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ON HILBERT’S INEQUALITIES WITH ALTERNATING SIGNS

CHANG-JIAN ZHAO AND WING-SUM CHEUNG

(Communicated by M. Krnić)

Abstract. Some new Hilbert type inequalities with alternating signs are established. These also
generalize some existing results of Hilbert type inequalities in the literature.

1. Introduction

The well-known Hilbert’s double-series inequality can be stated as follows (see [1,
p. 253]).

THEOREM. If p > 1 , q = p/(p−1) and ∑∞
m=1 am < +∞ , ∑∞

n=1 bn < +∞ , then

∞
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∞
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m+n
� 1
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(
∞
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)1/p( ∞
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n=1

bq
n

)1/q

,

unless the sequence {am} or {bn} is null.

Hilbert’s inequality were studied extensively and numerous variants, generaliza-
tions, and extensions appeared in the literature [2–14] and the references cited therein.
The research for reverse Hilbert inequalities were published in [15–17] et al. In particu-
lar, Pachpatte [18] established some new inequalities similar to the Hilbert’s inequality.
The main purpose of this paper is to establish some new Hilbert type inequalities with
alternating signs.

2. Main results

The following inequality involving series of nonnegative terms was established in
[18].
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THEOREM A. Let p � 1 , q � 1 and {am} and {bn} be two nonnegative se-
quences of real numbers defined for m = 1, . . . ,k and n = 1, . . . ,r , where k,r are nat-
ural numbers. Let Am = ∑m

s=1 as and Bn = ∑n
t=1 bt . Then

k

∑
m=1

r

∑
n=1

Ap
mBq

n

m+n
� C(p,q,k,r)

( k

∑
m=1

(
k−m+1

)(
amAp−1

m

)2)1/2

×
( r

∑
n=1

(
r−n+1

)(
bnB

q−1
n

)2)1/2
, (2.1)

where

C(p,q,k,r) =
1
2

pq(kr)1/2.

In this paper, we first establish the following Hilbert type inequality with alternat-
ing signs.

THEOREM 2.1. Let p � 1 , q � 1 , 1
α + 1

β = 1 , α > 1 and {am} and {bn} be
two positive non-increasing sequences of real numbers defined for m = 1, . . . ,k and
n = 1, . . . ,r , where k,r are natural numbers. If

Am =
m

∑
s=1

(−1)s+1as and Bn =
n

∑
t=1

(−1)t+1bt ,

then
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∑
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p
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� C(p,q,k,r,α,β )

(
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(K−m+1)
(
(a2m−1−a2m)Ãp−1

m

)α
)1/α

×
(

R

∑
n=1

(R−n+1)
(
(b2n−1−b2n)B̃q−1

n

)β
)1/β

, (2.2)

where
C(p,q,k,r,α,β ) = pqK1/βR1/α ,

and

Ãm =
m

∑
k=1

(a2k−1−a2k), and B̃n =
n

∑
r=1

(b2r−1−b2r),

and for any positive integer z (lowercase), its capital Z denotes z/2 if z is even, and
(z+1)/2 if z is odd.

Proof. Note that any sum with alternating signs can be written in the forms

m

∑
s=1

(−1)s+1as =
M

∑
s=1

(a2s−1−a2s) =: Am,

and
n

∑
t=1

(−1)t+1bt =
N

∑
t=1

(b2t−1−b2t) =: Bn,
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and we assume that am+1 = 0 and bn+1 = 0. By using the following inequality (see
e.g. [19]) (

n

∑
m=1

zm

)α

� α
n

∑
m=1

zm

(
m

∑
k=1

zk

)α−1

,

where α � 1 is a constant and zm � 0, it easily follows that

A
p
m � p

M

∑
s=1

(a2s−1−a2s)Ãp−1
s , (2.3)

and

B
q
n � q

N

∑
t=1

(b2t−1−b2t)B̃
q−1
t . (2.4)

From (2.3) and (2.4), using Hölder’s inequality and Young’s inequality c1/αd1/β �
c
α + d

β (for c , d non-negative reals), we obtain
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.

(2.5)

Dividing both sides of (2.5) by αM+βN
αβ and summing up over N from 1 to R first, and

then summing up over M from 1 to K , and using again Hölder’s inequality and then
interchanging the order of summation, we obtain
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= C(p,q,k,r,α,β )

(
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(
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∑
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(
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)β
(
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∑
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1

))1/β
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(
K

∑
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(
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n
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.

This completes the proof. �

REMARK 2.1. Taking α = β = 2 in (2.2), we have

K

∑
M=1

R

∑
N=1
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p
mB
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n

M +N
� C̃(p,q,k,r)
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∑
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(
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, (2.6)

where

C̃(p,q,k,r) =
1
2

pqK1/2R1/2.

This is a new Hilbert type inequality with alternating signs which is different from
inequality (2.1) in Theorem A.

REMARK 2.2. By using Cauchy inequality on the right side of (2.6) twice, we
obtain the following interesting Hilbert inequality with alternating signs:

K
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N=1
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n
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� C̃(p,q,k,r)

(
k
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(−1)m+1am ·
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(K−m+1)1/2Ãp−1
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r
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∑
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n
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,

where

C̃(p,q,k,r) =
1
2

pqK1/2R1/2.

The following inequality involving series of nonnegative terms was also estab-
lished in [18].
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THEOREM B. Let {am} , {bn} , Am , Bn be defined as in Theorem A. Let {pm}
and {qn} be positive sequences for m = 1, . . . ,k and n = 1, . . . ,r , where k,r are nat-
ural numbers. Define Pm = ∑m

s=1 ps and Qn = ∑n
t=1 qt . Let φ and ψ be real-valued,

nonnegative, convex, submultiplicative functions defined on R+ = [0,+∞). Then

k

∑
m=1

r

∑
n=1

φ(Am)ψ(Bn)
m+n

� M(k,r)

(
k

∑
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(
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)(
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(
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))2
)1/2

×
(

r

∑
n=1

(
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)(
qnψ

(
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))2
)1/2

, (2.7)

where

M(k,r) =
1
2

(
k

∑
m=1

(
φ(Pm)
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)2
)1/2( r
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(
ψ(Qn)

Qn

)2
)1/2

.

Next, we establish another Hilbert type inequality with alternating signs.

THEOREM 2.2. Let {am} , {bn} , Am , Bn , α , β , M , N , K , R be defined as in
Theorem 2.1. Let {pm} and {qn} be positive non-increasing sequences for m = 1, . . . ,k
and n = 1, . . . ,r , where k,r are natural numbers. Define

Pm =
m

∑
s=1

(−1)s+1ps and Qn =
n

∑
t=1

(−1)t+1qt .

Let φ and ψ be real-valued, nonnegative, convex, sub-multiplicative functions defined
on R+ = [0,+∞). Then

K

∑
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R

∑
N=1

αβ φ(Am)ψ(Bn)
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� M(k,r,α,β )

(
K

∑
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(
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(
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×
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R
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)1/β
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where
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.
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Proof. By the hypotheses, Jensen’s inequality and Hölder’s inequality, we obtain

φ(Am) = φ

(
Pm ∑m

s=1(−1)s+1as

∑m
s=1(−1)s+1ps

)

= φ

⎛
⎝Pm ∑M

s=1 (p2s−1− p2s)
a2s−1−a2s
p2s−1− p2s

∑M
s=1(p2s−1− p2s)

⎞
⎠

� φ(Pm)
Pm

M

∑
s=1

(p2s−1− p2s)φ
(
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)
. (2.9)

Similarly

ψ(Bn) � ψ(Qn)

Qn

N

∑
t=1

(q2t−1 −q2t)ψ
(

b2t−1−b2t

q2t−1−q2t

)
. (2.10)

By (2.9) and (2.10) and using Hölder’s inequality and Young’s inequality, we obtain

φ(Am)ψ(Bn) �
(
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(
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×
(

ψ(Qn)
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N

∑
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(
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⎛
⎝φ(Pm)
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(
M

∑
s=1

(
(p2s−1− p2s)φ

(
a2s−1−a2s

p2s−1− p2s

))α
)1/α

⎞
⎠

×
⎛
⎝ψ(Qn)

Qn

(
N

∑
t=1

(
(q2t−1−q2t)ψ

(
b2t−1−b2t

q2t−1−q2t

))β
)1/β

⎞
⎠ . (2.11)

Dividing both sides of (2.11) by αM+βN
αβ and then taking sum over N from 1 to R

first and then sum over M from 1 to K , and using again Hölder’s inequality and then
interchanging the order of summation, we obtain

K

∑
M=1

R

∑
N=1

αβ φ(Am)ψ(Bn)
αM + βN

�
K

∑
M=1

⎛
⎝φ(Pm)
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(
M

∑
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p2s−1− p2s

))α
)1/α

⎞
⎠

×
R

∑
N=1

⎛
⎝ψ(Qn)
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(
N

∑
t=1

(
(q2t−1 −q2t)ψ

(
b2t−1−b2t

q2t−1−q2t

))β
)1/β

⎞
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�

⎛
⎝ K
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M=1

(
φ(Pm)
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)β
⎞
⎠

1/β (
K
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M

∑
s=1

(
(p2s−1− p2s)φ

(
a2s−1−a2s

p2s−1− p2s

))α
)1/α

×
(

R

∑
N=1

(
φ(Qn)

Qn

)α)1/α(
R

∑
N=1

N

∑
t=1

(
(q2t−1−q2t)ψ

(
b2t−1−ba2t

q2t−1−q2t

))β
)1/β

= M(k,r,α,β )

(
K

∑
s=1

(
(p2s−1− p2s)φ

(
a2s−1−a2s

p2s−1− p2s

))α K

∑
M=s

1

)1/α

×
(

R

∑
t=1

(
(q2t−1 −q2t)ψ

(
b2t−1−ba2t

q2t−1−q2t

))β R

∑
N=t

1

)1/β

= M(k,r,α,β )

(
K

∑
m=1

(K−m+1)
(

(p2m−1− p2m)φ
(

a2m−1−a2m

p2m−1− p2m

))α
)1/α

×
(

R

∑
n=1

(R−n+1)
(

(q2n−1−q2n)ψ
(

b2n−1−b2n

q2n−1−q2n

))β
)1/β

.

The proof is complete. �

REMARK 2.3. Taking α = β = 2 in (2.8), we have

K

∑
M=1

R

∑
N=1

φ(Am)ψ(Bn)
M +N

� M̃(k,r)

(
K

∑
m=1

(K−m+1)
(

(p2m−1− p2m)φ
(

a2m−1−a2m

p2m−1− p2m

))2
)1/2

×
(

R

∑
n=1

(R−n+1)
(

(q2n−1−q2n)ψ
(

b2n−1−b2n

q2n−1−q2n

))2
)1/2

, (2.12)

where

M̃(k,r) =
1
2

⎛
⎝ K

∑
M=1

(
φ(Pm)

Pm

)2
⎞
⎠

1/2⎛
⎝ R

∑
N=1

(
ψ(Qn)

Qn

)2
⎞
⎠

1/2

.

This is a new Hilbert type inequality with alternating signs which is different from
inequality (2.7) in Theorem B.

REMARK 2.4. By using Cauchy inequality on the right side of (2.12) twice, we
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obtain the following interesting Hilbert inequality with alternating signs:

K

∑
M=1

R

∑
N=1

φ(Am)ψ(Bn)
M+N

� M̃(k,r)

(
k

∑
m=1

(−1)m+1pm·
K

∑
m=1

φ
(

a2m−1−a2m

p2m−1−p2m

)
(K−m+1)1/2

)1/2

×
(

r

∑
n=1

(−1)n+1pn ·
R

∑
n=1

φ
(

b2n−1−b2n

q2n−1− p2n

)
(R−n+1)1/2

)1/2

,

where

M̃(k,r) =
1
2

⎛
⎝ K

∑
M=1

(
φ(Pm)

Pm

)2
⎞
⎠

1/2⎛
⎝ R

∑
N=1

(
ψ(Qn)

Qn

)2
⎞
⎠

1/2

.

The following inequality involving series of nonnegative terms was also estab-
lished in [18].

THEOREM C. Let {am} , {bn} , {pm} , {qn} , Pm , Qn be defined as in Theorem
B. Define Am = 1

Pm
∑m

s=1 psas and Bn = 1
Qn

∑n
t=1 qtbt for m = 1, . . . ,k and n = 1, . . . ,r ,

where k,r are natural numbers. Let φ and ψ be real-valued, nonnegative, convex
functions defined on R+ = [0,+∞). Then

k

∑
m=1

r

∑
n=1

PmQnφ(Am)ψ(Bn)
m+n

� 1
2
(kr)1/2

(
k

∑
m=1

(k−m+1)
(
pmφ(am)

)2
)1/2

×
(

r

∑
n=1

(r−n+1)
(
qnψ(bn)

)2
)1/2

. (2.13)

Finally, we establish the following new Hilbert type inequality with alternating
signs.

THEOREM 2.3. Let {am} , {bn} , {pm} , {qn} , Pm , Qn , α , β , M , N , K , R be
as defined in Theorem 2.2. Define

Am =
1

Pm

m

∑
s=1

(−1)s+1psas and Bn =
1

Qn

n

∑
t=1

(−1)t+1qtbt

for m = 1, . . . ,k and n = 1, . . . ,r , where k,r are natural numbers. Let φ and ψ be
real-valued, nonnegative, convex functions defined on R+ = [0,+∞). Then

K

∑
M=1

R

∑
N=1

αβPmQnφ(Am)ψ(Bn)
αM + βN

� C(1,1,k,r,α,β )

(
K

∑
m=1

(K−m+1)
(
(p2m−1−p2m)φ

(
p2m−1a2m−1−p2ma2m

p2m−1−p2m

))α
)1/α

×
(

R

∑
n=1

(R−n+1)
(

(q2n−1−q2n)ψ
(

q2n−1b2n−1−q2nb2n

q2n−1−q2n

))β
)1/β

, (2.14)
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where C(1,1,k,r,α,β ) is defined by taking p = q = 1 in Theorem 2.1.

Proof. By the hypotheses, Jensen’s inequality, and Hölder’s inequality, it is easy
to observe that

φ(Am) = φ

(
1

Pm

m

∑
s=1

(−1)s+1psas

)
= φ

(
1

Pm

M

∑
s=1

(p2s−1a2s−1− p2sa2s)

)

� 1

Pm

M

∑
s=1

(p2s−1− p2s)φ
(

p2s−1a2s−1− p2sa2s

p2s−1− p2s

)

� 1

Pm
M1/β

(
M

∑
s=1

(
(p2s−1− p2s)φ

(
p2s−1a2s−1− p2sa2s

p2s−1− p2s

))α
)1/α

.

Similarly

ψ(Bn) � 1

Qn

N1/α

(
N

∑
t=1

(
(q2t−1 −q2t)ψ

(
q2t−1b2s−1−q2ta2t

q2t−1−q2t

))β
)1/β

.

Proceeding now much as in the proof of Theorems 2.1 and 2.2 and with suitable modi-
fications, it is not hard to arrive at the desired inequality (2.14). The details are omitted
here. �

REMARK 2.5. Taking α = β = 2 in (2.14), we obtain

K

∑
M=1

R

∑
N=1

PmQnφ(Am)ψ(Bn)
M +N

� 1
2
(KR)1/2

(
K

∑
m=1

(K−m+1)
(

(p2m−1− p2m)φ
(

p2m−1a2m−1− p2ma2m

p2m−1− p2m

))2
)1/2

×
(

R

∑
n=1

(R−n+1)
(

(q2n−1−q2n)ψ
(

q2n−1b2n−1−q2nb2n

q2n−1−q2n

))2
)1/2

. (2.15)

REMARK 2.6. By using Cauchy inequality on the right side of (2.15) twice, we
obtain the following interesting Hilbert inequality with alternating signs:

K

∑
M=1

R

∑
N=1

PmQnφ(Am)ψ(Bn)
M +N

� 1
2
(KR)1/2

(
k

∑
m=1

(−1)m+1pm ·
K

∑
m=1

(K−m+1)1/2φ
(

p2m−1a2m−1− p2ma2m

p2m−1− p2m

))1/2

×
(

r

∑
n=1

(−1)n+1qn ·
R

∑
n=1

(R−n+1)1/2ψ
(

q2n−1b2n−1−q2nb2n

q2n−1qp2n

))1/2

.
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