX

)2
]
. (11)

Comparing these results with those in Lemma 3, both the interference mean product and sec-

ond moment for the MCP and SOCP models are greater than their counterparts for the PPP

model. This shows that the interferer clustering changes the interference distribution and thereby

enhances the interference correlation as shown shortly.

Using Lemma 1 and Lemma 3, the interference correlation coefficient is derived by substituting

(4), (8) and (9) into (2), yielding the following theorem.

Theorem 1. The spatial-and-temporal interference correlation coefficient for the MCP model,

namely ζM, and that for the SOCP model, namely ζS, can be both written as:

ζ(U1, U2, t1, t2) = lim
ε→0

∫
R2 gε(X)gε(X − U1 + U2)dX + F (c, R)

E[h2]

E[h]2

∫
R2 g2

ε (X)dX + F (c, R)
, (12)

where (c, R) is equal to (cM, RM) and (cS, RS) for the MCP and SOCP models, respectively.

Theorem 1 shows that the interference-correlation coefficients for the MCP and SOCP models

are identical if their parameters match, namely (cM, RM) = (cS, RS). Note that these coefficients

depend only on the first and second moments of the interference distributions but the network-

performance metric, namely the joint success probability, depends on the higher moments. For

this reason, despite the mentioned equivalence in interference correlation, the joint success

probabilities for the two models differ as shown in the next section.
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Remark 3 (Comparison with the PPP Model). The interference correlation coefficient in the

PPP model is given as [26]

ζP(U1, U2, t1, t2) = lim
ε→0

∫
R2 gε(X)gε(X − U1 + U2)dX

E[h2]

E[h]2

∫
R2 g2

ε (X)dX
. (13)

Comparing (ζM, ζS) in Theorem 1 with ζP, one can observe that the effect of interference

clustering on the interference-correlation coefficient is characterized by the function F (c, R)

given in (5), which depends on the mean number of points and the radius of each cluster. The

mathematical comparison between the interference-correlation coefficients is provided in the

following proposition.

Proposition 1. The interference-correlation coefficients for the MCP and SOCP models are

greater than that for the PPP model: ζM ≥ ζP and ζS ≥ ζP, where the equalities hold when the

cluster parameters satisfy F (c, R) = 0.

Proof: See Appendix F.

Proposition 1 shows that BS clustering increases the level of interference temporal correlation.

Based on the relation derived in prior work [34], this can result in growing local delay, defined

the expected number of time slots required for the successful transmission of a packet. Next, the

relations between the level of interference correlation and the cluster parameters are specified in

the following proposition.

Proposition 2. The interference correlation coefficients ζM and ζS are monotone increasing func-

tions of cM and cS, respectively, and monotone decreasing functions of RM and RS, respectively.

Furthermore, ζM → ζP as cM
R2

M
→ 0 and ζS → ζP as cS

R2
S
→ 0.

Proof: See Appendix G. �

Consider the MCP model without loss of generality. Both reducing RM for a fixed cM and

increasing cM for a fixed RM increase the interferer density in each cluster and thus the level

of clustering, leading to the results in Proposition 2. As cM
R2

M
→ 0 and cS

R2
S
→ 0, Proposition 2

suggests that the effects of interferer clustering on interference correlation can be neglected since

the interference-correlation coefficients for the cluster interferer processes converge to that of

the PPP without clustering.
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IV. PERFORMANCE OF HCNS WITH CLUSTERED SMALL CELLS

In this section, to investigate the effects of spatial BS interdependence on network performance,

we analyze the joint success probabilities for HCNs with clustered SBSs.

A. Joint Success Probability

First, the conditional joint success probability is derived in Lemma 4, which is conditioned on

the fixed distance between the typical user and the serving BS. To this end, some useful functions

are defined as follows. Let GΦ[v(X)] , E
(∏

X∈Φ v(X)
)

denotes the probability generating

functional (PGF) of a general point process Φ where the operator E is the expectation with

respect to the Palm measure of Φ and v with 0 ≤ v ≤ 1 is a bounded measurable function. Let

E!
Xo

denote the expectation operator with respect to the reduced Palm measure of Φ, which is the

conditional expectation over Φ\{X0} given a point Xo ∈ Φ being fixed [23]. Using this definition,

the conditional PGF of the point process Φ is defined as GΦ! (X) , E!
Xo

(∏
X∈Φ v(X)

)
. Based

on the above notations and definitions, the conditional joint success probabilities are obtained

as shown in the following lemma.

Lemma 4. Consider a HCN allowing retransmissions over n slots. Given the propagation distance

rm for the typical MU and rs for the typical SU, the conditional joint success probabilities for

the MU and SU, denoted as P(n)
m (rm) and P(n)

s (rs), respectively, are given as:

P(n)
m (rm) = GΦ!

m

[(
1 +

βmg̃(X, rm)

r−αm

)−n]
GΦs

[(
1 +

βmPs|X|−α

Pmr−αm

)−n]
, (14)

P(n)
s (rs) = GΦm

[(
1 +

βsPm|X|−α

Psr−αs

)−n]
GΦ!

s

[(
1 +

βsg̃(X, rs)

r−αs

)−n]
, (15)

where the MBS process Φm is the PPP ΦP and the SBS process Φs = ΦM in the MCP model

and Φs = ΦS in the SOCP model, g̃(X, r) = |X|−α1(|X| > r).

Proof: See Appendix H.

The expressions for the PGFs and conditional PGFs in Lemma 4 for specific point processes

can be found in e.g., [23], [24], [35], and are provided in the following lemma.

Lemma 5. The PGFs and the conditional PGFs for a PPP, MCP and SOCP are given as follows:

• (PPP) [35]

GΦP(v) = GΦ!
P
(v) = exp

[
−λ
∫
R2

(1− v(X)) dX

]
; (16)
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• (MCP) [23]

GΦM(v) = exp

(
−λMo

∫
R2

[
1−M

(∫
R2

v(X + Y )fM(Y )dY

)]
dX

)
, (17)

GΦ!
M
(v) = GΦMCP

(v)

∫
R2

M

(∫
R2

v(X + Y )fM(X)dX

)
fM(Y )dY, (18)

where M(x) = exp(−cM(1− x));

• (SOCP) [24]

GΦS(v) = exp

[
−λSo

∫
R2

{
1−M1

[∫
R2

M2(

∫
R2

v(X+Y +Z)fS(Z)dZ)fS′(Y )dY

]}
dX

]
,

(19)

GΦ!
S
(v) = GΦS(v)M1

[∫
R2

M2(

∫
R2

v(X + Y + Z)fS(Z)dZ)fS′(Y )dY

]
·
∫
R2

M2(

∫
R2

v(X + Y + Z)fS(Z)dZ)fS(Y )dY. (20)

where M1(x) = exp (−cS′(1− x)) and M2(x) = exp (−cS(1− x)),

Last, the joint success probabilities are obtained as the expectations of the conditional prob-

abilities in Lemma 4 with respect to the distribution of the propagation distance of the typical

MU/SU. Since the user is uniformly distributed in the coverage area assumed as a disk with

radius D, the PDF of the distance is given in (1), where D = Dm if the typical user is a MU

or otherwise D = Ds. Combining (1) and Lemma 4 leads to the following main result.

Theorem 2. For a HCN allowing retransmissions over n slots, the joint success probabilities

for the MU and SU, denoted as P(n)
m and P(n)

s , respectively, are given as:

P(n)
m =

2

D2
m

∫ Dm

0

P(n)
m (r)rdr, (21)

P(n)
s =

2

D2
s

∫ Ds

0

P(n)
s (r)rdr, (22)

where P(n)
m (r) and P(n)

s (r) are provided in Lemma 4.

Then the specific expressions for the joint success probability corresponding to the MCP and

SOCP models can be derived by substituting the results in Lemma 5 into those in Theorem 2. The

results have complex expressions with multiple integrals. This reflects the theoretical challenge in

characterizing the effects of SBS clustering in practice on the HCN performance. Nevertheless,

the results obtained in this section can be leveraged in the next section to yield simple insight.
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Remark 4. The joint success probability in the MCP (or the SOCP) model is a monotone-

decreasing function of cM (or cS). The reason is that increasing the mean number of points per

cluster, cM (or cS), increases the interference power from the SBSs to MUs but does not change

the signal strength. Note that the propagation distance of a data link depends on the coverage

radiuses of MBSs which are independent of cM (or cS) (see the system model).

Joint success probability provides a basic component for further calculating different practical

network performance metrics, such as delay-limited throughput (see [31, Eq. (4)]) and local delay

(see [27, Eq. (26)])). Specifically, the metrics are linear functions of joint success probability

and the calculation procedure is straightforward and omitted for brevity.

B. Bounds on Joint Success Probabilities

Although the expressions for the joint success probabilities are derived in the preceding sub-

section, the results have complex expressions. In this sub-section, the probabilities are bounded

by their PPP counterparts. The results yield useful insight into the effects on SBS clustering on

the network performance.

The method of bounding the joint success probabilities relies on bounds on the PGFs for the

MCP and SOCP. Throughout this section, the PGFs are considered as functions of the density, λ,

of the corresponding point process Φ while the original argument ν is identical for different point

processes (see the PGF definitions in the preceding sub-section). Then the PGF and conditional

PGF for the MCP can be bounded by their PPP counterparts as shown in [23]:

GΦP (λM) ≤ GΦM (λM) ≤ GΦP

(
λM

1 + cM

)
, (23)

GΦ!
P

(
λM +

cM

πR2
M

)
≤ GΦ!

M
(λM) ≤ GΦ!

P

(
λM

1 + cM

)
, (24)

where the PGF and conditional PGF of the PPP ΦP with density λ are identical and given as

GΦP(λ) = GΦP(λ) = exp

(
−λ
∫
R2

(1− v(x)) dx

)
. (25)

These results for the MCP are extended to the SOCP as shown in the following lemma.

Lemma 6. The PGF and the conditional PGF for the SOCP ΦS can be bounded as

GΦP (λS) ≤ GΦS(λS) ≤ GΦP

(
λS

(1 + cS′) (1 + cS)

)
, (26)

GΦ!
P

(
λS + cS′cSγ +

cS

πR2
S

)
≤ GΦ!

S
(λS) ≤ GΦ!

P

(
λS

(1 + cS′) (1 + cS)

)
(27)
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where the constant γ is defined as

γ = min

 1− exp
(
−R2

S′
2σ2

)
πR2

S′ + 2πσ2
(

exp
(
−R2

S′
2σ2

)
− 1
) , 1

πR2
S

 ,

Proof: See Appendix I. �

Next, consider the baseline PPP model. Let P(n)
mP(λs) and P(n)

sP (λs) denote the joint success

probabilities for the typical MU and SU, respectively, which are functions of the SBS density λs.

Using Lemma 4, the probabilities conditioned on a propagation distance r for the corresponding

typical users can be derived as shown in the following lemma.

Lemma 7. Consider a HCN allowing retransmissions over n slots and having SBSs distributed as

PPP. Given the propagation distance r between a typical user and the serving BS, the conditional

joint success probabilities for the MU and SU are given as:

P(n)
mP(λs, r) = exp

[
−λmQn(βm)r2

]
exp

[
−λs

(
βmPs
Pm

)δ
Unr

2

]
, (28)

P(n)
sP (λs, r) = exp

[
−λm

(
βsPm
Ps

)δ
Unr

2

]
exp

[
−λsQn(βs)r

2
]
, (29)

where the function Qn(β) of a SIR threshold β is given as

Qn(β) = πδ
n∑

m=1

(
n

m

)
(−1)m+1 βm

m− δ 2F1(m,m− δ;m− δ + 1;−β), (30)

with δ = 2/α and the constant

Un =
π2δ

sin (πδ)

Γ(n+ δ)

Γ(n)Γ(1 + δ)
. (31)

By taking expectation with respect to the distance distribution in (1), the joint success prob-

abilities for the PPP model follow from Lemma 7 as shown below.

Lemma 8. Consider a HCN allowing retransmissions over n slots and having SBSs distributed

as a PPP. The conditional joint success probabilities for the MUs and SUs are given as:

P(n)
mP(λs) = D−2

m

[
λmQn(βm)+λs

(
βmPs
Pm

)δ
Un

]−1

, (32)

P(n)
sP (λs) = D−2

s

[
λm

(
βsPm
Ps

)δ
Un + λsQn(βs)

]−1

. (33)

Proof: See Appendix J. �
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Last, using Lemmas 6 to 8, the main results of this sub-section are derived and presented in

the following theorem.

Theorem 3. Consider a HCN allowing retransmissions over n slots. The joint success probabil-

ities for the MPC and SOCP models can be bounded by their counterparts for the PPP model

as follows:

• For the MCP model,

P(n)
mP(λM) ≤ P(n)

mM ≤ P
(n)
mP

(
λM

1 + cM

)
. (34)

P(n)
sP (λM +

cM

πR2
M

) ≤ P(n)
sM ≤ P

(n)
sP

(
λM

1 + cM

)
. (35)

• For the SOCP model,

P(n)
mP(λS) ≤ P(n)

mM(λS) ≤ P(n)
mS ≤ P

(n)
mP(

λS

(1 + cS′)(1 + cS)
), (36)

P(n)
sP (λS + cS′cSγ +

cS

πR2
S

) ≤ P(n)
sS ≤ P

(n)
sP (

λS

(1 + cS′)(1 + cS)
), (37)

where P(n)
mP(λ) and P(n)

sP (λ) for the PPP model are given in Lemma 8.

Proof: See Appendix K. �

Theorem 3 shows that the joint success probability for the typical MU is increasing in the

order of the PPP, MCP and SCOP models. This suggests that increasing the level of BS inter-

dependence improves the MU’s performance.

Remark 5. Theorem 3 mathematically shows that the joint success probability in the MCP

model and SOCP model converge to that in the PPP model when the mean number points in

each cluster, i.e., cM, cS′ , cS, approximates to 0. This is because, the upper bound and lower

bound converge to the joint success probability in the PPP model under the above condition.

It is inferred that, comparing with the case of independent interference, the interference

correlation degrades the performance of HCNs with retransmission, and the degradation increases

as the attraction between BSs increases. This is because, interference correlation reduces the

diversity gain in retransmission (see [27]–[30]) and the interference correlation increases as the

attraction between BSs increases (see Proposition 2). Therefore, correlation-aware retransmission

scheme is needed to improve the network performance. Based on the observations obtained in

this paper, we propose a correlation-aware retransmission scheme as follows.
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Remark 6 (Correlation-aware Retransmission Scheme). For each cluster, if most nodes transmit

successfully (i.e., success probability is larger than a given threshold) in the current time slot,

all nodes in the cluster will transmit in the next time slot to take advantage of the interference

(success) correlation. In contrast, if most nodes fail (i.e., success probability is lower than a

given threshold), only the successful nodes transmit in the next time slot and the unsuccessful

nodes keep silence for a randomly chosen time slots to reduce the interference correlation and

avoid the blind retransmission. In particular, if all the transmissions fail in the current time slot,

the nodes will be randomly chosen to transmit or not in the next time slot.

The proposed correlation-aware retransmission scheme takes good advantage of interference

correlation when the success probability is high. This is because high success probability and

interference correlation means there is a high probability that the transmission will succeed in

the next time slot. Furthermore, the proposed scheme effectively avoid the blind retransmission

when the success probability is low. The simulation results in the sequel show that the proposed

scheme significantly improve the success probability in HCNs.

V. NUMERICAL RESULTS

A. Interference Correlation

In this subsection, the interference-correlation coefficients are evaluated for the PPP, MCP and

SOCP models to illustrate their relation and the effects of system parameters. For fair comparison,

the parameters are set as follows: λP = λM = λS, cM = cS, and RM = RS. Under the above

settings, the interference-correlation coefficients for the MCP model are the same with those for

the SOCP model according to Theorem 1. Thus, the results for the SOCP model are omitted.

In Fig. 2, interference-correlation coefficients under different mean number of points in each

cluster, c, and the cluster radius, R, are plotted in (a) and (b), respectively. The curves for the

MCP model and the PPP model are computed numerically using Theorem 1 and Remark 3,

respectively. The approximation of interference correlation coefficient in Fig. 2 (b) is calculated

via substituting (7) into (12). According to system model, different c indicates different interferer

densities since λP = λM = λMocM. First of all, It is observed that the interference-correlation

coefficients for the MCP model are greater than those for the PPP model. This suggests that

BS clustering enlarges the interference correlation, which matches the conclusion in Proposition

1. Furthermore, it is found that the curves of correlation coefficients for the PPP model under
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Figure 2: Interference-correlation coefficient versus the distance |U1 − U2|. Here, α=4, Ps=43 dBm, λMo =0.1.

different densities coincide with each other since ζP is independent of BS density according to

(13). In addition, also shown in the figures is that increasing c or decreasing R enlarges the

interference correlations for the MCP model due to the increase in the attraction between the

interfering BSs. Furthermore, Fig. 2 (b) shows that the approximation of F (c, R), i.e., Lemma

2, evaluates the interference correlation coefficient well, even for the case of small R.

B. Joint Success Probability

Fig. 3 shows the joint success probabilities and their corresponding bounds for MUs and

SUs versus SIR threshold. The curves for the joint success probability for MUs and SUs are

calculated by Theorem 2 and the corresponding bounds by Theorem 3. First of all, from Fig.

3(a), it is found that the curves of the lower bound of the joint success probability for MUs

in the MCP model and SOCP model coincide with the joint success probability for the PPP

model with the identical SBS density, which is verified by Theorem 3. Next, it is also observed

that the joint success probability for MUs increases in the order of the PPP, MCP, and SOCP

models. The reason is that, there is a high probability for SBSs to be allocated at the edge

of MBSs in SOCP model leading to a low inter-tier interference. Hence, in order to improve

MU performance, it is suggested to deploy the SBSs in the annular region of MBSs. Last, Fig.

3(b) shows that there is little difference in the joint success probabilities for SUs in these three
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Figure 3: Joint success probability versus SIR threshold. Here, α = 4, λ0 = λm = 7.96 × 10−6 m−2, λp =

1.2× 10−4m−2, Pm = 39 dBm, Ps = 13 dBm, c1 = 15, σ = 50, c = c2 = 3
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Figure 4: Success probability for different retransmission schemes. Here, α = 4, λ0 = λm = 7.96 × 10−6 m−2,

λp = 1.2× 10−4m−2, Pm = 39 dBm, Ps = 13 dBm, β1 = −2dB, β2 = −3dB.

models. This is because, given the serving BS, the dominant interfering BSs comes from the

same cluster, which is distributed as a PPP in the MCP and SOCP model.

C. Correlation-aware Retransmission Scheme

Fig. 4 compares the performance of HCNs under correlation-aware retransmission scheme

proposed in this paper (Remark 6) with the simple and random retransmission schemes. For
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simple retransmission scheme, all BSs (re)transmit packets at all time slots. For random re-

transmission scheme [30], all BSs (re)transmit packets with a given probability p. First of all,

it is shown that the random retransmission scheme enhances the success probability since it

introduces the randomness in transmission and thus reduces the interference correlation [30].

Next, correlation-aware retransmission scheme is observed to achieve higher success probability

than the simple and random retransmission schemes since it takes advantage of the interference

correlation when the success probability is high and avoid the blind retransmissions otherwise.

Further, we observe that the gain increases with the growing c (i.e. mean number of nodes in

each cluster). This shows that effectively managing the effects of BS spatial interdependence on

interference correlation significantly improve the network performance.

VI. CONCLUSIONS

In this paper, we have studied the effects of BS spatial interdependence on interference

correlation and the performance of HCNs with HARQ. While it is known that BS clustering

degrades network performance, few results exist on quantifying the effects of the phenomenon

on interference correlation and closely related network performance with retransmissions. Our

work makes contributions by analyzing such effects, revealing in a simple form how a growing

level of clustering increases the interference-correlation coefficient. Specifically, it is shown that

the interference-correlation coefficient is a monotone-increasing function of the mean number of

nodes for each cluster and monotone-decreasing function of the cluster radius. Furthermore, we

have presented a correlation-aware transmission scheme to illustrate how to take advantage of

interference correlation and avoid the blind retransmissions for improving network performance.

The used methodology and achieved results in this paper provide the way to quantify the

effects of BS spatial interdependence on interference correlation and network performance. This

work relies on cluster processes in stochastic geometry and some simplified assumptions to get

the tradeoff between the mathematical tractability and practical network deployment. To derive

more elaborate insight in practical networks with spatial dependence, further investigations in

practical settings are necessary by considering other network deployment, using realistic channel

model with correlation, and taking account of finite mobility of users in HCNs. Furthermore,

studying the effects of BS interdependence on spatial interference correlation and the network

performance under multi-hop transmissions is also an interesting topic.
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APPENDIX

A. Cluster Point Processes

Two types of cluster point process, namely MCP and SOCP, are used for constructing the

network model in Section II. They are defined as follows.

Let a MCP be denoted as ΦM with density λM. The process consists of a parent point process

and a daughter point process forming clusters centered at different parent points. The parent

point process is a PPP, denoted as ΦMo , with the density λMo . For a cluster, the daughter points

are uniformly distributed in a disk region with the radius RM and centered at the corresponding

parent point. The distance from a typical daughter point to the corresponding parent point has

the following probability density function (PDF):

fM(r) =


1

πR2
M
, r ≤ RM,

0, otherwise.
(38)

The number of daughter points in each cluster is a Poisson-distributed random variable with

mean cM. Thus, the density of the MCP is λM = λMocM. Let N (X) denote a cluster centered at

a parent point X ∈ ΦMo . Then the MCP is given as ΦM =
⋃
X∈ΦMo

N (X). The distribution of

the MCP is illustrated in Fig. 1(a).

Next, let a SOCP be denoted as ΦS with density λS. The process consists of a parent point

process, a first-order cluster process, and a daughter point process. The parent point process is a

PPP, denoted as ΦSo , with the density λSo . For the first-order cluster, the points are isotropically

scattered in a disk region with the radius RS′ and centered at the corresponding parent point.

The distance from a typical first-order cluster point to the corresponding parent point has the

following reverse Gaussian distribution [24]:

fS′(r) =


(

1−exp
(
−r2
2σ2

))
πR2

S′+2πσ2

(
exp

(
−R2

S′
2σ2

)
−1

) , r ≤ RS′

0, otherwise,

(39)

where σ denotes the standard deviation of reverse Gaussian distribution. Furthermore, for the

second-order cluster, the daughter points are uniformly distributed in a disk region with the



22

radius RS and centered at the corresponding first-order cluster point. The distance from a typical

daughter point to the corresponding center (first-order cluster point) has the following PDF:

fS(r) =


1

πR2
S
, r ≤ RS

0, otherwise.
(40)

The number of points in each first-order cluster and second-order cluster are Poisson-distributed

random variable with mean cS′ and cS, respectively. Thus, the density of the SOCP is λS =

λSocS′cS. Let N (X [Y ]) denote a cluster centered at a first-order cluster point X [Y ] ∈ ΦS′ with

the parent point Y ∈ ΦSo . Then the SOCP is given as Φs =
⋃
X[Y ]∈ΦS′

⋃
Y ∈ΦSo

N (X [Y ]). The

distribution of the SOCP is illustrated in Fig. 1(b).

B. Radius of the association area for MBSs and SBSs

Consider the MCP model, the average coverage area of each cluster of SBSs or each MBS is

(λm+λMo)
−1 where λm and λMo are the densities of the MBSs and the parent process of the SBSs,

respectively. Hence the corresponding coverage radius is DmM =
[√

π(λm + λMo)
]−1

. Since

there are cM SBSs in each cluster on average, the average coverage area of each SBS is [c(λm +

λMo)]
−1 and hence the corresponding coverage radius is DsM = DmM/

√
cM. Next, consider the

SOCP model. The average coverage area of each MBS or each cluster of first-order points is

(λm+cS′λSo)
−1. This results in the average coverage radius being DmS =

[√
π(λm + cS′λSo)

]−1

.

Since the average number of first-order points in each cluster is cS′ , the average coverage area

of each cluster of SBSs is [cS′(λm + cS′λSo)]. Furthermore, there are cS SBSs in each cluster on

average. Then the average coverage area of each SBS is [cScS′(λm + cS′λSo)] and its coverage

radius is DsS = DmS/
√
cS′cS.

C. Proof of Lemma 1

Here, we only show the main steps for the mean interference in the MCP model and omit

those for the SOCP model since they follow the similar steps.

The interference power measured at the location U in time slot t is given as

Iε(U, t) =
∑
X∈ΦM

hXU(t)gε(X − U) =
∑
Z∈ΦMo

∑
X∈Φ

[Z]
M

hXU(t)gε(X − U),

where Φ
[Z]
M denotes the cluster associated with parent point Z ∈ ΦMo .
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The mean interference is given by

E[Iε(U, t)] = E[
∑
Z∈ΦMo

∑
X∈Φ

[Z]
M

hXU(t)gε(X − U)]
(a)
= E[h]λMo

∫
R2

E[
∑

X∈Φ
[Z]
M

gε(X − U)]dZ

(b)
= E[h]λMocM

∫
R2

∫
R2

gε(X−U−Z)fM(X)dXdZ=PsE[h]λMocM

∫
R2

gε(X−U)

∫
R2

fM(X+Z)dZdX

(c)
= E[h]λMocM

∫
R2

gε(X)dX, (41)

where (a) and (b) come from Campbell-Mecke Theorem, (c) follows from
∫
R2 fM(X)dX = 1.

D. Proof of Lemma 2

Given R is large, F (c, R) can be approximated as

F (c, R) =
c

π2R4

∫
R2

∫
R2

gε(X)gε(Y )AR(|X − Y |)dXdY

(a)
=

c

πR2

∫
R2

∫
R2

gε(X)gε(Y )dXdY + o(1/R2)

=
c

πR2

[∫
R2

gε(X)dX

]2

+ o(1/R2) =
c

πR2

[∫ 2π

0

∫ ∞
0

r

rα + ε
dr

]2

+ o(1/R2)

(b)
=

4cπ3

α2R2
ε4−2α/α(csc(2π/α))2 + o(1/R2) (42)

where (a) comes from the fact that AR(|X − Y |) ≈ πR2, for large R and (b) uses the formula∫∞
0

r
rα+ε

dr = α−1ε2−α/απ csc(2π/α) given in [36, Eqn. 3.241.4]

E. Proof of Lemma 3

1) MCP model:

E[Iε(U1, t1), Iε(U2, t2)] = E

[ ∑
X∈ΦM

hXU1(t1)gε(X − U1)
∑
Y ∈ΦM

hY U2(t2)gε(Y − U2)

]

=E

[ ∑
X∈ΦM

hXU1(t1)hXU2(t2)gε(X−U1)gε(X−U2)

]
︸ ︷︷ ︸

ξ1

+E

[
X 6=Y∑
x,y∈ΦM

hXU1(t1)hY U2(t2)gε(X−U1)gε(Y−U2)

]
︸ ︷︷ ︸

ξ2

.

(43)

Next, we calculate ξ1 and ξ2, respectively.

ξ1 =E[h]2E

 ∑
Z∈ΦMo

∑
X∈Φ

[Z]
M

gε(X−U1)gε(X−U2)

(a)
= E[h]2λMocM

∫
R2

gε(X−U1)gε(X−U2)dX,

(44)
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where (a) comes from Campbell-Mecke Theorem and the fact that
∫
R2 fM(X)dX = 1.

ξ2 = E[h]2E

[
X 6=Y∑
X,Y ∈Φs

gε(X − U1)gε(Y − U2)

]
(a)
= E[h]2

∫
R2

∫
R2

gε(X)gε(Y )ρ
(2)
M (X, Y )dXdY

(b)
= E[h]2 (λMocM)2

∫
R2

∫
R2

gε(X)gε(Y )dXdY + E[h]2λMocMF (cM, RM), (45)

where (a) follows from that X can be substituted by X−U1 and Y can be substituted by Y −U2

in the integrals, (b) comes from the second moment density of a MCP given by [35, p. 128],

F (·, ·) is given in (5). Substituting (44) and (45) into (43), we get the mean product of Iε(U1, t1)

and Iε(U2, t2) in Lemma 3.

Based on the results of E[Iε(U1, t1), Iε(U2, t2)], the second moment of interference is given by

E[I2
ε (U, t)] = E

[ ∑
X∈ΦM

hXU(t)gε(X − U)
∑
Y ∈ΦM

hY U(t)gε(Y − U)

]

=E

[ ∑
X∈ΦM

h2
XU(t)g2

ε (X−U)

]
︸ ︷︷ ︸

ξ′1

+E

[
X 6=Y∑

X,Y ∈ΦM

hXU(t)hY U(t)gε(X−U)gε(Y −U)

]
︸ ︷︷ ︸

ξ′2

=E[h2]λMocM

∫
R2

g2
ε (X)dX︸ ︷︷ ︸

ξ′1

+E[h]2λMocM

[
λMocM

∫
R2

∫
R2

gε(X)gε(Y )dXdY +F (cM, RM)

]
︸ ︷︷ ︸

ξ′2

(46)

2) SOCP model:

Following the similar steps, we derive the E[Iε(U1, t1), Iε(U2, t2)] and E[I2
ε (U, t)] in the SOCP

model as:

E[Iε(U1,t1), Iε(U2,t2)]=E[h]2λS

∫
R2

gε(X−U1)gε(X−U2)dX+E[h]2
∫
R2

∫
R2

gε(X)gε(Y )ρ
(2)
S (X,Y )dXdY

(47)

E[I2
ε (U, t)] = E[h]2λS

∫
R2

g2
ε (X)dX + E[h]2

∫
R2

∫
R2

gε(X)gε(Y )ρ
(2)
S (X, Y )dXdY (48)

where ρ(2)
S denotes the second moment density of the SOCP.

The key of calculating (47) and (48) is to derive ρ(2)
S . According to [35, pp127], the second

moment density of SOCP is expressed as

ρ
(2)
S (X, Y ) = λ2

S + E

 ∑
Z0∈ΦSo

∑
Z1∈Φ

[Z0]

S′

ρ(X, Y | Z0, Z1)


︸ ︷︷ ︸

ρ′S

, (49)
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where ρ(X, Y | Z0, Z1) denotes the conditional second moment density given the parent point

Z0 ∈ ΦSo and the first cluster point Z1 ∈ Φ
[z0]

S′ .

Next, we calculate ρ′S to derive ρ(2)
S (X, Y ).

ρ′S
(a)
=E

 ∑
Z0∈ΦSo

∑
Z1∈Φ

[Z0]

S′

cSfS(X − Z1 − Z0)cSfS(Y − Z1 − Z0)


(b)
=λSocS′c

2
S

∫
R2

∫
R2

fS′(Z1)fS(X − Z1 − Z0)fS(Y − Z1 − Z0)dZ0dZ1

(c)
=λSocS′c

2
S(fS ? fS)(X − Y )

∫
R2

fS′(Z1)dZ1

(d)
=λSocS′c

2
S(fS ? fS)(X − Y )

(e)
=λSocS′c

2
S ·

ARS(|X − Y |)
π2R4

S
, (50)

where (a) follows from the independence of the points in the same cluster, (b) comes from

Campbell-Mecke Theorem, (c) comes from the definition of convolution ?, (d) follows from

the fact that
∫
R2 fS′ (Z1) dZ1 = 1, (e) comes from the calculation of (fS ? fS) (X − Y ) which

is given in [35] and ARS(r) = 2R2
S arccos

(
r

2RS

)
− r
√
R2

S −
r2

4
, 0 ≤ r ≤ 2RS.

Last, the mean product (or the second moment) of the interference power are derived by

substituting (49) and (50) into (47) (or (48)).

F. Proof of Proposition 1

To notational simplicity, let θ =
∫
R2 g(X)g(X−‖U1−U2‖)dX > 0, and θ′ =

E[h2]
E[h]2

∫
R2 g

2(X)dX >

0. Hence, ζP is expressed as ζP = θ
θ′

, and both ζM and ζS can be written as ζ = θ+F (c,R)
θ′+F (c,R)

, where

(c, R) = (cM, RM) for ζM and (c, R) = (cS, RS) for ζS.

Next, we show that ζ ≥ ζP.

ζ − ζP =
θ + F (c, R)

θ′ + F (c, R)
− θ

θ′
=

(θ′ − θ)F (c, R)

θ′(θ′ + F (c, R))

(a)

≥ 0, (51)

where (a) comes from the fact that F (c, R) ≥ 0 and θ′ − θ > 0 since 0 < ζP = θ
θ′
< 1 [26].

The equality of (51) holds when F (c, R) = 0.

G. Proof of Proposition 2

Proposition 2 is proved by the following two steps. First, we show that ζ is a monotone-

increasing function of F (·, ·). To this end, we take the derivative of ζ with respect to F (·, ·) and

get that ζ ′ = θ′−θ
(θ′+θ)2

> 0. Therefore, ζ increases with the increase in F (·, ·).
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Next, the function F (c, R) is proved to be a monotone-increasing function of c and monotone-

decreasing function of R. Recall that F (c, R) = c
π2R4

∫
R2

∫
R2 g(X)g(Y )AR(|X − Y |)dXdY ,

where AR(r) = 2R2arccos
(
r

2R

)
− r
√
R2 − r2

4
, 0 ≤ r ≤ 2R, and 0 for r > 2R. From the

expression of F , we get that F (c, R) ∝ c and F (c, R) changes on the order of k( 1
R

) · 1
R2 , where

k( 1
R

) ∈ (0, π).

In particular, F (c, R)→ 0, if c
π2R2 → 0. According to Proposition 1, ζ → ζP, if c

π2R2 → 0.

H. Proof of Lemma 4

According to the definition of the joint success probability, we have

P(n)
m (rm)

= P
(

PmhXm(t1)r−αm
Imm(t1) + Ism(t1)

> βm, · · · ,
PmhXm(tn)r−αm

Imm(tn) + Ism(tn)
> βm

)
= P

(
hXm(t1) >

βm (Imm(t1) + Ism(t1))

Pmr−αm
, · · · , hXm (tn) >

βm (Imm(tn) + Ism(tn))

Pmr−αm

)
(a)
= E

(
exp

[
−βm (Imm(t1) + Ism(t1))

Pmr−αm

]
× · · · × exp

[
−βm (Imm(tn) + Ism(tn))

Pmr−αm

])
(b)
= EΦm,Φs

{ ∏
X∈Φm,X 6=Xm

Eh

[
exp

(
−βmg̃(X, rm)

r−αm

n∑
i=1

hX(ti)

)] ∏
Y ∈Φs

Eh

[
exp

(
−βmPs|Y |−α

Pmr−αm

n∑
i=1

hY (ti)

)]}

(c)
= EΦm

{ ∏
X∈Φm,X 6=Xm

Eh

[
exp

(
−βmg̃(X, rm)

r−αm

n∑
i=1

hX(ti)

)]}

× EΦs

{∏
Y ∈Φs

Eh

[
exp

(
−βmPs|Y |−α

Pmr−αm

n∑
i=1

hY (ti)

)]}
(d)
= EΦm

[ ∏
X∈Φm,X 6=Xm

(
1 +

βmg̃(X, rm)

r−αm

)−n]
× EΦs

[ ∏
Y ∈Φs

(
1 +

βmPs|Y |−α

Pmr−αm

)−n]

(e)
= GΦ!

m

[(
1 +

βmg̃(X, rm)

r−αm

)−n]
GΦs

[(
1 +

βmPs|Y |−α

Pmr−αm

)−n]
, (52)

where (a) comes from the independence of Rayleigh fading channels, (b) follows from the

expression of Imm and Ism and g̃(X, rm) = |X|−α1(|X| > rm), (c) comes from the fact

that EΦm,Φs [A(Φm)B(Φs)]=EΦm{EΦs [A (Φm)B(Φs)]} = EΦm [A (Φm)]EΦs [B (Φs)], (d) follows

from the independence of Rayleigh fading channels, (e)comes from the definition of the PGF

of point processes.

Similarly, we get the joint success probability for the typical SU as shown in Lemma 1.



27

I. Proof of Lemma 6

1) The lower bound of GΦS(λS):

According to (19), the PGF of SOCP is expressed as

GΦS(λS) = exp

−λSo

∫
R2

1−M1

∫
R2

M2(

∫
R2

v(X+Y +Z)fS(Z)dZ)fS′(Y )dY︸ ︷︷ ︸
T0


 dX


= exp

{
−λSo

∫
R2

[1− exp (−cS′ (1− T0))] dX

}
(a)

≥ exp

[
−λSo

∫
R2

cS′ (1− T0) dX

]
(b)
= exp

{
−λSocS′

∫
R2

[
1−M2(

∫
R2

v(J + Z)fS(Z)dZ)

]
·
∫
R2

fS′(J −X)dx · dJ
}

(c)
= GΦM(λS), (53)

where (a) follows from the fact that 1 − exp(−θx) ≤ θx, θ ≥ 0, (b) comes from the change

of variables J = X + Y and interchanging integrals, (c) follows from the fact that
∫
R2 fS′(J −

X)dX = 1 and the expression of the PGF of MCP.

According to (23), we have

GΦS(λS) ≥ GΦM(λS) ≥ GΦP(λS). (54)

2) The upper bound of GΦS(λS):

GΦS(λS) = exp

{
−λSo

∫
R2

[1− exp (−cS′ (1− T0))] dX

}
(a)

≤ exp

[
−λSo

∫
R2

cS′ (1− T0)

1 + cS′ (1− T0)
dX

]
(b)

≤ exp

[
−λSocS′

1 + cS′

∫
R2

(1− T0) dX

]
(c)
= exp

{
−λSocS′

1 + cS′

∫
R2

∫
R2

[1− exp(−cST
′)] fS′(Y )dY dX

}
(d)

≤ exp

{
−λSocS′cS

(1 + cS′) (1 + cS)

∫
R2

∫
R2

∫
R2

(1− v(X + Y + Z)) fS(Z)dZ · fS′(Y )dY dX

}
(e)
= exp

[
−λSocS′cS

(1 + cS′) (1 + cS)

∫
R2

(1− v(X)) dX

]
= GΦP

(
λS

(1 + cS′)(1 + cS)

)
, (55)
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where (a) comes from the fact that exp(−θx) ≤ (1 + θx)−1, (b) follows from the fact that T0 =∫
R2 M2(

∫
R2 v(X+Y +Z)fS(Z)dZ)fS′(Y )dY ≥ 0 (because M2(

∫
R2 v(X+Y +Z)fS(Z)dZ) > 0

and fS′(Y ) ≥ 0), (c) comes from T ′ =
∫
R2(1− v(X + Y + Z))fS(Z)dZ, (d) follows from the

fact that exp(−θx) ≤ (1 + θx)−1 and 0 ≤ θ ≤ 1, (e) comes from the change of variables,

interchanging integrals, and the fact that
∫
R2 fS(X)dX =

∫
R2 fS′(X)dX = 1.

3) The lower bound of GΦ!
S
(λS):

According to (20), the conditional PGF of the SOCP is

GΦ!
S
(λS) = GΦS(λS)M1

[∫
R2

M2(

∫
R2

v(X + Y + Z)fS(Z)dZ)fS′(Y )dY

]
︸ ︷︷ ︸

T1

·
∫
R2

M2(

∫
R2

v(X + Y + Z)fS(Z)dZ)fS(Y )dY︸ ︷︷ ︸
T2

. (56)

Thus, the lower bound of GΦ!
S
(λS) is derived by bounding the following three terms, called

GΦS(λS), T1, and T2.

First, the lower bound of GΦS(λS) is given in (54).

Next, the lower bound of T1 is calculated as follows:

T1 = exp

{
−cS′

∫
R2

[
1− exp

(
−cS

∫
R2

(1− v(X + Y + Z)) fS(Z)dZ

)]
fS′(Y )dY

}
(a)

≥ exp

{
−cS′cS

∫
R2

(1− v(J))fS(J − Y −X)fS′(Y )dY dJ

}
(b)
= exp

[
−cS′cS

∫
R2

(1− v(J))fS ? fS′(J −X)dJ

]
(c)

≥ exp

[
−cS′cSf̂S ? fS′

∫
R2

(1− v(J))dJ

]
, (57)

where (a) comes from the fact that 1 − exp(−θx) ≤ θx, θ ≥ 0 and the change of variables

J = X + Y + Z, (b) follows from the definition of convolution fS ? fS′ , (c) comes from

f̂S ? fS′ = supX∈R2(fS ? fS′)(X).

Based on Young’s inequality in [37] (‖f?g‖r ≤ ‖f‖p‖g‖q, where 1/p+1/q = 1/r+1), we have

f̂S ? fS′ ≤ min{‖fS′‖∞‖fS‖1, ‖fS′‖1‖fS‖∞} = min

 1− exp
(
−R2

S′
2σ2

)
πR2

S′ + 2πσ2
(

exp
(
−R2

S′
2σ2

)
− 1
) , 1

πR2
S

︸ ︷︷ ︸
γ

.

Hence, we have

T1 ≥ exp

[
−cS′cSγ

∫
R2

(1− v(J))dJ

]
. (58)
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Next, the lower bound of T2 is given as:

T2 =

∫
R2

exp

[
−cS

∫
R2

(1− v(X + Y + Z))fS(Z)dZ

]
fS(Y )dY

(a)

≥ exp

[
−cS

∫
R2

∫
R2

(1− v(X + Y + Z))fS(Z)dZfS(Y )dY

]
(b)
= exp

[
−cS

∫
R2

(1− v(J))fS ? fS(J −X)dJ

]
(c)

≥ exp

[
−cSf̂S ? fS

∫
R2

(1− v(J))dJ

]
(D)

≥ exp

[
−cS

πR2
S

∫
R2

(1− v(J)) dJ

]
, (59)

where (a) comes from the fact that f(x) = exp(−x) is convex and E [f(x)] ≥ f(E(x)), (b)

follows from the change of variables J = X+Y +Z and the definition of convolution fS?fS, (c)

comes from f̂S ? fS = supX∈R2(fS ? fS)(X), (d) comes from the Young’s inequality f̂S ? fS ≤

‖fS‖∞‖fS‖1 = 1
πR2

S
.

Combining (56), (54), (57), and (59), the lower bound of GΦ!
S

is given as follows:

GΦ!
S
(λS) = GΦS(λS) · T1 · T2

≥ exp

[
−λS

∫
R2

(1−v(J))dJ

]
exp

[
−cS′cSγ

∫
R2

(1−v(J))dJ

]
exp

[
−cS

πR2
S

∫
R2

(1−v(J)) dJ

]
= exp

[
−
(
λS + cS′cSγ +

cS

πR2
S

)∫
R2

(1− v(J))dJ

]
= GΦ!

P

(
λS + cS′cSγ +

cS

πR2
S

)
.

(60)

4) The upper bound of GΦ!
S
(λS):

GΦ!
S
(λS) = GΦS(λS) · T1 · T2

(a)

≤ GΦS(λS)
(b)

≤ GΦ!
P

(
λS

(1 + cS′) (1 + cS)

)
. (61)

where (a) comes from 0 ≤ T1 ≤ 1 and 0 ≤ T2 ≤ 1 and (b) follows form Lemma 6.

J. Proof of Lemma 8

According to (14), P(n)
mP(λ, r) is given as:

P(n)
mP(λs, rm)

(a)
= E!

Xm

[ ∏
X∈Φm

(
1 +

βmg̃(X, rm)

r−αm

)−n]
E

[ ∏
X∈ΦP

(
1 +

βmPs|X|−α

Pmr−αm

)−n]
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(b)
=exp

{
−2πλm

∫ ∞
r

[
1−
(

1+
βmr

−α

r−αm

)−n]
rdr

}
exp

{
−2πλs

∫ ∞
0

[
1−
(

1+
βmPsr

−α

Pmr−αm

)−n]
rdr

}
(c)
= exp

[
−λmQn(βm)r2

m

]
exp

[
−λs

(
βmPs
Pm

)δ
Unr

2
m

]
. (62)

where (a) comes from (14), (b) follows from (16) and converting from Cartesian to polar

coordinates, (c) comes from (22) in [38] with K = 1 and Theorem 1 in [27] with θ = βmPs
Pm

and

p = 1, the function Qn(βm) and constant Un are defined in (30) and (31), respectively.

Following the similar steps, P(n)
sP (λ, r) is derived as shown in Lemma 8.

K. Proof of Theorem 3

Based on the expressions of the conditional joint success probability (Lemma 4) and the

bounds of PGF and the conditional PGF for MCP and SOCP (from (23) to (27)), the bounds of

the conditional joint success probabilities for the MCP model and SOCP model are bounded by

their counterparts for the PPP model as follows:

P(n)
mP(λM, rm) ≤ P(n)

mM(rm) ≤ P(n)
mP(

λM

1 + cM
, rm) (63)

P(n)
sP (λM +

cM

πR2
M
, rs) ≤ P(n)

sM (rs) ≤ P(n)
sP (

λM

1 + cM
, rs) (64)

P(n)
mP(λS, rm) ≤ P(n)

mM(λS, rm) ≤ P(n)
mS(rm) ≤ P(n)

mP(
λS

(1 + cS′)(1 + cS)
, rm) (65)

P(n)
sP (λS + cS′cS +

cS

πR2
S
, rs) ≤ P(n)

sS (rs) ≤ P(n)
sP (

λS

(1 + cS′)(1 + cS)
, rs), (66)

where P(n)
mP(λ, r) and P(n)

sP (λ, r) denote the conditional joint success probability (given the serving

distance r) for the typical MU and SU in the PPP model.

By taking expectation with respect to the distance distribution in (1), the bounds of the joint

success probabilities are derived as shown in Theorem 3.
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