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Abstract
This paper focuses on a certain type of periodic boundary value problems for
first-order impulsive difference equations with time delay. Notions of lower and upper
solutions are introduced, with which two new comparison theorems are established.
Using Schaefer’s fixed point theorem, sufficient conditions for the existence and
uniqueness of solutions to the corresponding linear problem of the boundary value
problem are derived. By utilizing monotone iterative methods combined with the
methods of lower and upper solutions, an existence theorem of extremal solutions to
first-order impulsive difference equations with delay is obtained. These results extend
some existing results in the literature. An interesting example is also given to verify
the results obtained.
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1 Introduction
The mathematical model of many real-world phenomena can be represented by impulsive
equations, and these phenomena have undergone significant changes in the progress. Such
equations have a wide range of applications in many areas, including economics, optimal
control, dynamic systems, medicine, and many other fields (see [1–6]). In the past decade,
there has been an increasing interest in extending impulsive differential equations to time-
delay systems and boundary value problems. For example, in 2003, De la Sen and Luo [7]
studied the stability of a class of linear time-delay systems. Immediately after that, De la
Sen discussed in [8] the time-varying systems with non-necessarily bounded everywhere
continuous time-differentiable time-varying point delays. Wang and Ding [9] considered
asymptotic stability and exponential stability of impulsive control systems with delay. Zhao
et al. [10] extended the method of lower and upper solutions to the framework of m-point
impulsive boundary value problem. Interested readers may consult the monograph [11]
for more details on impulsive differential equations.

Research in difference equations has been active in recent years and has played an im-
portant role in numeral fields, including biology, computing, electrical circuit analysis, etc.
(see [12–14]). There also has been a large number of studies on the extension of difference
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equations to time-delay systems in the literature [15–24]. Among these extensions, Zhu
et al. [23] studied impulsive delay difference equations and gave the results of global expo-
nential stability, and Li and Song [17] studied the asymptotic behavior of impulsive delay
difference equations. However, there are not many related results for impulsive difference
equations and impulsive delay difference equations. Based on the above observation, in
this paper, periodic boundary value problems for impulsive difference equations with time
delay are considered.

To state our results, we first introduce the following symbols:
J := Z[0, N] = {0, 1, . . . , N}, where N ∈N is a positive integer;
J ′ := Z[0, N – 1] = {0, 1, . . . , N – 1};
� := the collection of R-valued functions defined on J ; and
‖y‖ := maxk∈J |y(k)| for any y ∈ �.

We will consider the following first-order impulsive difference equations with time de-
lay:

⎧
⎪⎨

⎪⎩

�y(k) = g(k, y(k), y(θ (k))), k �= kτ , k ∈ J ′,
�y(kτ ) = Iτ (y(kτ )), τ = 1, 2, . . . , m,
y(0) = y(N),

(1.1)

where �y(k) = y(k + 1) – y(k), g ∈ C(J ×R
2,R), θ ∈ C(J , Z[0, k]), 0 ≤ θ (k) ≤ k, Iτ ∈ C(R,R)

(τ = 1, 2, . . . , m), and 0 < k1 < k2 < · · · < km < N .
We note that when θ (k) = k, problem (1.1) is reduced to periodic boundary conditions

for impulsive equations, which was studied in [16].
When θ (k) = k and Iτ (x) ≡ 0, τ = 1, 2, . . . , m, problem (1.1) does not contain the impulse

term, and they become ordinary difference equations, which have been investigated ex-
tensively by many authors [6, 24].

This paper is organized as follows. In Sect. 2, new definitions of lower and upper solu-
tions are given, and two new comparison theorems are proved. In Sect. 3, the existence
and uniqueness of solutions to the linear problem associated with (1.1) are established.
Then, utilizing the monotone iterative method combined with the method of lower and
upper solutions, problem (1.1) is proved to have extremal solutions. Finally, an example is
given to document the results obtained.

2 Comparison results
To apply the monotone iterative method to problem (1.1), we first introduce some defini-
tions and lemmas.

Definition 2.1 A function v ∈ � is said to be a lower solution of (1.1) if there exist H ≥ 0
and 0 < L ≤ Mτ < 1 such that

{
�v(k) ≤ g(k, v(k), v(θ (k))) – rv, k �= kτ , k ∈ J ′,
�v(kτ ) ≤ Iτ (v(kτ )) – dvτ , τ = 1, 2, . . . , m,

where

rv =

{
Lk+Hθ (k)+1

N [v(0) – v(N)], if v(0) > v(N),
0, if v(0) ≤ v(N),
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dvτ =

{
Mτ kτ +1

T [v(0) – v(N)], if v(0) > v(N),
0, if v(0) ≤ v(N).

Definition 2.2 A function w ∈ � is said to be an upper solution of (1.1) if there exist
H ≥ 0 and 0 < L ≤ Mτ < 1 such that

{
�w(k) ≥ g(k, w(k), w(θ (k))) + rw, k �= kτ , k ∈ J ′,
�w(kτ ) ≥ Iτ (w(kτ )) + dwτ , τ = 1, 2, . . . , m,

where

rw =

{
Lk+Hθ (k)+1

N [w(N) – w(0)], if w(0) < w(N),
0, if w(0) ≥ w(N),

dwτ =

{
Mτ kτ +1

N [w(N) – w(0)], if w(0) < w(N),
0, if w(0) ≥ w(N).

Lemma 2.3 (Discrete Theorem 1.4.1 [16]) Let {lk} and {qk} be two real sequences with
lk > –1 for all k, and aτ , bτ be constants with aτ ≥ 0 for all τ . Assume that

(i) {kτ } is a sequence satisfying 0 ≤ k0 < k1 < · · · < kτ < · · · , and limτ→∞ kτ = ∞;
(ii) for τ ∈N, k ≥ k0,

{
�p(k) ≤ lkp(k) + qk , k �= kτ ,
p(kτ + 1) ≤ aτ p(kτ ) + bτ .

Then

p(k) ≤ p(k0)
∏

k0<kτ <k

aτ

∏

k0<j<k,j �=kτ ,τ∈N
(1 + lj)

+
k–1∑

j=k0,j �=kτ

∏

j<kτ <k

aτ

∏

j<s<k,s �=kτ

(1 + ls)qj

+
∑

k0<kτ <k

bτ

∏

kτ <kj<k

aj
∏

kτ <j<k,j �=kj ,j∈N
(1 + lj).

Lemma 2.4 (Theorem 2.2 [20]) Assume that p ∈ � satisfies

⎧
⎪⎨

⎪⎩

�p(k) + Lp(k) + Hp(θ (k)) ≤ 0, k �= kτ , k ∈ J ′,
�p(kτ ) ≤ –Mτ p(kτ ), τ = 1, 2, . . . , m,
p(0) ≤ 0,

where H ≥ 0, 0 < L ≤ Mτ < 1 for τ = 1, 2, . . . , m, and

H
N∑

i=0,i�=kτ

∏

i<kτ <k

(1 – Mτ )(1 – L)θ (i)–i–1 –
m∏

τ=1

(1 – Mτ ) ≤ 0. (2.1)

Then p(k) ≤ 0, k ∈ J .



Tian et al. Advances in Difference Equations  (2018) 2018:79 Page 4 of 14

Lemma 2.5 Assume that (2.1) holds and p ∈ � satisfies

{
�p(k) + Lp(k) + Hp(θ (k)) ≤ –rp, k �= kτ , k ∈ J ′,
�p(kτ ) ≤ –Mτ p(kτ ) – dpτ , τ = 1, 2, . . . , m,

where H ≥ 0, 0 < L ≤ Mτ < 1 for τ = 1, 2, . . . , m, and

rp =

{
Lk+Hθ (k)+1

N [p(0) – p(N)], if p(0) > p(N),
0, if p(0) ≤ p(N),

dpτ =

{
Mτ kτ +1

N [p(0) – p(N)], if p(0) > p(N),
0, if p(0) ≤ p(N).

Then p(k) ≤ 0 on J .

Proof Suppose that the conclusion is not true, then p(k) > 0 for some k ∈ J . There are two
cases as follows.

Case 1: p(0) ≤ p(N). Let q(k) = (1 – M)–kp(k) for k ∈ J . Then q(k) satisfies

⎧
⎪⎨

⎪⎩

�q(k) ≤ –H(1 – L)θ (k)–k–1q(θ (k)), k �= kτ , k ∈ J ′,
�q(kτ ) ≤ L–Mτ

1–L q(kτ ), τ = 1, 2, . . . , m,
q(0) ≤ (1 – L)N q(N).

(2.2)

It is easily seen that we only need to prove q(k) ≤ 0 for k ∈ J . Assume that it is not true.
Then there are two sub-cases:

(1) There exists k∗ ∈ J such that q(k∗) > 0, and q(k) ≥ 0 for k ∈ J ;
(2) There exists k∗ ∈ J such that q(k∗) < 0.
In sub-case (1), (2.2) implies that

{
�q(k) ≤ 0, k �= kτ , k ∈ J ′,
�q(kτ ) ≤ 0, τ = 1, 2, . . . , m.

This means that q(k) is a non-increasing function. Then we obtain q(0) ≥ q(k∗) and q(0) ≥
q(N) > q(N)(1 – L)N , which contradicts (2.2).

In sub-case (2), set mink∈Z[0,N] q(k) = –λ, λ ≤ 0. Without loss of generally, we can assume
that there exists kτ < k̄ ≤ kτ+1 for some τ such that q(k̄) = –λ or q(kτ ) = –λ. Assume that
q(k̄) = –λ (if q(kτ ) = –λ, the proof is similar). From (2.2), we have

q(k) ≤ q(k̄)
∏

k̄<kτ <k

(1 – L)–1(1 – Mτ ) + λH
k–1∑

j=k̄,j �=kτ

∏

i<kτ <k

(1 – Mτ )(1 – L)θ (j)–j–2

≤ –λ

m∏

τ=1

(1 – L)–1(1 – Mτ ) + λH
N∑

j=0,j �=kτ

∏

j<kτ <k

(1 – Mτ )(1 – L)θ (j)–j–2. (2.3)
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Putting k = N in (2.3), we have

q(N) ≤ λ

{

H
N∑

j=0,j �=kτ

∏

j<kτ <k

(1 – Mτ )(1 – L)θ (j)–j–2 –
m∏

τ=1

(1 – L)–1(1 – Mτ )

}

≤ λ(1 – L)–1

{

H
N∑

j=0,j �=kτ

∏

j<kτ <k

(1 – Mτ )(1 – L)θ (j)–j–1 –
m∏

τ=1

(1 – Mτ )

}

≤ 0,

which is a contradiction with q(N) > 0, and so p(0) ≤ 0. From Lemma 2.4, we have p(k) ≤ 0,
k ∈ J . Then the result follows.

Case 2: p(0) > p(N). Let

p̄(k) = p(k) + h(k), k ∈ J ,

where h(k) = k
N [p(0) – p(N)], k ∈ J . Then h(0) = 0, h(N) = p(0) – p(N), and h(k) ≥ 0 on J .

Hence we have

p̄(0) = p(0) = h(N) + h(N) = p̄(N),

�p̄(k) + Lp̄(k) + Hp̄
(
θ (k)

)
= �p(k) + Lp(k) + Hp

(
θ (k)

)

+
Lk + Hθ (k) + 1

N
[
p(0) – p(N)

]

≤ 0, k �= kτ , τ ∈ J ′,

�p̄(kτ ) = �p(kτ ) +
1
N

[
p(0) – p(N)

]

≤ –Mτ p(kτ ) –
Mτ pτ + 1

N
[
p(0) – p(N)

]
+

1
N

[
p(0) – p(N)

]

= –Mτ p̄(kτ ), τ = 1, 2, . . . , m.

By Case 1, we have p̄(k) ≤ 0, k ∈ J . Then p(k) ≤ 0 on J . The proof is finished. �

3 Existence results
We consider the following linear problem associated with (1.1):

⎧
⎪⎨

⎪⎩

�y(k) + Ly(k) + Hy(θ (k)) = σ (k), k �= kτ , k ∈ J ′,
�y(kτ ) = –Mτ y(kτ ) + γτ , τ = 1, 2, . . . , m,
y(0) = y(N),

(3.1)

where 0 < L ≤ Mτ < 1, H ≥ 0, γτ ∈R (τ = 1, 2, . . . , m), σ ∈ C(J ,R).

Definition 3.1 A function v ∈ � is said to be a lower solution of (3.1) if there exist H ≥ 0
and 0 < L ≤ Mτ < 1 such that

{
�v(k) + Lv(k) + Hv(θ (k)) ≤ σ (k) – rv, k �= kτ , k ∈ J ′,
�v(kτ ) ≤ –Mτ v(kτ ) + γτ – dvτ , τ = 1, 2, . . . , m,
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where

rv =

{
Lk+Hθ (k)+1

N [v(0) – v(N)], if v(0) > v(N),
0, if v(0) ≤ v(N),

dvτ =

{
Mτ kτ +1

N [v(0) – v(N)], if v(0) > v(N),
0, if v(0) ≤ v(N).

Definition 3.2 A function w ∈ � is said to be an upper solution of (3.1) if there exist
H ≥ 0 and 0 < L ≤ Mτ < 1 such that

{
�w(k) + Lw(k) + Hw(θ (k)) ≥ σ (k) + rw, k �= kτ , k ∈ J ′,
�w(kτ ) ≥ –Mτ w(kτ ) + γτ + dwτ , τ = 1, 2, . . . , m,

where

rw =

{
Lk+Hθ (k)+1

N [w(N) – w(0)], if w(0) < w(N),
0, if w(0) ≥ w(N),

dwτ =

{
Mτ kτ +1

N [w(N) – w(0)], if w(0) < w(N),
0, if w(0) ≥ w(N).

Lemma 3.3 Let 0 < L < 1. If a function y ∈ � is a solution of (3.1), then y is a solution of
the following equation:

y(k) =
N–1∑

i=0,i�=kτ

F(k, i)
(
σ (i) – Hy

(
θ (i)

))

+
∑

0<kτ ≤N–1

F(k, kτ )
[
(L – Mτ )y(kτ ) + γτ

]
, (3.2)

where

F(k, i) =
1

1 – (1 – L)N

{ (1–L)k

(1–L)i+1 , 0 ≤ i ≤ k – 1,
(1–L)N+k

(1–L)i+1 , k ≤ i ≤ N – 1.

Proof Set ȳ(k) = y(k)
(1–L)k , k ∈ J . From (3.1), we see that ȳ(k) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

ȳ(k + 1) = ȳ(k) + σ (k)–Hȳ(θ (k))(1–L)θ (k)

(1–L)k+1 , k �= kτ , k ∈ J ′,
�ȳ(kτ ) = L–Mτ

1–L ȳ(kτ ) + γτ

(1–L)kτ +1 , τ = 1, 2, . . . , m,
ȳ(0) = ȳ(N)(1 – L)N .

(3.3)

By (3.3), one obtains

ȳ(k) = ȳ(0) +
k–1∑

i=0,i�=kτ

σ (i) – Hȳ(θ (i))(1 – L)θ (i)

(1 – L)i+1

+
∑

0<kτ ≤k–1

(
L – Mτ

1 – L
ȳ(kτ ) +

γτ

(1 – L)kτ +1

)

. (3.4)
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Letting k = N in (3.4), we have

ȳ(N) = ȳ(0) +
N–1∑

i=0,i�=kτ

σ (i) – Hȳ(θ (i))(1 – L)θ (i)

(1 – L)i+1

+
∑

0<kτ ≤N–1

(
L – Mτ

1 – L
ȳ(kτ ) +

γτ

(1 – L)kτ +1

)

. (3.5)

For ȳ(N) = ȳ(0)
(1–L)N , and carrying out detailed computation, we obtain

ȳ(0) =
(1 – L)N

1 – (1 – L)N

[ N–1∑

i=0,i�=kτ

σ (i)
(1 – L)i+1 – Hȳ

(
θ (i)

)
(1 – L)θ (i)–i–1

+
∑

0<kτ ≤N–1

(
L – Mτ

1 – L
ȳ(kτ ) +

γτ

(1 – L)kτ +1

)]

. (3.6)

Combining (3.6) and (3.4), and applying ȳ(k) = y(k)
(1–L)k , k ∈ J , we find that y satisfies (3.2),

hence y is also a solution of (3.1). �

Theorem 3.4 Let (2.1) hold with H ≥ 0, 0 < L ≤ Mτ < 1 (τ = 1, 2, . . . , m), and let v, w ∈ �

be lower and upper solutions, respectively, of (3.1) with v ≤ w on J . Then problem (3.1) has
a unique solution y ∈ [v, w] = {y ∈ � : v(k) ≤ y(k) ≤ w(k), k ∈ J}.

Proof First, we consider the following equations:

⎧
⎪⎨

⎪⎩

�y(k) + Ly(k) + Hq(θ (k), y(θ (k))) = σ (k), k �= kτ , k ∈ J ′,
�y(kτ ) = –Mτ q(kτ , y(kτ )) + γτ , τ = 1, 2, . . . , m,
y(0) = y(N),

(3.7)

where q(k, r) = max{v(k), min{r, w(k)}} for k ∈ J , and r ∈R.
We define an operator φ by

[φy](k) =
N–1∑

i=0,i�=kτ

F(k, i)
[
σ (i) – Hq

(
θ (i), y

(
θ (i)

))]

+
∑

0<kτ ≤N–1

F(k, kτ )
[
(L – Mτ )q

(
kτ , y(kτ )

)
+ γτ

]
. (3.8)

As σ is continuous, φ : � → � is continuous.
Also because σ is continuous, we can select l > 0 such that |σ (k)| ≤ h, and let h > 0 be

such that |v(k)| ≤ h, |w(k)| ≤ h, k ∈ J . For λ ∈ (0, 1), any solution of

y = λφy
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satisfies

‖y‖ = λ‖φy‖ ≤ ‖φy‖

≤ max
k∈J

N–1∑

i=0,i�=kτ

F(k, i)
∣
∣σ (i) – Hq

(
θ (i), y

(
θ (i)

))∣
∣

+ max
k∈J

∑

0<kτ ≤N–1

F(k, kτ )
(|L – Mτ |

∣
∣q

(
kτ , y(kτ )

)∣
∣ + |γτ |

)

≤ (l + Hh)(N – m)
1 – (1 – L)N +

m
1 – (1 – L)N

((
L + |Mτ |

)
h + |γτ |

)
= τ̄ .

Based on the fact 0 < L < 1, one has 1 – (1 – L)N > 0. From Schaefer’s fixed point theorem,
we find that φ has at least one fixed point. So problem (3.7) has at least one solution.

Now, let y be any solution of (3.7), we shall show that y ∈ [v, w]. First, we claim that
v(k) ≤ y(k) for all k ∈ J . Taking u(k) = v(k) – y(k), k ∈ J , one has

v
(
θ (k)

)
– q

(
θ (k), y

(
θ (k)

)) ≥ min
k �=kτ

{
u
(
θ (k)

)
, 0

}

and

v(kτ ) – q
(
kτ , u(kτ )

) ≥ τ

min
τ=1

{
u(kτ ), 0

}
.

Since y(0) = y(N), we have u(0) – u(N) = v(0) – v(N). From the definition of lower solution,
we get

{
�u(k) + Lu(k) + H min{u(θ (k)), 0} ≤ –ru, k �= kτ , k ∈ J ′,
�u(kτ ) ≤ –Mτ min{u(kτ ), 0} – duτ , τ = 1, 2, . . . , m,

where rv, ru, dvτ , duτ are given by

rv = ru =

{
Lk+Hθ (k)+1

N [u(0) – u(N)], if u(0) > u(N),
0, if u(0) ≤ u(N),

dvτ = duτ =

{
Mτ kτ +1

N [u(0) – u(N)], if u(0) > u(N),
0, if u(0) ≤ u(N).

From Lemma 2.5, we get u(k) ≤ 0 on J , i.e., v(k) ≤ y(k), k ∈ J . Analogously, one proves that
y(k) ≤ w(k) on J and y ∈ [v, w].

Thus every solution y lying between v and w of (3.7) is a solution of (3.1). Next, we shall
show that the solution of (3.1) is unique. Assume that y1(k), y2(k) are two solutions of (3.1).
Putting v1(k) = u1(k) – u2(k), v2(k) = u2(k) – u1(k), we get

v1(0) = v1(N), �v1(k) + Lv1(k) + Hv1
(
θ (k)

)
= 0, k �= kτ ,

�v1(kτ ) = –Mτ v1(kτ ), τ = 1, 2, . . . , m,
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and

v2(0) = v2(N), �v2(k) + Lv2(k) + Hv2
(
θ (k)

)
= 0, k �= kτ ,

�v2(kτ ) = –Mτ v2(kτ ), τ = 1, 2, . . . , m.

From Lemma 2.5, we obtain v1(k) ≤ 0, v2(k) ≤ 0, and so y1(k) = y2(k), k ∈ J . This completes
the proof. �

Theorem 3.5 Assume that (2.1) holds, and
(A0) the functions v, w ∈ � are lower and upper solutions for (1.1), respectively, with v ≤ w;
(A1) there exist H ≥ 0, 0 < L ≤ Mτ < 1 for τ = 1, 2, . . . , m, and a function g ∈ C(J ×R

2,R)
satisfying

k(k, x, z) – g(k, u, s) ≥ –L(x – u) – H(z – s),

where v(k) ≤ y(k) ≤ x(k) ≤ w(k), v(θ (k)) ≤ s(θ (k)) ≤ z(θ (k)) ≤ w(θ (k)), k ∈ J ;
(A2) Iτ ∈ C(R,R) are functions satisfying

Iτ (u) – Iτ (s) ≥ –Mτ (u – s),

where v(kτ ) ≤ s(kτ ) ≤ u(kτ ) ≤ w(kτ ), τ = 1, 2, . . . , m.
Then problem (1.1) has extremal solutions in the sector [v, w].

Proof For any η ∈ [v, w], we consider equations

⎧
⎪⎨

⎪⎩

�u(k) + Lu(k) + H(θ (k)) = g(k,η(k),η(θ (k))) + L(η(k)) + H(η(θ (k))),
�u(kτ ) + Mτ u(kτ ) = Iτ (η(kτ )) + Mτ η(kτ ),
u(0) = u(N).

(3.9)

Employing (A1), (A2), Definition 3.1, and Definition 3.2, we have

�v(k) + Lv(k) + Hv
(
θ (k)

) ≤ g
(
k, v(k), v

(
θ (k)

))
– rv + Lv(k) + Hv

(
θ (k)

)

≤ g
(
k,η(k),η

(
θ (k)

))
+ Lη(k) + Hη

(
θ (k)

)
– rv,

�v(kτ ) + Mτ v(kτ ) ≤ Iτ
(
v(kτ )

)
– dvτ + Mτ v(kτ )

≤ Iτ
(
η(kτ )

)
+ Mτ η(kτ ) – dvτ ,

where rv, dvτ are given by

rv =

{
Lk+Hθ (k)+1

N [v(0) – v(N)], if v(0) > v(N),
0, if v(0) ≤ v(N),

dvτ =

{
Mτ kτ +1

T [v(0) – v(N)], if v(0) > v(N),
0, if v(0) ≤ v(N),



Tian et al. Advances in Difference Equations  (2018) 2018:79 Page 10 of 14

and

�w(k) + Lw(k) + Hw
(
θ (k)

) ≥ g
(
k, w(k), w

(
θ (k)

))
+ rw + Lw(k) + Hw

(
θ (k)

)

≥ g
(
k,η(k),η

(
θ (k)

))
+ Lη(k) + Hη

(
θ (k)

)
+ rw,

�w(kτ ) + Mτ w(kτ ) ≥ Iτ
(
w(kτ )

)
+ dwτ + Mτ w(kτ )

≥ Iτ
(
η(kτ )

)
+ Mτ η(kτ ) + dwτ ,

where rw, dwτ are given by

rw =

{
Lk+Hθ (k)+1

N [w(N) – w(0)], if w(0) < w(N),
0, if w(0) ≥ w(N),

dwτ =

{
Mτ kτ +1

N [w(N) – w(0)], if w(0) < w(N),
0, if w(0) ≥ w(N).

Observe that v and w are lower and upper solutions of (3.9), respectively. Noticing that
(2.1) holds, by Theorem 3.4, one sees that (3.9) has exactly one solution y ∈ �. Denote a
map A by y(k) = Aη(k). We shall prove that A has the following properties:

(a) v ≤ Av, w ≥ Aw;
(b) A is a monotonically nondecreasing operator in [v, w], i.e., for any η1,η2 ∈ [v, w],

η1 ≤ η2 implies Aη1 ≤ Aη2.
For (a), we take p(k) = v(k) – v1(k), where v1 = Av. We distinguish two cases as follows.
Case 1: v(0) ≤ v(N). Following (A0) and v1(0) = v1(N), we have

p(0) = v(0) – v1(0) ≤ v(N) – v1(N) = p(N),

�p(k) ≤ g
(
k, v(k), v

(
θ (k)

))
–

[
–Lv1(k) – Hv1

(
θ (k)

)

+ g
(
k, v(k), v

(
θ (k)

))
+ Lv(k) + Hv

(
θ (k)

)]

≤ –Lp(k) – Hp
(
θ (k)

)
, k �= kτ , k ∈ J ′,

and

�p(kτ ) ≤ –Lkp(kτ ), τ = 1, 2, . . . , m.

From Lemma 2.5, we have p(k) ≤ 0 on J , i.e., v ≤ v1.
Case 2: v(0) > v(N). By way of (A0), we derive

�p(k) ≤ g
(
k, v(k), v

(
θ (k)

))
–

Lk + Hθ (k) + 1
N

[
v(0) – v(N)

]

–
[
–Lv1(k) – Hv1

(
θ (k)

)
+ g

(
k, v(k), v

(
θ (k)

))
+ Lv(k) + Hv

(
θ (k)

)]

≤ –Lp(k) – Hp
(
θ (k)

)
–

Lk + Hθ (k) + 1
N

[
p(0) – p(N)

]
, k �= kτ , k ∈ J ′,
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and

�p(kτ ) = �v(kτ ) – �v1(kτ )

≤ Iτ
(
v(kτ )

)
–

Mτ kτ + 1
N

[
v(0) – v(N)

]

– Iτ
(
v(kτ )

)
– Mτ v(kτ ) + Mτ v1(kτ )

= –Mτ p(kτ ) –
Mτ kτ + 1

N
[
p(0) – p(N)

]
, τ = 1, 2, . . . , m.

From Lemma 2.5, one gets p(k) ≤ 0 for k ∈ J and v ≤ v1.
On the basis of Case 1 and Case 2, we obtain p(k) ≤ 0 for every k ∈ J . Hence v ≤ Av.
Analogously, we have w ≥ Aw.
To prove (b), take v1 = Aη1, v2 = Aη2, where η1 ≤ η2 on J . Using (A1), (A2), and (3.9), we

get

�p(k) = �v1(k) – �v2(k)

=
[
–Lv1(k) – Hv1

(
θ (k)

)
+ g

(
k,η1(k),η1

(
θ (k)

))
+ Lη1(k) + Hη1

(
θ (k)

)]

–
[
–Lv2(k) – Hv2

(
θ (k)

)
+ g

(
k,η2(k),η2

(
θ (k)

))
+ Lη2(k) + Hη2

(
θ (k)

)]

≤ –L
(
v1(k) – v2(k)

)
– H

(
v1

(
θ (k)

)
– v2

(
θ (k)

))

= –Lp(k) – Hp
(
θ (k)

)
, k �= kτ , k ∈ J ′,

�p(kτ ) = �v1(kτ ) – �v2(kτ )

=
[
–Mτ v1(k) + Iτ

(
η1(kτ )

)
+ Mτ η1(kτ )

]

–
[
–Mτ v2(kτ ) + Iτ

(
η2(kτ )

)
+ Mτ η2(kτ )

]

≤ –Mτ

(
v1(kτ ) – v2(kτ )

)

= –Mτ p(kτ ), τ = 1, 2, . . . , m,

and p(0) = p(N). In view of Lemma 2.5, we get p(k) ≤ 0 on J , then Aη1 ≤ Aη2.
Now we define the sequences {vj(k)}, {wj(k)} with v0 = v, w0 = w such that vj = Avj–1,

wj = Awj–1. Due to (a) and (b), one reaches

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vj ≤ · · · ≤ wj ≤ · · · ≤ w2 ≤ w1 ≤ w0 on J .

Hence, there exist ρ(k) and r(k) such that limj→∞ vj(k) = ρ(k) and limj→∞ wj(k) = r(k) uni-
formly on J .

Observe that vj(k), wj(k) (j = 1, 2, . . .) satisfy

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�vj(k) + Lvj(k) + Hvj(θ (k))
= g(k, vj–1(k), vj–1(θ (k))) + L(vj–1(k)) + H(vj–1(θ (k))), k �= kτ , k ∈ J ′,

�vj(kτ ) + Mτ vj(kτ ) = Iτ (vj–1(kτ )) + Mτ vj–1(kτ ), τ = 1, 2, . . . , m,
vj(0) = vj(N),
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and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�wj(k) + Lwj(k) + Hwj(θ (k))
= g(k, wj–1(k), wj–1(θ (k))) + L(wj–1(k)) + H(wj–1(θ (k))), k �= kτ , k ∈ J ′,

�wj(kτ ) + Mτ wj(kτ ) = Iτ (wj–1(kτ )) + Mτ wj–1(kτ ), τ = 1, 2, . . . , m,
wj(0) = wj(N).

Obviously, ρ(k) and r(k) are solutions of (1.1).
We shall show that ρ(k), r(k) are minimal and maximal solutions, respectively, of prob-

lem (1.1). Let y(k) be any solution of problem (1.1) such that v(k) ≤ y(k) ≤ w(k). Assume
that there is a positive integer j such that vj(k) ≤ y(k) ≤ wj(k) on J . Based on the monoton-
ically nondecreasing property of A, we easily get vj+1 = Avj ≤ Ay = y, vj+1(k) ≤ y(k), k ∈ J .
Analogously, one derives y(k) ≤ wj+1(k) on J . For v0(k) ≤ y(k) ≤ w0(k), by induction we see
that vj(k) ≤ y(k) ≤ wj(k), k ∈ J . Let j → ∞, we have ρ(k) ≤ y(k) ≤ r(k) on J . This completes
the proof. �

Example 3.6 Consider the following equations:

⎧
⎪⎨

⎪⎩

�u(k) = –u2(k) – 1
20 u( 1

2 k) + 2–k

16 , k ∈ Z[0, 3], k �= k1,
�u(kτ ) = – 1

2 u(k1), k1 = 2,
u(0) = u(3).

(3.10)

Let g(k, u(k), u(θ (k))) = –u2(k) – 1
20 u( 1

2 k) + 2–k

16 . It is easy to verify that v = – 1
21 is a lower

solution, and w1(k) = 1
24 (6 – 2–k) is an upper solution for (3.10). Indeed,

w1(0) =
1

24
(6 – 1) <

1
24

(
6 – 2–3) = w1(3),

�w1(2) =
1

24
(
2–2 – 2–3) > –

1
2

· 1
24

(
6 – 2–2) +

2
3

· 1
24

· (1 – 2–3),

�w1(k) =
1

24
(
2–k – 2–k–1)

≥ –
[

1
24

(
6 – 2–k)

]2

–
1

20
· 1

24
(
6 – 2–k) +

1
16

· 2–k +
19k + 40

120
· 1

24
· 7

8
,

and

g(k, x, y) – g(k, u, v) = –
(
x2 – u2) –

1
20

(y – v) ≥ –
1
2

(x – u) –
1

20
(y – v)

for v ≤ u ≤ x ≤ w. Putting L = 49
100 , H = 1

20 , Mτ = 1
2 , we obtain

1
20

3∑

i=0,i�=kτ

∏

i<kτ <3

(1 – Mτ )(1 – L)– 1
2 i–1 –

m∏

τ=1

(1 – Mτ )

=
1

20

3∑

i=0,i�=kτ

∏

i<kτ <3

1
2

·
(

51
100

)– 1
2 i–1

–
(

1 –
1
2

)

=
1

20

1∑

i=0

(
51

100

)– 1
2 i–1

+
1

20

3∑

i=2

1
2

·
(

51
100

)– 1
2 i–1

–
1
2

<
1
2

–
1
2

= 0,
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which shows that all of the conditions of (2.1) are satisfied. Therefore, from Theorem 3.5,
we arrive at the existence of extremal solutions of (3.10) in [v, w].

4 Conclusion
The theme of the paper is a study on periodic boundary value problems for first-order
impulsive delay difference equations. It is well recognized that the theory of impulsive
equations offers a general framework for the mathematical modeling of many real-world
phenomena where the states undergo abrupt changes. Such equations have extensive ap-
plications in economics, dynamic systems, optimal control, medicine, population dynam-
ics, and many other fields. In particular, in recent years, there has been an increasing in-
terest in extending impulsive differential equations to time-delay systems and boundary
value problems. On the other hand, difference equations play an important role in many
fields such as numerous settings and forms, computing, electrical circuit analysis, biology,
etc. However, there are not many related results for impulsive difference equations and
impulsive delay difference equations. These motivated us to work on the present topic.

In this paper, we studied impulsive delay difference equations with periodic boundary
conditions. Based on the new concepts of lower and upper solutions, we established two
new comparison principles. With these, we constructed monotone sequences from a cor-
responding linear equation and established the existence of extremal solutions by utilizing
the monotone iterative technique. An example was given to illustrate the results obtained.
It is reckoned that these results may play an important role in the theory of difference
equations, and are useful in many practical problems in the aforesaid fields.
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