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Abstract: Gamma frailty survival models have been extensively used for the anal-

ysis of such multivariate failure time data as clustered failure times and recurrent

events. Estimation and inference procedures in these models often center on the

nonparametric maximum likelihood method and its numerical implementation via

the EM algorithm. Despite its success in dealing with incomplete data problems,

the algorithm may not fare well in high-dimensional situations. To address this

problem, we propose a class of profile MM algorithms with good convergence prop-

erties. As a key step in constructing minorizing functions, the high-dimensional

objective function is decomposed as a sum of separable low-dimensional functions.

This allows the algorithm to bypass the difficulty of inverting large matrix and facil-

itates its pertinent use in high-dimensional problems. Simulation studies show that

the proposed algorithms perform well in various situations and converge reliably

with practical sample sizes. The method is illustrated using data from a colorectal

cancer study.

Key words and phrases: MM algorithm, nonparametric maximum likelihood, sur-

vival data.

1. Introduction

In many biomedical studies involving failure data, there may be more than

one failure time on each study subject or study subjects having univariate failure

times may be grouped in a manner that leads to dependencies within groups

(Kalbfleisch and Prentice (2002)). This gives rise to multivariate failure time

data or clustered failure time data. In such contexts, it is of interest to assess the

strength and nature of dependencies among multiple failure times. Shared frailty

or random effect models have been commonly used to account for the dependence

of correlated failure times (Clayton (1978); Clayton and Cuzick (1985); Oakes

(1989); Zeng, Chen and Ibrahim (2009)). In particular, the proportional hazards

model (Cox (1972)) with gamma frailty was used to incorporate covariates by

Nielsen et al. (1992), Klein (1992), and Andersen et al. (1997). Shared frailty or
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random-effects have also been used to jointly model both recurrent events and

the terminal event (Liu, Wolfe and Huang (2004); Zeng and Lin (2007); Zeng and

Lin (2009) and Zeng, Lin and Lin (2008)). The computation involved in frailty

models with survival data is usually intensive since the unknown parameters

characterizing the nonparametric baseline cumulative hazard function is of the

same magnitude as the sample size and hence large. The existing approaches rely

on the EM algorithms which uses Newton’s method and involves matrix inversion

and may not perform well in such settings.

As a generalization of the EM algorithm (Dempster, Laird and Rubin (1977)),

the minorization–maximization (MM) algorithm (Becker, Yang and Lange (1997);

Lange, Hunter and Yang (2000)) increases the likelihood at each iteration and

reliably converges to the maximum from well-chosen initial values (Hunter and

Lange (2004)). The MM principle is an important and useful tool for optimiza-

tion problems and has a broad range of applications in statistics because of its

conceptual simplicity, ease of implementation and numerical stability. The MM

principle has been applied in quantile regressions (Hunter and Lange (2000)), the

Bradley–Terry model (Hunter (2004)), variable selection (Hunter and Li (2005);

Yen (2011)), constrained estimation (Mkhadri, N’Guessan and Hafidi (2010)),

sparse logistic PCA (Lee and Huang (2013)), distance majorization (Chi, Zhou

and Lange (2014)), and the generalized heron problem (Chi and Lange (2014)).

For a more detailed review, we refer to a recent discussion paper (Lange, Chi

and Zhou (2014)). In this paper, we propose a class of profile MM algorithms

for gamma frailty models with survival data. As a key step in constructing mi-

norizing functions, the high-dimensional objective function is decomposed into

separable low-dimensional functions. This allows the algorithms to bypass the

difficulty of inverting large matrix and facilitate their pertinent use in high-

dimensional situations. Furthermore, as pointed out by a referee, the decom-

position meshes well with the regularized estimation in sparse high-dimensional

models, as demonstrated in our numerical studies in Section 5.

The rest of the paper is organized as follows. In Section 2, we introduce

gamma frailty survival models. Section 3 presents three profile MM algorithms.

In Section 4, we establish the convergence properties of these algorithms un-

der mild regularity conditions. Section 5 provides simulation studies to assess

their practical performance. Section 6 illustrates the method using data from a

colorectal cancer study. Some concluding remarks and discussions are given in

Section 7.
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2. Gamma Frailty Survival Models

For ease of exposition, we illustrate the proposed method with clustered

failure time data although a parallel approach can be similarly developed for

other types of data. Let Tij , Cij and Xij = (Xij1, . . . , Xijq)
T denote the survival

time, the censoring time, and a vector of covariates, respectively, for the j-th

individual in the i-th cluster, for j = 1, . . . ,Mi, and i = 1, . . . , B. We assume that

the right-censoring is noninformative so that Cij is independent of Tij given Xij .

Data consist of Yobs = {(Yij = Tij ∧ Cij , Iij ,Xij), i = 1, . . . , B, j = 1, . . . ,Mi},
where Yij is the observed time and Iij = I(Tij ≤ Cij) is the censoring indicator.

Conditional on a cluster-specific frailty ωi, the frailty model postulates that the

instantaneous hazard rate function of Tij is

λ(t|Xij , ωi) = lim
∆t→0

P (t ≤ Tij < t+ ∆t|Tij ≥ t,Xij , ωi)

∆t
= λ0(t) exp(XT

ijβ)ωi,

(2.1)

where λ0(t) is an unspecified baseline hazard rate and β is a vector of unknown

regression parameters. We assume that the frailty ω has a gamma distribution

with mean 1, variance θ and density

g(ω) =
ω1/(θ−1) exp (−ω/θ)

Γ (1/θ) θ1/θ
, θ > 0.

Here θ measures the heterogeneity between clusters and a larger θ indicates a

stronger intra-cluster dependence.

The model parameters consist of θ,β, and the nonparametric component

λ0(·). The estimation and inferences in this model center on the nonparametric

maximum likelihood method. For the asymptotic properties of the nonparametric

maximum likelihood estimator, see for example, Murphy (1995), Parner (1998),

and Zeng and Lin (2007).

3. A Class of Profile MM Algorithms

The MM principle provides a powerful tool for developing optimization algo-

rithms. Due to its flexibility in constructing minorizing functions, a high-dimensi-

onal objective function can be decomposed into separable low-dimensional func-

tions which leads to numerically convenient solutions in the maximization step.

This motivates us to develop a class of MM algorithms for gamma frailty survival

models.
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3.1. The minorization–maximization principle

We first briefly review the minorization–maximization (MM) principle. Let

`(α) be the objective function to be maximized, where α denotes the unknown

vector of parameters, α ∈ Θ, and Θ the parameter space. The MM method iter-

ates between the minorization step and the maximization step until convergence.

The minorization step first constructs a surrogate function Q(α|α(t)) such that

Q
(
α|α(t)

)
≤ `(α), ∀ α,α(t) ∈ Θ and Q

(
α(t)|α(t)

)
= `

(
α(t)

)
, (3.1)

where α(t) denotes the current estimate of α̂ in the t-th iteration. Here the

Q(·|α(t)) function always lies under `(·) and is tangent to it at the point α =

α(t). The maximization step then updates α(t) by α(t+1) which maximizes the

surrogate function Q(·|α(t)) instead of `(α). Thus

`
(
α(t+1)

)
≥ Q

(
α(t+1)|α(t)

)
≥ Q

(
α(t)|α(t)

)
= `

(
α(t)

)
.

The MM algorithm increases the objective function at each iteration and pos-

sesses the ascent property driving the target function `(α) uphill.

3.2. A profile MM algorithm

We propose MM algorithms for the nonparametric maximum likelihood es-

timation in the gamma frailty survival models. Under the assumption that the

censoring time is independent of the failure time and the frailty given the covari-

ates, the log likelihood function is

`1(θ,β,Λ0|Yobs) =

B∑
i=1

log

∫ +∞

0
τi(ωi|θ,β,Λ0) dωi,

where

τi(ωi|θ,β,Λ0) =
ω

1/(θ−1)
i exp (−ωi/θ)

Γ (1/θ) θ1/θ

×
Mi∏
j=1

{
λ0(tij)ωi exp

(
XT
ijβ
)}Iij

exp (−Λ0(tij)ωi exp
(
XT
ijβ
)
).

If

vi

(
ωi|θ(k),β(k),Λ

(k)
0

)
=

τi

(
ωi|θ(k),β(k),Λ

(k)
0

)
∫ +∞

0 τi

(
ωi|θ(k),β(k),Λ

(k)
0

)
dωi

.

Then

`1(θ,β,Λ0|Yobs)



PROFILE MM ALGORITHMS FOR GAMMA FRAILTY MODELS 899

=

B∑
i=1

log

∫ +∞

0

vi (ωi|θ(k),β(k),Λ
(k)
0

) τi(ωi|θ,β,Λ0)

vi

(
ωi|θ(k),β(k),Λ

(k)
0

)
 dωi. (3.2)

By Jensen’s inequality,

ϕ

(∫
X
f(x) · g(x) dx

)
≥
∫
X
ϕ
(
f(x)

)
· g(x) dx,

where X is a subset of the real line R, ϕ() is a concave function, f(·) is an

arbitrary real-valued function defined on X and g(·) is a density function de-

fined on X. Noticing that vi(ωi|θ(k),β(k),Λ
(k)
0 ) is a density function, we apply

Jensen’s inequality to (3.2). By calculation, we construct the surrogate function

for `1(θ,β,Λ0|Yobs),

Q1

(
θ,β,Λ0|θ(k),β(k),Λ

(k)
0

)
=Q11

(
θ|θ(k),β(k),Λ

(k)
0

)
+Q12

(
β,Λ0|θ(k),β(k),Λ

(k)
0

)
,

where

Q11

(
θ|θ(k),β(k),Λ

(k)
0

)
=

B∑
i=1

[
1

θ

{
ψ
(
A

(k)
i

)
− log

(
Π

(k)
i

)}
−

A
(k)
i

Π
(k)
i θ
− log Γ

(
1

θ

)
− log(θ)

θ

]
, (3.3)

Q12

(
β,Λ0|θ(k),β(k),Λ

(k)
0

)
=

B∑
i=1

Mi∑
j=1

{
Iij
(
log(λ0(tij)) + XT

ijβ
)
−
A

(k)
i

Π
(k)
i

Λ0(tij) exp(XT
ijβ)

}
, (3.4)

with

A
(k)
i = Di +

1

θ(k)
, Π

(k)
i =

1

θ(k)
+

Mi∑
j=1

Λ
(k)
0 (tij) exp

(
XT
ijβ

(k)
)
.

The surrogate function Q1(θ,β,Λ0|θ(k),β(k),Λ
(k)
0 ) separates the parameters θ

and (β,Λ0) into (3.3) and (3.4), respectively. In the maximization step, updating

θ is straightforward while it is more challenging to update (β,Λ0) due to the

presence of the nonparametric component Λ0. Following Johansen (1983), and

as in Klein (1992), we consider the profile estimation approach and first profile

out Λ0 in Q12(β,Λ0|θ(k),β(k),Λ
(k)
0 ) for any given β. This gives the estimate of

Λ0 given β as

dΛ̂0(tij) =
Iij∑B

r=1

(
A

(k)
r /Π

(k)
r

)∑Mr

s=1 I(trs ≥ tij) exp(XT
rsβ)

. (3.5)

Substituting (3.5) into Q12(β,Λ0|θ(k),β(k),Λ
(k)
0 ) yields the function
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Q13

(
β|θ(k),β(k),Λ

(k)
0

)
=

B∑
i=1

Mi∑
j=1

{
IijX

T
ijβ−Iij log

(
B∑
r=1

A
(k)
r

Π
(k)
r

Mr∑
s=1

I(trs ≥ tij) exp(XT
rsβ)

)}
, (3.6)

which involves only β. It is easy to see that Q13(β|θ(k),β(k),Λ
(k)
0 ) is a concave

function of β and takes the form of the log partial likelihood in the Cox model.

Standard Cox regression programs can be used to solve it. This MM algorithm

much resembles its EM counterpart (Klein (1992)) as they utilize similar minoriz-

ing and profiling steps. We refer to this MM algorithm as MM1. The algorithm

is stated as follows.

Step 1. Let (θ(0),β(0),Λ
(0)
0 ) be initial values of (θ,β,Λ0).

Step 2. Update the estimate of θ via maximizing (3.3). Update the estimate of

β using a standard Cox regression program to maximize (3.6).

Step 3. Using the updated estimate of β, compute the estimate of Λ0(tij) via

(3.5).

Step 4. Iterate steps 2 and 3 until convergence.

3.3. A second profile MM algorithm

The MM1 or its EM counterpart relies on the fact that, after profiling out

Λ0, the resulting function such as (3.6) is concave. When this does not hold,

directly using Newton’s method to maximize Q13(β|θ(k),β(k),Λ
(k)
0 ) is difficult

especially when there exist a large number of covariates. In such situations, it is

of interest to develop MM algorithms that can avoid the concavity requirement

and bypass Newton’s method and matrix inversion. This is where the MM prin-

ciple best exhibits its advantages. To maximize Q13(β|θ(k),β(k),Λ
(k)
0 ), we further

construct minorizing functions to decompose the high-dimensional maximization

into separate low-dimensional ones. We first utilize the supporting hyperplane

inequality

− log(x) ≥ − log(x0)− x− x0

x0
(3.7)

to minorize Q13(β|θ(k),β(k),Λ
(k)
0 ) by the surrogate function

Q14(β|θ(k),β(k),Λ
(k)
0 )

=

B∑
i=1

Mi∑
j=1

IijXT
ijβ −

Iij
∑B

r=1

(
A

(k)
r /Π

(k)
r

)∑Mr

s=1 I(trs ≥ tij) exp(XT
rsβ)∑B

r=1

(
A

(k)
r /Π

(k)
r

)∑Mr

s=1 I(trs ≥ tij) exp(XT
rsβ

(k))

+ c,
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where c is a constant not depending on β. As in Ding, Tian and Yuen (2015), we

next apply Jensen’s inequality to the concave function− exp(·) inQ14(β|θ(k),β(k),

Λ
(k)
0 ) by rewriting

XT
rsβ =

q∑
p=1

δprs
(
δ−1
prsXprs(βp − β(k)

p ) + XT
rsβ

(k)
)
,

where δprs = |Xprs|/
∑q

p=1 |Xprs|. In the end, the minorizing function for Q13(β|
θ(k),β(k),Λ

(k)
0 ) is

Q15

(
β1, . . . ,βq|θ(k),β(k),Λ

(k)
0

)
=̂

q∑
p=1

Q15p

(
βp|θ(k),β(k),Λ

(k)
0

)
, (3.8)

where

Q15p(βp|θ(k),β(k),Λ
(k)
0 ) =

B∑
i=1

Mi∑
j=1

[
IijβpXpij (3.9)

−
Iij
∑B

r=1

(
A

(k)
r /Π

(k)
r

)∑Mr

s=1 I(trs ≥ tij)δprs exp(δ−1
prs(βp − β

(k)
p )Xprs + XT

rsβ
(k))∑B

r=1

(
A

(k)
r /Π

(k)
r

)∑Mr

s=1 I(trs ≥ tij) exp(XT
rsβ

(k))

]
.

From (3.9), it can be seen that the objective function to be maximized is de-

composed into a sum of q univariate functions. The resulting MM algorithm

only involves q + 1 separate univariate optimizations in its maximization step

and matrix inversion is not needed. We refer to this algorithm as MM2. The

algorithm is stated as follows.

Step 1. Let (θ(0),β(0),Λ
(0)
0 ) be initial values of (θ,β,Λ0).

Step 2. Update the estimate of θ via (3.3). Update the estimate of βp based on

(3.9) for p = 1, . . . , q.

Step 3. Using the updated estimate of β, compute the estimate of Λ0(tij) via

(3.5).

Step 4. Iterate steps 2 and 3 until convergence.

3.4. A third profile MM algorithm

MM1 and MM2 are developed regardless of whether an analytic form of

`1(θ,β,Λ0 |Yobs) is available or not. the integral is tractable and `1(θ,β,Λ0|Yobs)

can be explicitly written as

`2(θ,β,Λ0|Yobs)
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=

B∑
i=1

Mi∑
j=1

{
Iij log(λ0(tij)) + IijX

T
ijβ
}

+ log Γ

(
Di +

1

θ

)
− log Γ

(
1

θ

)
− log(θ)

θ

−
(
Di +

1

θ

)
log

(
1

θ
+

Mi∑
j=1

Λ0(tij) exp(XT
ijβ)

) ,
where Di =

∑Mi

j=1 Iij is the observed number of deaths in the i-th cluster. We

develop an MM algorithm based on `2(θ,β,Λ0|Yobs) for the nonparametric max-

imum likelihood estimation of (θ,β,Λ0). Use the inequality (3.7) to minorize the

last term of `2(θ,β,Λ0|Yobs) and obtain the surrogate function

Q∗(θ,β,Λ0|θ(k),β(k),Λ
(k)
0 ) (3.10)

=

B∑
i=1

Mi∑
j=1

[
Iij

(
log(λ0(tij))+XT

ijβ

)
−
(
Di

Π
(k)
i

+
1

Π
(k)
i θ

)
Λ0(tij) exp(XT

ijβ)

]

+

B∑
i=1

[
log Γ

(
Di +

1

θ

)
−log Γ

(
1

θ

)
− log(θ)

θ
+

1

θ

{
1−log

(
Π

(k)
i

)
− Di

Π
(k)
i

}
− 1

Π
(k)
i θ2

]
,

where Π
(k)
i = 1/θk +

∑Mi

j=1 Λ
(k)
0 (tij) exp(XT

ijβ
(k)). Next, profile out Λ0 for any

given (β, θ) and estimate Λ0(tij) by

dΛ̂0(tij) =
Iij∑B

r=1

∑Mr

s=1 I(trs ≥ tij)
(
Dr/Π

(k)
r + 1/Π

(k)
r θ
)

exp(XT
rsβ)

. (3.11)

Substituting (3.11) into (3.10) yields the surrogate function

Q∗1

(
θ,β|θ(k),β(k),Λ

(k)
0

)
(3.12)

=

B∑
i=1

[
log

(
Γ
(
Di +

1

θ

))
−log

(
Γ
(1

θ

))
− log(θ)

θ
+

1

θ

{
1−log

(
Π

(k)
i

)
− Di

Π
(k)
i

}
− 1

Π
(k)
i θ2

]

+

B∑
i=1

Mi∑
j=1

Iij

(
XT
ijβ−log

(
B∑
r=1

Mr∑
s=1

I(trs ≥ tij)

(
Dr

Π
(k)
r

+
1

Π
(k)
r θ

)
exp(XT

rsβ)

))
,

that only involves paramters β and θ. From (3.12), the surrogate function Q∗1(θ,

β|θ(k),β(k),Λ
(k)
0 ) resulting from the profiling step does not take the form of the

log-partial likelihood in the Cox model and hence standard Cox regression pro-

grams not can be used to solve the function.

To construct a minorizing function for Q∗1(θ,β|θ(k),β(k),Λ
(k)
0 ), we first ap-

ply the supporting hyperplane inequality (3.7) to the last term. This gives the

surrogate function
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Q∗2(θ,β|θ(k),β(k),Λ
(k)
0 )

=

B∑
i=1

[
log

(
Γ

(
Di +

1

θ

))
−
(

logΓ

(
1

θ

))
− log(θ)

θ
+

1

θ

{
1−log

(
Π

(k)
i

)
− Di

Π
(k)
i

}
− 1

Π
(k)
i θ2

]

+

B∑
i=1

Mi∑
j=1

Iij

(
(XT

ijβ−
1

u
(k)
ij

B∑
r=1

Mr∑
s=1

I(trs ≥ tij)
(
Dr

Π
(k)
r

+
1

Π
(k)
r θ

)
exp

(
XT
rsβ
))

,

where

u
(k)
ij =

B∑
r=1

Mr∑
s=1

I(trs ≥ tij)
(
Dr

Π
(k)
r

+
1

Π
(k)
r θ(k)

)
exp

(
XT
rsβ

(k)
)
.

For the term − exp(XT
rsβ)/θ with negative coefficients, as in Lange and Zhou

(2014), we use the arithmetic-geometric mean inequality

−
n∏
i=1

xai

i ≥ −
n∑
i=1

ai
||a||1

x
||a||1
i , (3.13)

where xi and ai are nonnegative. Now choosing x1 = θ(k)/θ and x2 = exp(XT
rsβ)/

exp(XT
rsβ

(k)) in (3.13), we obtain the surrogate function

Q∗3

(
θ,β|θ(k),β(k),Λ

(k)
0

)
=

B∑
i=1

[
log

(
Γ

(
Di +

1

θ

))
−log

(
Γ

(
1

θ

))
− log(θ)

θ
+

1

θ

{
1−log(Π

(k)
i )− Di

Π
(k)
i

}
− 1

Π
(k)
i θ2

−
Mi∑
j=1

Iij

u
(k)
ij

B∑
r=1

Mr∑
s=1

I(trs ≥ tij)θ(k) exp
(
XT
rsβ

(k)
)

2Π
(k)
r θ2

]

+

B∑
i=1

Mi∑
j=1

Iij

(
XT
ijβ−

1

u
(k)
ij

B∑
r=1

Mr∑
s=1

I(trs ≥ tij)
Dr

Π
(k)
r

exp(XT
rsβ)

− 1

u
(k)
ij

B∑
r=1

Mr∑
s=1

I(trs ≥ tij)
exp

(
2XT

rsβ
)

2Π
(k)
r θ(k) exp

(
XT
rsβ

(k)
)), (3.14)

where θ and β are separated. To separate the parameters β1, . . . , βq, we fur-

ther minorize the concave functions − exp(XT
rsβ) and − exp(2XT

rsβ) in (3.14)

using Jensen’s inequality by rewriting XT
rsβ =

∑q
p=1 δprs(δ

−1
prsXprs(βp − β

(k)
p ) +

XT
rsβ

(k)), δprs = |Xprs|/
∑q

p=1 |Xprs|. Denote the resulting minorizing function

for Q∗1(θ,β|θ(k),β(k),Λ
(k)
0 ) by Q(θ, β1, . . . , βq|θ(k),β(k),Λ

(k)
0 ). By calculation,

Q(θ, β1, . . . , βq|θ(k),β(k),Λ
(k)
0 )
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= Q1(θ|θ(k),β(k),Λ
(k)
0 ) +

q∑
p=1

Q2p(βp|θ(k),β(k),Λ
(k)
0 ), (3.15)

where

Q1(θ|θ(k),β(k),Λ
(k)
0 )

=

B∑
i=1

[
log Γ

(
Di +

1

θ

)
−log Γ

(
1

θ

)
− log(θ)

θ
+

1

θ

{
1−log(Π

(k)
i )− Di

Π
(k)
i

}

− 1

Π
(k)
i θ2

−
Mi∑
j=1

Iij

u
(k)
ij

B∑
r=1

Mr∑
s=1

I(trs ≥ tij)θ(k) exp
(
XT
rsβ

(k)
)

2Π
(k)
r θ2

]
, (3.16)

Q2p(βp|θ(k),β(k),Λ
(k)
0 ) =

B∑
i=1

Mi∑
j=1

{
IijβpXpij (3.17)

− Iij

u
(k)
ij

B∑
r=1

Mr∑
s=1

I(trs ≥ tij)Drδprs

Π
(k)
r

exp
(
δ−1
prsXprs

(
βp − β(k)

p

)
+ XT

rsβ
(k)
)

− Iij

u
(k)
ij

B∑
r=1

Mr∑
s=1

I(trs ≥ tij)δprs exp
(
δ−1
prs2Xprs

(
βp − β(k)

p

)
+ 2XT

rsβ
(k)
)

2Π
(k)
r θ(k) exp(XT

rsβ
(k))

}
,

for p = 1, . . . , q. By its construction, the frailty parameter θ and the regression

parameters β1, . . . , βq are separated from each other in (3.15). Accordingly, the

maximization step involves q + 1 separate univariate optimizations. We refer to

this algorithm as MM3. The algorithm is stated as follows.

Step 1. Let (θ(0),β(0),Λ
(0)
0 ) be initial values of (θ,β,Λ0).

Step 2. Update the estimate of θ via (3.16). Update the estimate of βp based

on (3.17) for p = 1, . . . , q.

Step 3. Using the updated estimate of θ and β, compute the estimate of Λ0(tij)

via (3.11).

Step 4. Iterate steps 2 and 3 until convergence.

4. Convergence Properties of the Proposed MM Algorithms

In this section, we establish convergence properties of the three MM algo-

rithms. We first present a lemma (Vaida (2005)) which gives general and verifi-

able conditions for proving the convergence of an MM sequence. Let `(·|Yobs) be

the function to maximize and Q(α|α(k)) be the minorizing function, where α is

the parameter vector and α(k) is its current estimate. Denote the maximizer of
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Q(·|α) by M(α). We need some regularity conditions.

C1. The parameter space Ω is an open set in Rd.
C2. `(·|Yobs) is differentiable, with continuous derivative `′(·|Yobs).

C3. The level set Ωc = {α ∈ Ω : `(α|Yobs) ≥ c} is compact in Rd.
C4. Q(α|α(k)) is continuous in both α and α(k), and differentiable in α.

C5. All the stationary points of `(·|Yobs) are isolated.

C6. There exists a unique global maximum of Q(·|α(k)).

Lemma 1. (Vaida (2005)). Let α(k), k = 0, 1, 2, ... denote an MM sequence.

(i) If C6 holds, then M(·) is continuous at α(k).

(ii) If C1-C6 hold, then for any starting value α(0), α(k) → α∗ when k → ∞,

for some stationary point α∗. Moreover, M(α∗) = α∗, and if α(k) 6= α∗ for all

k, the sequence of likelihood values `(α(k)|Yobs) strictly increases to `(α∗|Yobs).

For the convergence of our MM algorithms, we need a condition.

Condition A.

(i). max1≤i≤BDi ≥ 1.

(ii). Let O0 = {1, 2, ..., q}. For any O ⊂ O0, there exist the pairs (i, j), (i1, j1)

and (i2, j2) such that Iij = 1, ti1j1 ≥ tij , ti2j2 ≥ tij , and for any r ∈ O and

s ∈ Oc = O0 −O, Xi1j1r −Xijr > 0 and Xi2j2s −Xijs < 0.

(iii). Stationary points for `1(θ,β,Λ0|Yobs) are separated.

Remark 1. Condition A (i) ensures the boundedness of θ. Condition A (ii)

excludes the situation where the parameters βp, p = 1, . . . , q can be −∞ or ∞
and hence guarantees the boundedness of βp, p = 1, . . . , q. Condition A (iii)

corresponds to condition (C5).

Theorem 1. If Condition A holds, for any initial value {θ(0),β(0),Λ
(0)
0 } the se-

quence {θ(k),β(k),Λ
(k)
0 } generated by the MM algorithm that updates the estimates

by (3.3), (3.5) and (3.6) are convergent.

Proof of Theorem 1. By the construction of MM1,

`1(θ,β,Λ0|Yobs)

=

B∑
i=1

log

∫ +∞

0
τi(ωi|θ,β,Λ0) dωi

=

B∑
i=1

log

∫ +∞

0

{
vi(ωi|θ(k),β(k),Λ

(k)
0 ) · τi(ωi|θ,β,Λ0)

vi(ωi|θ(k),β(k),Λ
(k)
0 )

}
dωi

≥
B∑
i=1

∫ +∞

0
vi(ωi|θ(k),β(k),Λ

(k)
0 ) · log

(
τi(ωi|θ,β,Λ0)

vi(ωi|θ(k),β(k),Λ
(k)
0 )

)
dωi
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= Q1(θ,β,Λ0|θ(k),β(k),Λ
(k)
0 ),

where the minorizing function Q1(θ,β,Λ0|θ(k),β(k),Λ
(k)
0 ) satisfies the conditions

in (3.1),

`1(θ,β,Λ0|Yobs) ≥ Q1(θ,β,Λ0|θ(k),β(k),Λ
(k)
0 ), ∀ θ,β,Λ0 and

`1(θ(k),β(k),Λ
(k)
0 |Yobs) = Q1(θ(k),β(k),Λ

(k)
0 |θ

(k),β(k),Λ
(k)
0 ).

The initial minorizing function consists of Q11(θ|θ(k),β(k),Λ
(k)
0 ) and Q12(β,Λ0|

θ(k),β(k),Λ
(k)
0 ). After profiling out Λ0, Q12(β,Λ0|θ(k),β(k),Λ

(k)
0 ) is Q13(β| θ(k),

β(k),Λ
(k)
0 ) in (3.6), a unimodal function.This shows that Q12(β,Λ0|θ(k),β(k),

Λ
(k)
0 ) has a unique global maximum and verifies the condition C6. Condi-

tions C1, C2, and C4 easily follow from the forms of `1(θ,β,Λ0|Yobs) and

Q1(θ,β,Λ0|θ(k),β(k),Λ
(k)
0 ). Next, we verify the condition C3 and show the com-

pactness of the level set Ωc =
{
β = (θ,β,Λ0) : `1(θ,β,Λ0|Yobs) ≥ c

}
. It follows

from the continuity of `1(θ,β,Λ0|Yobs) that Ωc is closed. It remains to prove the

boundedness of Ωc. We have

`1(α|Yobs) = `2(α|Yobs)

=

B∑
i=1

Mi∑
j=1

{Iij log(λ0(tij))}+log

(
Γ

(
Di +

1

θ

))
−log

(
Γ

(
1

θ

))
− log(θ)

θ

+

Mi∑
j=1

IijX
T
ijβ −

(
Di +

1

θ

)
log

(
1

θ
+

Mi∑
j=1

Λ0(tij) exp(XT
ijβ)

) .
Thus for any value of (β,Λ0) with max1≤i≤BDi ≥ 1, when θ is unbounded,

`1(α|Yobs) tends to minus infinity and hence, by contradiction, θ is bounded

in Ωc. Similarly, considering βp, p = 1, . . . , q, and dΛ0(tij), i = 1, . . . , B; j =

1, . . . ,Mi, when any of them is unbounded, `1(α|Yobs) tends to minus infinity

regardless of the values of the other parameters. It follows that Ωc is bounded

since `1(α|Yobs) ≥ c when α ∈ Ωc. Thus C3 holds. Consequently, with the

assumption that stationary points for `1(θ,β,Λ0|Yobs) are separated, by Lemma

1 the MM1 algorithm is convergent.

Similarly, we establish the convergence properties for MM2 and MM3.

Theorem 2. If Condition A holds, for any initial value {θ(0),β(0),Λ
(0)
0 }, the

sequence {θ(k),β(k),Λ
(k)
0 } generated by the MM algorithm that updates the esti-

mates by (3.3), (3.5) and (3.9) are convergent.

Theorem 3. If Condition A holds, for any initial value {θ(0),β(0),Λ
(0)
0 }, the

sequence {θ(k),β(k),Λ
(k)
0 } generated by the MM algorithm that updates the esti-
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mates by (3.11), (3.16) and (3.17) are convergent.

The proofs of Theorems 2 and 3 are given in the Supplementary Materials.

5. Numerical Experiments

We conducted two sets of simulation studies to assess the finite-sample per-

formance of the proposed MM algorithms. The simulations were run in a desktop

with Intel(R) Core(TM) i7-2600 and CPU 3.40 GHz. The R codes are available

from the authors upon request. The stopping criterion was set to be

|`(α(t+1)|Yobs)− `(α(t)|Yobs)|
|`(α(t)|Yobs)|+ 1

< 10−6.

We generated
∑B

i=1Mi observations from the proportional hazards gamma frailty

model (2.1), with λ0(t) = α = 5 and ωi simulated from a gamma distribution

with mean 1 and shape parameter 1/θ.

In the first set of simulations, we considered the non-regularized setting and

the covariates XT = (X1, . . . , Xq) were generated from independent uniform

distribution between 0 and 0.5. The censoring times were generated to yield

a censoring proportion of 30%. To illustrate the advantages of the proposed

MM algorithms in high-dimensional settings, we let q = 30 or 40. The true

coefficient vector β was set to (−5T10, 2
T
10, 4

T
10)T or (−5T10, 2

T
10, 4

T
10,−1T10)T , θ ∈

Ωθ = {3, 10, 16}, and (B,M) ∈ Ω(B,M) = {(40, 20), (30, 30)}. We numerically

compare the EM algorithm in Klein (1992) and the proposed MM algorithms.

As there is much room for improvement for the EM and MM algorithms by using

simple off-the-shelf accelerators (Varadhan and Roland (2008); Zhou, Alexander

and Lange (2011)), following the suggestion of the referee, we also implemented

accelerated EM, MM1, MM2 and MM3 with the squared iterative method (SqS1).

Based on 500 replications, the average values of estimated regression parameters

(with their empirical standard deviations in parentheses), iteration numbers (K),

run times (Time) and the final objective values (L) are summarized in Tables

1-4. For the un-accelerated algorithms, all three MM algorithms converge faster

than the EM algorithm and MM1 is the fastest. We also observe that accelerated

algorithms indeed substantially save run times, especially MM2 and MM3. For

the accelerated algorithms, all three accelerated MM algorithms converge faster

than the accelerated EM algorithm and accelerated MM2 or MM3 is the fastest.

In terms of estimation accuracy, the un-accelerated MM2 and MM3 algorithms

perform the best, exhibiting small biases and empirical standard deviations in

all situations.
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Table 1. Simulation results for the non-regularized setting with (B,M, q) = (30, 30, 30).

EM MM1 MM2 MM3
Par. Original SqS1 Original SqS1 Original SqS1 Original SqS1

θ=4
K 359.67 167.23 134.56 64.74 1,618.47 79.73 1,639.17 81.55
T 384.86 325.71 151.37 145.45 248.62 23.66 246.95 28.98
L −3,814.02 −3,814.64 −3,815.19 −3,814.67 −3,815.78 −3,814.53 −3,815.79 −3,814.75
θ 4.14(0.89) 4.06(0.86) 4.18(0.88) 4.08(0.86) 3.86(0.82) 4.11(0.83) 3.86(0.82) 4.11(0.87)
β1 −5.13(0.35) −5.14(0.34) −5.15(0.34) −5.15(0.34) −4.87(0.32) −5.17(0.34) −4.87(0.32) −5.17(0.34)
β5 −5.12(0.37) −5.12(0.35) −5.13(0.35) −5.13(0.35) −4.86(0.33) −5.15(0.36) −4.86(0.33) −5.15(0.35)
β10 −5.15(0.34) −5.14(0.37) −5.15(0.37) −5.15(0.37) −4.88(0.35) −5.16(0.36) −4.87(0.35) −5.17(0.37)
β15 2.05(0.30) 2.05(0.31) 2.06(0.31) 2.06(0.31) 1.95(0.29) 2.06(0.31) 1.95(0.29) 2.07(0.31)
β20 2.03(0.31) 2.04(0.31) 2.05(0.31) 2.04(0.31) 1.94(0.29) 2.05(0.31) 1.93(0.29) 2.05(0.31)
β25 4.11(0.33) 4.12(0.33) 4.13(0.34) 4.12(0.34) 3.90(0.31) 4.13(0.33) 3.90(0.31) 4.14(0.34)
β30 4.12(0.32) 4.09(0.35) 4.10(0.35) 4.10(0.35) 3.88(0.33) 4.10(0.35) 3.88(0.33) 4.11(0.35)

θ=10
K 529.27 243.34 75.91 47.75 1,661.73 62.54 1,673.99 68.05
T 598.03 494.14 76.05 67.01 268.82 22.97 242.47 30.55
L −2,427.07 −2,427.02 −2,427.36 −2,427.11 −2,427.81 −2,427.18 −2,427.82 −2,427.16
θ 10.29(2.53) 10.25(2.52) 10.42(2.56) 10.29(2.52) 9.80(2.42) 10.31(2.50) 9.80(2.42) 10.30(2.50)
β1 −5.23(0.44) −5.23(0.43) −5.23(0.43) −5.23(0.43) −4.97(0.41) −5.22(0.43) −4.97(0.41) −5.22(0.43)
β5 −5.22(0.44) −5.22(0.44) −5.22(0.44) −5.22(0.44) −4.96(0.41) −5.21(0.44) −4.96(0.41) −5.21(0.44)
β10 −5.24(0.45) −5.24(0.45) −5.24(0.45) −5.24(0.45) −4.98(0.42) −5.23(0.45) −4.98(0.42) −5.23(0.45)
β15 2.04(0.40) 2.04(0.40) 2.04(0.40) 2.04(0.40) 1.94(0.38) 2.04(0.40) 1.94(0.38) 2.04(0.40)
β20 2.11(0.39) 2.11(0.39) 2.11(0.39) 2.11(0.39) 2.00(0.37) 2.11(0.39) 2.00(0.37) 2.11(0.39)
β25 4.17(0.44) 4.17(0.44) 4.17(0.44) 4.17(0.44) 3.95(0.42) 4.16(0.44) 3.95(0.42) 4.16(0.44)
β30 4.18(0.42) 4.18(0.42) 4.17(0.42) 4.18(0.42) 3.96(0.40) 4.17(0.42) 3.96(0.40) 4.17(0.42)

θ=16
K 706.06 316.76 75.44 48.22 1,729.45 59.34 1,739.75 61.29
T 757.43 656 71.96 66.49 286.69 23.53 242.88 27.39
L −1,722.03 −1,722.00 −1,722.20 −1,722.05 −1,722.58 −1,722.11 −1,722.58 −1,722.12
θ 17.25(4.78) 17.21(4.78) 17.38(4.83) 17.22(4.77) 16.47(4.57) 17.19(4.71) 16.47(4.57) 17.19(4.71)
β1 −5.26(0.53) −5.26(0.53) −5.25(0.53) −5.26(0.53) −4.99(0.50) −5.23(0.52) −4.99(0.50) −5.22(0.52)
β5 −5.25(0.56) −5.25(0.56) −5.24(0.56) −5.24(0.56) −4.98(0.53) −5.21(0.55) −4.98(0.53) −5.21(0.55)
β10 −5.30(0.56) −5.30(0.56) −5.29(0.56) −5.29(0.56) −5.03(0.52) −5.26(0.55) −5.03(0.52) −5.26(0.55)
β15 2.12(0.52) 2.12(0.52) 2.12(0.52) 2.12(0.52) 2.01(0.49) 2.11(0.52) 2.01(0.49) 2.11(0.52)
β20 2.11(0.47) 2.11(0.47) 2.10(0.47) 2.11(0.47) 2.00(0.45) 2.10(0.47) 2.00(0.45) 2.10(0.47)
β25 4.23(0.54) 4.22(0.54) 4.22(0.54) 4.22(0.54) 4.01(0.51) 4.20(0.54) 4.01(0.51) 4.20(0.54)
β30 4.21(0.52) 4.20(0.52) 4.20(0.52) 4.20(0.52) 3.99(0.49) 4.18(0.52) 3.99(0.49) 4.18(0.52)

In the second set of simulation studies, we illustrate the utility of the pro-

posed algorithms fo the regularized estimation in sparse high-dimensional re-

gression model with clustered failure time data. We considered the MM2 and

MM3 algorithms with the smoothly clipped absolute penalty (SCAD) using local

quadratic approximation. For SCAD, as in Fan and Li (2002), we took a = 3.7

and the tuning parameter λ was selected using generalized cross-validation. The

number of covariates was q = 30 and 50. For q = 30, we took (B,M) =

(30, 10) with the non-zero coefficients (β2, β10, β26) = (6, 3, 5). For q = 50, we

took (B,M) = (40, 10) and the nonzero coefficients as (β2, β10, β26, β45, β50) =

(6, 3, 5, 2, 3). The Xi’s were marginally standard normal and the correlation be-

tween Xi and Xj was ρ|i−j| with ρ = 0.25 or 0.75. The model error E{(β̂ −
β)TXXT (β̂ − β)} was used to evaluate the estimation accuracy. We calculated

the relative model error, the ratio of the model error of the regularized estimator

and that of the oracle estimator. Based on 500 replications, the median of rela-
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Table 2. Simulation results for the non-regularized setting with (B,M, q) = (40, 20, 30).

EM MM1 MM2 MM3
Par. Original SqS1 cOriginal SqS1 Original SqS1 Original SqS1

θ=4
K 304.62 129.37 121.18 49.39 1,665.75 74.41 1,697.28 74.91
T 245.99 229.2 111.54 94.93 169.5 14.63 226.27 19.73
L −3,343.54 −3,343.38 −3,343.63 −3,343.39 −3,344.44 −3,343.44 −3,344.46 −3,343.54
θ 4.15(0.78) 4.12(0.77) 4.18(0.79) 4.14(0.78) 3.90(0.74) 4.17(0.80) 3.90(0.74) 4.18(0.79)
β1 −5.17(0.39) −5.17(0.38) −5.19(0.38) −5.18(0.38) −4.90(0.36) −5.21(0.39) −4.89(0.36) −5.21(0.39)
β5 −5.20(0.37) −5.19(0.37) −5.21(0.37) −5.20(0.37) −4.92(0.35) −5.23(0.37) −4.91(0.35) −5.23(0.37)
β10 −5.16(0.38) −5.15(0.37) −5.17(0.38) −5.16(0.38) −4.88(0.35) −5.19(0.38) −4.88(0.35) −5.20(0.38)
β15 2.06(0.33) 2.06(0.33) 2.06(0.33) 2.06(0.33) 1.95(0.31) 2.07(0.33) 1.95(0.31) 2.07(0.33)
β20 2.06(0.33) 2.06(0.33) 2.07(0.33) 2.06(0.33) 1.95(0.31) 2.08(0.33) 1.95(0.31) 2.08(0.33)
β25 4.16(0.36) 4.15(0.36) 4.17(0.37) 4.16(0.37) 3.93(0.34) 4.18(0.37) 3.93(0.34) 4.19(0.37)
β30 4.13(0.36) 4.13(0.36) 4.14(0.36) 4.14(0.36) 3.91(0.34) 4.16(0.37) 3.91(0.34) 4.16(0.37)

θ=10
K 471.97 195.47 87.14 39.43 1,714.20 64.32 1,732.60 67.46
T 375.95 330.6 74.18 66.11 192.17 15.09 215.29 19.04
L −2,131.95 −2,131.94 −2,132.11 −2,131.99 −2,132.66 −2,132.04 −2,132.67 −2,132.08
θ 10.53(2.31) 10.52(2.31) 10.58(2.32) 10.54(2.30) 10.03(2.20) 10.54(2.29) 10.03(2.20) 10.55(2.28)
β1 −5.21(0.50) −5.21(0.50) −5.21(0.50) −5.21(0.50) −4.94(0.47) −5.20(0.50) −4.94(0.47) −5.21(0.50)
β5 −5.25(0.50) −5.25(0.50) −5.25(0.50) −5.25(0.50) −4.97(0.47) −5.24(0.50) −4.97(0.47) −5.24(0.50)
β10 −5.25(0.48) −5.25(0.48) −5.24(0.48) −5.25(0.48) −4.97(0.46) −5.24(0.48) −4.97(0.46) −5.24(0.48)
β15 2.08(0.43) 2.08(0.43) 2.08(0.44) 2.08(0.43) 1.97(0.41) 2.07(0.44) 1.97(0.41) 2.07(0.43)
β20 2.09(0.42) 2.09(0.42) 2.09(0.42) 2.09(0.42) 1.98(0.40) 2.09(0.42) 1.98(0.40) 2.09(0.42)
β25 4.19(0.44) 4.19(0.44) 4.19(0.44) 4.19(0.44) 3.97(0.41) 4.18(0.44) 3.97(0.41) 4.18(0.44)
β30 4.17(0.47) 4.17(0.47) 4.17(0.47) 4.17(0.47) 3.95(0.44) 4.16(0.47) 3.95(0.44) 4.16(0.47)

θ=16
K 665.71 263.78 89.44 43.51 1,796.48 64.27 1,812.29 66.29
T 499.04 403.55 74.43 67.16 218.84 13.76 230.78 18.76
L −1,518.90 −1,518.89 −1,519.05 −1,518.93 −1,519.44 −1,518.96 −1,519.44 −1,518.96
θ 17.34(4.37) 17.33(4.37) 17.42(4.40) 17.32(4.36) 16.53(4.16) 17.20(4.28) 16.53(4.16) 17.20(4.29)
β1 −5.37(0.59) −5.37(0.59) −5.36(0.58) −5.36(0.59) −5.08(0.55) −5.32(0.58) −5.08(0.55) −5.31(0.58)
β5 −5.29(0.61) −5.29(0.62) −5.28(0.61) −5.29(0.61) −5.01(0.58) −5.25(0.61) −5.01(0.58) −5.24(0.60)
β10 −5.33(0.60) −5.33(0.60) −5.32(0.60) −5.32(0.60) −5.05(0.56) −5.28(0.59) −5.04(0.56) −5.28(0.59)
β15 2.09(0.51) 2.09(0.51) 2.09(0.51) 2.09(0.51) 1.98(0.48) 2.07(0.50) 1.98(0.48) 2.07(0.50)
β20 2.10(0.53) 2.10(0.53) 2.10(0.53) 2.10(0.53) 1.99(0.50) 2.09(0.52) 1.99(0.50) 2.08(0.52)
β25 4.29(0.58) 4.29(0.58) 4.29(0.58) 4.29(0.58) 4.06(0.54) 4.26(0.57) 4.06(0.54) 4.25(0.58)
β30 4.29(0.57) 4.28(0.57) 4.28(0.57) 4.28(0.57) 4.05(0.53) 4.25(0.56) 4.05(0.53) 4.24(0.56)

tive model errors (MRME) and the average number of correctly and incorrectly

identified zero coefficients are summarized in Table 5. We find that the proposed

MM2 and MM3 algorithms mesh well with the SCAD and yield good results in

simultaneous parameter estimation and variable selection.

6. The Colorectal Cancer Data Analysis

These data come from a prospective cohort study in the Hospital de Bellvitge,

a 960 bed public university hospital in the metropolitan area of Barcelona, Spain.

Between January of 1996 and December 1998, 403 patients with initial colorec-

tal cancer and surgery were identified and actively followed until June 2002.

The event of interest is readmission, a potential recurrent event since colorectal

cancer patients can have several readmissions after discharge. Censoring may

occur because of death, migration, or change of hospital. The date of surgery

was taken as the beginning of the study period. The first readmission time was

considered as the time between the date of the surgical procedure and the first
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Table 3. Simulation results for the non-regularized setting with (B,M, q) = (30, 30, 40).

EM MM1 MM2 MM3
Par. Original SqS1 Original SqS1 Original SqS1 Original SqS1

θ=4
K 278.74 118.59 73.92 35.07 2,042.08 47.77 2,074.68 46.28
T 523.06 450.68 106.64 98.5 459.57 17.54 426.42 14.85
L −2,904.03 −2,904.03 −2,904.11 −2,904.05 −2,905.25 −2,904.94 −2,905.27 −2,904.12
θ 4.15(0.95) 4.15(0.95) 4.15(0.95) 4.15(0.95) 3.92(0.90) 4.12(0.90) 3.92(0.90) 4.12(0.94)
β1 −5.22(0.41) −5.22(0.41) −5.21(0.41) −5.21(0.41) −4.91(0.38) −5.15(0.37) −4.91(0.38) −5.17(0.40)
β5 −5.18(0.40) −5.18(0.40) −5.17(0.40) −5.18(0.40) −4.88(0.37) −5.11(0.39) −4.88(0.37) −5.14(0.39)
β10 −5.22(0.40) −5.22(0.40) −5.21(0.40) −5.22(0.40) −4.92(0.37) −5.15(0.39) −4.92(0.37) −5.17(0.39)
β15 2.09(0.36) 2.09(0.36) 2.08(0.36) 2.08(0.36) 1.96(0.34) 2.05(0.36) 1.96(0.34) 2.07(0.35)
β20 2.09(0.36) 2.09(0.36) 2.08(0.36) 2.08(0.36) 1.96(0.34) 2.02(0.35) 1.96(0.34) 2.07(0.36)
β25 4.20(0.39) 4.20(0.39) 4.20(0.39) 4.20(0.39) 3.95(0.36) 4.17(0.37) 3.95(0.36) 4.16(0.38)
β30 4.17(0.39) 4.17(0.39) 4.16(0.39) 4.16(0.39) 3.92(0.37) 4.10(0.37) 3.92(0.37) 4.13(0.39)
β35 −1.04(0.36) −1.04(0.36) −1.04(0.36) −1.04(0.36) −0.98(0.34) −1.02(0.39) −0.98(0.34) −1.03(0.36)
β40 −1.03(0.37) −1.03(0.37) −1.03(0.37) −1.03(0.37) −0.97(0.35) −1.00(0.37) −0.97(0.34) −1.02(0.36)

θ=10
K 519.23 216.64 113.71 51.1 2,186.26 67.91 2,206.81 68.21
T 896.43 704.39 208.78 191.99 436.46 38.7 509.66 36.64
L −1,767.95 −1,767.90 −1,767.98 −1,767.93 −1,768.71 −1,767.99 −1,768.72 −1,767.98
θ 10.85(2.95) 10.82(2.91) 10.82(2.91) 10.81(2.91) 10.25(2.75) 10.71(2.87) 10.25(2.75) 10.72(2.87)
β1 −5.36(0.56) −5.36(0.56) −5.35(0.55) −5.36(0.55) −5.05(0.51) −5.30(0.55) −5.04(0.51) −5.30(0.55)
β5 −5.35(0.54) −5.35(0.55) −5.34(0.54) −5.34(0.54) −5.04(0.51) −5.29(0.54) −5.04(0.51) −5.29(0.54)
β10 −5.34(0.57) −5.34(0.57) −5.33(0.57) −5.34(0.57) −5.03(0.53) −5.28(0.56) −5.03(0.53) −5.28(0.57)
β15 2.14(0.50) 2.14(0.50) 2.13(0.50) 2.13(0.50) 2.01(0.47) 2.11(0.50) 2.01(0.47) 2.11(0.50)
β20 2.12(0.52) 2.12(0.52) 2.12(0.52) 2.12(0.52) 2.00(0.49) 2.10(0.52) 1.99(0.49) 2.10(0.52)
β25 4.28(0.55) 4.28(0.55) 4.27(0.55) 4.28(0.55) 4.03(0.51) 4.23(0.54) 4.02(0.51) 4.23(0.54)
β30 4.28(0.53) 4.28(0.53) 4.27(0.53) 4.27(0.53) 4.02(0.49) 4.23(0.53) 4.02(0.49) 4.23(0.53)
β35 −1.12(0.50) −1.12(0.50) −1.12(0.50) −1.12(0.50) −1.06(0.47) −1.11(0.49) −1.06(0.47) −1.11(0.49)
β40 −1.07(0.52) −1.07(0.52) −1.07(0.52) −1.07(0.52) −1.01(0.49) −1.06(0.52) −1.01(0.49) −1.06(0.52)

θ=16
K 699.35 290.43 126.27 57.66 2,374.03 86.71 2,392.47 86.16
T 1120.24 953.63 240.81 206.98 474.54 52.27 558.5 53.06
L −1,244.49 −1,244.44 −1,244.51 −1,244.46 −1,245.07 −1,244.51 −1,245.07 −1,244.5
θ 17.76(6.29) 17.71(6.28) 17.74(6.32) 17.69(6.26) 16.75(5.89) 17.48(6.15) 16.75(5.89) 17.51(6.16)
β1 −5.50(0.75) −5.51(0.75) −5.49(0.74) −5.5 (0.74) −5.17(0.69) −5.42(0.73) −5.17(0.69) −5.43(0.73)
β5 −5.57(0.76) −5.57(0.76) −5.56(0.75) −5.56(0.76) −5.23(0.70) −5.49(0.74) −5.23(0.70) −5.49(0.74)
β10 −5.53(0.70) −5.53(0.70) −5.52(0.70) −5.53(0.70) −5.19(0.65) −5.45(0.69) −5.19(0.64) −5.46(0.69)
β15 2.23(0.70) 2.23(0.70) 2.23(0.70) 2.23(0.70) 2.09(0.65) 2.20(0.69) 2.09(0.65) 2.20(0.69)
β20 2.17(0.66) 2.18(0.66) 2.17(0.66) 2.17(0.66) 2.04(0.62) 2.14(0.65) 2.04(0.62) 2.15(0.65)
β25 4.41(0.69) 4.42(0.69) 4.41(0.69) 4.41(0.69) 4.14(0.63) 4.35(0.68) 4.14(0.63) 4.36(0.68)
β30 4.42(0.72) 4.42(0.72) 4.41(0.72) 4.42(0.72) 4.15(0.66) 4.36(0.71) 4.14(0.66) 4.36(0.71)
β35 −1.08(0.67) −1.08(0.67) −1.08(0.67) −1.08(0.67) −1.01(0.62) −1.06(0.66) −1.01(0.62) −1.06(0.66)
β40 −1.11(0.61) −1.11(0.61) −1.11(0.61) −1.11(0.61) −1.04(0.57) −1.09(0.60) −1.04(0.57) −1.10(0.60)

readmission to the hospital related to colorectal cancer. Accordingly, the read-

mission times are considered as the difference between the last discharge date

and the current hospitalization date. We only considered readmissions related

to colorectal cancer and the dataset consists of 861 readmission times recorded

on 403 patients. As readmission times from the same patient are expected to be

highly correlated, we considered the proportional hazards gamma frailty model

for analyzing such data. The frailty can be interpreted as the aggregate effect of

unmeasured individual-specific covariates, such as genes, diet, living environment

and lifestyles, etc. In our regression analysis, the included covariates were sex,

type of treatment (chemotherapy versus radiotherapy), tumour stage (Duke’s

classification: A–B, C, or D), and Charlson’s index (0, 1–2, ≥3) which measures

the risk of readmission for comorbidity.
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Table 4. Simulation results for the non-regularized setting with (B,M, q) = (40, 20, 40).

EM MM1 MM2 MM3
Par. Original SqS1 Original SqS1 Original SqS1 Original SqS1

θ=4
K 238.66 96.54 70.16 30.89 2,105.84 47.83 2,155.95 49.74
T 407.31 347.86 125.6 111.4 368.7 23.61 360.7 25.15
L −2,557.04 −2,557.04 −2,557.09 −2,557.05 −2,558.17 −2,557.12 −2,558.2 −2,557.12
θ 4.17(0.86) 4.17(0.85) 4.16(0.85) 4.17(0.85) 3.93(0.81) 4.14(0.84) 3.92(0.81) 4.15(0.84)
β1 −5.22(0.45) −5.22(0.45) −5.21(0.45) −5.22(0.45) −4.91(0.42) −5.18(0.45) −4.9 (0.42) −5.19(0.44)
β5 −5.25(0.45) −5.25(0.45) −5.24(0.45) −5.24(0.45) −4.93(0.42) −5.21(0.45) −4.93(0.42) −5.21(0.45)
β10 −5.26(0.44) −5.26(0.44) −5.25(0.44) −5.26(0.44) −4.95(0.41) −5.22(0.43) −4.94(0.41) −5.23(0.43)
β15 2.07(0.41) 2.07(0.41) 2.06(0.41) 2.07(0.41) 1.94(0.38) 2.05(0.41) 1.94(0.38) 2.06(0.41)
β20 2.09(0.42) 2.09(0.42) 2.08(0.42) 2.09(0.42) 1.96(0.39) 2.07(0.42) 1.96(0.39) 2.07(0.42)
β25 4.16(0.44) 4.16(0.44) 4.15(0.44) 4.16(0.44) 3.91(0.41) 4.13(0.44) 3.90(0.41) 4.14(0.44)
β30 4.18(0.44) 4.18(0.44) 4.17(0.44) 4.18(0.44) 3.93(0.41) 4.15(0.44) 3.92(0.41) 4.16(0.44)
β35 −1.03(0.42) −1.03(0.43) −1.03(0.42) −1.03(0.42) −0.97(0.40) −1.03(0.42) −0.97(0.40) −1.03(0.42)
β40 −1.06(0.41) −1.06(0.41) −1.05(0.41) −1.05(0.41) −0.99(0.39) −1.05(0.41) −0.99(0.39) −1.05(0.41)

θ=10
K 455.65 178.28 99.48 45.25 2,276.92 69.04 2,308.73 69.36
T 657.63 480.33 135.89 121.38 361.77 30.68 353.35 31.07
L −1,542.52 −1,542.52 −1,542.59 −1,542.54 −1,543.28 −1,542.61 −1,543.29 −1,542.61
θ 11.05(2.91) 11.05(2.91) 11.03(2.93) 11.02(2.90) 10.43(2.74) 10.89(2.85) 10.43(2.74) 10.91(2.85)
β1 −5.46(0.62) −5.46(0.62) −5.44(0.62) −5.45(0.62) −5.12(0.58) −5.37(0.61) −5.12(0.58) −5.38(0.61)
β5 −5.41(0.61) −5.41(0.61) −5.39(0.61) −5.40(0.61) −5.07(0.57) −5.32(0.59) −5.07(0.57) −5.33(0.60)
β10 −5.40(0.66) −5.40(0.65) −5.38(0.65) −5.39(0.65) −5.06(0.60) −5.31(0.63) −5.06(0.60) −5.32(0.64)
β15 2.14(0.54) 2.14(0.54) 2.14(0.54) 2.14(0.54) 2.01(0.51) 2.11(0.53) 2.00(0.51) 2.11(0.53)
β20 2.19(0.56) 2.19(0.56) 2.18(0.56) 2.19(0.56) 2.05(0.52) 2.15(0.55) 2.05(0.52) 2.16(0.55)
β25 4.32(0.58) 4.32(0.58) 4.30(0.58) 4.31(0.58) 4.05(0.54) 4.25(0.57) 4.04(0.54) 4.25(0.57)
β30 4.32(0.59) 4.32(0.59) 4.30(0.59) 4.31(0.59) 4.04(0.55) 4.25(0.58) 4.04(0.55) 4.25(0.58)
β35 −1.10(0.56) −1.10(0.56) −1.10(0.56) −1.10(0.56) −1.03(0.53) −1.08(0.55) −1.03(0.53) −1.08(0.55)
β40 −1.08(0.55) −1.08(0.55) −1.08(0.55) −1.08(0.55) −1.01(0.51) −1.06(0.54) −1.01(0.51) −1.06(0.54)

θ=16
K 659.78 251.92 123.95 54.58 2,479.56 90.95 2,507.71 90.23
T 935.35 692.06 162.08 146.8 409.84 40.56 413.09 46.89
L −1,099.3 −1,099.29 −1,099.34 −1,099.31 −1,099.89 −1,099.38 −1,099.9 −1,099.37
θ 17.70(5.17) 17.69(5.17) 17.66(5.14) 17.65(5.14) 16.66(4.81) 17.34(4.99) 16.65(4.81) 17.37(5.00)
β1 −5.61(0.78) −5.61(0.78) −5.59(0.77) −5.60(0.78) −5.25(0.72) −5.49(0.75) −5.25(0.72) −5.50(0.76)
β5 −5.61(0.77) −5.62(0.77) −5.60(0.77) −5.60(0.77) −5.25(0.71) −5.50(0.74) −5.25(0.71) −5.50(0.75)
β10 −5.68(0.79) −5.68(0.79) −5.66(0.78) −5.67(0.79) −5.31(0.72) −5.56(0.76) −5.31(0.72) −5.57(0.76)
β15 2.25(0.71) 2.25(0.71) 2.24(0.71) 2.25(0.71) 2.10(0.65) 2.20(0.69) 2.10(0.65) 2.21(0.69)
β20 2.21(0.68) 2.21(0.68) 2.20(0.68) 2.21(0.68) 2.06(0.63) 2.17(0.66) 2.06(0.63) 2.17(0.67)
β25 4.52(0.76) 4.52(0.76) 4.51(0.76) 4.51(0.76) 4.22(0.70) 4.42(0.73) 4.22(0.70) 4.43(0.74)
β30 4.46(0.78) 4.46(0.78) 4.44(0.78) 4.45(0.78) 4.16(0.72) 4.36(0.76) 4.16(0.72) 4.37(0.76)
β35 −1.13(0.72) −1.13(0.72) −1.13(0.72) −1.13(0.72) −1.06(0.67) −1.11(0.71) −1.06(0.67) −1.11(0.71)
β40 −1.11(0.71) −1.11(0.71) −1.11(0.71) −1.11(0.71) −1.04(0.66) −1.09(0.70) −1.04(0.66) −1.09(0.70)

Table 5. Regularized estimation in sparse high-dimensional gamma frailty models.

MRME Zeros MRME Zeros
Correct Incorrect Correct Incorrect

Method ρ = 0.25 ρ = 0.75
q=30

SCAD (MM2) 1.1634 26.92 0 1.1999 26.902 0
SCAD (MM3) 1.3720 26.932 0 1.4435 26.95 0

q=50
SCAD (MM2) 1.5687 45 0 1.6122 44.992 0
SCAD (MM3) 2.2237 44.994 0 2.8581 44.99 0

As in the simulation studies, the proposed MM algorithms and the EM algo-

rithm gave similar estimates of θ and β and hence we only report the estimates

based on the MM1 algorithm. For interval estimation, we repeately generated
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Table 6. The estimated regression coefficients for the colorectal cancer data.

Covariate MLE SE 95% Bootstrap CI† 95% Bootstrap CI‡

Chemotherapy −0.2136 0.1522 [−0.5079, 0.0887] [−0.5017, 0.0978]
Female −0.5260 0.1370 [−0.7953, −0.2583] [−0.7959, −0.2682]

Tumour stage A–B −1.0351 0.1834 [−1.4071, −0.6880] [−1.4137, −0.7041]
Tumour stage C −0.7396 0.1847 [−1.1169, −0.3931] [−1.1155, −0.3892]

Index 0 −0.3938 0.1414 [−0.6675, −0.1132] [−0.6653, −0.1233]
Index 1–2 0.0520 0.3134 [−0.5643, 0.6642] [−0.5426, 0.6873]

SE, the empirical standard error based on the boostrap samples; CI†, Normal- based
Bootstrap CI; CI‡, Bootstrap percentile CI.

bootstrap samples and obtained bootstrap estimates (θ̂∗g , β̂
∗
g ), g = 1, . . . , G with

G = 1,000. We constructed the normal-based bootstrap confidence interval and

the bootstrap percentile interval as follows. The normal-based 100(1 − α)%

bootstrap interval for θ was (θ̄∗ ± zα/2ŝe∗(θ̂)), where θ̄∗ = (1/G)
∑G

g=1 θ̂
∗
g and

ŝe∗(θ̂) =
√

(1/(G− 1))
∑G

g=1(θ̂∗g − θ̄∗)2. The bootstrap 100(1 − α)% percentile

interval was given by (θ̂∗L, θ̂
∗
U ), with θ̂∗L and θ̂∗U the (α/2)Gth and (1 − α/2)Gth

order statistics of {θ̂∗g}Gg=1. The confidence intervals for β and Λ0(.) were cal-

culated similarly. The estimate of θ was θ̂ = 0.6136 with a standard error of

0.1422. The 95% normal-based bootstrap CI and 95% bootstrap percentile CI of

θ were [0.3034, 0.8609] and [0.3289, 0.8765], respectively. Both of them exclude

0, which suggests a strong dependence between admission times from the same

patient. The results for the regression parameters are reported in Table 6. It

can be seen that sex and tumour stage are confirmed to have significant effects

on readmission time. The risks of patients with Charlson’s index 0 are shown to

be significantly different from those with Charlson’s index 1− 2 or ≥ 3 while the

risks for the latter two groups are not found to be different from each other. In

Figure 1, we plot the estimated baseline cumulative hazard rate (solid line) along

with its pointwise 95% normal-based boostrap confidence band (dotted line) and

95% bootstrap percentile confidence band (dash line).

7. Concluding Remarks

Frailty models have been widely used for the analysis of multivariate failure

time data, allowing not only the regression analysis for the times to event(s)

but also the modeling of the dependence structure between times to event(s).

The estimation and inference procedures are often based on the nonparametric

maximum likelihood estimation since the model parameter contains the unknown
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Figure 1. The estimated baseline cumulative hazard rate (solid line), pointwise normal-
based bootstrap confidence band (dotted line) and pointwise bootstrap percentile confi-
dence band (dash line).

baseline hazard function, it not can be separated from the other parameters as

in univariate failure time modeling. Due to the presence of the high-dimensional

nonparametric component, the numerical implementation of the nonparamet-

ric likelihood method relies on the EM algorithm and often involves Newton’s

method and large matrix inversion.

As a viable alternative to the EM algorithm, the MM principle can separate

the high-dimensional minorizing function into a sum of univairate function by

its construction. This avoids matrix inversion and provides a broader scope for

creating more efficient algorithms in statistical optimization problems. For gen-

eral gamma frailty survival models, we advocate the MM principle and develop a

class of profile MM algorithms, shown to exhibit certain theoretical and numerical

advantages. Although the MM algorithms are developed for the gamma frailty

model, a parallel approach can essentially be developed for the frailty models

with a general frailty distribution. We will investigate this in our future work.

Supplementary Materials

The online supplementary material includes the proofs of Theorems 2 and 3.
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