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Dual-functional peptide with defective interfering
genes effectively protects mice against avian and
seasonal influenza
Hanjun Zhao1,2, Kelvin K. W. To1,2,3, Hin Chu1,2, Qiulu Ding4, Xiaoyu Zhao2, Cun Li2, Huiping Shuai2,

Shuofeng Yuan 1,2, Jie Zhou1,2, Kin-Hang Kok 1,2, Shibo Jiang5,6 & Kwok-Yung Yuen1,2,3,7

Limited efficacy of current antivirals and antiviral-resistant mutations impairs anti-influenza

treatment. Here, we evaluate the in vitro and in vivo antiviral effect of three defective

interfering genes (DIG-3) of influenza virus. Viral replication is significantly reduced in cell

lines transfected with DIG-3. Mice treated with DIG-3 encoded by jetPEI-vector, as pro-

phylaxis and therapeutics against A(H7N7) virus, respectively, have significantly better

survivals (80% and 50%) than control mice (0%). We further develop a dual-functional

peptide TAT-P1, which delivers DIG-3 with high efficiency and concomitantly exerts antiviral

activity by preventing endosomal acidification. TAT-P1/DIG-3 is more effective than jetPEI/

DIG-3 in treating A(H7N7) or A(H1N1)pdm09-infected mice and shows potent prophylactic

protection on A(H7N7) or A(H1N1)pdm09-infected mice. The addition of P1 peptide, which

prevents endosomal acidification, can enhance the protection of TAT-P1/DIG-3 on A(H1N1)

pdm09-infected mice. Dual-functional TAT-P1 with DIG-3 can effectively protect or treat

mice infected by avian and seasonal influenza virus.
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Seasonal influenza virus annually causes over 3–5 million
cases of severe illness with about 0.25 million deaths glob-
ally. Antigenically-shifted zoonotic influenza viruses pose

threats of another pandemic1–3. Neuraminidase inhibitors, such
as oseltamivir and zanamivir, have been used clinically for many
years. However, human isolates of A(H1N1)pdm09, A(H3N2), A
(H5N1), and A(H7N9) resistant to neuraminidase inhibitors have
been found4–7. Convalescent blood products with high titer of
specific neutralizing antibody have been shown to improve sur-
vival, but are not readily available8. Thus, broad spectrum anti-
virals with low possibility to induce resistance are urgently needed
for controlling influenza virus infections.

Defective interfering (DI) viruses, which are generated natu-
rally during viral replication with internal deletions in viral
genes9,10, can compete with the growth of wild-type virus and
therefore suppress the replication of wild-type virus by interfering
with the expression of the cognate full-length RNAs9,11,12.
Though influenza DI virus (DIV) has been shown to be effective
in vivo as a potential broad-spectrum antiviral with low risk for
inducing resistance13–16, there are several concerns of influenza
DIV used as therapeutic agents. Firstly, influenza DIV may
reassort with wild-type influenza A virus to generate novel
reassortants17. Secondly, neutralizing antibody may develop
against the DIV and affect the antiviral effect in subsequent use.
Delivering defective interfering genes (DIG) as an antiviral may
avoid the risk of generating new reassortant virus and the pro-
blem of unwanted immunogenicity.

In this study, we investigated the use of three DIG (DIG-3) as
an antiviral in the treatment of influenza virus infection. In the

first part, we confirmed that DIG-3 of influenza A virus PB2, PB1,
and PA genes could efficiently inhibit influenza A virus replica-
tion in vitro. Transfection of DIG-3 in vivo by jetPEI could sig-
nificantly protect mice from lethal A(H7N7) virus challenge. In
the second part, we further improved the in vivo antiviral efficacy
of DIG-3 by using a dual-functional peptide vector. This dual-
functional peptide vector consists of two components, HIV-1 Tat
(TAT) and P1 peptide. TAT is a peptide widely used for in vitro
and in vivo transfection18–21. P1 peptide is a derivative of an
antiviral peptide P9, which we have previously designed based on
the mouse β-defensin 4 and was identified to have antiviral
activity against influenza A virus H1N1, H3N2, H5N1, and
H7N722. Dual-functional TAT-P1 could efficiently deliver DIG-3
by transfection into mouse lung cells to inhibit viral replication
and also directly inhibit viral replication by preventing endosomal
acidification. We confirmed that DIG-3 delivered by TAT-P1 in
mice further improved the survivals of avian A(H7N7) or human
A(H1N1) virus-infected mice.

Results
Construction of influenza DIG plasmids. Influenza defective
interfering PB2 (DI-PB2), DI-PB1, and DI-PA genes with large
internal deletion were generated from the backbone of A/WSN/
1933(H1N1) virus using fusion PCR. Each DI-PB2, DI-PB1, and
DI-PA consisting of internal deletions were inserted into the
phw2000 plasmid (Fig. 1a). When these plasmids of DI-PB2, DI-
PB1, and DI-PA were co-transfected or individually transfected into
293T and A549 cells, 7–8 log copies per well of each DIG RNA was
detected by RT-qPCR (Fig. 1b, c and Supplementary Fig. 1).
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Fig. 1 Construction and antiviral activity of defective interfering genes (DIG). a The plasmid construction of DI-PB2, DI-PB1, and DI-PA. The indicated
sequences of shortened viral polymerase gene PB2, PB1, and PA were inserted into phw2000, respectively. Dotted lines indicate the internal deletion of
wild-type (WT) viral polymerase genes. b, c DI RNA expression in 293T and A549 cells. The plasmids of DI-PB2, DI-PB1, and DI-PA were co-transfected
into cells with the indicated concentrations. At 24 h post transfection, DI RNAs were extracted from cells and digested by DNase I for RT-qPCR. Empty
vector was used as a negative control for RT-qPCR. d Anti-A(H7N7) virus activity of individual plasmid of DI-PB2, DI-PB1, and DI-PA or three combined
plasmid DIG (DIG-3, 0.6 μg per well). e, f Dose-dependent anti-A(H7N7) virus activity of DIG-3 in 293T and A549 cells. g Anti-A(H5N1) virus activity of
DIG-3. Empty vector phw2000 and plasmids with DIG were individually transfected to cells. At 24 h post transfection, cells were infected with A(H7N7) or
A(H5N1) virus at MOI= 0.005 and cell supernatants were collected at 40 h post infection. Viral titers in the supernatants were detected by plaque assay.
Data were presented as mean ± SD of three independent experiments. * Indicates P < 0.05. ** Indicates P < 0.01. P values were calculated by the two-tailed
Student’s t test
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DIG-transfected cells have lower viral replication. Next, we
evaluated the replication of influenza A virus in DIG transfected
293T and A549 cells. We chose A(H7N7) and A(H5N1) viruses
for this in vitro assay because unlike human seasonal A(H1N1)
pdm09 and A(H3N2) viruses, avian A(H7N7), and A(H5N1)
viruses can replicate without trypsin in 293T or A549 cells. When
293T and A549 cells were transfected with plasmids of DI-PB2,
DI-PB1, or DI-PA individually, the replication of H7N7 virus was
reduced by more than 90% and 99%, respectively, compared with
that of cells transfected with the empty vector (Fig. 1d). In
293T cells, the reduction of viral replication was significantly
more pronounced when all three plasmids of DIG (DIG-3) were
co-transfected together than that when only single DIG was
transfected. Although, in A549 cells, there was no significant
difference between DIG-3 and single DIG, we decided to perform
subsequent experiments using co-transfected DIG-3. When
increasing concentration of DIG-3 was used in transfection, the
antiviral efficacy against A(H7N7) virus was improved in both
293T and A549 cells in a dose-dependent manner (Fig. 1e, f).
DIG-3 also showed a significant anti-A(H5N1) virus activity in
both 293T and A549 cells (Fig. 1g). Collectively, these results
indicated that DIG-3 could significantly inhibit both A(H7N7)
and A(H5N1) virus replication in different human cell lines.

DIG-3 outcompetes full-length viral genes and generates DIV.
In order to identify whether DIG-3 could inhibit viral replication
by generating DIV, we first confirmed that DIG-3 could sig-
nificantly inhibit viral replication in A549-Dual KO-RIG-I cells,

which indicated that the antiviral activity of DIG-3 was not
interferon dependent (Fig. 2a).

Next, we inoculated A(H7N7) virus in 293T cells that were pre-
transfected with DIG-3 or the empty vector, and measured the
viral RNA copies of full-length viral polymerase genes (PA, PB1,
and PB2) and DI genes in cell supernatants. As shown in
Fig. 2b–d, full-length PA, PB1, and PB2 RNA copies of A(H7N7)
virus in the supernatants of DIG-3-transfected cells were more
than 10-fold lower than those in the supernatants of empty
vector-transfected cells, respectively. Importantly, RNA copies of
DI-PA, DI-PB1, and DI-PB2 were 6–21-fold higher than those of
full-length PA, PB1, and PB2 in the supernatants of DIG-3-
transfected cells (Fig. 2b–d), indicating that significantly more DI
RNAs than full-length viral RNAs were incorporated into virions
to form DIV. To further confirm the generation of DIV in
supernatants of DIG-3-transfected cells after wild-type A(H7N7)
virus infection, we measured viral titers in the supernatants by
plaque assay and HA assay and then compared the ratio of PFU
and HA titer between DIG-3-transfected cells and empty vector-
transfected cells (Fig. 2e). As DIV is not viable and cannot form
plaques (Supplementary Fig. 2), the plaque assay measures only
the wild-type plaque-forming virus without DIG, while HA assay
can detect both of wild-type virus and virus containing DIG
(DIV). The viral titer (PFU) in the supernatants of DIG-3-
transfected 293T cells was <10% of that in the supernatants of
empty vector-transfected cells. Since wild-type virus titers (PFU)
correlated with HA titers in a linear fashion (Supplementary
Fig. 3), it was expected that HA titer of virus in supernatants of
DIG-3-transfected 293T cells was also <10% of viral titer in the
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supernatants of empty vector-transfected cells. However, HA titer
of virus in the supernatants of DIG-3-transfected cells was about
45% of viral titer in the supernatants of empty vector-transfected
cells, suggesting that virus with DIG was generated in super-
natants. This is consistent with the result in Fig. 2b–d, which
indicated that there were significantly higher DIG copies than
full-length viral RNA copies in supernatants of DIG-3-transfected
cells.

DIV inhibits viral replication in non-transfected cells. In
Fig. 2b–e, we have shown that DIV was generated when wild-type
influenza virus infected DIG-3-transfected cells. It would be
important to know whether these newly generated DIV could
subsequently inhibit the replication of wild-type virus in non-
transfected cells. To this end, we collected the supernatant from A
(H7N7)-infected 293T cells pre-transfected with DIG-3 and the
supernatant from A(H7N7)-infected 293T cells pre-transfected
with empty vector, and inoculated the supernatant viruses onto
non-transfected MDCK cells at an MOI of 1. At 10 h post

infection, MDCK cells infected with the supernatant virus from
DIG-3-transfected 293T cells had a significantly lower viral titer
than that of MDCK cells infected with the supernatant virus from
empty vector-transfected 293T cells (Fig. 2f). The generation of
DIV in MDCK cell-passaged virus was further confirmed by the
higher virus titer ratio (DIG-3/empty vector) in HA assay when
compared with the virus titer ratio in plaque assay (Fig. 2g) and
by detecting high DI-PA RNA copies in supernatants of MDCK
cells (Fig. 2h). Therefore, our data demonstrated that DIG could
be packaged to generate DIV when the DIG-3-transfected cells
were infected with wild-type virus, and the resultant DIV could
sustain the antiviral activity by competitively inhibiting wild-type
viral replication in non-transfected cells.

DIG-3 protects mice from lethal virus challenge. To evaluate
the in vivo antiviral efficacy of DIG-3, we tested prophylactic and
therapeutic efficacy of DIG-3 and single DIG against influenza A
virus infection in mice (Fig. 3a and Supplementary Fig. 4). The
in vivo jetPEI, a commercially available polyethylenimine-based
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vector, was used to deliver DIG-3 plasmids in vivo23,24. The
jetPEI and DI-PA, DI-PB1, and DI-PB2 complex (jetPEI/DIG-3)
were delivered intratracheally. DI-PA, DI-PB1, and DI-PB2 RNAs
were successfully expressed in the lungs of transfected mice at 24
h post transfection (Fig. 3b).

We first evaluated the protective efficacy of DIG-3 and single
DIG on infected mice (Supplementary Fig. 4). DIG-3 showed
similar prophylactic and therapeutic efficacy as DI-PB2 (Supple-
mentary Fig. 4a–d). The survivals (80%) of mice treated by DIG-3
or DI-PB2 were slightly higher than the survivals (70%) of mice
treated by DI-PB1 and DI-PA as prophylaxis, but did not reach
statistical significance (Supplementary Fig. 4a). The body weight
loss of mice treated by DIG-3 or DI-PB2 were also about 5–10%
less than that of mice treated by DI-PA and DI-PB1 from day 10
to day 14 (Supplementary Fig. 4b). For therapeutic treatment
(Supplementary Fig. 4c–d), the survival rates (40–50%) and body
weight change were comparable in infected mice treated by DIG-
3 or single DIG. Next, we compared the prophylactic efficacy of
DIG-3 and zanamivir in mice. The jetPEI/DIG-3, jetPEI/empty
vector, jetPEI without DIG-3, zanamivir or PBS were adminis-
tered intratracheally at 48 and 24 h before A(H7N7) infection.
The survival rate of the jetPEI/DIG-3 group (80%) was
significantly higher than that of all other control groups (≤10%)
(Fig. 3c). The jetPEI/DIG-3 group also had significantly less body
weight loss than those of zanamivir or PBS groups from day 6 to
day 10 post infection (Fig. 3d). To compare the efficacy of DIG-3
and zanamivir as therapeutic treatment, jetPEI/DIG-3, jetPEI/
empty vector, jetPEI, zanamivir or PBS were administered
intratracheally at 6 and 24 h after A(H7N7) infection. Zanamivir
and jetPEI/DIG-3 protected 40% and 50% of mice from lethal A
(H7N7) virus challenge, respectively, with no statistically
significant difference. The survival of the jetPEI/DIG-3 group
was significantly higher than that of the jetPEI, jetPEI/empty
vector, or PBS groups (Fig. 3e). The jetPEI/DIG-3 and zanamivir
groups also had significantly less body weight loss than PBS group
from day 6 to day 8 post infection (Fig. 3f). These results
indicated that jetPEI/DIG-3 showed potent anti-A(H7N7) virus
efficacy, which was better than zanamivir as prophylaxis and
comparable to zanamivir as therapeutics against A(H7N7) virus
infection in mice.

Peptide TAT-P1 delivers plasmid DNA in vitro and in mice.
Although jetPEI/DIG-3 improved the survival rate of mice with
lethal challenge by A(H7N7) virus, the survival rate was only
50% in terms of therapeutic treatment. In order to improve the
effectiveness of DIG-3 as therapeutics, we investigated the use of
a delivery peptide which also possesses antiviral activity. Pre-
vious studies showed that HIV-1 Tat peptide (TAT) conjugated
with cationic peptides could enhance delivery of nucleic acids to
cells18,19,25,26. In our previous study, a cationic peptide P9,
derived from mouse β-defensin 4, has antiviral activity against A
(H1N1)pdm09, A(H3N2), A(H5N1), and A(H7N7) viruses22.
Thus, we designed three shorter derivatives of P9, namely P1,
P2, and P3, and linked them to TAT (Supplementary Table 1).
TAT-P1, TAT-P2, and TAT-P3 showed potent antiviral activity
against A(H7N7) and A(H1N1)pdm09 virus, with IC50 of <1.0
μg ml−1 (Supplementary Table 2). TAT-P1 had the highest
selective index (535) and was selected for subsequent experi-
ments. When the antiviral activity of P1 and TAT was assessed
separately (Supplementary Table 2), P1 retained the antiviral
activity (IC50= 1.6 μg ml−1), while TAT itself did not show any
antiviral activity (IC50 > 50.0 μg ml−1). Our previous study
showed that P9 bound to viral hemagglutinin and prevented
endosomal acidification22. Here, we further confirmed that P1
and TAT-P1 could also bind to viral HA protein using ELISA
and western blot assay (Fig. 4a and Supplementary Fig. 5).

Bafilomycin A1 (A1), P1 and TAT-P1 prevented endosomal
acidification (Fig. 4b, c) and blocked viral RNP release into the
nuclei (Fig. 4d, e), but not the P9-aci-1 (PA1)22 which was a
negative control peptide with similar sequence as P1 (Supple-
mentary Table 1). However, P1 and TAT-P1 did not inhibit HA-
mediated membrane fusion (Supplementary Fig. 6). Therefore,
P1 and TAT-P1 exerted the antiviral activity through binding to
HA and preventing endosomal acidification.

Next, the binding ability of TAT-P1 to plasmid DNA was
evaluated with gel retardation assay (Supplementary Fig. 7a). Our
data showed that TAT-P1 could bind and form complexes with
DNA when the weight ratio (peptide:DNA) was >2. The sizes of
peptide/DNA complexes were determined at various peptide/
DNA weight ratios (Supplementary Fig. 7b). Particle sizes
between 120 and 180 nm were formed when complexes were
prepared in water with weight ratios from 2 to 8. The in vitro
transfection efficiency of TAT-P1/pLuciferase (TAT-P1/pLuc)
was evaluated in 293T cells. With the increase of weight ratio
(TAT-P1:pLuc) from 2 to 8, the transfection efficiency increased
(Fig. 4f). The transfection efficiency of TAT-P1/pLuc was
significantly higher than that of TAT/pLuc, P1/pLuc, and
mock-transfected cells.

We further determined whether TAT-P1 could efficiently
deliver plasmid DNA into mouse lung cells. TAT-P1/pCMV-Luc
or jetPEI/pCMV-Luc was administered intratracheally and
luciferase expression was measured at 24 h post transfection.
Luciferase expression in mouse lungs transfected with TAT-P1/
pCMV-Luc was significantly higher than that in mouse lungs
mock-transfected with TAT-P1/jetPEI without DNA, but was
comparable to that of jetPEI/pCMV-Luc (Fig. 4g). When TAT-
P1 and plasmid of DI-PA (TAT-P1/DI-PA) was intratracheally
inoculated to mouse lungs, DI-PA RNA expression in mouse
lungs was significantly higher than that in mouse lungs
transfected with DI-PA without TAT-P1, but was comparable
to that of jetPEI/DI-PA (Fig. 4h). Therefore, TAT-P1 is an
effective system for in vivo transfection of plasmids. These results
illustrated that TAT-P1 could directly exert antiviral activity by
preventing endosomal acidification and also efficiently transfect
plasmids in vivo.

TAT-P1/DIG-3 shows anti-A(H7N7) virus activity in mice. To
evaluate the prophylactic efficacy of TAT-P1/DIG-3 against viral
infection in mice, different doses of TAT-P1/DIG-3 were intra-
tracheally administered to mice at 48 and 24 h before A(H7N7)
virus infection. The survival rate of mice was increased in a dose-
dependent manner and mice receiving DIG-3 at 5.0 μg per dose
had 100% survival (Supplementary Fig. 8). Next, we evaluated the
antiviral efficacy of mice receiving DIG-3 at 5.0 μg per dose and
compared the result to those of zanamivir-treated and untreated
controls. The survival of mice treated with TAT-P1/DIG-3 was
significantly higher than that of mice treated with zanamivir,
TAT-P1, or PBS (Fig. 5a). Body weight loss on days 6–10 post
infection (Fig. 5b), viral titers (Fig. 5c), and the pro-inflammatory
cytokine IL-6 (Fig. 5d) were significantly reduced in the TAT-P1/
DIG-3-treated mice when compared with those of mice treated
with zanamivir or PBS.

For therapeutic study, TAT-P1/DIG-3 and jetPEI/DIG-3 were
intratracheally administered to mice at 6 and 24 h post infection.
TAT-P1/DIG-3-treated mice achieved a survival of 90% (Fig. 5e),
and was significantly higher than that of mice treated with
zanamivir (40%, P < 0.05, Gehan–Breslow–Wilcoxon test) or
jetPEI/DIG-3 (40%, P < 0.05, Gehan–Breslow–Wilcoxon test).
TAT-P1 could confer 30% protection to infected mice. Body
weight loss on days 6–8 (Fig. 5f), viral titers (Fig. 5g), and pro-
inflammatory cytokine IL-6 expression (Fig. 5h) in lung tissues
were significantly reduced in mice treated with TAT-P1/DIG-3
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when compared with mice treated with PBS. IL-6 was
significantly lower in mice treated by TAT-P1/DIG-3 than that
in mice treated by jetPEI/DIG-3.

TAT-P1/DIG-3 protects mice from A(H1N1)pdm09 virus
infection. To evaluate the antiviral efficacy of TAT-P1/DIG-3
against seasonal influenza virus, the prophylactic and therapeutic

antiviral efficacy of TAT-P1/DIG-3 against A(H1N1)pdm09 virus
were tested (Fig. 6). In prophylactic experiment (Fig. 6a–d), the
survival of A(H1N1)pdm09-infected mice treated with TAT-P1/
DIG-3 (50%) was lower than that of mice treated with zanamivir
(90%), almost reaching statistical significance (P= 0.06,
Gehan–Breslow–Wilcoxon test) (Fig. 6a). TAT-P1/DIG-3 and
zanamivir significantly reduced body weight loss on days 6–10
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(Fig. 6b), viral titers (Fig. 6c), and IL-6 expression in mice
(Fig. 6d) when compared with PBS. In therapeutic experiment
(Fig. 6e–h), the survival of mice treated with TAT-P1/DIG-3
(93%) or zanamivir (90 %) was significantly better than that of
mice treated with PBS (0%) or jetPEI/DIG-3 (20%) (Fig. 6e).
TAT-P1/DIG-3 significantly reduced body weight loss on days
4–8 (Fig. 6g), viral titers (Fig. 6f), and IL-6 expression (Fig. 6h) in

mouse lungs when compared with PBS group. Collectively, these
data of TAT-P1/DIG-3 anti-A(H7N7) and anti-A(H1N1)pdm09
virus in mice demonstrated that the dual-functional TAT-P1
could directly inhibit viral infection in mice and also efficiently
deliver DIG-3 into mouse lungs to exert sustained antiviral
activity for prophylactic and therapeutic treatment. Even though
the prophylactic protection of TAT-P1/DIG-3 on A(H1N1)
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PBS, n= 10), TAT-P1 (20 μg in distilled water, n= 10), and TAT-P1/DIG (20 μg/5 μg in distilled water, n= 10) were intratracheally inoculated to
corresponding mice at 48 and 24 h before viral inoculation. For therapeutic experiment, PBS (n= 10), zanamivir (n= 10), TAT-P1 (n= 10), TAT-P1/DIG
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pdm09-infected mice was not as effective as zanamivir, the
antiviral efficacy of TAT-P1/DIG-3 was comparable to that of
zanamivir against A(H1N1)pdm09 virus in mice for therapeutic
treatment and was significantly better than that of zanamivir
against A(H7N7) virus for prophylactic and therapeutic treat-
ment. The lower protection of zanamivir on A(H7N7)-infected
mice than that of zanamivir on A(H1N1)pdm09-infected mice
might be due to the reduced susceptibility of A(H7N7) virus to
zanamivir (Supplementary Fig. 9).

P1 improves the prophylactic efficacy of TAT-P1/DIG-3. The
survival rate of A(H1N1)pdm09-infected mice transfected with
TAT-P1/DIG-3 before viral challenge was 50%. We hypothesized
that the prophylactic antiviral efficacy of TAT-P1/DIG-3 against
A(H1N1)pdm09 virus could be further improved by increasing
the transfection efficiency of TAT-P1/DIG-3. Previous studies
showed that inhibition of endosomal acidification by ATPase
inhibitor can increase the transfection efficiency of TAT27,28.
Using a luciferase assay, we demonstrated that the P1 peptide
with inhibitory activity against endosomal acidification (Fig. 4c,
d) could improve the transfection efficiency of TAT-P1/pLuc in
293T cells (Fig. 7a) and in mouse lungs (Fig. 7b). As a control,
PA1 peptide, which cannot inhibit endosomal acidification
(Fig. 4c, d), did not improve the transfection efficiency of TAT-
P1/pLuc in 293T cells or in mouse lungs (Fig. 7a, b). The
improvement of transfection efficiency by P1 was further con-
firmed by images of In Vivo Imaging System (Fig. 7c) and DI-PA
RNA expression in mouse lungs (Fig. 7d).

We then evaluated whether the addition of P1 peptide could
improve the survival of A(H1N1)pdm09-infected mice trans-
fected with TAT-P1/DIG-3. P1 and TAT-P1/DIG-3 were
intratracheally inoculated to mice at 48 and 24 h before A
(H1N1)pdm09 virus infection. PA1 was used as a negative
control. As shown in Fig. 7e, P1 combined with TAT-P1/DIG-3
(TAT-P1/DIG-3+ P1) conferred an improved survival of 70%
when compared with TAT-P1/DIG-3 (40%). TAT-P1/DIG-3+
P1 also significantly inhibited viral replication in mouse lungs
when compared with that of A(H1N1)pdm09-infected mice
treated with TAT-P1/DIG-3 (Fig. 7f). PA1 peptide could not
improve the survival (40%) of A(H1N1)pdm09-infected mice
treated with TAT-P1/DIG-3 and did not significantly inhibit viral
replication in mice when compared with that of A(H1N1)pdm09-
infected mice treated with TAT-P1/DIG-3. In conclusion, these
data indicated that additional P1 could further enhance the
transfection efficiency of TAT-P1/DIG-3 in vivo, which conferred
an improved protection on A(H1N1)pdm09-infected mice.

Discussion
In this study, we sought to investigate the use of DIG in the
treatment of avian and seasonal influenza virus infections. Firstly,
we demonstrated that DIG-3 can significantly inhibit the repli-
cation of A(H7N7) and A(H5N1) viruses in 293T and A549 cells
and protect mice from lethal A(H7N7) and A(H1N1)pdm09 virus
challenge as prophylaxis or therapeutics. Secondly, we improved
the treatment efficacy of DIG-3 by using a novel delivery vector
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TAT-P1, which also has intrinsic antiviral effect via the inhibition
of endosomal acidification. In our experiments, TAT-P1/DIG-3
conferred significantly better mouse survival than that of zana-
mivir when used as prophylaxis or therapeutics against A(H7N7)
virus in mice. Thirdly, the addition of P1 peptide to mouse lungs
can further improve the transfection efficiency of TAT-P1/DIG-3
and the survival of mice. Thus, we have successfully developed a
prophylactic and therapeutic strategy using TAT-P1/DIG-3,
which interferes with the replication of a diverse subtypes of
influenza virus at two steps within one life cycle of virus as
observed in this scenario (Fig. 8). This novel dual-functional
delivery system, TAT-P1, directly exerts antiviral activity and
transfects DIG efficiently into cells to competitively inhibit wild-
type viral replication. Development of resistance against DIG will
be unlikely as DIG does not act on a particular viral target16.

DIV consisting of one or more defective genes has been studied
as a strategy for treating influenza virus infection13,14. DIV could
provide prophylactic and therapeutic protection on infected mice
and ferrets13,15, which might be affected by host immunity but
not reliant on the interferon response in mice12,29. However,
there are concerns of DIV generating new reassortants and
neutralizing antibody17. In contrast, DIG only consists of defec-
tive genes, which will only express DI RNAs without any full-
length viral RNA and will not generate new self-replicable reas-
sortants. Furthermore, DIG will not induce the neutralizing
antibody because no protein product is required for DIG-induced
protection12. In this study, we illustrated that DI RNAs expressed
by transfected plasmids in cells could significantly inhibit viral
replication in an interferon independent manner and be packaged
to generate DIV (Fig. 2a–e), which could outcompete wild-type

virus9 and showed sustained antiviral activity in non-transfected
MDCK cells (Fig. 2f–h).

One major obstacle of using DIG in vivo is whether DIG can be
safely and efficiently delivered to the cells at the site of infection.
Viral vectors, polyethylenimine derivatives, and peptides have
been used for gene delivery in vivo. Although viral vectors have
been used in clinical trials for treating primary immunodeficiency
diseases30, cancer31, HIV32 and influenza virus infections33,34,
there are concerns about genomic instability, immunogenicity,
and toxicity in humans31,35,36. Polyethylenimine derivatives have
been used in animals for DNA transfection23,24,37, but the
application of polyethylenimine-based vectors in humans may be
limited by their intrinsic tendency to disrupt cell membranes and
mitochondrial membrane38,39. On the other hand, peptides have
been considered as promising delivery vectors in humans because
of the low toxicity and the absence of toxic metabolites40,41. Short
peptides have been used clinically in humans as antiviral, anti-
bacterial and anti-cancer drugs for many years40,42,43. HIV-TAT
peptide, which penetrates cells in a receptor-independent man-
ner44, is an effective delivery peptide vector of protein and DNA
through caveolae/lipid-raft-mediated endocytosis45, micro-
pinocytosis27, clathrin-mediated endocytosis46, and endocytosis-
independent pathways47. Increasing evidence has shown that
TAT combining with other peptides could increase the trans-
fection efficiency in vitro and in vivo19,21,25. Furthermore, the
transfection efficiency of TAT could be enhanced through
increasing the endosomal escape by ATPase inhibitor (chlor-
oquine) which disrupts endosomes by preventing endosomal
acidification27. However, the effective concentrations of chlor-
oquine (~100 μM) for inhibiting endosomal acidification are
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extremely toxic for cells in vitro and is almost near the lethal
concentration in humans (~200 μM)27,48.

Here, we aimed to develop a peptide vector TAT-P1, which is
expected to have less safety concerns36. We chose the endosomal
acidification inhibitor P1 peptide to combine with TAT for sev-
eral reasons. Firstly, P1 possesses antiviral activity against both
seasonal and avian influenza A viruses. Secondly, P1 can inhibit
endosomal acidification with low cytotoxicity. P1 peptide could
significantly enhance the transfection efficiency of plasmid DNA
at a concentration (12.5 μg ml−1) far below the CC50

(>400 μg ml−1) (Fig. 7a and Supplementary Table 2). The high
transfection efficiency of TAT-P1/DIG-3 in combination with the
direct antiviral activity of TAT-P1 allows the TAT-P1/DIG-3
treatment to exert the immediate antiviral activity by TAT-P1
and the sustained anti-influenza activity by DIG-3 in infected
mice with low possibility to cause resistance16.

Mice treated by TAT-P1/DIG-3 had poorer survival in the
prophylactic setting (Figs. 6a and 7e) than that of therapeutic
setting (Fig. 6e). One possibility is that TAT-P1 was not able to
exert antiviral activity to protect mice when administered to
mouse lungs at 24 h before viral inoculation in the prophylactic
setting.

Challenged mice still had body weight loss despite treatment by
DIG-3 encoded by jetPEI or TAT-P1. This is probably due to the
relatively high lethal dose of influenza virus (4 LD50) used for
mouse challenge. In addition, DIG could competitively inhibit
wild-type virus replication but could not completely abolish viral
replication in mice. Thus, mice would be infected and lose body
weight even when DIG-3 was transfected. However, since the
DIG-3 could reduce viral replication, the body weight loss in the
DIG-3-treated mice was much less severe than that of infected
mice in the negative control groups.

In summary, we have demonstrated a dual-functional system
with both gene delivery and antiviral ability in vivo. This dual-
functional TAT-P1 with DIG complex has broad antiviral activity
with a low likelihood of inducing antiviral resistance. We have
established a concept for developing transfection vectors which
may have wide applications in gene antiviral strategies including
the delivery of antiviral gene/siRNA to combat influenza and
non-influenza viruses for treating viral respiratory diseases. Fur-
ther studies with TAT-peptide variants should be performed to
determine the best TAT-peptide variants for DIG-3 delivery.

Methods
Cell culture and viruses. Madin Darby canine kidney (MDCK, CCL-34), 293T
(CRL-3216) and A549 (CCL-185) cells obtained from ATCC (Manassas, VA, USA)
were cultured in Dulbecco minimal essential medium (DMEM) supplemented with
10% fetal bovine serum (FBS), 100 IUml−1 penicillin and 100 μg ml−1 strepto-
mycin. A549-Dual KO-RIG-I (InvivoGen, USA, Cat# A549d-korigi) cells were
cultured in DMEM supplemented with 10% FBS, 100 IUml−1 penicillin, 100 μg ml
−1 streptomycin, 10 μg ml−1 blasticidin, 100 μg ml−1 zeocin, and 2 mM L-gluta-
mine. The virus strains used in this study included A/Hong Kong/415742/200949,
A/Hong Kong/415742Md/2009 (H1N1) (a highly virulent mouse-adapted strain)
50, A/Vietnam/1194/2004 (H5N1)22, and A/Netherlands/219/2003 (H7N7)51. For
in vitro experiments, viruses were cultured in MDCK cells. For animal experi-
ments, viruses were cultured in eggs as described previously52.

Construction of plasmids. Plasmids containing the full-length sequence of wild-
type A/WSN/1933 PA, PB1, and PB2 genes53 were used as the template to generate
defective interfering PA, PB1, and PB2 genes with internal deletion by fusion
PCR54. Short gene segments at 5′ end and 3′ end of each of the genes were
amplified with gene-specific primers (Supplementary Table 3) designed by Primer
Premier 5.0. For our DI genes, we selected the 5′ and 3′ ends of polymerase gene
segments because these regions contain the packaging signals55,56. Furthermore, we
chose 282–356 nt and 291–345 nt in 5′ and 3′ ends because previous studies
showed that DI-PA, DI-PB1, and DI-PB2 genes from 291 to 617 nt could be
isolated from infected mouse lungs57, and the DIG with 317 nt in the 5′ end and
with total length of 585 nt showed highest antiviral activity56. The amplified short
gene fragments in the 5′ and 3′ ends were fused by fusion PCR to generate DI-PA,
DI-PB1, and DI-PB2 genes using six pairs of primers (Supplementary Table 3). The

fused DI-PA, DI-PB1, and DI-PB2 genes (Supplementary Table 4) were inserted
into BsmBI/BsaI sites of phw2000 vector to generate plasmids of DI-PA, DI-PB1,
and DI-PB2, respectively. The DNA sequences of the constructed plasmids with
DIG were verified by Sanger sequencing.

Antiviral activity assay of DIG in cells. For in vitro antiviral experiments,
plasmids of DI-PA, DI-PB1, DI-PB2, and empty vector phw2000 were transfected
into 293T and A549 cells by Lipofectamine 3000 reagent according to the manu-
facturer’s instructions (Invitrogen, Cat# 1857483). After 24 h transfection, cells
were washed with PBS and were inoculated with 1000 PFU of A(H7N7) or A
(H5N1) virus in DMEM for infection and culture. Supernatant was collected at 40
h post infection. Viral titers were determined using plaque assay as we described
previously51.

Viral RNA extraction and reverse transcription quantitative PCR. Viral RNA
was extracted by Viral RNA Mini Kit (QIAGEN, Cat# 52906, USA) according to
the manufacturer’s instructions. Extracted RNA were treated with DNase I
(QIAGEN, Cat# 79254, USA) according to the manufacturer’s protocol and pur-
ified by RNeasy Mini Kit (QIAGEN, Cat# 74106, USA) to exclude plasmid DNA
contamination. Real-time RT-qPCR was performed as we described previously22.
RNA was reverse transcribed to cDNA using primer Uni-12 and PrimeScript II 1st
Strand cDNA synthesis Kit (Takara, Cat# 6210A) using GeneAmp® PCR system
9700 (Applied Biosystems, USA). The cDNA was then amplified using specific
primers (Supplementary Table 5) for DI-PA, DI-PB1, DI-PB2 and wild-type H7N7
PA, PB1, PB2 using LightCycle® 480 SYBR Green I Master (Roach, USA). For
quantitation, 10-fold serial dilutions of standard plasmid equivalent to 101 to 106

copies per reaction were prepared to generate the calibration curve. Real-time
qPCR experiments were performed using LightCycler® 96 system (Roche, USA).

Design and synthesis of peptides. P1, TAT, and the fusion peptides TAT-P1,
TAT-P2, and TAT-P3 were designed as shown in Supplementary Table 1 and
synthesized by ChinaPeptide (Shanghai, China). The purity of all peptides was
>95%. The purity and mass of each peptide were verified by HPLC and mass
spectrometry.

Cytotoxicity assay. Cytotoxicity of peptides was determined by the detection of
50% cytotoxic concentration (CC50) using a tetrazolium-based colorimetric MTT
assay as we described previously22. Briefly, MDCK and 293T cells were seeded in
96-well cell culture plate at an initial density of 2 × 104 cells per well in DMEM
supplemented with 10% FBS and incubated for overnight. Cell culture media were
removed and then DMEM with various concentrations of peptides and 1% FBS
were added to each well. After 24 h incubation at 37 °C, MTT solution (5 mgml−1,
10 μl per well) was added to each well. After incubation at 37 °C for 4 h, 100 μl of
10% SDS in 0.01M HCl was added to each well. After further incubation at room
temperature with shaking overnight, the plates were read at OD570 using VictorTM

X3 Multilabel Reader (PerkinElmer, USA). Cell culture wells without peptides were
used as the experiment control and medium only served as a blank control.

Plaque reduction assay for antiviral peptides. Antiviral activity of peptides was
measured using a plaque reduction assay as we described previously22. Peptides
were dissolved in 30 mM phosphate buffer (PB) containing 24.6 mM Na2HPO4 and
5.6 mM KH2PO4 at a pH of 7.422. Peptides or bovine serum albumin (BSA,
0.4–50.0 μg ml−1) were premixed with A(H7N7) or A(H1N1)pdm09 viruses in
phosphate buffer at room temperature. After 1 h of incubation, peptide-virus
mixture was transferred to MDCK cells. At 1 h post infection, cells were washed
with PBS once, and 1% low melting agar was added to cells. Cells were fixed using
4% formalin at 40 h post infection for A(H7N7) virus and 60 h post infection for A
(H1N1)pdm09 virus. Crystal blue (0.1%) was added for staining, and the number
of plaques was counted.

ELISA assay. Peptides (0.1 μg per well) dissolved in H2O were coated onto ELISA
plates and incubated at 4 °C overnight. Then, 2% BSA was used to block plates at 4
°C overnight. For HA binding, 2 μg ml−1 in PB buffer of HA1 (Sino Biological Inc.,
Cat# 11055-V08H4) was incubated with peptides at 37 °C for 1 h. The binding
abilities of peptides to HA1 protein were determined by incubation with rabbit
anti-His-HRP (Invitrogen, Cat# R93125, 1: 2000) at room temperature for 30 min.
The reaction was developed by adding 50 μl of TMB single solution (Life Tech-
nologies, Cat# 002023) for 15 min at 37 °C and stopped with 50 μl of 1 M H2SO4.
Readings were obtained in an ELISA plate reader (Victor 1420 Multilabel Counter;
PerkinElmer) at 450 nm.

Western blot assay. Peptide samples (1 μg) were loaded to SDS-PAGE and
transferred to the polyvinylidene difluorid (PVDF) membrane. The transferred
PVGF membrane was blocked by 10 % skimmed milk overnight and then incu-
bated with HA1 (2 μg ml−1) at room temperature for 1 h, followed by incubation
with rabbit-IgG anti-HA (Sino Biological Inc. Cat# 11055-RP02, 1:4000) for 1 h to
detect peptide-HA1 binding. Next, Goat anti-rabbit IgG-HRP (Invitrogen, Cat#
656120, 1:6000) was used as the secondary antibody to detect the binding at room
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temperature for 1 h. Finally, immunoreactive bands were visualized by Luminata
Classico Western HRP Substrate (Millipore, Cat# WBLUC0500).

Endosomal acidification analysis in live cells. Endosomal acidification was
detected with a pH-sensitive dye (pHrodo Red dextran, Invitrogen, Cat#P10361)
according to the manufacturer’s instructions as previously described but with slight
modification22. First, MDCK cells were treated with P1 (25.0 μg ml−1), TAT-P1
(3.1 μg ml−1), bafilomycin A1 (100.0 nM), P9-aci-1 (PA1, 25.0 μg ml−1), or BSA
(25.0 μg ml−1) at 4 °C for 15 min. Second, MDCK cells were added with 100 μg ml
−1 of pH-sensitive dye and DAPI and then incubated at 4 °C for 15 min. Before
taking images, cells were further incubated at 37 °C for 15 min and then cells were
washed twice with PBS. Finally, PBS was added to cells and images were taken
immediately with confocal microscope (Carl Zeiss LSM 700, Germany).

Nucleoprotein (NP) immunofluorescence assay. MDCK cells were seeded on
cell culture slides and were infected with A(H1N1)pdm09 virus at 1 MOI pre-
treated with BSA (25.0 μg ml−1), bafilomycin A1 (50.0 nM), P1 (25.0 μg ml−1),
TAT-P1 (5.0 μg ml−1), or PA1 (25.0 μg ml−1). After 3.5 h post infection, cells were
fixed with 4% formalin in PBS for 1 h, and permeabilized with 0.2 % Triton X-100
in PBS for 5 min. Cells were washed with PBS and then blocked with 5% BSA at
room temperature for 1 h. Cells were incubated with mouse IgG anti-NP (Milli-
pore, Cat# 2817019, 1:600) at room temperature for 1 h and then washed with PBS
for next incubation with secondary antibody goat anti-mouse IgG Alexa-488 (Life
Technologies, Cat# 1752514, 1:600) at room temperature for 1 h. Finally, cells were
washed with PBS and stained with DAPI. Images were taken by confocal micro-
scope (Carl Zeiss LSM 700, Germany).

Polykaryon assay. The 293T cells were seeded into 24-well plates at 2 × 105 cells
per well. After overnight culture, the cells were transfected with phw2000-H7N7-
HA plasmid (0.6 μg per well) using Lipofectamine 3000 (Invitrogen, Cat# 1857483)
following the manufacturer’s instructions. At 24 h after transfection, the transfec-
tion medium was replaced by DMEM containing BSA (50.0 μg ml−1), P1 (50 μg ml
−1), TAT-P1 (10 μg ml−1), or FA-61758 (25 μM) and cells were incubated at 37 °C
for 20 min. Polykaryon formation was induced by exposing cells to a low pH
DMEM (pH 5.0) containing the corresponding concentrations of drugs at 37 °C for
10 min. The low pH DMEM medium was replaced with fresh DMEM containing
10% FBS and cells were incubated at 37 °C for 3 h. Finally, cells were fixed with 4%
formalin in PBS and stained with Giemsa (Sigma). Images were taken by micro-
scope at ×200 magnification.

Particle size measurement. According to the previous study59, peptide/DNA
complexes were prepared at various weight ratios. Peptide solution and plasmid
DNA solution were prepared separately in distilled water. Equal volumes of peptide
and plasmid DNA solution were mixed together to give a final volume of 4 μl
containing 0.5 μg of plasmid DNA. After leaving the complexes for 15 min at room
temperature and diluting the 4 μl complexes to 50 μl in distilled water, the particle
diameter of the complexes was measured by DynaPro® Plate Reader (WYATT,
USA).

Gel retardation assay. According to the previous study59, peptide/DNA com-
plexes were prepared at various ratios with 0.5 μg plasmid DNA in 4 μl distilled
water. After leaving the complexes for 15 min at room temperature, the samples
were loaded into a 1% w/v agarose gel containing ethidium bromide nucleic acid
stain. Gel electrophoresis was run in TBE buffer at 100 V for 30 min and the gel
was visualized under the ultraviolet (UV) illumination.

In vitro luminescence analysis. Peptide/DNA complexes were prepared at various
weight ratios with 0.5 μg plasmid DNA in 4 μl distilled water. After incubating the
complexes for 15 min at room temperature, the 293T cells in 24-well plate were
transfected with the complexes including 0.1 μg of each pHW2000 plasmid
encoding the PA, PB1, PB2, NP, and the mini-genome of pPoLI-fluc-RT (pLuc, the
firefly luciferase reporter)51. At 24 h after transfection, luminescence was measured
using Luciferase assay system (Promega, Cat# E1910) with a Victor X3 Multilabel
reader (PerkinElmer, USA). The luminescence reading was normalized to 1 mg
protein.

In vivo bioluminescence analysis. Peptide with pCMV-Cypridina Luc (pCMV-
Luc, ThermoFisher, Cat# RF233236) complexes were prepared at various weight
ratios with 15 μg plasmid DNA in 60 μl distilled water. After leaving the complexes
for 15 min at room temperature, two doses of complexes were intratracheally
inoculated to mouse lungs at 48 and 24 h before measuring the luciferase expres-
sion in lung tissues. The jetPEI/pCMV-Luc (2.1 μl/15.0 μg) complexes were pre-
pared according to the manufactory protocol as a positive control (Polyplus
Transfection, Cat# 201–10G). Mice inoculated with peptide or jetPEI only were
used as the negative control. For detecting bioluminescence signal, mouse lung
tissues were homogenized and centrifuged at 14,500 × g for 5 min. The supernatant
was used to analyze the luciferase protein expression by Cypridina luciferase flash
assay kit (ThermoFisher, Cat# 16168). The luciferase expression level in mouse

lungs was normalized to 1 mg protein. For in vivo bioluminescence imaging, mouse
lungs were taken out and then substrate was added to lungs for taking image by
IVIS® Spectrum In Vivo Imaging System (PerkinElmer, USA).

In vivo DI RNA expression analysis. TAT-P1/DIG complexes were prepared with
5.0 μg plasmid DNA in 40 μl distilled water. After leaving the complexes for 15 min
at room temperature, two doses of complexes were intratracheally inoculated to
mouse lungs at 48 and 24 h before measuring the DIG RNA expression in lung
tissues. The jetPEI/DIG (0.7 μl/5.0 μg) complexes were prepared according to the
manufacturer’s protocol as a positive control. Naked DIG was inoculated to mouse
lungs as base line control. Mouse lung was harvested, flash-frozen, and stored in
liquid nitrogen. Lung tissue was homogenized under liquid nitrogen and kept
frozen at all times. Once tissue was completely homogenized in powder form, 1 ml
TRIzol® Reagent (ThermoFisher, Cat# 15596026) was added to solubilize the tissue
by gently mixing. Total RNA was firstly extracted by TRIzol® according to the
manufacturer’s instructions (Invitrogen, Cat# 87703). Next, the total RNA was
further purified by RNeasy Mini Kit (Qiagen, Cat# 74106). In order to exclude the
plasmid DNA contamination, all RNA samples were treated by DNase I (QIAGEN,
Cat# 79254) according to the manufacturer’s instructions and purified by RNeasy
Mini Kit (Qiagen, Cat# 74106).

Antiviral analysis of DIG-3 in mice. BALB/c female mice (Laboratory Animal
Unit, The University of Hong Kong), aged 12–16 weeks, were kept in biosafety level
3 laboratory and given access to standard pellet feed and water ad libitum. All
experimental protocols followed the standard operating procedures of the approved
biosafety level 3 animal facilities and were approved by the Committee on the Use
of Live Animals in Teaching and Research of the University of Hong Kong52. The
mouse adapted A(H1N1)pdm09 and A(H7N7) viruses were used for lethal chal-
lenge in mice.

To evaluate the prophylactic efficacy, mice were intratracheally inoculated with
40 μl of PBS, zanamivir (50.0 μg in PBS), jetPEI (0.7 μl in 5% glucose solution),
jetPEI/plasmids (0.7 μl/5.0 μg in 5% glucose solution), TAT-P1 (20.0 μg in distilled
water), TAT-P1/plasmids (20.0 μg/5 μg in distilled water) at 48 h and 24 h before
viral challenge. Next, mice were intranasally inoculated with 4 LD50 of virus. For
evaluation of the therapeutic efficacy, mice were intranasally inoculated with
4 LD50 of virus. At 6 and 24 h post infection, mice were intratracheally inoculated
with 40 μl of PBS, zanamivir (50.0 μg in PBS), jetPEI (0.7 μl in 5% glucose solution),
jetPEI/plasmids (0.7 μl/5.0 μg in 5% glucose solution), TAT-P1 (20.0 μg in distilled
water), or TAT-P1/plasmids (20.0 μg/5.0 μg in distilled water). Experimental mice
were randomly allocated to each group. Survivals and general conditions were
monitored by two investigators for 18 days or until death. Data were collected
without exclusion. For viral titer and cytokine analysis, more than three mice in
each group were sacrificed at day 4 after viral challenge.

Statistical analysis. The statistical significances of mouse survivals were analyzed
by Gehan–Breslow–Wilcoxon test using GraphPad Prism 6 (San Diego, USA). The
statistical significances of other experiments were calculated by the two-tailed
Student’s t test. A P value of <0.05 was considered to be statistically significant.

Data availability. All data that support the conclusions of the study are available
from the corresponding author upon request.
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