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Abstract: In this study, we propose an automated framework that combines diffusion tensor imaging (DTI) metrics 

with machine learning algorithms to accurately classify control groups and groups with cervical spondylotic 

myelopathy (CSM) in the spinal cord. The comparison between selected voxel-based classification and mean value 

based classification were performed. A support vector machine(SVM) classifier using a selected voxel-based dataset 

produced an accuracy of 95.73%, sensitivity of 93.41% and specificity of 98.64%. The efficacy of each index of 

diffusion for classification was also evaluated. Using the proposed approach, myelopathic areas in CSM are detected 

to provide an accurate reference to assist spine surgeons in surgical planning in complicated cases. 
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1. Introduction 

Recently, machine learning techniques have been used in 

combination with multi-source medical data to provide 

efficient diagnostic tools for neurological diseases1-6. The 

diagnosis of Alzheimer’s disease has been studied using 

probabilistic neural networks7, the spatio-temporal 

wavelet-chaos approach8, and support vector machines 

(SVMs)9 using EEG data and fMRI data. Parkinson's 

disease has been modeled using the recently developed 

enhanced probabilistic neural network (EPNN)10, 11. 

Nonconvulsive seizures have been detected by a wavelet 

statistical feature approach using the EEG signal12. Scans 

of mild cognitive impairment have been classified using 

cross-sectional pattern analysis13.  

Cervical spondylotic myelopathy (CSM) is the most 

common type of spinal cord dysfunction in patients over 

55 years old14. Although machine learning techniques are 

effective as a computer-aided diagnosis system15-20, few 

researchers have studied the potential to classify 

myelopathic regions in the cervical spinal cord using 

diffusion tensor imaging (DTI) in conjunction with 

machine learning tools21. This combination of techniques 

is likely to be a useful diagnostic tool because DTI 

parameters are more sensitive in detecting the 

microstructural abnormalities of the cervical spinal cord 

compared with routine T1/T2 MRI techniques that only 

account for macroscopic information22-25. In our previous 

work26, we proposed a method to identify myelopathic 

levels in the cervical spinal cord by combining DTI with 

a machine learning technique, and we demonstrated that 

machine learning-based classifiers using the eigenvalues 

of DTI can provide a direct measure of the level of 

myelopathy. However, there remain some issues in the 

previous work26: (1) One key step in the diagnosis of 

myelopathic levels by combining DTI with machine 

learning methods is to select those key features of DTI 

from the region of interest (ROI). However, for simplicity, 

the mean of the DTI eigenvalues is extracted from the 

ROI to identify the myelopathic regions. From the 

perspective of feature extraction27, this treatment may 

lead to a loss of valid features that are essential for the 

classification of healthy controls and CSM subjects. This 

may be the reason that the true positive rate calculated by 

the SVM/Bayesian classifier was lower in a previous 

work26. (2) In clinical trials, the most common parameters 

used to characterize spinal cord tissue micro-architecture 

with DTI are fractional anisotropy (FA), axial diffusion 

(AD), mean diffusivity (MD), and radial diffusion (RD)28. 

To analyze the diffusion process of a water molecule in 

myelopathic regions, it is important to evaluate the 

efficacy of these indices (FA, AD, MD, and RD) to 

classify myelopathic regions in the spinal cord. In the 

previous work, we only used the eigenvalues of the 

diffusion tensor to identify the myelopathic regions and 

ignored the use of these diffusion indices (FA, AD, MD, 

and RD). (3) Anatomically, the white matter (WM) tracts 

of the ROI are subdivided into dorsal, lateral, and ventral 

sections29. The dorsal, lateral, and ventral gray matter 

sections contain the neuron cell bodies for the sensory, 

sympathetic, and motor systems, respectively30. It is 

necessary to clarify which section contributes most to 

spinal cord dysfunction and which section is more 

susceptible to the narrowing of the cervical spinal canal 

by degenerative and congenital issues, especially for 

prompt surgical intervention. However, in the previous 

work, we failed to determine the most important section 

in the ROI for CSM classification. 

Our aim in the current study is to address the above 

issues. Our main contributions are the following: (1) The 

original features from the important voxel-based dataset 

are extracted to automate the identification of 

myelopathic regions in the cervical spinal cord. A voxel-

based classification and mean value-based classification 

are compared to demonstrate the strength of key DTI 

features for detecting myelopathic regions. (2) The 

efficacy of each index of diffusion (FA, AD, MD, and RD) 

for CSM classification is assessed. (3) Based on the 

partition of the WM tracts of the ROI, the locations of the 

voxels (dorsal, lateral, and ventral) that are most useful 

for discriminating between healthy controls and CSM 

subjects are determined. The experimental results are 

consistent with the previous clinical trial.   

2. Materials and Methods 

2.1 Subjects 

A protocol was approved specifically for this study by the 

ethics committee of The University of Hong Kong. All 

subjects signed informed consent forms prior to their 

participation in this study. Seventy volunteers were 

recruited, including 40 healthy subjects and 30 CSM 

patients, from 22 to 84 years old. The control group 

consisted of 21 males and 19 females with a mean age of 

40.2, and the CSM group consisted of 17 males and 13 

females with a mean age of 57.4. Volunteers with 

complete motor and sensory function confirmed by the 

Japanese Orthopaedic Association score system31 were 

considered to be eligible for the control group. Volunteers 

with abnormal neurological symptoms and/or a history of 

neurological diseases, injury, and operations were 

excluded from the control group. CSM subjects 

diagnosed by senior spinal surgeons were considered to 

be eligible for the CSM group. The neurological 

examinations by senior spinal surgeons included an 

investigation of deep tendon reflexes, manual muscle 



 

 

 

strength testing, and sensory disturbance areas. Patients 

who had sensory disturbances experienced sensory 

disturbance detected by a pinprick or light touch, patient-

perceived numbness, or a combination of these symptoms. 

2.2 Imaging methods and DTI processing 

Imaging was performed using a Philips Achieva 3.0 Tesla 

MR system. Each subject was placed supine and 

instructed not to swallow to minimize motion artifacts 

during the acquisition process. An SNV head and neck 

coil was positioned to enclose the cervical region, and 

then each subject was scanned with anatomical T1-

weighted (T1W) imaging, T2-weighted (T2W) imaging, 

and DTI sequentially. This imaging protocol was 

approved by the Institutional Review Board of The 

University of Hong Kong 

Sagittal and axial T1W and T2W images were 

acquired for each subject using a fast spin-echo sequence. 

The parameters employed for sagittal imaging were as 

follows: field of view (FOV) = 250 × 250 mm, slice gap 

= 0.3 mm, slice thickness = 3 mm, fold-over direction = 

feet/head, number of excitation (NEX) = 2, resolution = 

0.92 × 1.16 × 3.0 mm3 (T1W) and 0.78 × 1.01 × 3.0 mm3 

(T2W), recon resolution = 0.49 × 0.49 × 3.0 mm3, and 

echo time / repetition time (TE/TR) = 7.2/530 ms (T1W) 

and 120/3314 ms (T2W). The parameters used for axial 

imaging were as follows: FOV = 80 × 80 mm, resolution 

= 0.63 × 0.68 × 7.0 mm3 (T1W) and 0.63 × 0.67 × 7.0 

mm3 (T2W), recon resolution = 0.56 × 0.56 × 7.0 mm3 

(T1W) and 0.63 × 0.63 × 7.0 mm3 (T2W), and TE/TR = 

8/1000 ms (T1W) and 120/4000 ms (T2W). Cardiac 

vectorcardiogram triggering was used to minimize 

cerebrospinal fluid pulsation artifacts. Image acquisition 

was triggered by the rise of the wave of the QRS complex. 

Twelve transverse images were acquired with spinal cord 

from C1 to C7 acquired. For more details on the 

experimental parameters, please see a previous article26. 

  

 

Figure 1. The representative images showing sagittal T2W, B0, three principal eigenvector images (v1, v2, v3) and FA in the healthy cord 

(A, A0, Av1, Av2, Av3, AFA) and myelopathic cord (B, B0, Bv1, Bv2, Bv3, BFA). The region of interest (ROI) was defined by B0 image to 

cover the spinal cord.

To minimize the influence of echo planar imaging 

distortion, a distortion correction tool32, 33 based on 

parallel imaging and reversed gradient polarity was used. 

To correct motion artifacts in addition to the gradient 

table for slice prescription, the Automated Image 

Registration (AIR) (Laboratory of Neuroimaging, UCLA, 

Los Angeles, California, USA) tool34 was used. To ensure 

image quality, the registered and realigned diffusion-

weighted datasets were double-checked. The processed 

datasets were then used to calculate the diffusion tensors, 

including three eigenvalues (λ1, λ2, and λ3) and their 

corresponding eigenvectors (v1, v2, and v3). Then, the 

diffusion tensor measurement was performed using DTI 

Studio software (Version 2.4.01 2003, Johns Hopkins 

Medical Institute, Johns Hopkins University, Baltimore, 

Maryland, USA). The ROIs were defined manually draw 

on the B0 images that covered the spinal cord. The ROI 

definition and morphometry measurements were 

performed using ImageJ (National Institute of Health, 

USA). The mean value of FA, AD, and RD within the 

ROI were derived from the diffusion matrix accordingly. 

The ROI was specified using B0 images that covered 

the spinal cord, as shown in Fig. 1. For each voxel in the 

ROI, the FA, MD: (λ1 + λ2 + λ3)/3, AD: λ1, and RD: (λ2 + 



 

 

 

λ3)/3 were calculated along the entire length of the 

cervical spinal cord (C2-3, C3-4, C4-5, C5-6, C6-7, and 

C7-8). The FA was calculated according to the following 

equation35: 
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where λ0 = (λ1 + λ2 + λ3)/3. 

2.3. Classification analysis based on machine learning 

algorithms 

The ROI contained 400 voxels in the WM skeleton (Fig. 

1). The identification of myelopathic areas in the spinal 

cord can be considered as a bi-classification problem, 

which may be solved by introducing machine learning-

based classifiers. The rationale of this method is 

illustrated in Fig. 2. We used machine learning algorithms, 

including an SVM36, 37, support tensor machine (STM)38, 

and naive Bayes (NB)39. The SVM and NB programs 

were from the freely available WEKA40 software package 

(http://www.cs.waikato.ac.nz/ml/weka). The STM 

program was written by the present author and is available 

on request.   

In the following, we consider the SVM as an example 

to analyze the classification using DTI data. First, the 

skeletonized FA, DA, RD, and MD data was analyzed in 

MATLAB (a program written by SQ Wang26 and 

available on request), which extracted the diffusion 

values from the WM skeleton and transformed them into 

a WEKA compatible format. The classification between 

groups was undertaken using each index of diffusion 

separately to determine the most efficient index for 

classification. The most efficient index from each 

location (the dorsal, lateral, and ventral aspects of the ROI) 

was then used. Finally, multiple classifiers were used to 

distinguish between healthy areas and areas with CSM.  

To mitigate the effects of noise, the number of voxels 

was first reduced to include only those that were most 

relevant for distinguishing between control groups and 

CSM groups. This step can delete non-discriminative 

voxels that may lead to loss of accuracy. In this study, the 

ReliefF algorithm41, 42 was used to select the most relevant 

voxels from the full datasets for each subject. The ReliefF 

algorithm is a general and successful attribute estimator. 

It can detect conditional dependencies between attributes 

and provide a unified view of attribute estimation 

regarding regression and classification. The aim of the 

ReliefF algorithm is to estimate the quality of voxels 

according to how well the value of a voxel distinguishes 

between instances that are near to each other. The 

algorithm works on the assumption that the voxels of 

nearby individuals with different diagnoses are the most 

useful for assessing the predictive ability of the voxel. 

According to the degree for which the value of a voxel 

can distinguish between samples that are near to each 

other, the ReliefF algorithm can estimate the quality of 

the voxels. In the current work, for each index of diffusion, 

10 reduced datasets were created with 20, 30, 40, 50, 60, 

80, 120, 170, 230, and 280 voxels. The sizes of the above 

reduced datasets were chosen based on a previous 

article26. To date, approximately 40–80 voxels provide 

optimal classification results. 

By training the classifier on labeled data, the SVM 

using the linear model can assign labels to new samples 

with nonlinear class boundaries using kernel 

transformation. The optimal kernel function is usually 

determined by trial and error. In the current work, 

mapping the original samples to a higher-dimensional 

space was implemented using a radial basis function 

(RBF) kernel. RBF kernels use two parameters: C and 

GAMMA. GAMMA represents the width of the RBF, and 

C represents the error/trade-off parameter that adjusts the 

importance of the separation error in the creation of the 

separation surface. In the current work, C was set to one 

and GAMMA was set to 0.05. Once the SVM was trained, 

a new test subject could be labeled based on the distance 

between the subject and separating hyperplane. 

The classification accuracy was evaluated using a 10 

times 10-fold cross validation method43 to ensure 

performance generalization. For each run of the 10-fold 

cross validation, the data was randomly divided into 10 

parts in which each class was represented in 

approximately the same proportions as in the full dataset. 

Each fold was held out in turn and the learning scheme 

trained on the remaining nine-tenths. The error rate was 

then calculated on the 10th fold. Thus the learning 

procedure was executed a total of 10 times on different 

training sets. The 10 error estimates were averaged to 

yield an overall error estimate. This procedure was 

repeated 10 times, which resulted in the learning 

algorithm being implemented 100 times on datasets that 

were all nine-tenths the size of the original. This is a 

standard procedure in machine learning that reduces the 

variation related to data selection and allows results to be 

averaged to yield robust calculations of the performance 

of classifiers. To analyze the results, measures of 

sensitivity, specificity, accuracy, and the area under the 

curve for the receiver operating characteristic (ROC) 

curve are given. Accuracy is defined as (TP + TN)/(TP + 

TN + FN + FP), where TN = true negative, TP = true 

positive, FN = false negative, and FP = false positive. 

Sensitivity is defined as TP/(TP + FN) and specificity is 

defined as TN/(FP + TN). 

 



 

 

 
 

 
Figure 2. Framework of a machine learning-based classifier of myelopathic levels. The labeled DTI data is employed as 

train data. The machine learning algorithms employed in this work are support vector machine, support tensor machine, 

naive Bayes. The red arrow indicates the fine-tuning of model parameters using the labeled data 

Figure 3. Accuracy, sensitivity, specificity and the area under the curve for a receiver operating characteristic curve (ROC AUC) for 

control and CSM classification using SVM. The values indicated are weighted averages for the two classes under consideration. Results 

are shown for ten datasets – 20 voxel dataset, 30 voxel dataset, 40 voxel dataset, 50 voxel dataset, 60 voxel dataset, 80 voxel dataset, 120 

voxel dataset, 170 voxel dataset, 230 voxel dataset and 280 voxel dataset. The voxels comprising these reduced datasets were selected by 

the ReliefF algorithm. 
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3. Results 

3.1. Identifying myelopathic levels using eigenvalues of 

a selected voxel dataset 

The myelopathic levels were first identified using the 

eigenvalues of a selected voxel dataset using the SVM 

classifier. The number of selected voxels influenced the 

performance of the classifier regarding accuracy (Fig. 

3(a)), sensitivity (Fig. 3(b)), specificity (Fig. 3(c), and the 

area under the ROC curve (ROC AUC) (Fig. 3(d)). The 

error bars using standard deviations are also shown in Fig. 

3 to indicate the variability of the classifications. Results 

are shown for 10 datasets for 20, 30, 40, 50, 60, 80, 120, 

170, 230, and 280 voxels. The voxels that comprised 

these reduced datasets were selected using the ReliefF 

algorithm. Fig. 3 shows that the best performance of the 

SVM was obtained for datasets from 50 to 60 voxels. 

Table 1 shows that the classification using the selected 

voxel dataset performed better than that with the mean 

value, especially for the classification using the SVM. 

The SVM classifier using the 60 voxel dataset produced 

an accuracy of 95.73%, sensitivity of 93.41%, and 

specificity of 98.64%, whereas the classification using the 

mean value only achieved an accuracy of 81.52%, 

sensitivity of 54.33%, and specificity of 92.43%. The 

classification results for orientation entropy44 (OE) are 

also presented in Table 1. It can be observed that the 

proposed classifiers using the selected voxel-based 

dataset outperformed the OE method. The Wilcoxon test 

was conducted to compare the performance values of the 

SVM, STM, and NB when used with the selected 60 

voxel dataset. The results are presented in Table 2. For all 

the comparisons in this study, the significance level α was 

set to 0.05. The p-values were calculated to highlight the 

significance of the differences. The results demonstrate 

that the SVM and STM outperformed NB significantly, 

whereas the SVM and STM did not have significantly 

different performance. 

 

Table 1. Classifier performance of SVM, Bayesian, STM and OE using mean values and selected voxel-based dataset. 

Method Accuracy Sensitivity Specificity 

The selected 60 

voxel dataset 

Bayesian 90.83 % 84.52% 95.93% 

SVM 95.73% 93.41% 98.64% 

STM 95.31% 92.27% 98.96% 

Mean of ROI 

Bayesian 80.16 % 61.29% 87.81% 

SVM 81.52% 54.33% 92.43% 

STM 92.84% 84.16% 96.56% 

Reference [44] OE 80.42% 83.51% 91.47% 

Table 2. Wilcoxon test comparison for the performance of SVM, STM and NB using the selected 60 voxel dataset. R+ 

corresponds to the sum of the ranks for the method on the left and R- for the right. 

Method Accuracy Sensitivity Specificity 

R+ R- p-value R+ R- p-value R+ R- p-value 

SVM vs. STM 41 14 0.169 42 13 0.313 38 17 0.527 

SVM vs. NB 55 0 0.005 55 0 0.005 55 0 0.005 

STM vs. NB 52 3 0.012 55 0 0.005 52 3 0.012 

 

3.2. Identifying myelopathic levels with multiple 

indices 

For the classification of myelopathic levels, various DTI 

indices demonstrated a difference in sensitivity from 

69.3%–88.7% (Fig. 4(c)), specificity from 83.6%–95.7% 

(Fig. 4(b)), accuracy from 71.5%–86.9% (Fig. 4(a)), and 

area under the ROC curve (Fig. 4(d)), while FA 

demonstrated the highest value in all performances. The 

error bars using standard deviations are also shown in Fig. 

4 to indicate the variability of the classifications. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Accuracy, specificity, sensitivity and the area under the curve for a receiver operating characteristic curve (ROC AUC) for 

control and CSM classification. The values indicated are weighted averages for the two classes under consideration. Results are shown 

for ten datasets – 20 voxel dataset, 30 voxel dataset, 40 voxel dataset, 50 voxel dataset, 60 voxel dataset, 80 voxel dataset, 120 voxel 

dataset, 170 voxel dataset, 230 voxel dataset and 280 voxel dataset. The voxels comprising these reduced datasets were selected by the 

ReliefF algorithm 

3.3. Regions most influential for detecting areas with 

CSM 

In the spinal cord, WM and gray matter are 

macroscopically organized in a “butterfly” or “H-shaped” 

pattern, with the interior gray matter surrounded by WM, 

as seen in an axial section. The WM consists of axonal 

bundles that ascend or descend the spinal cord. 

Anatomically, the WM tracts may be subdivided into 

dorsal, lateral, and ventral sections29 (Fig. 5(a)). For each 

section, six reduced datasets were created with 20, 40, 60, 

80, and, 100 voxels. FA was used to identify the regions 

that were most relevant for distinguishing between 

control groups and CSM groups. The classification was 

performed using the SVM. The highest sensitivity 

(73.6%), specificity (78.1%), and accuracy (72.9%) were 

achieved using the 60 voxel dataset from the dorsal 

section (Figs. 5(b), 5(c), and 5(d)). Fig. 5 shows that CSM 

may be most easily detected in the dorsal section and least 

easily detected in the lateral section, in agreement with 

Vedantam et al.45.  

4. Discussion 

In this study, we used a machine learning-based method 

to identify spinal cord regions with CSM. Our results 

demonstrate that an automated procedure that combines 

DTI with machine learning algorithms accurately 

classifies control groups and groups with CSM.  

Compared with our previous work26, in the current study, 

we make three main contributions. First, we analyzed the 

contribution of each voxel of the ROI for classification 

and selected the valid voxel dataset that contained the 

most important features for detecting the CSM group, 

whereas in the previous work we only performed 

classification using the mean values, which led to key 

information loss. Experimental results demonstrate that 

classification using a selected voxel dataset performed 

better than that using the mean value, especially for 

classification using the SVM. The SVM classifier using 

the 60 voxel dataset produced an accuracy of 95.73%, 

sensitivity of 93.41%, and specificity of 98.64, whereas 
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classification using the mean value only achieved an 

accuracy of 81.52%, sensitivity of 54.33%, and 

specificity of 92.43%. The results indicate that a selected 

voxel dataset enables more valid features than the mean 

values of the ROI. Second, the classification efficiencies 

of the four diffusion indices (FA, MD, AD, and RD) of 

DTI were discussed. Experimental results demonstrate 

that FA performed best in detecting the CSM regions in 

the spinal cord with a sensitivity of 88.7%, accuracy of 

86.9%, and specificity of 95.7%. The RD index produced 

the worst performance for detecting the CSM, with a 

sensitivity of 69.3%, accuracy of 71.5%, and specificity 

of 83.6% using the 60 voxel dataset. Third, in this study, 

we identified the areas of the ROI that were most useful 

for accurate classification. Performance was best when 

using the dorsal area, and a sensitivity of 73.6.2%, 

accuracy of 72.9%, and specificity of 78.1% were 

achieved. The ventral area occupied second place, 

whereas the lateral area was the worst performing. This 

finding is consistent with the study of Vedantam45 et al. 

 

Figure 5. (a) The three sections in ROI: dorsal, lateral, and ventral section. (b) (c) (d) Sensitivity, specificity and accuracy derived from 

FA with SVM. Results are shown for 6 datasets – 20 voxel dataset, 40 voxel dataset, 60 voxel dataset, 80 voxel dataset and 100 voxel 

dataset. The voxels comprising these reduced datasets were selected by the ReliefF algorithm. 

  

The pathophysiology of CSM was considered with 

static factors, dynamic factors, and ischemia46. DTI has 

been recommended as a precise measurement to detect 

the microstructure impairment of nerve bundles and 

diagnose a myelopathic cord with higher sensitivity and 

specificity than conventional anatomical MR images24. 

However, it is a technical challenge for clinicians and 

surgeons to read and interpret DTI in a clinical diagnosis 

of CSM, whereas the results of the current study would 

be a satisfactory solution using machine learning 

technology to provide a powerful tool for the 

classification of CSM. 

5. Conclusion 

In this work, we demonstrated that the use of DTI in 

conjunction with machine learning algorithms is a 

powerful strategy for CSM classification and is 

potentially useful in a clinic. The protocol outlined in the 



 

 

 

current study is a blueprint for creating a machine 

learning-based classifier that successfully learns the 

structural differences between CSM and healthy regions. 

Our results suggest that this framework may provide 

novel and efficient assistance for the clinical diagnosis of 

myelopathic regions in the cervical spinal cord. 
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