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Abstract 

Research related to the fit evaluation at the item-level involving cognitive diagnosis models 

(CDMs) has been scarce. According to the parsimony principle, balancing goodness-of-fit 

against model complexity is necessary. General CDMs require a larger sample size to be 

estimated reliably, and can lead to worse attribute classification accuracy than the appropriate 

reduced models when the sample size is small and the item quality is poor, which is typically 

the case in many empirical applications. The main purpose of this study is to systematically 

examine the statistical properties of four inferential item fit statistics: 
2XS  , the likelihood 

ratio test, the Wald test, and the Lagrange multiplier test. To evaluate the performance of the 

statistics, a comprehensive set of factors, namely, sample size, correlational structure, test 

length, item quality, and generating model, is systematically manipulated using Monte Carlo 

methods. Results show that the 
2XS   statistic has unacceptable power. Type I error and 

power comparisons favours LR and W tests over the LM test. However, all the statistics are 

highly affected by the item quality. With a few exceptions, their performance is only 

acceptable when the item quality is high. In some cases, this effect can be ameliorated by an 

increase in sample size and test length. This implies that using the above statistics to assess 

item fit in practical settings when the item quality is low remains a challenge. 

Keywords: cognitive diagnosis models, item fit statistics, absolute fit, relative fit, Type I 

error, power 
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Inferential Item Fit Evaluation in Cognitive Diagnosis Modeling 

Cognitive diagnosis models (CDMs) have been actively researched in the recent 

measurement literature. CDMs are multidimensional and confirmatory models specifically 

developed to identify the presence or absence of multiple attributes involved in the 

assessment items (for an overview of these models see, e.g., DiBello, Roussos, & Stout, 

2007; Rupp & Templin, 2008). Although originally developed in the field of education, these 

models have been employed in measuring other types of constructs, such as psychological 

disorders (e.g., de la Torre, van der Ark, & Rossi, 2015; Templin & Henson, 2006) and 

situation-based competencies (Sorrel et al., 2016).  

There are currently no studies comparing item characteristics (e.g., discrimination, 

difficulty) as a function of the kind of the constructs being assessed. However, some data 

suggest that important differences can be found. Specifically, notable differences are found 

for item discrimination, which is one of the most common index used to assess item quality. 

Item discrimination relates to how well an item can accurately distinguish between 

respondents who differ on the constructs being measured. Although it does not account for 

the attribute complexity of the items, a simple measure of discrimination is defined as the 

difference between the probabilities of correct response for those respondents mastering all 

and none of the required attributes. This index it is bounded by 0 and 1. In empirical 

applications, such as the fraction subtraction data described and used by Tatsuoka (1990) and 

by de la Torre (2011), one of the most widely employed datasets in CDM in the educational 

context, the mean discrimination power of the items was .80. In contrast, when CDMs have 

been applied in applications outside educational measurement the resulting discrimination 

estimates were found to be in the .40 range (de la Torre et al., 2015; Liu, You, Wang, Ding, 

& Chang, 2013; Sorrel et al., 2016; Templin & Henson, 2006). In these empirical 

applications, researchers typically used a sample size that varies approximately from 500 
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(e.g., de la Torre, 2011; Templin and Henson, 2006) to 1,000 (de la Torre et al., 2015), and an 

average number of items equal to 30, 12 being the minimum (de la Torre, 2011). Different 

CDMs were considered, including the deterministic inputs, noisy “and” gate (DINA; Haertel, 

1989) model), the deterministic inputs, noisy “or” gate (DINO) model (Templin & Henson, 

2006), the additive CDM (A-CDM; de la Torre, 2011), and the generalized deterministic 

inputs, noisy “and” gate (G-DINA; de la Torre, 2011) model.  

Given the large number of different models, one of the critical concerns in CDM is 

selecting the most appropriate model from the available CDMs. Each CDM assumes a 

specified form of item response function (IRF). In the CDM context, the IRF denotes the 

probability that an item j is answered correctly as a function of the latent class. This study 

focused on methods assessing this assumption. Model fit evaluated at the test level 

simultaneously takes all the items into consideration. However, when there is model-data 

misfit at the test level, the misfit may be due to a (possibly small) subset of the items. Item-

level model fit assessment allows to identify these misfitting items. The research focused on 

item fit is important because such analysis can provide guidelines to practitioners on how to 

refine a measurement instrument. This is a very important topic because current empirical 

applications reveal that no one single model can be used for all the test items (see, e.g., de la 

Torre et al., 2015; de la Torre & Lee, 2013; Ravand, 2015). Consequently, in this scenario, 

item fit statistics are a useful tool for selecting the most appropriate model for each item. The 

main purpose of this study was to systematically examine the Type I error and power of four 

item fit statistics, and provide information about the usefulness of these indexes across 

different plausible scenarios. Only goodness-of-fit measures with a significance test 

associated with them (i.e., inferential statistical evaluation) were considered in this article. 

The rest of the article is structured as follows. First is a brief introduction of the generalized 

DINA model framework. This is followed by a review of item fit evaluation in CDM, and for 
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a presentation of the simulation study designed to evaluate the performance of the different 

item fit statistics. Finally, the results of the simulation study and the implications and future 

studies are discussed. 

The Generalized DINA Model Framework 

In many situations the primary objective of CDM is to classify examinees into 2
K
 

latent classes for an assessment diagnosing K attributes. Each latent class is represented by an 

attribute vector denoted by 1 2( , , , )l l l lK  α , where l = 1,..., 2
K
. All CDMs can be 

expressed as ( 1| ) ( )j l j lP X P α α , the probability of success on item j conditional on the 

attribute vector l. For diagnostic purposes, the main CDM output of interest is the estimate of 

examinee i's { }i ikα . 

Several general models that encompasses reduced (i.e., specific) CDMs have been 

proposed, which include the above-mentioned G-DINA model, the general diagnostic model 

(GDM; von Davier, 2005), and the log-linear CDM (LCDM; Henson, Templin, & Willse, 

2009). In this article, the G-DINA model, which is a generalization of the DINA model, is 

employed. The G-DINA model describes the probability of success on item j in terms of the 

sum of the effects of the attributes involved and their corresponding interactions. This model 

partitions the latent classes into 
*

2 jK
 latent groups, where 

*

jK  is the number of required 

attributes for item j. Each latent group represents one reduced attribute vector, 
*

ljα , that has its 

own associated probability of success, written as 

** * *

*

1

*

0 ' ' 12...
1 ' 1 1 1

( ) ,
jj j j

j

KK K K

lj j jk lk jkk lk lk lkj K
k k k k k

P        


    

       α                    (1) 
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where 0j  is the intercept for item j, jk  is the main effect due to ,k  'jkk is the interaction 

effect due to k , and 'k and *...12 jKj
  is the interaction effect due to 1 ,..., .*

jK
  Thus, without 

constraints on the parameter values, there are 
*

2 jK
 parameters to be estimated for item j. 

 The G-DINA model is a saturated model that subsumes several widely used reduced 

CDMs, including the DINA model, the DINO model, the A-CDM, the linear logistic model 

(LLM; Maris, 1999), and the reduced reparametrized unified model (R-RUM; Hartz, 2002). 

Although based on different link functions, A-CDM, LLM, and R-RUM are all additive 

models, where the incremental probability of success associated with one attribute is not 

affected by those of other attributes. Ma, Iancoangelo, and de la Torre (2016) found that, in 

some cases, one additive model can closely recreate the IRF of other additive models. Thus, 

in this work we only consider three of these reduced models corresponding to the three types 

of condensation rules: DINA model (i.e., conjunctive), DINO model (i.e., disjunctive), and 

the A-CDM (i.e., additive). If several attributes are required to correctly answer the items, the 

DINA model is deduced from the G-DINA model by setting to zero all terms except for 0j  

and *...12 jKj
  to zero. As such, the DINA model has two parameters per item. Likewise, the 

DINO model also has two parameters per item, and can be obtained from the G-DINA model 

by setting *

*

...12

1

' )1(
j

j

Kj

K

jkkjk 


  . When all the interaction terms are dropped, the 

G-DINA model under the identity link reduces to the A-CDM, which has 1* jK  parameters 

per item. Each of these models assumes a different cognitive process in solving a problem 

(for a detailed description, see de la Torre, 2011). 

Item Fit Evaluation 

 The process of model selection involves checking the model-data fit, which can be 

examined at test, item, or person level. Extensive studies have been conducted to evaluate the 
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performance of various fit statistics at the test level (e.g., Chen, de la Torre, & Zhang, 2013; 

Liu, Tian, & Xin, 2016), and at the person level (e.g., Liu, Douglas, & Henson, 2009; Cui & 

Leighton, 2009). At the item level, some item fit statistics have also been recently proposed 

to evaluate absolute fit (i.e. the discrepancy between a statistical model and the data) and 

relative fit (i.e. the discrepancy between two statistical models). The parsimony principle 

dictates that from a group of models that fit equally well, the simplest model should be 

chosen. The lack of parsimony, or overfitting, may result in a poor generalization 

performance of the results to new data because some residual variation of the calibration data 

is captured by the model. With this in mind, general CDMs should not be always the 

preferred model. In addition, as pointed out by de la Torre and Lee (2013), there are several 

reasons that make reduced models preferable to general models. First, general CDMs are 

more complex, thus requiring a larger sample size to be estimated reliably. Second, reduced 

models have parameters with a more straightforward interpretation. Third, appropriate 

reduced models lead to better attribute classification accuracy than the saturated model, 

particularly when the sample size is small and the item quality is poor (Rojas, de la Torre, & 

Olea, 2012). In this line, Ma et al. (2016) found that a combination of different appropriate 

reduced models determined by the W test always produced a more accurate classification 

accuracy than the unrestricted model (i.e., the G-DINA model). In the following, we will 

describe some of the statistics that may be computed in this context. 

Absolute Fit 

Absolute item fit is typically assessed by comparing the item performance on various 

groups to the performance levels predicted by the fitted model. A χ
2
-like statistic is used to 

make this comparison. Different statistics have emanated from traditional item response 

theory (IRT), and the main difference among them is how the groups are formed. There are 

two main approaches. In the first one, respondents are grouped based on their latent trait 
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estimates and observed frequencies of correct/incorrect responses for these groups are 

obtained. Yen’s (1981) Q1 statistic is computed using this approach and has been adapted to 

CDM (Sinharay & Almond, 2007; Wang, Shu, Shang, & Xu, 2015). Its performance has been 

compared to that of the posterior predictive model checking method (Levy, Mislevy, & 

Sinharay, 2009). Q1  type I error was generally well kept below .05 and was preferred to the 

posterior predictive model checking method. The main problem with this approach is that 

observed frequencies are not truly observed because they cannot be obtained without first 

fitting a certain model. This will lead to a model-dependent statistic that makes it difficult to 

determine the degrees of freedom (Orlando & Thissen, 2000; Stone & Zhang, 2003). In the 

second approach, the statistic is formulated based on the observed and expected frequencies 

of correct/incorrect responses for each summed score (Orlando & Thissen, 2000). The main 

advantage of this approach is that the observed frequencies are solely a function of observed 

data. Thus, the expected frequencies can be compared directly to observed frequencies in the 

data. A χ
2
-like statistic, referred to as 

2XS   (Orlando and Thissen, 2000), is then computed 

as 

21
2 2

1

( )
~ ( -1- )

(1 )

J
js js

j s

s js js

O E
S X N J m

E E







 


 ,                     (2)    

where s is the score group, J is the number of items, Ns is the number of examinees in group 

s, and Ojs and Ejs are, the observed and predicted proportions of correct responses for item j 

for group s, respectively. The model-predicted probability of correctly responding item j for 

examinees with sum score s is defined as 

                                    

     

   

2

1

2

1

1 1

( 1 s)

K

K

j

ij l i l

l
ij i

i l

l

P x P S s P

P x S

P S s P

 







  

  







α

α

 ,                   (3) 
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 where  1j

i lP S s  
 
is the probability of obtaining the sum score 1s  in the test 

composed of all the items except item j, and  P α defines the probability for each of the 

latent. Model-predicted joint likelihood distributions for each sum score are computed the 

recursive algorithm developed by Lord and Wingersky (1984) and detailed in Orlando and 

Thissen (2000). The statistic is assumed to be asymptotically 
2  distributed with J – 1 – m 

degrees of freedom, where m is the number of item parameters.  

Relative Fit 

 When comparing different nested models there are three common tests than can be 

used (Buse, 1982): likelihood ratio (LR) test, Wald (W), and Lagrange multiplier (LM) tests. 

In the CDM context, the null hypothesis (H0) for these tests assumes that the reduced model 

(e.g., A-CDM) is the "true" model, whereas the alternative hypothesis (H1) states that the 

general model (i.e., G-DINA) is the "true" model. As such, H0 defines a restricted parameter 

space. For example, for an item j measuring two attributes in the A-CDM model, we restrict 

the interaction term to be equal to 0, whereas this parameter is freely estimated in the G-

DINA model. It should be noted that the three procedures are asymptotically equivalent 

(Engle, 1983). In all the three cases, the statistic is assumed to be asymptotically χ
2
 

distributed with 
*

2 jK
p  degrees of freedom, where p is the number of parameters of the 

reduced model.  

Let θ  and θ̂ denote the maximum likelihood estimates of the item parameters under 

H0 and H1, respectively (i.e., restricted and unrestricted estimates of the population 

parameter). Although all three tests answer the same basic question, their approaches to 

answering the question differ slightly. For instance, the LR test requires estimating the 

models under H0 and H1; in contrast, the W test requires estimating only the model under H1, 

whereas the LM test requires estimating only the model under H0.   
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 Before describing in greater detail these three statistical tests, it is necessary to 

mention a few points about the estimation procedure in CDM. The parameters of the G-

DINA model can be estimated using the marginalized maximum likelihood estimation 

(MMLE) algorithm as described in de la Torre (2011). By taking the derivative of the log-

marginalized likelihood of the response data,  l X , with respect to the item parameters, 

*( )j ljP α , we obtain the estimating function:  

 

      
 * *

*

* * *

1

1 lj lj
j lj

j lj j lj j lj

l
R P I

P P P


     
    

 
α

X
α

α α α
,                         (4) 

where *
lj

I
α

 is the number of respondents expected to be in the latent group 
*

ljα , and *
lj

R
α

 is the 

number of respondents in the latent group 
*

ljα  expected to answer item j correctly. Thus, the 

MMLE estimate of  *

j ljP α  is given by   * *

*ˆ
lj lj

j ljP R I
α α

α . Estimating functions are also 

known as score functions in the LM context. The second derivative of the log-marginalized 

likelihood with respect to  *

j ljP α  and  *

'j l j
P α  can be shown to be (de la Torre, 2011) 

 
 

   
 

 
   

* *

* *

* * * *
1

   
| |

  1     1  

I
ij j lj ij j l j

lj i l j i

i j lj j lj j l j j l j

X P X P
p p

P P P P





 

     
   

           


α α

α X α X
α α α α

,            (5) 

where  * |lj ip α X  represents the posterior probability that examinee i is in latent group 
*

ljα . 

Using  *ˆ
j ljP α  and the observed X to evaluate Equation 4, we obtain the information matrix 

for the parameters of item j,  ˆ *

jI P , and its inverse corresponds to the variance-covariance 

matrix,  ˆ *

jVar P , where   *ˆ ˆ*

j j ljPP α  denotes the probability estimates. 

 Likelihood ratio test. As previously noted, the LR test requires the estimation of both 

unrestricted and restricted models. The likelihood function is defined as the probability of 
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observing X given the hypothesis. It is defined as  L θ for the null hypothesis and  ˆL θ  for 

the alternative hypothesis. The LR statistic is computed as twice the difference between the 

logs of the two likelihoods: 

     
*

2ˆ2 log log ~ 2 jK
LR L L p   

 
θ θ ,                          (6) 

where  
11

log log ( ) ( )
I L

i l l

li

L L p


 θ X α α and 
1

1

( ) ( ) [1 ( )ij ij

J
X X

i l lj lj

j

L P P




 X α α α . Having a 

test composed of J items, the application of the LR test at the item level implies that * 1jK
J

  

comparisons will be made, where * 1jK
J


 is the number of items measuring at least K = 2 

attributes. For each of the * 1jK
J


 comparisons, a reduced model is fitted to a target item, 

whereas the general model is fitted to the rest of the items. This model is said to be a 

restricted model because it has less parameters than an unrestricted model where the G-DINA 

is fitted to all the items. The LR test can be conducted to determine if the unrestricted model 

fits the data significantly better than the restricted model comparing the likelihoods of both 

the unrestricted and restricted models (i.e.,  ˆL θ  and  L θ , respectively). Note that the 

likelihoods here are computed at the test level. 

 Wald test. The W test takes into account the curvature of the log-likelihood function, 

which is denoted by  ˆC θ , and defined by the absolute value of 
22 log L θ evaluated at 

ˆθ θ . In CDM research, de la Torre (2011) originally proposed the use of the Wald test to 

compare general and specific models at the item level under the G-DINA framework. For 

item j and a reduced model with p parameters, this test requires setting up Rj, a 

* *

(2 ) 2j jK K
p   restriction matrix with specific constraints that make the saturated model to be 

equivalent to the reduced model of interest. The Wald statistic is computed as 
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                                   
*1

* * * 2ˆ ˆ ˆ' ' ~ 2 j

j j j j j j

K

j ja pW V r 


        



   
R P R P R R P ,          (7) 

where ˆ *

jP  are the unrestricted estimates of the item parameters. 

 Lagrange multiplier test. The LM test is based on the slope of the log-marginalized 

likelihood   log /S L  θ θ , which is called the score function. By definition,  S θ  is 

equal to zero when evaluated at the unrestricted estimates of θ (i.e., θ̂ ), but not necessarily 

when evaluated at the restricted estimates (i.e., θ ). The score function is weighted by the 

information matrix to derive the LM statistics. Following the parameter estimation under the 

G-DINA framework, the score function can be assumed to be as indicated by Equation 3. The 

LM statistic for item j is defined as 

                                            
*

2( ) ' ( ) ( ) 2~ jK* * *

j j jj j jLM S Var S p P P P ,                              (8) 

where 
*

jP  are the restricted estimates of the item parameters. It should be noted that all item 

parameters are estimated under the restricted model.  

 Before these statistics can be used with real data, we need to ensure that they have 

good statistical properties. This is even more crucial for 
2XS  , LR, and LM tests because 

they have not been examined before in the CDM context. There have been, however, 

noteworthy studies on 
2XS   in the IRT framework by Orlando and Thissen (2000, 2003) 

and Kang and Chen (2008). Its Type I error was generally found to be close to the nominal 

level.  The LM test has also been applied within the IRT framework. It has been shown to be 

a useful tool for evaluating the assumption of the form of the item characteristics curves in 

the two- and three- parameter logistic models (Glas, 1999; Glas & Suárez-Falcón, 2003). 

However, item quality was not manipulated in these previous studies and its effect is yet to be 

determined. This factor has been found to be very relevant in many different contexts using 

the relative item fit indices, as is the case of the evaluation of differential item functioning 
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(DIF). For example, prior research using the LR test in DIF have found that the statistical 

power of the LR test to detect DIF increases with increases in item discrimination (Wang & 

Yeh, 2003).  

The W test is the only one that has been employed before in the CDM context for 

assessing fit at the item level. However, we found only two simulation studies examining 

their statistical properties. Although these works have contributed to our state of knowledge 

in this field, many questions related to the usefulness of these statistics with empirical data 

remained open. De la Torre and Lee (2013) studied the W test in terms of Type I error and 

power, and they found that it had a relative accurate Type I error and high power, particularly 

with large samples and items measuring a small number of attributes. In their case, the 

number of items was fixed to 30 and item quality was not manipulated. Items were set to 

have a mean discrimination power of approximately .60. Recently, Ma et al. (2016) extended 

the findings of de la Torre and Lee (2013) by including two additional reduced models (i.e., 

LLM and R-RUM). In their simulation design, they also considered two additional factors, 

item quality, and attribute distribution. They found that, although item quality strongly 

influenced the Type I error and power, the effect of the attribute distribution (i.e., uniform or 

high-order) was negligible. As a whole, although these studies have shed some light on the 

performance of the W test, the impact of other important factors or levels not explicitly 

considered in these studies remains unclear. This study aims to fill this gap, as well as 

examine the potential use of 
2XS  , LR,  and LM tests for item fit evaluation in the CDM 

context. 

Method 

A simulation study was conducted to investigate the performance of several item fit 

statistics. Five factors were varied and their levels were chosen to represent realistic scenarios 

detailed in the introduction. These factors are: (1) generating model (MOD; DINA model, A-
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CDM, and DINO model); (2) test length (J; 12, 24, and 36 items); (3) sample size (N; 500 

and 1,000 examinees); (4) item quality or discrimination, defined as the difference between 

the maximum and the minimum probabilities of correct response according to the attribute 

latent profile (IQ; .40, .60, and .80); and (5) correlational structure (DIM; uni- and 

bidimensional scenarios). 

The following are details of the simulation study. The probabilities of success for 

individuals who mastered none (all) of the required attributes were fixed to .30 (.70), .20 

(.80), and .10 (.90) for the low, medium, and high item quality conditions, respectively. For 

the A-CDM, an increment of .40/
*

jK , .60/
*

jK , and .80/
*

jK  was associated with each attribute 

mastery for the low, medium, and high item quality conditions, respectively. The number of 

attributes was fixed to K = 4. The correlational matrix of the attributes has an off-diagonal 

element of .5 in the unidimensional scenario, and 2×2 block diagonal submatrices with a 

correlation of .5 in the bidimensional scenario. The Q-matrices used in simulating the 

response data and fitting the models are given in the online annex 1. There were the same 

number of one-, two-, and three-attribute items. 

 The 3×3×2×3×2 (MOD × J × N × IQ × DIM) between-subjects design produces a total 

of 108 factor combinations. For each condition, 200 data sets were generated and DINA, A-

CDM, DINO, and G-DINA models were fitted. Type I error was computed as the proportion 

of times that we reject H0 when the fitted model is true. Power was computed as the 

proportion of times that a wrong reduced model is rejected. For example, in the case of the 

DINA model, power was computed as the proportion of times that we reject H0 when the 

generating model is the A-CDM or the DINO model. Type I error and power were 

investigated using .05 as the significance level. With 200 replicates, the 95% confidence 

interval for the Type I error is given by  .05 1.96 .05(1 .05) / 200 .02,.08   . For the 

purposes of this work, a power of at least .80 was considered adequate. The power analysis 
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may not be interpretable when the Type I error for the statistics compared is very disparate. 

To make meaningful comparisons, it was necessary to approximate the distribution of the 

item-fit statistic under the null hypothesis. In doing so, we used the results from the 

simulation study. A nominal alpha (αn) for which the actual alpha (αa) was equal to .05 was 

found for all cases (i.e., simulation conditions of the design) where the Type I error was 

either deflated or inflated (i.e., αa ∉ [.02, .08]). In these cases, this adjusted value was used as 

αn producing a value for power which could then be compared with the other statistical tests. 

As a mean to summarize and better understand the results of the simulation study, 

separate ANOVAs were performed for each of the item fit statistics. Dependent variables 

were the Type I error and power associated with each statistical test for all items with the five 

factors as between-subjects factors. Due to the large sample size, most effects were 

significant. For this reason, omega squared ( 2̂ ), measure of effect size, was chosen to 

establish the impact of the independent variables. We considered the following guidelines for 

interpreting 2̂  (Kirk, 1996): Effect sizes in the intervals [.010, .059), [.059, .138), and [.138, 

∞) were considered small, medium, and large effects, respectively. In addition, a cutoff of 2̂  

≥ 0.138 was used to establish the most salient interactions. We checked that the estimates of 

observed power (i.e., post-hoc power) were greater than .80. The code used in this article was 

written in R. Some functions included in the CDM (Robitzsch et al., 2015) and GDINA (Ma 

& de la Torre, 2016) packages were employed. The R code can be requested by contacting 

the corresponding author. 

Results 

 Due to space constraints, we only discuss effects sizes and report marginal means for 

the most relevant effects. Type I error and power of the item fit statistics for the three reduced 

models in their entirety are shown in the online annexes 2 and 3. 

Type I Error      
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The effect size 2̂  values and marginal means associated with each main effect on the 

Type I error are provided in Table 1. 
2XS   is the only statistic with a Type I error that was 

usually close to the nominal level. The marginal means are always within the [.02, .08] 

interval, with the grand mean being .06. We only find a small effect of item quality ( 2̂  = 

.01) and the generating model ( 2̂  = .03): Type I error was slightly larger in the low and 

medium item quality conditions and for the A-CDM. None of the interactions had a salient 

effect. 

The Type I error of the LR, W, and LM tests were very similar. Type I error was only 

acceptable for the high item quality conditions, which was the factor with the greatest effect 

( 2̂  = .33, .71, and .30 for LR, W and LM tests, respectively). When the item discrimination 

is low or medium, the Type I error was inflated. This makes it difficult to interpret the 

marginal means for all other factors, because conditions with low, medium, and high item 

discrimination are mixed. That was why the marginal means were generally much larger than 

the upper-limit of the confidence interval (i.e., .08). All things considered, the grand means of 

the three tests were inflated: .19, .29, and .14 for LR, W, and LM tests, respectively. Only one 

of the two-way interactions had a salient effect: Generating model × Item quality. As can be 

observed from the Figure 1, there were large differences between the marginal means for the 

different levels of generating model across the levels of item quality. The Type I error was 

closer to the nominal level when item quality got higher, with the exception of the DINO 

model, where Type I error was more inflated with medium quality items. Marginal means for 

the high quality conditions were within the confidence interval for all models in the case of 

LR and W test. When the generating model is A-CDM the LM test tended to be conservative 

(i.e., Type I error dropped close to 0).  

Insert Table 1 here 
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None of the other interactions for the LR, W, and LM tests were relevant so the main 

effects could be interpreted. However, as noted above, Type I error was generally acceptable 

only in the high item quality condition. Sample size and test length affected the performance 

of the three statistics: Sample size had a small effect for the LR, W, and LM tests ( 2̂  = .01, 

.03, and .01, respectively); whereas test length had a small effect on the Type I error of the 

LR and LM tests ( 2̂  = .02 and .03, respectively), and a large effect in the case of W test ( 2̂  

= .17). The Type I error was closer to the nominal level as the sample size and the test length 

increased. As can be observed in the online annex 2, there were cases where Type I error was 

within the confidence interval when the test length and the sample size were large (i.e., J = 24 

or 36 and N = 1,000). Finally, correlational structure had a small effect in the case of the LM 

test ( 2̂  = .02). The Type I error for the LM test was inflated in the bidimensional conditions 

compared to the unidimensional conditions, although differences were small.  

Insert Figure 1 here 

Power 

The 2̂  values and marginal means associated with each main effect on the power are 

provided in Table 2.  For most of the conditions involving high quality items, it was not 

necessary to correct αa. For example, we corrected αa for the LR tests only in some of the 

conditions (i.e., J = 12 and N = 500). The pattern of effects of the manipulated factors on the 

power was very similar for all the tests. However, power of the LR and W tests was almost 

always better than those of the 
2XS   and LM tests - the grand means across models were 

.75, .78, .25, and .46 for LR, W, 
2XS  , and LM tests, respectively. Again, item quality had 

the greatest effect with an average 2̂  = .74. Power was usually lower than .80 in the low 

item quality conditions for all the statistics. This factor was involved in all the salient high-

order interactions: Sample size × Item quality (Figure 2), Test length × Item quality (Figure  

3), Test length × Item quality × Correlational structure (Figure 4), and Test length × Item 
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quality × Generating model (Figure 5). Here follows a description of each of these 

interactions. 

Insert Table 2 here 

As noted before, power increased as the item quality got better. This effect interacted 

with the sample size and test length (see Figures 2 and 3). In the case of the 
2XS   and LM 

tests, the improvement on the power associated with moving from low to medium quality 

items was similar for the different levels of sample size and test length, but this gain is 

generally much bigger when we move from medium to high quality items in the case of the N 

= 1,000, J = 24, and J = 36 conditions. The pattern of results for the LR test was similar to the 

one observed for the W test. Thus only the W test was depicted in Figure 3. Power in the 

medium quality items conditions was already close to 1.00 when N = 1,000 and J = 24 or 36. 

This is why there is a small room for improvement when we move to high quality item 

conditions because of this ceiling effect. 

Insert Figures 2 and 3 here 

In the case of the LM test, we found that the three-way Correlational structure × Test 

length × Item quality had a salient effect on the power for rejecting A-CDM when was false. 

As can be seen from Figure 4, only test length and item quality had a noteworthy effect on 

the LM power in the bidimensional scenario.  

Insert Figure 4 here 

There is a salient interaction effect of the item quality and the generating model 

factors affecting all the statistics. As can be observed from Table 2, in general, the main 

effect of the generating model indicates that, for 
2XS  , LR, and W tests, the DINA model 

was easier to reject when the data were generated with the DINO model, and vice versa. 

Power for rejecting A-CDM was generally higher when data were generated with the DINA 
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model. The effect on the power of LM was different: the power for rejecting DINA and 

DINO models was higher for data generated using the A-CDM, and the power for rejecting A-

CDM was close to 0, regardless the generating model - .09 and .13 for data generated with 

DINA and DINO models, respectively. In short, LM tended to reject models different from 

A-CDM. In the case of the 
2XS   power, power increased as the item quality got better, but 

the increment was larger for models which were easier to distinguish (i.e., DINA vs. DINO, 

A-CDM vs. DINA). This relationship between item quality and generating models was 

affected by the test length in the case of LR, W, and LM tests. This three-way interaction was 

very similar for the LR and W tests, so we only depicted it for the W test (see Figure 5). 

Power was always equal to 1.00 in the high item quality conditions, regardless the test length. 

In the medium item quality conditions, power was also very high when comparing the more 

distinguishable models (i.e., DINA vs. DINO, A-CDM vs. DINA), even when test was 

composed by a small number of items (J = 12). In the low item quality conditions, the LR 

and W test only can differentiate between the DINA and DINO models, but only if the 

number of items was at least 24. In the case of the LM test, this three-way interaction had 

only a salient effect on the power for rejecting DINA and A-CDM models. However, power 

were generally only acceptable for rejecting DINA and DINO models when the generating 

model is A-CDM, regardless the test length and the quality of the items. 

Insert Figure 5 here 

Discussion 

 Even though the interest in CDMs began in response to the growing demand for a 

better understanding of what students can and cannot do, CDMs have being recently applied 

to data from different contexts such as psychological disorders (de la Torre et al., 2015; 

Templin & Henson, 2006) and competency modeling (Sorrel et al., 2016). Item quality has 
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been found to be typically low outside of the educational context. In addition, according to 

the literature this is an expected result of applications where the attributes are specified post 

hoc (i.e., CDM are retrofitted; Rupp & Templin, 2008).The proper application of a statistical 

model requires the assessment of model-data fit. One important question that is raised by 

these new applications is how item quality may affect the available procedures for assessing 

model fit. While extensive studies have been conducted to evaluate the performance of 

various fit statistics at the test (e.g., Chen et al., 2013, Liu et al., 2016) and person levels (e.g., 

Liu et al., 2009; Cui & Leighton, 2009), the item-level is probably the one who has received 

less attention in previous literature. The statistical properties of the of the item fit statistics 

remains unknown (e.g., 
2XS  , LR, and LM tests) or need further investigation (e.g., W 

test). Taking the above into account, this study provides information about the usefulness of 

these indexes on different plausible scenarios. 

 In order to employ item fit statistics in practical use, it is necessary that Type I error is 

close to the nominal value and that they have a great power to reject false models. In the case 

of the statistic evaluating absolute fit, 
2XS  , although it has been found to have a 

satisfactory Type I error, its power is far from reaching acceptable values. These results are in 

line with previous studies assessing the performance of χ
2
-like statistics in the context of the 

DINA model (Wang et al., 2015). Here we extent these results to compensatory and additive 

models (i.e., DINO and A-CDM). In conclusion, given its poor performance in terms of 

power, decisions cannot be made based only on this indicator. There are, however, a number 

of possible solutions for dealing with this problem that need to be considered in future 

studies. For example, Wang et al. (2015) have shown how the Stone’s (2000) method can be 

applied to avoid low power in the case of the DINA model. As far as we know, this method 

has not yet being included in the software available.  
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Overall the Type I error and power comparisons favour LR and W tests over the LM 

test. However, and more importantly, Type I error is only acceptable (i.e., α  .05) when the 

item quality is high: with a very few exceptions, Type I error with medium and low quality 

items is generally inflated. We tentatively attribute these results to the noise in the estimation 

of the item parameters and the standard errors in those conditions. This also applies in other 

contexts such as the evaluation of differential item functioning (e.g., Bai, Sun, Iaconangelo, 

& de la Torre, 2016). Particularly in the case of the LR test, in medium item quality 

conditions this can be compensated by an increase in the number of respondents and items 

when the true model is DINA or A-CDM. For the DINO model Type I error is highly inflated 

even in those conditions, which is not consistent with the previous results of de la Torre and 

Lee (2013). On the other hand, when we correct the actual alpha so that it corresponds to the 

nominal level, we found that the power is still generally high in the medium item quality 

conditions. Monte Carlo methods can be used in practical settings to approximate the 

distribution of the statistics under the null hypothesis as it is done in the simulation study 

(e.g., Rizopoulus, 2006). All things considered, this means that, most likely, we will not 

choose an incorrect model if we use LR or W test and the item quality is at least medium, 

which is consistent with de la Torre and Lee’s results for the W test. However, this does not 

mean that CDMs cannot be applied in poor quality items conditions. In these situations the 

model fit of the test should be assessed as a whole and it should be ensured that the derived 

attribute scores are valid and reliable. Another promising alternative is to employ a strategy 

that makes the best of each statistic. According to our results, 
2XS  , LR, and W statistics 

can be used simultaneously as a useful tools for assessing item fit in empirical applications. 

Among all the models fitting the data according to the 
2XS   statistic, we will choose the 

one pointed by the LR or the W test as the most appropriate model.  
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Even though the LR test was found to be relatively more robust than the W test, the 

power of W test was slightly higher. Another advantage of using the W test is that it requires 

only the unrestricted model to be estimated. In contrast, the LR test required * 1
1

jK
J NR


  

models to be estimated, where NR is the number of reduced models to be tested. For example, 

for one of the conditions with 36 items and 1,000 examinees the computation of the LR and 

W test requires 2.44 minutes and 6 seconds, respectively. In other words, the W test was 24 

times faster than the LR test. Furthermore, in a real scenario, multiple CDMs can be fitted 

within the same test. Thus, a more exhaustive application of the LR test would require 

comparing the different combinations of the models, and lead to substantially longer time to 

implement the LR test. Future studies should explore how this limitation can be addressed. 

Although we introduced the LM test as an alternative for assessing fit at the item 

level, we found that its performance is highly affect by the underlying model: it tended to 

keep A-CDM and reject DINA and DINO models. This test focuses on the distance between 

the restricted and the unrestricted item parameter estimates. A possible explanation for this 

poor performance is that the computation of this difference (i.e., the score function) relies on 

a good estimation of the attribute the joint distribution. In this regard, Rojas et al. (2012) 

found that fitting an incorrect reduced CDM may have a great impact on the attribute 

classification accuracy, affecting the estimation of the attribute joint distribution, and thus the 

performance of this test. 

 To fully appreciate the current findings, some caveats are in order. A first caveat 

relates to the number of attributes. In certain application fields the number of attributes can be 

high. For example, Templin and Henson (2006) specifies 10 attributes corresponding to the 

10 DSM–IV–TR criteria for pathological gambling. Thus, it is recommended that future 

research examine the effect of the number of attributes. Second, all items were simulated to 

have the same discrimination power. In a more realistic scenario, discriminating and non-
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discriminating items are mixed. Third, we focus on inferential statistical evaluation. Future 

studies should consider other approximations. For example, goodness-of-fit descriptive 

measures have been shown to be useful in some situations. Chen et al. (2013) found that fit 

measures based on the residuals can be effectively used at the test level. Kunina-Habenicht, 

Rupp, & Wilhelm (2012) found that the distributions of the RMSEA and MAD indexes can 

be insightful when evaluating models and Q-matrices in the context of the log-linear model 

framework. New studies might try to extend this results to other general frameworks.  
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Table 1 

Marginal Means and Effect Sizes of the ANOVA Main Effects for the Type I Error 

Item fit statistic 

Data factor / Level 

Grand mean N DIM J IQ MOD 
2̂  500 1,000 2̂  UNI BI 2̂  12 24 36 2̂  LD MD HD 2̂  DINA A-CDM DINO 

2XS   .00 .07 .07 .00 .06 .07 .00 .06 .07 .07 .01 .07 .07 .06 .03 .06 .08 .06 .06 

LR .01 .21 .18 .00 .19 .20 .02 .22 .19 .17 .33 .30 .23 .06 .14 .15 .17 .27 .19 

W .03 .31 .27 .00 .29 .29 .17 .36 .28 .24 .71 .51 .29 .08 .18 .24 .27 .36 .29 

LM .01 .15 .13 .02 .13 .15 .03 .16 .14 .13 .30 .16 .20 .07 .60 .16 .01 .26 .14 

Note. Effect size values greater than .010 are shown in bold. Shaded cells correspond to Type I error in the [.02, .08] interval. N = Sample size; 

DIM = Correlational structure; J = Test length; IQ = Item quality; MOD = Generating model; Uni: Unidimensional; Bi: Bidimensional; LD = 

Low discrimination; MD = Medium discrimination; HD = High discrimination. 

Table 2 

Marginal Means and Effect Sizes of the ANOVA Main Effects for the Power for Rejecting a False Reduced Model 

Fitted, 

false 

model 

Item fit 

statistic 

Data factor / Level 

Grand 

mean 
N DIM J IQ 

Generating, true model 

(MOD) 
2̂  500 1,000 2̂  Uni Bi 2̂  12 24 36 2̂  LD MD HD 2̂  A-CDM DINO 

DINA 

2XS   .25 .16 .25 .00 .21 .20 .40 .12 .22 .27 .81 .07 .13 .42 .53 .13 .29 .21 

LR .13 .68 .79 .03 .76 .71 .26 .62 .76 .82 .78 .35 .85 1.00 .18 .67 .80 .73 

W .14 .74 .84 .07 .82 .75 .22 .70 .81 .86 .76 .48 .89 1.00 .22 .72 .86 .79 

LM .02 .66 .70 .00 .67 .69 .13 .63 .67 .74 .62 .53 .61 .90 .82 .95 .42 .68 

                 
DINA DINO 

 

A-CDM 

2XS   .29 .23 .35 .03 .28 .31 .15 .24 .30 .34 .86 .09 .16 .63 .20 .34 .24 .29 

LR .18 .64 .75 .00 .69 .69 .39 .56 .72 .80 .89 .22 .85 1.00 .09 .73 .65 .69 

W .22 .65 .77 .00 .71 .71 .37 .60 .72 .81 .89 .27 .87 1.00 .04 .73 .69 .71 

LM .04 .09 .13 .15 .07 .15 .16 .05 .13 .15 .59 .05 .02 .28 .05 .09 .13 .11 

                                  DINA A-CDM   

DINO 
2XS   .21 .22 .31 .03 .25 .28 .43 .17 .27 .35 .86 .07 .17 .55 .58 .37 .16 .26 

LR .10 .78 .86 .01 .81 .83 .32 .71 .85 .91 .76 .51 .96 1.00 .34 .91 .73 .82 
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W .13 .80 .88 .01 .83 .85 .38 .73 .87 .92 .79 .56 .97 1.00 .39 .92 .76 .84 

LM .06 .57 .63 .00 .60 .60 .01 .58 .61 .62 .28 .51 .61 .69 .90 .25 .96 .60 

Note. Effect size values greater than .010 are shown in bold. Shaded cells correspond to power in the [.80, 1.00] interval. N = Sample size; DIM 

= Correlational structure; J = Test length; IQ = Item quality; MOD = Generating model; Uni: Unidimensional; Bi: Bidimensional; LD = Low 

discrimination; MD = Medium discrimination; HD = High discrimination. 



ITEM FIT EVALUATION IN CDM                           30 
 

 
Figure 1. Two-way interaction of Generating model × Item quality with LR, W, and LM 

Type I error as dependent variables. The horizontal gray line denotes the nominal Type I 

error (α = .05). 
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Figure 2. Two-way interaction of Sample size × Item quality with 
2XS  , W, and LM 

power as dependent variables. The horizontal gray line represents a statistical power of .80. 
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Figure 3. Two-way interaction of Test length × Item quality with 
2XS  , LR, and LM 

power as dependent variables. The horizontal gray line represents a statistical power of .80. 
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Figure 4. Thee-way interaction of Correlational structure × Item quality × Test length with 

LM power for rejecting A-CDM when is false as dependent variable. The horizontal gray line 

represents a statistical power of .80.  



ITEM FIT EVALUATION IN CDM                           34 
 

 

 
Figure 5. Thee-way interaction of Generating model × Item quality × Test length for W test 

power for rejecting DINA, A-CDM, and DINO when they are false as dependent variables. 

The horizontal gray line represents a statistical power of .80. 
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