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For bivariate continuous data, measures of monotonic dependence are based on the rank
transformations of the two variables. For bivariate extreme value copulas, there is a family
of estimators 1§a, for a > 0, of the extremal coefficient, based on a transform of the absolute
difference of the a power of the ranks. In the case of general bivariate copulas, we obtain
the probability limit (, of fa =2 — 9, as the sample size goes to infinity, and show that
(i) Ca for « = 1 is a measure of central dependence with properties similar to Kendall’s tau
and Spearman’s rank correlation, (ii) (. is a tail-weighted dependence measure for large «,
and (iii) the limit as @ — oo is the upper tail dependence coefficient. We obtain asymptotic
properties for the rank-based measure fa, and estimate tail dependence coefficients through

extrapolation on §a. A data example illustrates the use of the new dependence measures for
tail inference.
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1. Introduction

Multivariate data sets of continuous variables often have dependence structures different
from multivariate Gaussian. Lower and upper tail-weighted dependence measures have
been used to quantify departures from multivariate Gaussian in bivariate margins; some
aspects of departures relevant for applications include tail asymmetry and tail depen-
dence relative to the Gaussian distribution. For data sets with more than two variables,
these measures can be computed for each pair for such an assessment.

Empirical versions of bivariate lower (upper) tail-weighted dependence measures put
more weight on data in the joint lower (upper) tail. Examples of such measures include
semi-correlations (Gabbi (2005); see Section 2.17 of Joe (2014)), conditional Spearman’s
p (Schmid and Schmidt (2007)) and power-weighted measures (Krupskii and Joe (2015))
in the joint lower/upper quadrant. These are invariant to monotone increasing transforms
of the variables and have probability-based counterparts defined via copulas. A copula
is a multivariate cumulative distribution function with Uniform(0,1) univariate margins.
Any probability-based dependence measure invariant to monotone increasing transforms
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can be expressed in terms of the copula, and so copulas have been useful for the analysis
of dependence properties (see Nelsen (2006) and Joe (2014)). One advantage of tail-
weighted dependence measures over the lower and upper tail dependence coefficients is
that the latter are defined via limits and have no obvious simple empirical counterparts.

In this paper, we study a family of dependence measures that arise from the extreme
value literature for estimating the extremal coefficient. When these measures are consid-
ered for general bivariate distributions rather than just bivariate extreme value distribu-
tions, they can be considered as a family of dependence measures (, indexed by a > 0,
some of which measure central dependence (similar to Kendall’s tau and Spearman’s
rank correlation) and others measure the strength of dependence in the joint upper tail.
Furthermore, when o — 00, (, converges to the upper tail dependence coefficient. The
quantity (, for any a has an empirical counterpart ¢, for data that can be defined based
on the rank transforms of the two variables. We can then consider extrapolating ¢, over
a sequence of « values to estimate the tail dependence coefficient of a given bivariate
data set.

The rest of this paper is organized as follows. Section 2 introduces (, and its connection
with the extreme value theory, as well as its empirical counterpart. Section 3 gives the
properties of (, and the asymptotic distribution of its rank-based estimator. We suggest
a method to estimate the upper tail dependence coefficient from a sample in Section
4. A data example is presented in Section 5 and concluding remarks are in Section
6. Appendix A contains supplementary information on the asymptotic variance of the
empirical tail-weighted dependence measures.

2. The proposed tail-weighted dependence measures and their relationship
with the extremal coefficient

We first provide an overview of the extremal coefficient and the F-madogram estimator of
the extremal coefficient in Sections 2.1 and 2.2, respectively. The proposed tail-weighted
dependence measures and their relationship with the extremal coefficient are given in
Section 2.3.

2.1. Owverview of the extremal coefficient

In data analysis, one common approach is to obtain bivariate dependence measures for
every pair of variables in a multivariate data set. In this subsection, we define the extremal
coefficient for the bivariate case and show how a family of estimators for the extremal
coefficient leads to a family of dependence measures that apply more generally.

Let Fi2(y1,y2) be a bivariate continuous distribution with identical univariate margins
Fy, Fy. Let (Y1,Y2) ~ Fiz and, for large t, let 6(¢) be defined via

Fio(t,t) = P(max{Y, Y2} < t) = [F1()]°®).

If (t) — ¥ as t — oo, then ¥ is the (limiting) extremal coefficient. For independent
(Y1,Y3), 9 = 2; for perfectly dependent (Y7,Y2), ¥ = 1; and for positively dependent
(Y1,Y2) with Fia(y1,y2) > Fi(y1)Fa(y2) for all y1,y2, 1 < ¢ < 2 if it exists. The quantity
¥ can be interpreted as the effective number of independent variables (see, e.g., Smith
(1990)). If Fio(t,t) = C(Fy(t), Fa(t)) for a copula C, then Fia(t,t) = C(u,u) = u?® with
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u = Fi(t), and

9= lim 208C0LY
u—1-  logu

Let Y1,...,Y, be independently and identically distributed (i.i.d.) bivariate random
vectors from F', Y ; = (Y;1, Yi2)T. An extreme value copula C'gy describes the dependence
structure of the location-scale limit of the componentwise maxima M ,, = (M1, Ma,)T =
(Vi Y, Vie, Yio)T as n — oo, assuming (M1, — a1r)/bin and (Mo, — a2y)/bap converge
in distribution for some real sequences ai,, a2, and positive sequences by, ba,. Extreme
value copulas satisfy the max-stability property; in the bivariate case, the condition
is Cpy (uf,ul) = C4y (u1,u2) for all ¢ > 0, in which case the stable tail dependence
function A(—logu;, —logug) = —log Cpy (u1,us2) is convex and homogeneous of order
1, with A(w,0) = A(0,w) = w for w > 0. For Cgy,

log Cry (u, w) _ —A(—logu,—logu) — AL )
log u log u

is constant over u and hence ¥ = A(1,1).
Meanwhile, for a bivariate copula C' with well behaved tails, the lower and upper tail
dependence coeflicients are defined respectively as

. C(u,u)
e ey 1 _—
h = u(C) = lig S0
B . 6(1—u,1—u)_ . a(u,u) ~
= )= g SO iy S0 )

where C(u1,u2) = 1 —ug — ug + C(uy, uz) is the survival function of C, and 6(u1, ug) =
C(1—u1,1—ug) is the reflected or survival copula of C. The tail dependence coefficients
satisfy 0 < Ap, Ay < 1, with larger values indicating stronger tail dependence. For a
bivariate extreme value copula, Ay =2 — A(1,1), and 9 = A(1,1) =2 — A\p.

2.2. The F-madogram estimator of the extremal coefficient

For extreme value copulas, there exist many empirical estimators of 1 in the literature,
see, e.g., Pickands (1981); Deheuvels (1991); Capéraa, Fougeres, and Genest (1997); Hall
and Tajvidi (2000); Cooley, Naveau, and Poncet (2006); Biicher, Dette, and Volgushev
(2011)!. In the following, we focus on the class of F-madogram estimators (Cooley et al.
(2006)) as it motivates our tail-weighted dependence measures. The name of F-madogram
comes from (stationary) spatial extreme applications where the dependence depends on
the distance between sites and the F-madogram quantifies the decrease in dependence
as the distance increases.

Let (Y1, Y2) have bivariate extreme value distribution Cgy (Fi(y1), F2(y2)) where F1, Fy
are univariate extreme value distributions. Then (Uy, Us) = (F1(Y1), F2(Y2)) ~ Cgy. Let
M, = max{U{*,Us'}, so that

P(M, < z) = Cpy(zY/* 2Y/%) = exp{—A(—a"tlogz, —a "t log z)} = exp{—a " (—log z)9}

IWe remark that many of these methods were initially designed to estimate the Pickands dependence function
B(w) = A(w,1 —w), w € [0,1]. Because of the homogeneity property of A, we have ¥ = 2A(1/2,1/2).
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and
E(M,) = /1 P(M, > r)dz = /oo[l —exp{—a Wz}le Fdz=1—-[14+a 9L (2)
0 0

Since |a — b| = 2max{a,b} — a — b for real numbers a,b, we can write max{U{*,Us'} =
LU — U]+ (UF +US), giving

E(Ma) = SE[Uf ~ U] + (a+ 1) (3)

Combining (2) and (3), we obtain the relationship

a+ a(l+ a)y,

¥ =
a—(1+a)v,’

1
Vg 1= iEHUla -Uy]], a>0. (4)

Hence with data, we can define an estimator Uy of 1, based on an estimator of v, for
all @ > 0. Suppose the bivariate extreme value data are (Y;1,Y;2), i =1,...,n. Let

—12 Yjr <Yi)—1/2], i=1,....n (5)

be scaled ranks in the interval [0, 1] for the kth variable, k& = 1,2. The rank-based
estimator of ¥, depending on «;, is

5 at+aol+a)i, 1 &
Dy = = =S |R% — R 6
« Oé—(l—i-a)l/)a’ VO( 2n;| 71 71219 ( )

Note that 4 € [1,2] and 2 — J,, € [0,1].

The power of exponentiation is = 1 in the original formulation by Cooley et al.
(2006). Naveau, Guillou, Cooley, and Diebolt (2009) use the idea of the F-madogram to
estimate the Pickands dependence function in the form B(w) = A(w,1—w) for w € [0, 1];
their estimate of ¥ corresponds to using o« = 1/2. Fonseca, Pereira, Ferreira, and Martins
(2015) consider the case where the powers of R;; and R;s in (6) can be any numbers
a1, > 0. These are all in the context of extreme value distributions.

2.3. The proposed tail-weighted dependence measures

Our proposed family of tail-weighted dependence measures is given in Definition 1.

Definition 1 For a general bivariate copula C', the probability version of the tail-weighted
dependence measures is defined as (4, = (,(C) := 2 — ¥4, where ¥, with a > 0 is as in
(4). For a sample of bivariate observations (Y;i1,Y;2), i = 1...n, with scaled ranks given
in (5), the sample version is defined as ¢, := 2 — U, with 19a given in (6).

Let 7o = 7a(C) := fol CuM* ul/*)du = ozfol v¥ 1C(v,v)dv. Then we have the
following relationships:
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Vo = E(My) — (1+0a)"! = /0 1= O ] du— (14 0)! = e (7)
po=otollbaln (o y)
a—(1+a)v,
la=2—0a(y," —1). (8)

For the comonotonicity copula with C*(u,v) = min{u,v}, we have ¥, = 1, v, = 0
and 7, = a/(a + 1); for the independence copula with C*(u,v) = uv, we have 9, = 2,
Vo = a/[(a+1)(a+2)] and v, = a/(a+2). For copulas with positive quadrant dependence
satisfying C(u,v) > wv for 0 < w,v < 1, 94 € [1,2]. Therefore, the definition of (, is
such that ¢, € [0, 1] for copulas with positive quadrant dependence, with the lower and
upper limits reached at the independence and comonotonicity copulas, respectively. We
will show in Section 3 that {, can be negative for C' with negative dependence, with a
minimum bound of (1 —log4)/(1 — log2).

It is easy to see that (, = Ay for all @ > 0 when C' is a bivariate extreme value copula.
When C' is the comonotonicity copula so that R;; = R;o for all ¢, we have 0, = 0, 1§‘a =1
and CAa =1 for all a > 0.

3. Properties of the tail-weighted dependence measure

In this section, we investigate the properties of (, in (8). In particular, its interpretation as
a tail-weighted dependence measure by varying « and the desirable properties it satisfies
are outlined in Section 3.1. The behaviour of {, as « approaches the two boundaries, 0
and oo, is derived in Section 3.2, while Section 3.3 gives the asymptotic properties of the
estimator (, in Definition 1. We illustrate the role of (, as a tail-weighted dependence
measure and its use in distinguishing between copula families with various strengths of
tail dependence in Section 3.4.

3.1. Dependence properties

When a =1, 7, is an integral along the diagonal of the copula at equal increment du.
When o > 1, u!/® > 4 and more emphasis is on the distribution function at the joint
upper tail, whereas the opposite is true when 0 < a < 1. The measure (, can thus be
interpreted as a tail-weighted summary that puts different weights on the strength of
dependence of a copula (in terms of the magnitude of C(u;,u2) along the diagonal) at
different locations.

Scarsini (1984) proposed a list of desirable criteria that a measure of concordance
should satisfy; these are summarized in Definition 2.8 of Joe (2014). Most of these prop-
erties are satisfied by (4, as illustrated below:

(1) Domain (measure defined for all random variables):
e Satisfied (for all continuous random pairs) as (, is defined for all bivariate pairs
with copula C.
(2) Symmetry (permutation) (measure invariant to a swap of the order of random
variables):
e Satisfied as v, = fol C(u'®, u!/*) du is symmetric in the arguments. See Remark
1 for comments on reflection symmetry.
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(3) Coherence (measure increasing in the concordance ordering of the copula):

e Satisfied as C1(u1,u2) <. Co(u1,ue) (i-e., Cy is larger than C7 in the concordance
ordering or equivalently Cy > Cy pointwise) implies 7, is larger for Cy than C1,
and so is (4.

(4) Range (measure within the interval [—1, 1] with —1 at the countermonotonicity limit
and 1 at the comonotonicity limit):

e The measure is constructed such that (, = 1 at comonotonicity. We show in
Remark 2 that (, is not necessarily —1 at countermonotonicity, and hence this
property is not completely satisfied in general.

(5) Independence (measure equals 0 for the independence copula):

e Satisfied as ¢, = 0 for the independence copula C(u,v) = uv.

(6) Sign reversal (negating one variable results in a sign reversal of the measure):

e As the range condition is not generally satisfied, it is impossible for (, for all
(U1, Uz) to be the negation of that for (—U;, Us).

(7) Continuity (if a sequence of bivariate random pairs converges in distribution to C,
then the sequence of the measures for these random pairs converges to the measure

of C):

e Satisfied as (, is defined based on the copula.

(8) Invariance (measure invariant to strictly increasing functions on each margin):

e Satisfied as monotonic marginal transformations do not affect the copula.

Remark 1 Since the reflected copula C of a bivariate copula C satisfies a(u,v) =
u+v—1+C(1—u,1—v), we have

1 B 1
fya((]):/ 20!/ 14O (1=t 1—aV/*)] du = 1+/ OV, w1/ (= e_1)aL gy,
0 a+1l Jo

Observe that ’ya(CAZ') is equal to 7,(C) for any a« > 0 if C = C (i.e., if C is reflection
symmetric), or when o = 1 for any C. Otherwise, it is not generally true that v, (C) =

Ya(C).

Remark 2 For property 4 (range), because (, is a coherent dependence measure, the
lower bound of its range can be obtained by considering the countermonotonicity copula,
i.e., the Fréchet-Hoeffding lower bound of a bivariate copula. The countermonotonicity
copula is given by C~ (u1,u2) = max{0,u; +ug — 1} and 7, = fol max{0, 2u'/® — 1} du
= (27*+a—1)/(1 + «), where the minus sign at the superscript denotes the value
for countermonotonicity copula. This implies {, = 27%(a+2) —2]/ (2% 4+ a — 1), an
increasing function of a. When o — 0T, applying the L’Hopital’s rule yields ¢, —
(1 —1log4)/(1 —log2) ~ —1.259. When oo — o0, {; — 0, and ¢, = —1 when o =1, i.e.,
the range requirement at countermonotonicity is only satisfied when o = 1.

When o = 1, (, is related to Spearman’s footrule (Spearman (1904, 1906)). Its sample
version is ¢ = 1 — 37 3|Riy — Ria|/(n — 1) = 1 — 61 /(n — 1), a function of & =
ﬁ o \Rzl — Rys|, where Ry, = (n+ 1)t Z?:l 1(Yjr < Yi) is a slightly different
scaling of the marginal ranks to [0,1] that does not affect asymptotic properties. The
probability version of ¢ is ¢ = 1 —3E|U; — Us| = 1 —6v1. The distributional properties of
¢ have been previously studied in Genest, Neslehova, and Ben Ghorbal (2010). Equations
(7) and (8) imply ¢ = (1 —6v1)/(1 —2v1) = ¢/(1 — 214), i.e., both ¢; and ¢ are 0 at
independence and 1 at comonotonicity, but {; > ¢ for all copulas with positive quadrant
dependence as 1 — 21y < 1. For the countermonotonicity copula C—, v =1/4, (; = —1
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N[

and ¢ = —

3.2. Boundary cases

We investigate the properties of (, as a approaches the lower or upper limit, i.e., as
a — 0T or a — co. We show that ¢, converges to the upper tail dependence coefficient
Ay as a — oo; this property is used in Section 4 for the estimation of Ay .

PROPOSITION 3.1 As a — 0T, we have

-1

1
ali—>%l+ Ca=2— [/0 v C(v,v) dv] . 9)

Proof. When a — 07, the integrand of v, C (ul/ a yt/ @), tends to zero everywhere for
u € [0,1) and is only 1 at u = 1. The integrand is also bounded in [0, 1], and thus the
exchange of limit and integral is valid. This yields linol+ Yo = 0 and, using (8),

a—

-1

1 1
lim (4, =2— lim L — 92 lim [/ v*1C(v,v) dv] =2- [/ v 1C (v, ) dv}
0 0

a—0t a—0t Yq a—0t

-1

The limit exists as C(v,v) < v for any copula and v~ 'C(v,v) < 1. [ |

Note that the integral in (9) can be interpreted as the average ratio between C(u,v)
and C*(u,v) (the comonotonicity copula) along the diagonal u = v. As the strength of
dependence of C' increases, this ratio gets closer to 1 and the integral also gets closer to
1. As C approaches the independence copula, this ratio approaches v and the integral
tends towards 1/2.

PROPOSITION 3.2 Assume that the tail of the bivariate copula C' is well-behaved in the
sense that A\y(C) in (1) exists. Then, as a — 0o, we have lim (, = A\y.
a—r00
Proof. When a — oo, C(u'/®, u!/*) tends to 1 everywhere for u € (0, 1] and is undefined
at u =0; lim v, =1 and thus lim {, =2+ lim a(y, —1). We have
a—00 a—0o0 a—0o0

! 1
a(ya—1) = / o [QUI/Q -2 +€(u1/a’u1/a)} du = / aC (u, ul/*) du— 2a (10)
0

0 ()é+1

To find the limit of the integral in (10), first note that the integral is bounded
as Clut*ut*y = 1 — 2uM* + Cw’*u"/*) < 1 — u'/® meaning that
fol aC(ut/* ut*ydu < fol a(l — u'/*)du = a/(a + 1) < 1 for any positive a, and
tends to 1 as o — o0. Then, consider the tail expansion of the survival function of C
using the definition of the upper tail dependence coefficient Ay, i.e., C(1—v,1—v) ~ vy
as v — 07, where a(v) ~ b(v) as v — m means lim,_,, a(v)/b(v) = 1. Initially, suppose
0 < Ay < 1. Then for every small € > 0, there exists é > 0 such that for every 0 < v < §
we have

v(Ar —€) <C(1 —v,1 —v) <v(Ay +€). (11)
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1/a

Also, there exists some a* such that for every a > a*, 1 —u < ¢ for every u > e.

Write

1 € 1
/ aC (ut/*, ut/*) du = / aC (u/ ul/®) du+/ aC(uM®, ul®) du =: hy(e, a)+ha(e, a).
0 0 €

For hyi(e, ), 0 < hi(e,a) < [y a(l — u/) du = e [1- e (o + 1)] . Because this
upper bound tends to € (1 — loge€) as o — oo, there exists some o** and constant M > 1
such that 0 < hy(e,a) < Me (1 —loge) for all a > a**.

For hy(e, a), since 1 — u/® < § for all u > € and o > o*, we use (11) to establish the
bounds

1 1
A\ — e)/ a(l — ul/a) du < ha(e,a) < (Au + e)/ ol — ul/a) du

AN I _ Y Y
= (\y 6)[044—1 ae(l P )]Shg(e,a)ﬁ()\(]+e),

where the upper limit uses the relationship f: a(l —u/*)du < fol a(l —ut/*)du < 1.
Thus (A\y —¢€)[a/(a+1) — Me (1 —loge)] < ha(e, ) < (Ay +e) for all @ > max{a*, a**},
and, as a — 00,

(A —€)[1 — Me(1 —loge)] < hi(e,00) + ha(e,00) < Me (1 —loge) + (A\y + €),

where hj(e,00) = lim hj(e, @), j = 1,2. Since € > 0 can be arbitrarily small,
a—r0o0

1
lim aC (u* ) du = \y.

The proof applies to Ay = 1 or 0 by taking (11) as v(A\y —¢) < C(1 —v,1 —v) < v or
0<C(1—wv,1—v) <v(\y+e), respectively. Putting this result back into (10), we obtain
lim {, = A\y. [ |
a—r00

Proposition 3.2 reinforces the interpretation of {, that more weight is put on the upper
tail as « increases, eventually coinciding with the upper tail dependence coefficient when
a — 0.

3.3. Asymptotic distribution of the sample tail-weighted dependence
measure

For given «, the estimator fa defined in Definition 1 is asymptotically normally dis-
tributed. This property makes use of the theory for the empirical copula (Fermanian,
Radulovié¢, and Wegkamp (2004); Tsukahara (2005); Segers (2012)), defined as

1 n
Ch(u1,u2) = - Z 1(Ri1 < ui, Rio < ua), (12)
i—1
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where the R’s are ranks scaled to the interval [0, 1] as in (5). Following Segers (2012),
define the first order partial derivatives of C as

C(u1 + h,uz) — C(uy,us)

Ci(ug,ug) = }1111% 3 ;o (ur,u2) € Vi
. . Clup,ug +h) —C(ur,u
Co(ur,uz) = %13%) (w, v 2 ( 2)7 (u1,uz) € Va,

where Vi = (0,1) x [0,1] and V5 = [0,1] x (0,1). At the boundary points, C1(u1,uz) and
Cy(u1,u2) are defined as the one-sided limits by convention. For the result to hold, we
need the following assumption.

ASSUMPTION 1 For j = 1,2, the partial derivative C’j exists on [0,1]? and is continuous
on the set V.

Assumption 1 is used rather than the more restrictive condition of continuous partial
derivatives on [0,1]? in Fermanian et al. (2004), as the former is satisfied by a much
wider class of parametric copula families. In particular, Segers (2012) demonstrates that
the C7 and Cs of a bivariate copula with lower (resp. upper) tail dependence cannot be
continuous at the point (0,0) (resp. (1,1)).

PROPOSITION 3.3  If the bivariate copula C satisfies Assumption 1, then we have that

(07

4
Vi (G- G) S (o, (“”;Ca)v:uoo) , (13)
where

X = ;/01 Ge (ul/o‘,1> du—i—;/ol Ge <1,u1/°‘> du—/ol Ge (ul/a,ul/a> du, (14)

in which

Go(ur, uz) = Bo(uy, uz) — Be(uy, 1)C (u1, u) — Be(1, ug)Cao(uy, ug) (15)
is a Gaussian process that involves a Brownian bridge Bo with covariance function

E Be(ur, u2)Bo(us, ug)] = C(ur A ug, ug Aug) — Clug, ug)C(ug, ug). (16)

Proof. Note that 7, = (2n)" 13" | |[RE — R%| can be written in terms of C,, the em-
pirical copula defined in (12), as follows:

= 3 et R )
= ii/l <1 — 1{Ri1 § ul/a,Rig S ul/o‘}) du
i=1 70
1 - [ ifa (1-9)/a
_271202/0 <1—1{Ri1§u JRin <u }) du
Jj=0 1=
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1
_ ;/ (G, 1) + Cu(1,ut/?) — 2C, (!, /)] du
0

Under the regularity conditions in Assumption 1 (Segers (2012)), we have
Vn[Cr(u1,u2) —C(uy, uz)] LN Ge(u1,u2), where Ge is a Gaussian process satisfying (15)
and (16). This establishes the asymptotic distribution of 7, so that v/n(Z, — va) 4 x ,
where X is given in (14). The random variable X is normally distributed, as a conse-
quence of Lemma 3.9.8 of van der Vaart and Wellner (1996) which states that a continu-
ous, linear map of a tight Gaussian process (in this case G¢) is Gaussian. As for (,, the

rank-based estimator of the tail-weighted dependence measure, observe via (7) and (8)
that

. VN (Do — Va) N
Vit (=) = o <[a/<a+ D) — allaf(a+ 1) - m) = o [V (7 = va)] + 0, (1),

2

where 7, = —ala/(a + 1) — v4] 72 = —ay; 2. As a result,

4
NG (éa - ga) 4N (0, mem) .

The asymptotic variance in (13) is usually a 2-dimensional integral that can be eval-
uated numerically (see Appendix A). Some examples of square roots of the asymptotic
variances are included in Table 1 in the next subsection. For the independence copula, a
simple closed-form asymptotic variance can be obtained, as follows.

PROPOSITION 3.4 If C is the independence copula with C(u1,us) = C+(uy, ug) = uius,
then we have that

Vi (o) BN (0’ (1&;5122&))- (17)

Proof. For the independence copula, we have
E Be(ut, u2)Bo(us, ug)] = (ur Aug) (ug A ug) — ugugusuy
from (16) and
E [Go(uy,u2)Geo(us, ug)] = (ug Aus — ujus)(ug A ug — uguy)

from (A2). It can be easily checked that all but the third term of (A1) are zero, and thus

Var(X) = /01 /OlE [GC <u1/a7u1/a) Go <v1/a7vl/a>} dudv = @+ a)Q(SO—ZF 5o +2a2)’

2

10
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so that v/n (fa — Ca) 4N (0,0%), where

2 2+a)t o 2+

a? 2+ a)?2(3+ba+2a?) (1+a)(3+2a)

Note that the asymptotic variance in (17) is a decreasing function in «, from 4/3 when
a— 0" to1/2 as a — oo.

3.4. Uses of the tail-weighted dependence measures

In this subsection, we demonstrate the idea of using the proposed tail-weighted depen-
dence measures (, to quantify overall and tail dependence of a copula, as well as their
use in distinguishing between copulas with various strengths of dependence in the joint
tail.

3.4.1.  As measures of overall and tail dependence of copulas

When a = 1, {, can be interpreted as a central dependence measure much like Kendall’s
7 and Spearman’s p. When a > 1, {, puts more weight on the upper tail of the copula.
We mainly focus on « > 1 due to the desirable property that (, — Ay as o — oo;
emphasis can be put on the lower tail by using « > 1 with the reflected copula.

We mentioned in Section 2 that the strength of tail dependence can be measured by
the tail dependence coefficients Ay, and Ay;. When there is no tail dependence, it is still
possible to quantify the degree of tail heaviness using the notion of tail order (Hua and
Joe (2011)) based on an expansion of the corner tail probabilities. The upper and lower
tail orders, k7, and kg, are quantities such that

C(u,u) = ul(u) + o(u™L(u)), C1—u,1—u)=u"l"u)+ o(u L (u)) (18)

as u — 07, for some slowly varying functions ¢ and ¢* at 0". The tail order is the
reciprocal of the coefficient of tail dependence in Ledford and Tawn (1996) and Heffernan
(2000), and cannot be smaller than 1; Az, (Ay) can only be non-zero if k;, (ky) is 1.
Copulas with k = k1, or Ky between 1 and 2 are said to have intermediate tail dependence
for the respective tail, and those with k = 2 are said to have tail quadrant independence.
It is possible for k > 2 for some copulas with negative quadrant dependence. Similar
to the tail dependence coefficient, the tail order is defined as a limit and has no direct
empirical counterpart.

In Table 1, we compute the values of (, for selected values of o and those of other mea-
sures of tail dependence, for several bivariate parametric copulas families with parameters
such that Kendall’s 7 = 0.3 or 7 = 0.7. These families cover a range of possibilities in the
two-term expansion of C(1 —u,1 —u) as u — 07, i.e., these families cover various tail
symmetry /asymmetry and dependence characteristics for copulas with positive quadrant
dependence. The families are:

e Gaussian: Reflection symmetric with intermediate tail dependence when 0 < p < 1;
Au=0and 1< ky <2.
e Frank: Reflection symmetric with tail quadrant independence; Ay = 0 and ky = 2.

11



November 16, 2017

Journal of Nonparametric Statistics twdm-zeta

e Gumbel: Reflection asymmetric with upper tail dependence and intermediate lower
tail dependence; 0 < Ay < 1 and ky = 1; A\, =0 and 1 < k1, < 2. It is an extreme
value copula.

e Student’s t: Reflection symmetric with tail dependence; 0 < Ay < 1 and xky = 1.
We consider the t copula with 1 and 5 degrees of freedom; for a given correlation
parameter, the tail dependence is stronger with smaller degrees of freedom.

e BB1: Reflection asymmetric with potentially different strengths of dependence in the
two tails; 0 < Ay, A\ < 1; ky = kg = 1.

Table 1 also has the asymptotic standard error of the rank-based estimator (fa for
the sample size 500, computed using the results in Section 3.3 and Appendix A. For
comparison, we include the corresponding upper semicorrelations of the normal scores
for each copula (see Section 2.17 of Joe (2014)), defined as

pky = Cor [@7H(U1), @1 (U,)|Ur > 0.5,Us > 0.5] (19)

where @ is the standard normal cdf and (Uy, Uz) is a random vector from copula C. The
normal scores for the ith margin are defined as ®~(U;), i = 1, 2. The upper tail-weighted
dependence measure of Krupskii and Joe (2015) is also computed; a description of this
measure is in Section 3.4.2. These two measures have been developed to quantify the
strength of dependence in the joint tails.

In addition to copulas with positive quadrant dependence, we also consider the be-
haviour of (, for copula families that admit negative quadrant dependence. Among those
listed in Table 1, the Gaussian, Frank and Student’s t families allow copula parameters
that correspond to a Kendall’s 7 of —0.3 and —0.7. Table 2 lists the analogous results
to Table 1 for copulas with negative quadrant dependence. We again observe the con-
vergence of (, to Ay as « increases, and the purpose of (; as a measure of central
dependence. Student’s t copulas have Ay values that are above zero even though there
is overall negative dependence; in this case (, is negative when « is small, and turns
positive when « is sufficiently large. This is apparent for the t; copula but not the ts
copula as the latter has a Ay value that is very close to (but not exactly) zero.

From these results, we observe that (1 is not very different among copulas with the
same Kendall 7 value, and can be regarded as a measure of overall dependence strength.
As « increases, (, tends towards the upper tail dependence coefficient Ay, although (,
need not be monotone in « as is evident for the t; copula. By construction, {, = Ay
for all a for an extreme value copula, such as Gumbel. Unlike for the independence
copula, the asymptotic standard error generally increases with « for the copula models
with positive quadrant dependence; further inspection (not shown) seems to suggest the
minimum occurs near « = 1. Different copulas exhibit various rates of convergence to
AU as « increases, with slower rates for the Gaussian, reflected Gumbel and t, (large v)
copulas. A more formal investigation of convergence rates will be given in Section 4.

3.4.2.  As a tool for distinguishing between copulas with various strengths of
dependence in the joint tail

Because the proposed measures (, quantify the degree of tail dependence, they can be
used to distinguish between copulas with various tail dependence characteristics and
assist in the choice of copula families in data modelling.

The semicorrelation (19) and conditional Spearman’s p (Schmid and Schmidt (2007))
are special cases of a more general class of tail-weighted dependence measures studied
in Krupskii and Joe (2015) that are based on conditional correlations; for (Uy,Usz) ~ C,

12
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Kendall’s 7 = 0.3

Measure Copula
Gaussian Frank Gumbel rGumbel t1 ts BB1 rBB1
G1 37 (.03) .37 (.03) .38 (.03) .38 (.03) .44 (.03) .38 (.03) .37 (.03) .37 (.03
(s 29 (.04) .28 (.04) .38 (.04) .24 (.04) .41(.04) .32(.04) .33(.04) .29 (.04
G0 .20 (.05) .14 (.04) .38 (.06) .14 (.05) .45 (.06) .27 (.06) .31 (.06) .23 (.06
Coo | 12(.09) .04 (.05) .38 (.12) .06 (.07) .47 (.12) .24 (.12) .30 (.12) .17 (.10
AU .00 .00 .38 .00 48 .18 .30 .06
Ky 1.38 2.00 1.00 1.62 1.00 1.00 1.00 1.00
3¢ 23 15 46 16 .70 37 39 28
ouU .22 A1 .48 14 .75 37 .40 .28
Kendall’'s 7 = 0.7
Measure Copula
Gaussian Frank Gumbel rGumbel t1 ts BB1 rBB1
(1 76 (.01) .77 (.01) .77 (.01) .77 (01) .79 (.02) .77 (.01) .77 (.01) .77 (.01
(s .70 (.02) .67 (.02) .77 (.02) .65 (.02) .75(.02) .72(.02) .73(.02) .71 (.02
(20 .63 (.04) .43 (.05) .77 (.03) .52 (.05) .76 (.04) .67 (.04) .71 (.04) .66 (.04
€100 54 (.10) .16 (.08) .77 (.06) .38 (.11) .76 (.08) .63 (.09) .70 (.08) .63 (.09
AU .00 .00 7 .00 77 .58 .70 .61
Ky 1.06 2.00 1.00 1.23 1.00 1.00 1.00 1.00
p} .75 .60 .85 .64 .88 .78 .80 77
oU .76 .51 .89 .62 .90 .79 .83 .79

Table 1. Values of the dependence measure (o for a = 1,5, 20,100, upper tail dependence coefficient and tail
order Ay and K7, upper semicorrelation of the normal scores p;, and upper tail-weighted dependence measure
ou with weighting function a(u) = u® (Krupskii and Joe (2015)) for various bivariate parametric copula families
with Kendall’s 7 equal to 0.3 (above) and 0.7 (below). An “r” in front of the name of the copula family indicates
reflection of the copula. For the BB1 copula and its reflection, the parameters are chosen so that the copula has
the same upper tail dependence coefficient as Kendall’s 7. The numbers in brackets are the asymptotic standard
errors of the associated rank-based estimator éa for a sample of size 500.

the lower and upper measures g;, and gy are defined as

or = 01(C) = Cor [a(1 = U1/p),a(l — Ua/p)|Ur < p,Us < p|; (20)
ov = ou(C) = Cor[a(l — (1= U1)/p),a(l = (1 = U2)/p)|U1 > 1 —p,U>>1—p], (21)

respectively, where a : [0,1] — [0,00) is a continuous increasing weight function with
a(0) = 0, and 0 < p < 0.5 is the truncation level. The authors considered the class of
weight functions a(u) = u* with k& > 1, for its ease in numerical computation relative to
the Gaussian inverse cdf and its property of being a tail-weighted measure.

For the objective of distinguishing between copulas with various strengths of depen-
dence in the joint tail, the authors compared the magnitude of or,(C1; k) — or(Co; k) for
various copulas Cy with tail dependence and Cy without, against the standard error of
the empirical counterpart of this difference (obtained by replacing the U’s in (20) and
(21) by the scaled ranks R’s, and the correlation by sample correlation), for several val-
ues of k. Based on empirical studies, they found that a value of k = 6 generally yields
the largest values of o (Cy;k) — o1 (Ca; k) relative to the standard errors. We carried
out the same sets of simulations for (,, and observe that comparable performance can
be obtained when « is between 15 and 20. When a < 15, (, is rather insensitive to the
tail behaviour of different copulas relative to the standard error of the difference; when
a > 20, the standard error increases at a faster rate than the difference (,(C1) — (o (C2).
We also note that both the magnitude of the difference and the standard errors are
smaller than those using the tail-weighted dependence measure oy,.
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Kendall’s 7 = —0.3

Copula
Measure Gaussian Frank ty ts
(1 —.40 (.04) —.42 (.04) —-.26 (.05) —.37(.05)
(s —.23 (.02) —.24 (.03) —.10 (.04) —.21(.03)
G20 —.09 (.01) —.08 (.02) .07 (.06) —.06 (.02)
G100 —.02 (<.01) —.02(.01) .13 (.11) —.004 (.04)
AU .00 .00 15 .007
KU 3.66 2.00 1.00 1.00
o —.13 —-.07 57 .06
oU —.09 —.04 .63 .10
Kendall’s 7 = —0.7
Copula
Measure Gaussian Frank t1 ts
(1 —.87 (.02) —.90 (.01) —.77 (.04) —.85 (.02)
Cs —41(.01)  —.42(.01) —.36(.02) —.40 (.01)
G20 —11(<.01) -.11(<.01) -.07(.03) —.10 (< .01)
C100 —.02 (<.01) —-.02(<.01) .01(.05) —.02(<.01)
AU .00 .00 .03 O(107?)
Ky 18.35 2.00 1.00 1.00
ox —.20 —.08 .59 0(107%)
ouU —.04 —.01 .63 .08

Table 2. Values of the dependence measure (, for a = 1,5,20, 100, upper tail dependence coefficient and tail
order Ay and Ky, upper semicorrelation of the normal scores p}, and upper tail-weighted dependence measure oy
with weighting function a(u) = u® (Krupskii and Joe (2015)) for various bivariate parametric copula families with
Kendall’s 7 equal to —0.3 and —0.7. The numbers in brackets are the asymptotic standard errors of the associated
rank-based estimator CAOC for a sample of size 500.

4. Tail expansion of {, and estimation of the tail dependence coefficient

The property that {, — Ay as a@ — oo makes it relevant to consider the estimation of
Ay based on values of fa for several different . Based on the tail expansion of (, for
large «, we propose a method to estimate Ay in this section. Unless specified, we focus
on the upper tail behaviour in the following because Ay is the same as the upper tail
dependence coeflicient of the reflected copula.

4.1. Tail expansion of C(1 —u,1 — u) and (,

In this subsection, we derive an asymptotic expansion of (, — A\yy. This expression will be
helpful in devising a method to estimate Ay using our proposed tail-weighted dependence
measures.

PROPOSITION 4.1  Suppose the bivariate copula C' is twice continuously differentiable
and the upper tail is well-behaved in that C(1 — u,1 — u) has a tail expansion to the
second order that is valid upon differentiation. Then it holds that

(a+1)" e — ¢y) + a1 DeD () (a~1) 4 o(a~[=DAL)
1+o(1)

(oz — Ay = (22)

as a — oo, where c11 = Cyp(1[1) + Cy1(1]1) = 2 — Ay with Cy; = 9C (u;, u;)/Ou; being
the conditional cdf of C, (i,7) = (1,2) or (2,1); n and & are constants with n being the
upper tail order when C has no upper tail dependence; and £* is a slowly varying function
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at 0.

Proof. For C' with well-behaved upper tail, the survival function admits the following
expansion to the second order:

Cl—u,1—u)=2u—1+0C(1 —u,1—u)=A\gu+ EU(u) +o(u"l(u)), u— 0T,

where n > 1, £* is a constant and ¢(u) is slowly varying at 0. When Ay = 0, this expansion
matches that used for the upper tail order in (18).
With well-behaved upper tails, by differentiating the above with respect to u, one gets

2—Cip(l—ull—u) = Co (1 —ull —u) = \y +&u Y(u) +o(u M (u)), u— 0", (23)

where € = n&*. On the other hand, using integration by parts, we have v, = 1 —
fol u® [C1|2(u|u) + Copp (ulu)] du =: 1 — I,,. Note that

e 1
L= [ [Cuntul) + Contu] du+ [ u® [Cuptul) + Cop(u] au (20

1—e¢

for any ¢ > 0. The first integral in (24) is bounded by M(1 — €)® for some positive
constant M, and can be ignored as o — oco. For the second integral, applying (23) gives

1
| [Cuatudu) + Cop )]

1
= /1 u® [(2—Ay) —€(1 - w)T (1 —u) + o((1 —u)" o1 — u))] du

—€

B 2 _ >\U 1 N 1 (1 _ €)a+1
For any ¢ € (0,7), the integral in (25) can be expressed as
1 —log(1—e)
/ u(1 —w)" (1 —u)du = / et _emmy=ly(1 — e ) da
1—e 0

00 1—e® n—1
= [T rn-sasy (F) T 0-0)
0 X

(a+1)" 92901 — ) . 1{z < —log(1 — €)} dz
= Elg(Xa)],

_2\11
where g(z) = (1=52)" T(-0)(a+1)~-ae(1-e) - Ua < —log(1-6)}, fr(z:7,5)
is the density function of a gamma random variable with shape parameter v and rate
parameter 3, and X, ~ Gamma(n — d,« + 1) (in the shape-rate parametrization). Note

that Xo — (7 — &) (a+ 1)1 % 0 as a — oo, and thus g(X,) — ¢ (n=08)(a+1)71) 20
A1
by the continuous mapping theorem. Since (1%)77 <1 and 2°(1 —e™®) = 0 as

x — 07, g(X,) is integrable with respect to the Gamma(n — 6, « + 1) density and thus

15



November 16, 2017

Journal of Nonparametric Statistics twdm-zeta

we have the convergence in mean

E[g(Xa)] = g((n = 8)(a+1)7") = 0.

Observe that, for all a > a* with (n — §)(a* + 1)~ = —log(1 — e),

g(n=8)a+1)™) = T-8)a+1) "D [1+0 ((a+1)7)]¢ (1 - e—<n—6>/<a+1>)

= T(n—8)(a+1)~09y (1 - e*<"*5>/<a+1>) +o ((a + 1)*@*5)) .

Since € and § are arbitrarily small positive numbers, we have that I, = (a+1)71(2 —
Av) — a D ()0 (a™t) + o (o= (™) for « large, where ¢* is another slowly varying
function at 0. With ¢11 = 2 — Ay, we have

_en—(ent+a)ly e — (enn + a)la](1 + 1a)

o« — Ay =2 - =y = =
C )‘U +()é( Vo ) )\U 1 _Ia 1+0(1) s

simplifying to (22) after plugging in the asymptotic expansion of 1. [ ]

The asymptotic expansion (22) provides guidance on how quickly ¢, converges to Ay
as a — oo. There are three possibilities:

(1) When 1 < 7 < 2, the middle term in the numerator of (22) dominates and the rate
is a~ (=1, this is the case for all bivariate copulas with intermediate tail dependence
and some with tail dependence. Whether (, is increasing or decreasing to the limit
as « increases, for « large, depends on the sign of that term.

(2) When 7 > 2, the first term dominates and the rate is a~!; this is the case for some
copulas with tail dependence. This also implies (, is increasing to the limit as «
increases, for large «, as c¢11 > 1 and ¢11 — c%l < 0. It should also be noted that, for
copulas with negative quadrant dependence and zero tail dependence (such as the
Gaussian copula with negative parameter), typically n > 2 and (, increases to the
limit of zero as « increases.

(3) When n = 2, the first two terms have the same order a~?; this is the case for copulas
with tail quadrant independence and some with tail dependence. The trend of ¢, for
« large depends on the magnitudes and signs of the two terms.

We illustrate with several examples below for the parametric copula families in Section

(1) Gaussian copula (intermediate tail dependent). The (lower) tail is C'(u,u;p) ~
w? (4P) (—logu)=P/(+P) (Hua and Joe (2011)), with n = 2/(1 + p), {(u) =
(—logu)=?/(4P) and A, = Ay = 0. Hence, ¢, is decreasing for large a if p > 0,
and increasing if p < 0.

(2) Frank copula (tail quadrant independent). The (lower) tail expansion is C(u, u;6) ~
(1 — e )1, with np = 2, \p, = A\p = 0, £ = 20(1 —e 9! and ¢ = 1. Note
that c11 — ¢y + & =2[0(1 — e ?)~1 — 1]; this is greater than zero if § > 0 (positive
quadrant dependence) and less than zero if § < 0 (negative quadrant dependence).
Hence, (, is decreasing for large « if # > 0, and increasing if 8 < 0.

(3) Upper tail of Gumbel copula (tail dependent) with parameter § > 1. The tail ex-
pansion is C(1 — u,1 — u;0) = (2 — 2/%)u + 2101219 — 1)u? 4+ O(u?), so that
My =2—2Y0 5 =2 ¢=2/929 _ 1) and ¢ = 1. Note that ¢;; — ¢, +& = 0
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indicating quick convergence — (, is in fact a constant as this is an extreme value
copula.

Lower tail of Gumbel copula (intermediate tail dependent). The copula can be sim-
plified to C(u,u;0) = u21/9, so that Ay =0, n =& =2Y% and ¢ = 1. Since £ > 0, ¢,
is decreasing for large o (which agrees with intuition since (, > 0 for copulas with
non-negative dependence).

Student’s t copula (tail dependent). It is easier to work with the conditional cdf of
the t distribution. Let Fis be the bivariate t cdf with correlation parameter p and v
degrees of freedom, and let T}, and ¢, be the univariate t cdf and pdf with v degrees
of freedom. Let v = /(1 — p)(v +1)/(1 + p). The tail expansion of the conditional
distribution Fjy; as @ — —o0 is

By (z|z; p,v) = Ty x\/((ll_;pp))((:j;g) =Ty |— W (1 + %) —1/2]
= Ty1(=7) + 55t (=) + Oa ™). (26)

Note that Ay = A, = 2 lim Fy(x|r) = 2T, 41(—7), so that 2Fy) (x|z;p,v) ~
T——00

A+ vyr2t,41(—7) as ¥ — —oo. To convert (26) to copula scale, let x = T, (u)
with u — 07 so that

o ol +1)/2] 4y
T(v/2)y/mv (27)

(see Nikoloulopoulos, Joe, and Li (2009)). Therefore n = 1+ 2/v and (4, — A =
O(a~1) 4+ O(a=?/") as a — oo. The convergence rate is o~ when 0 < v < 2, and
a~2/V for v > 2. For fixed p, the tail dependence is stronger with smaller v, and a
smaller v leads to quicker convergence of (, to A\r, (or A\p).

Upper tail of BBl copula (tail dependent) with C(uj,u2;6,0) =
<1+[(u1_9—1)5+(u2_9—1)5] ) ,for # > 0and § > 1. It has \yy = 2 — 2/9,

c11 = 21/ and the tail expansion is
— 1
Cl—u,1—u;6,6)=(2—2")u+ S0+ 1)(2%/9 — 2Y942 + O(u?),

so that n = 2, € = (041)(22/° —21/%) > 0 and £ = 1. Both the first and second terms

in (22) have order a~'; the combined coefficient is 6(22/® — 21/9) > 0 and thus ¢, is

decreasing to the limit as « (large) increases.

Lower tail of BB1 copula (tail dependent). The tail expansion at u — 01 is

Clu,u;0,8) = 27100y 4 9=1/(09)g=1(1 — 9=1/0)y0+1 L O(u?*1), so that A\ =

271/0) =0 +1, 6 =2V +1)p71(1 — 27/9) and £ = 1. There are three

situations:

(a) If 0 < 6 < 1 (weaker dependence), the dominating term of (, — Ay has order
a~? and the coefficient 2=/(9) (9 +1)0=1(1 — 271/9)T(§ + 1) > 0, and hence ¢,
is decreasing for large .

(b) If # = 1, the dominating term has order a~!, with coefficient c1; — ¢, + & =

(2—271/0) — (2 — 271/9)% 4 91-1/8(1 — 2-1/%) — (2 —3.271/3)(271/9 — 1) whose
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sign depends on 4.
(c) If # > 1 (stronger dependence), the dominating term also has order a~! but the
coefficient c17 — c%; is always negative, meaning that ¢, is increasing for large a.

The tail properties of the above copula families are summarized in Table 3.

Copula (tail) Parameter A n l(u) asu — 0T Order
Gaussian (either) | —1<p<1 0 ﬁ (—logu) T+ 04_(1:7 )
Frank (either) all 0 0 2 1 at
Gumbel (upper) all 0 2 —21/0 2 1 T
Gumbel (lower) all 6 0 21/0 1 o~ @771
. 0<v<2 « -1
t (either) o Z S M () 142 ok aoj o/
BBI1 (upper) all (6,0) 2 —21/0 2 1 a!
0<f<1 a=f
BB1 (lower) 6=1 2-1/(99) 1+6 1 a™t
0>1 at

* Here y = /(1= p) (v + 1)/(1 4 p).

** The slowly varying function of the t copula is a function of v and p but not u; this can be
seen from (26) and (27).

T The value of (, is a constant for the upper tail of the Gumbel copula since it is an extreme
value copula.

Table 3. Summary of the tail properties of several commonly used bivariate parametric copula families. The
column “Order” gives the asymptotic order of convergence of (. to the tail dependence coefficient A as a — oo.

4.2. Estimation of the tail dependence coefficient

From the results on the rate of convergence of (, to Ay, we propose a method to estimate
the tail dependence coefficient based on a regression using the sequence of (, for various
large values of a.

There is no direct way of estimating the tail dependence coefficient of a general bivari-
ate copula as it is defined as a limit. Dobri¢ and Schmid (2005) attempt an empirical
counterpart of (1) with small values of u, a weighted least squares estimate and another
one based on a mixture of the independence and comonotonicity copulas. Frahm, Junker,
and Schmidt (2005) discuss the challenges of estimating the tail dependence coefficient
and have estimates based on various assumptions on the copula models.

We consider the following regression equations in our proposed approach, with €1, €
and €3 being the error terms:

(M1) (o = by + ba/a + €1, valid for (22) with i = 2. The estimated Ay is given by by.

(M2) CAa =b + bg/oab3 + €2, an extension of M1 for other values of 7. The estimated Ay
is also given by by.

(M3) (o = (2—=b)+ (b—b%)/(a+1—b) +e3, which is obtained from (22) for 5 > 2, using
the asymptotic relationship I, ~ ¢11(a + 1)1 with b = ¢17, where I, is given in
(24). The estimated Ay is given by 2 — b in this case.

For a fixed a, fa is consistent for (, as the sample size increases to infinity. If the copula
is such that (22) holds with 7 > 2, then regression M3 leads to a consistent estimator of
Ay when the grid of a values increases appropriately as the sample size increases. When
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n < 2, a similar conclusion holds for regressions M1 and M2. However, the asymptotic
consistency of the estimator may not be relevant in practice, when the extent of tail
dependence must be estimated from finite (and usually small) samples. This is because
the variability of C, (and therefore, the variability of the estimated Ay) increases as «
increases for a given sample size. Therefore, we are more interested in the finite-sample
behavior of the estimator. A

The grid of a values for which the corresponding (,’s are computed can depend on
the sample size, with larger values of a when the sample size is larger. A preliminary
investigation based on the bivariate parametric copula families in Table 3 suggests that
a range of a values between 10 and 20 yields better performance in terms of the root
mean square error (RMSE) of the estimate for small to moderate sample sizes (in the
hundreds to thousands); larger values of « result in a larger variance while smaller values
of a result in a larger bias. With 10 < a < 20, the rate of o in (22) might not be accurate
but the sign of £ is generally correct.

Empirically, regression M3 works best when the copula has n > 2; for copulas with
positive dependence, this only happens when the copula has tail dependence. M1 works
better for tail dependent copulas (A > 0) when 1 = 2, and also in some cases with n < 2.
Meanwhile, M2 works better for copulas with intermediate tail dependence (which has
1 <n < 2and A\y = 0) or tail quadrant independence (which has n = 2 and Ay = 0);
in the latter case, M2 generally yields estimates that are closer to zero than for M1 and
the reduction in RMSE is substantial.

A further check on the theoretical asymptotic variance using expressions in Section
3.3 suggests that the rate of increase in the asymptotic variance of (, as a function
of o depends on the strength of tail dependence of the copula; Figure 1 shows several
examples, each with Kendall’s 7 of the copula equal to 0.5. When the copula is tail
dependent, as is the case for ts, the asymptotic variance grows at a rate of around «;
this can be seen by the fitted line that has an intercept of around zero. For copulas with
intermediate tail dependence or tail quadrant independence, the asymptotic variance
grows at a rate of less than «.. This observation prompts us to impose a further refinement
to the regression procedure for the estimation of A\y; we suggest using weighted least
squares (WLS) with weight a when there is evidence of tail dependence, and weight o!/2
when the dependence in the joint upper tail is weak?. With regression M2 on copulas
with intermediate tail dependence or tail quadrant independence, we observe a reduction
of the RMSE using WLS with weight /2 rather than a. To check if there may be tail
dependence, one empirical approach is to compare the sample semicorrelation to the one
corresponding to a Gaussian copula with the same overall dependence (correlation of the
normal scores). If the sample semicorrelation is much higher, a linear weighting should
be used.

To summarize, we estimate the upper tail dependence coefficient using the following
diagnostic procedure:

(1) Compute (o for a grid of a values in [10, 20].

(2) If (, is increasing in o, in the sense that an ordinary least squares (OLS) regression
of Ca against 1/« has negative slope, use regression M3 (which is suitable when (,
is increasing to the limit) with WLS and weight «.

(3) If éa is decreasing in «, there are two possibilities. First obtain the results based on
regression M2 with WLS and weight «!/2. Also obtain the sample upper semicor-

2We observe that the rate of growth of the asymptotic variance is typically between o and ol in the range of
10 < o < 20 for copulas without tail dependence.
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Figure 1. Plots of asymptotic variance of éa against « for the upper tails of three parametric copula families with
Kendall’s 7 equal to 0.5: Frank, reflected Gumbel and t3. The dashed lines are linear extrapolations based on the
computed asymptotic variances (in circles).

relation pAfV of the normal scores, and the semicorrelation pj(, of a Gaussian copula

(equation (2.59) of Joe (2014)) with dependence parameter being the sample corre-

lation of the normal scores.

(a) If the estimated curvature parameter b3 in regression M2 is larger than 1 — € for
some small threshold ¢, or pA} — p} > ~ for some cutoff v, then use regression
M1 with WLS and weight «.

(b) Otherwise, use the result already obtained based on regression M2.

For easier understanding, the diagnostic procedure is also given in the form of a flowchart
in Figure 2.

The threshold parameter e is usually small; we note little difference in the results with
various choices of ¢ and will adopt € = 0.2 in the following. The cutoff v reflects the
variability of ﬁ} in the Gaussian case and hence depends on both the sample size and
the strength of overall dependence. We note that the standard error of ﬁ% for a Gaussian
copula with correlation parameter 0.6 is around 0.07 for a sample size of 600 (Joe (2014)).
We experiment with various values of 7 based on copulas with Kendall’s 7 = 0.5, and
choose v = 0.04 for a sample size of n = 500; those for other sample sizes can be obtained
using the square root rule, e.g., quadrupling the sample size reduces v by one half.

A simulation study is conducted to investigate the finite-sample performance of the
estimator. For each copula family, we use one with Kendall’s 7 equal to 0.5 and sample
sizes 500 and 2000. Two BB1 copulas with respective dependence parameter 6 = 1.5
and 0.5 are considered, as they have different rates of convergence. The RMSE of the
estimator based on the above procedure is computed using 1000 replications for each
scenario; we also record the proportion of instances each regression equation is used. The
simulation results are shown in Table 4.

For comparison, we consider an estimator based on the following regressions using the
empirical survival copula Cp, (1 —u,1 —u) =n~! Yo W (R >1—u,Rip >1—u):

(DS1) Cn(1 —u,1 —u)/u = by + bau, with estimator for Ay being b;.
(DS2) Cp(l —u,1 —u)/u = by + bou’, with estimator for Ay being by .

These relationships are modified from the third estimator of Dobri¢ and Schmid (2005)
that assumes a mixture of the independence and comonotonicity copulas:

C(1—u,1—u) = pu+ (1 = \p)u?,
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Calculate (, for
a € [10,20]
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Yes Use M1 with
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o]

Use M2 with
WLS weight o!/2

Figure 2. A flowchart of the proposed diagnostic procedure for the estimation of Ay based on a sequence of values
of (a.

where we relax the restriction on the coefficients. Empirical studies (not shown) suggest
that this modified empirical copula approach has better finite-sample performance than
the estimator by Dobri¢ and Schmid (2005), and therefore we report the results for the
former instead. Similar to the estimator based on fa, for a diagnostic procedure, we select
the regression DS1 if the estimated curvature parameter bg in DS2 is larger than 1 —¢, or
if the observed upper semicorrelation is larger than the Gaussian semicorrelation with the
same overall dependence (as the correlation of normal scores) by at least . Otherwise,
the estimator from regression DS2 is chosen. We conduct OLS with v = 0.1,0.15,...,0.5
and the same values of € and  as those for fa; a value of u as high as 0.5 is used because
it is hard to observe the trend for small values of u, due to the large variability of C,, near
the corner (Figure 3). We emphasize that this modified method only acts as a benchmark
for us to observe the typical values of the RMSEs, for currently available nonparametric
estimation methods for the tail dependence coefficient.

From Table 4, the RMSE’s for the éa approach are comparable to those based on

21



November 16, 2017

Journal of Nonparametric Statistics twdm-zeta

the empirical copula (i.e., using regressions DS1 and DS2); the former generally does
better when there is tail dependence (with Gumbel the only exception), while the latter
may have better performance when the dependence in the joint upper tail is weak. The
approach based on Ca appears to be a better diagnostic when Ca is increasing in « for
a > 10 (that is, when regression M3 is chosen), and its RMSE is not much worse when the
approach based on the empirical copula has smaller RMSE. Figure 3 has a comparison
of plots of (, against 1 /a, versus those of Cp,(1 — u,1 — u)/u against u. We observe
that the former plots are generally smoother than the latter ones; this contributes to
a smaller variance of the estimator in some cases. Regardless of the approach used, we
note a higher RMSE for the Gaussian, reflected Gumbel and the t5 copulas; these are
the more difficult cases as (, converges very slowly to Ay;. For the Gaussian copula, even
though the regression M2 with WLS weighting a/2 may be the best choice based on
RMSE, most instances based on the diagnostic approach fall into regression M1 as the
plot of (, against 1/« is not showing sufficient curvature.
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Figure 3. Plots of (o against 1/« (top row) and Cp(1 — u, 1 — u)/u against u (bottom row) for simulated data
sets of size 500 from the Frank, reflected Gumbel and t; copulas.

Finally, we would like to point out the following remarks:

e The above procedure serves as a guideline only. For practical applications, it may be
relevant to incorporate the nature of the data being studied. For example, if there are
reasons to believe there exists tail dependence, then one may choose to use regressions
M1 or M3 with linear weighting depending on the trend of {, as a function of a.
Because of sampling variability, the semicorrelation can be smaller than the Gaussian
one even if the data come from a copula with tail dependence.

e Although we focused on copulas with positive quadrant dependence in the above nu-
merical study, we also checked with those with mild negative quadrant dependence and
found that the procedures are still applicable. Because our objective is to estimate the
joint upper or lower tail dependence coefficient, copulas with strong negative quadrant
dependence are less relevant here.
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Copula | Gaussian  Frank  Gumbel rGumbel t1
Param. 0.71 5.74 2 2 0.71
AU 0 0 0.59 0 0.62
n* 1.17 2 2 1.41 3
Rate** 0.17 1 1f 0.41 1
n ‘ RMSE based on estimation using ¢,
500 .330 .078 .068 .199 .066
2000 .342 .025 .042 .199 .033
n ‘ RMSE based on estimation using empirical copula
500 .326 .098 .057 197 .071
2000 .302 .020 .028 .139 .048

n ‘ Proportion of method used (using (o) (M1/M2/M3 in %)
500 72/26/2  5/95/0 53/0/47 46/54/0 37/0/63
2000 91/9/0  0/100/0 51/0/49 57/43/0 19/0/81

Copula ts BB1 rBB1 BB1 rBB1
Param. 0.71 (1.5,1.14) (1.5,1.14) (0.5,1.6)  (0.5,1.6)
AU 0.35 0.17 0.67 0.46 0.42
n* 1.4 2 2.5 2 1.5
Rate™* 0.4 1 1 1 0.5
n ‘ RMSE based on estimation using éa
500 133 .107 .054 .108 A11
2000 .093 .059 .025 .045 .064
n ‘ RMSE based on estimation using empirical copula
500 163 139 .053 .156 144
2000 118 133 .030 .040 .071

n ‘ Proportion of method used (using (,) (M1/M2/M3 in %)
500 | 84/4/12  64/36/1  34/0/66  71/3/26  75/2/22
2000 | 99/0/1  79/21/0  16/0/84  88/0/12  93/0/7

* Value of 7 in (22); equal to xy for copulas with no tail dependence.

** True rate of convergence, i.e., the negative of the dominating power in (22).

t The dominating term for Gumbel copula has power a~ !, but (, = Ay for any « as it is an
extreme value copula.

Table 4. Results for the estimation of Ay based on regressions using (a) éa and (b) the empirical survival copula,
on selected bivariate copulas with Kendall’s 7 equal to 0.5 and sample sizes n = 500 and 2000. In each case,
1000 replications are conducted. The root mean square errors (RMSE’s) are reported and the smaller value in
each comparison (between the two approaches) is shown in boldface. The proportion of the regression equations
(methods) used (based on (fa) is also displayed for each copula. These proportions may not sum to 100 due to
rounding.

5. Data example

In this section, we use a data example to illustrate the estimation of tail dependence
coefficients using our tail-weighted dependence measure, and the insight on tail inference
using different parametric copula families. The data set consists of 1,500 bivariate obser-
vations of insurance loss and the associated allocated loss adjustment expense (ALAE)
(Frees and Valdez (1998)). There are 34 censored observations whose claims reach the
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policy limit, and are dropped in our subsequent illustration. In comparison of parameter
estimates with Section 7.4 of Joe (2014), these 34 observations make almost no difference
in the best fitting bivariate copula families and their maximum likelihood estimates.

A scatterplot of the normal scores (with correlation py = 0.455) for the remaining
1,466 observations (Figure 4) shows a more peaked joint upper tail, indicating possible
upper tail dependence. This is also supported by an upper semicorrelation of 0.415, much
higher than the semicorrelation of 0.235 for a Gaussian copula with correlation parameter
0.455.

For each tail, we compute éa for a = 10,11,...,20 and plot these values against
1/a in Figure 5. Both plots suggest that (, decreases with «, and hence regression
M3 in Section 4.2 (i.e., the regression (4 = (2 — b) + (b — b?)/( + 1 — b)) is not to
be used. The estimated curvature parameters for regression M2 are 1.000 (reaching the
upper bound) and 0.977 for the upper and lower tails, respectively. We thus use the
result from regression M1, which assumes a linear rate of convergence. The estimated
tail dependence coefficients are given by Ay = 0.331 and Ay, = 0.081. To get some idea
on the variability of these estimates, we conduct a delete-k jackknife (see, for example,
Shao and Wu (1989) for its use on potentially non-smooth estimators). Here we choose
k = 5, and note that the results are similar for other values of k£ > 1 attempted. Using
the jackknife variability estimates, we compute the 95% confidence intervals of the tail
dependence coefficient estimates as (0.247,0.416) and (0.003,0.159) for the upper and
lower tails, respectively. This seems to support the initial diagnostics that there is upper
tail dependence. For comparison, we also compute the confidence intervals (based on the
same jackknife samples) for Kendall’s 7 (length 0.061), {1 (length 0.071) and (2 (length
0.129), shown in Table 5. It is clear that the estimation of the tail dependence coefficient
is more difficult as it has the longest confidence interval.

For dependence modelling, we consider several parametric copula families with tail
asymmetry skewed to the joint upper tail. The three copulas that yield the smallest
values of the Akaike information criterion (AIC) are 1-parameter Gumbel, 1-parameter
Galambos, and the reflection of the 2-parameter Archimedean copula family based on
an integral of the Mittag-Leffler Laplace transform (see Section 4.31.1 of Joe (2014)).
The latter is C(u,v;0,0) = u+v — 14+~ 1 —u) + =1 (1 —v)), where ¥(s;0,d) =
1— Fp(s'/9/(1+5%):6,0~1) and Fp(-;a,b) is the cdf of the Beta(a, b) random variable.
The 2-parameter BB1 and BB6 copula families were also fitted but their maximum
likelihood estimates were at the boundary corresponding to a Gumbel copula.

With a 2-parameter Pareto marginal distribution for loss and a 3-parameter Burr
marginal distribution for ALAE, the maximum likelihood estimates of the copula pa-
rameters for the three families are given in Table 5, as well as model-based estimated
values of 7, (1, (20 and M.

Parametric copula AIC  Cop. param.(s) T (1 C20 AU
Galambos 8541.7 0.701 0.301 0.372 0.372 0.372
Gumbel 8543.0 1.427 0.299 0.375 0.375 0.375
imitlefAr 8541.0 (0.385,1.386) 0.303 0.377 0.351 0.273
Non-parametric 95% CI (lower) — — 0.278 0.336 0.282 0.247
Non-parametric 95% CI (upper) — — 0.339 0.407 0.411 0.416

Table 5. Non-parametric and model-based estimates of dependence measures. The model-based estimates (with
tildes) of dependence measures are calculated for the three best-fitting copula families; imitlefAr refers to the
reflected Archimedean copula with integrated Mittag-Leffler Laplace transform. The corresponding 95% non-
parametric confidence intervals are based on the same delete-5 jackknife samples.
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This analysis agrees with Section 7.1.2 of Joe (2014) that for different fitted parametric
copula families with similar AIC values, model-based estimates of central dependence
measures are very close, model-based estimates of tail-weighted measures of dependence
are not as close, and model-based estimates of tail dependence coefficients can be much
farther apart. This is also shown in the 95% confidence intervals of the non-parametric
estimates of the Ay, (o0 and 7 in Table 5. It is not surprising that more observations are
needed to estimate the tail-based quantities well.

Unless the sample size is very large, it seems the tail-weighted dependence measures,
such as the ones in Krupskii and Joe (2015) and in this paper, are more informative. If
there is tail dependence, then parametric copula families with tail dependence may yield
smaller AIC values, but this does not mean that one can get good model-based estimates
of the tail dependence coefficients.

ALAE
0
|

-2

-3

Figure 4. Pairwise scatterplots of the normal scores of the insurance data set
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Figure 5. Plots of 5& against 1/« for the two tails of the insurance data set
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6. Conclusion

In this paper, we propose tail-weighted dependence measures that are motivated from
the extreme value theory where a direct empirical counterpart of the tail dependence
coefficient exists. The proposed measures are functions of ~,, an integral along the di-
agonal of the copula. One can control the weighting at different portions of the copula
by adjusting the value of «, obtaining a central dependence measure when o = 1 and a
tail-weighted dependence measure when « is far away from 1. In particular, the desirable
property that (, converges to the upper tail dependence coefficient \y as a — oo allows
us to devise a method to estimate Ay based on the observed trajectory of (, at various
values of a.

The proposed measures can be used to distinguish between copulas with various
strengths of dependence in the joint tail, and are useful as diagnostic measures for
modelling where inference of the tail is of interest. There are two advantages over the
tail-weighted dependence measure g in Krupskii and Joe (2015):

e The probabilistic version of (, involves a one-dimensional integral and is simpler than
that of g, which involves a conditional correlation and a two-dimensional integral. It
is thus easier to analyze the distributional properties of the empirical estimator of (.

e Because the upper tail dependence coefficient Ay can be obtained as a limit of (, as
a — 00, we can extrapolate estimates of (, for several a to get an estimate of \y.
There is no such relationship for the measure p.

Through a simulation study, we observe that the estimation of Ay using fa may have
better performance than the one based on the empirical copula when there is tail de-
pendence. The data example illustrates the potential uses of the proposed tail-weighted
dependence measure; they are especially relevant when tail inference is of interest, such
as estimating the value-at-risk or joint exceedance probabilities.
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Appendix A. Asymptotic variance of (4

The asymptotic variance in (13) is usually a 2-dimensional integral that can be evaluated
numerically. Note that

Var(X) = E(X?)
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_ Z11/01 /OlE {GC (ul/a7 1) G¢ (Ul/a7 1)} dudv + 111/01 /01E {Gc (Luua) Go (1’1}1/(1)} dudv
/01 /01 E[Ge (u!/*,u*) Go (01, 01/ | dudv + % /01 /01 E[Ge (u*,1) Ge (1,07/)] dudv
_ /01 /01 o {GC (ul/a, 1) Ge (vl/a’vl/a)} dudv — /01 /OlE {Gc (Lul/a) Ge (Ul/a7v1/a>:| dudo.

(A1)

+

Using (15), we have

E [GC (ul, U2) Ge <U3, u4)]
=E [Bc (u1, u2)Be (us, ua)] — Cop (uz|ur)E [Be (ur, 1)Be(us, ua)] — Crjp(ui|uz)E [Be (1, uz)Be (us, ua)]

— Cop1 (ug|uz)E B (ur, uz)Bo(us, 1)] + Copr (ualur ) O (ualusz)E [Bo (ur, 1)Be(us, 1)]
+ Chj2(u1lug)Cop (ualus)E [Bo (1, ug)Bo (us, 1)] — Crja(us|ua)E Be(ur, uz)Bo (1, uq))
+ Cop1 (u2lur)Chja(uslug)E [Bo(ur, 1)Bo (1, ug)] 4 Crja(ut[uz)Crya(uslug) E B (1, u2)Be (1, ug)] -
(A2)
Together with (16), the integrals can be evaluated once the expressions of C, Cyj2 and Cy; are

given.
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