AUTHOR: TITLE 1

An approach for business process model
registration based on ISO/IEC 19763-5

Zaiwen Feng, Chen Wang, Chong Wang, Yi Zhao, Dickson K.W. Chiu, Keging He

Abstract—To facilitate business collaboration and interoperation among enterprises, it is critical to discover
and reuse appropriate business processes modeled in different languages and stored in different repositories.
However, the formats of business process models are very different, which makes it a challenge to fuse them
in a unified way without changing their original representations and semantics. To solve this problem, this
paper uses semantic interoperability technique, which is able to transform heterogonous process models into
uniform registered items. Based on the general and unambiguous metamodel for process model registration
(PMR for short) that we proposed before, in this article, we provide a generic process model registration
framework for registering heterogeneous business process models to facilitate semantic discovery of business
processes across enterprises, and promote process interoperation and business collaboration. Considering
Event-driven Process Chain (EPC) is a popular process model widely used in the industry, we focus on the
mapping rules and related algorithms from EPC to PMR and develop an automatic process model registration
tool for EPC. Moreover, we conduct a series of experiments to verify the correctness and efficiency of our
proposed framework by leveraging the real data set of 604 EPCs from SAP.

Index Terms—business process model; EPC; process repository, semantic interoperation

1 INTRODUCTION

Rapid progress of economic globalization brings greater and more frequent collaboration between
businesses around the globe, demanding solutions for a wide range of ever complicated interoperability
problems [1]. To share knowledge, the discovery and reuse of business process is an effective way to
improve the interoperability of various existing business processes in different enterprises. Process
designers may reuse similar existing process models via discovering them in the repository to improve
efficiency and correctness of process modeling. However, business process models are currently
designed with various kinds of modeling language and dispersed in different repositories, with
different motivations and approaches. Although different modeling languages might share some similar
concepts, the differences between semantics and grammar are distinct. Therefore, there are no trivial
one-to-one mapping relations among these models built with different modeling languages. Such
problems hinder the reuse of cross-domain and cross-enterprise business processes, causing great
barriers in deep collaboration among enterprises.

Aiming to address these problems, our initial work [5,25,26,30] advocated the use of model-driven
and ontology-supported methodologies to facilitate process interoperation for enterprise collaboration
by providing a common and unambiguous metamodel. A process normal form named PMR metamodel
captures the essential information of heterogeneous business processes in a unified way. By leveraging
this normal form, we can standardize the registration of business process models and further facilitate
business process reuse, integration, and collaboration. However, our previous work has not yet
provided a general and logical-level framework that is able to guide the registration of heterogeneous
business process. Besides that, the prototype needs to be improved to support more process languages.

The objective of this article is to enable registration for heterogeneous business process models based
on ISO/IEC 19763-5 to facilitate the semantic discovery of business processes across enterprises. Existing
technologies has enabled some aspects of addressing this issue. To date, a large number of languages
have been proposed for specifying and executing transformations between models conforming to
different metamodels. The ability to automatically transform between models expressed in different
languages (metamodels) is of importance to the wide-spread adoption of Model-Driven Development
(MDD). Although various approaches to automated model transformation have been proposed, the
current consensus is that specialized languages, such as QVT [33], ATL [6] and ETL [34], which provide
a mixture of declarative and imperative constructs, are most suitable for specifying model
transformations. Model-driven methods have also been exploited to standardize process modeling and

AUTHOR: TITLE 2

support interoperation between these models [10]. There are also some other transformation approaches

particularly used in a pair of specified process modeling notation, like [9,20]. Although general

transformation languages like ATL [6], QVT [33] or programming languages like Java [12] provide very
comprehensive model transformation, there is no transformation framework particularly aiming at
business process model transformation.

The purpose of PMR is to allow analysts to conduct federated query across language-specific process
model repositories. So, the PMR metamodel does not keep all of the metadata from a language-specific
process model. The exposed registration information can be abstract and incomplete. However, it has to
be sufficient to discover reusable business processes and locate them in the repositories. Contemporary
business process query languages, like APQL [7], support not only structural process characteristics but
also process model behavior. Accordingly, the behavior semantics of language-specific process models
must be preserved after transformation to PMR graphs. In other words, every behavior captured in the
language-specific process model should also be captured by the PMR graph. This requirement ensures
that the execution semantics of the language-specific process model is not lost in the PMR graph.

With the aim of registering language-specific process models into PMR, this article proposes a general
framework and algorithm of mapping heterogonous business process model to PMR metamodel. A
language-specific process model can be mapped to PMR while preserving its behavioral semantics.
Specially, considering Event-driven Process Chain (EPC) is a popular process model widely used in the
industry, we specify the mapping rules and related algorithm from EPC to PMR metamodel as an
instantiation of our approach. The main contributions of this work are threefold:

1. We propose a generic registration framework that maps a process model in various process languages
to PMR registration items. Taking EPC as an example, we illustrate how to specify mapping rules
and algorithms from a specific process to PMR metamodel.

2. We conduct experiments to evaluate the correctness and the performance of our mapping algorithm.

3. We have implemented an open-source tool to facilitate PMR based on our framework.

The rest of the article is organized as follows: Section 2 discusses related work. Section 3 describes our
previous work on PMR metamodel. Section 4 presents the framework of mapping diverse business
process modeling languages to PMR, and the algorithm design on the mapping from EPC to PMR.
Section 5 details some experiments conducted to demonstrate the effectiveness and efficiency of our
approach. Section 6 concludes this paper with our future work directions.

2 RELATED WORK

Since the work in this article focuses on how to register heterogonous business process models into the
common manageable atoms based on PMR metamodel, we put the emphasis on the mapping or
conversion approaches of heterogonous business process models.

Currently, as far as we know, there is no model conversion approach particularly for business
process transformation. However, there exist a lot of Model-to-Model (M2M) transformation
approaches and languages for the task of transforming general models, like QVT [33], ATL [6] or ETL
[34].

QVT is the current OMG standard for model transformation. QVT adopts a hybrid style by
providing both declarative and imperative constructs. With regard to integration, the OMG has also
standardized a model-to-text transformation language (MOF2Text) [8] that reuses parts of QVT. The
MOF model-to-text standard addresses how to translate a model to various text artifacts such as code,
deployment specifications, reports, documents, etc. A template-based approach is used wherein a
Template specifies a text template with placeholders for data to be extracted from models. These
placeholders are essentially expressions specified over metamodel entities with queries being the
primary mechanisms for selecting and extracting the values from models. These values are then
converted into text fragments using an expression language augmented with a string manipulation
library.

ATL [6] (ATLAS Transformation Language) is a domain-specific language for specifying model-to-
model transformations. The general transformation pattern of ATL is that a source model is transformed
into a target model according to a transformation rule written in the ATL language. Transformation rule
is the basic construct in ATL used to express the transformation logic. ATL rules may be specified either
in a declarative style or in an imperative style. ATL transformations are unidirectional, operating on
read-only source models and producing write-only target models. A model transformation case study

AUTHOR: TITLE 3

from Web Service Choreography Description Language (WSCDL) [32] to BPEL is presented that uses
ATL as transformation languages [31].

ETL [34] (Epsilon Transformation Language) is a hybrid model transformation language that is
integrated with a number of additional purposes such as model comparison, merging, validation, and
model-to-text transformation to help realize complex model management workflows. Unlike most
contemporary model transformation languages, ETL is capable of transforming an arbitrary number of
source models into an arbitrary number of target models. ETL adopts a hybrid style and features
declarative rule specification using advanced concepts such as guards, abstract, lazy, and primary rules,
and automatic resolution of target elements from their source counterparts.

SiTra [12] (Simple Transformer, SiTra) is a minimal, Java based library that can be used to support
the implementation of many practical transformations. The underlying idea of SiTra is to put less focus
on the specification language, maintenance, and documentation aspects of transformation, by focusing
on the implementation of transformations. SiTra uses Java for the specification of transformations. This
relinquishes the programmer from learning a new language for the specification transformation. A case
study is reported in [18] to illustrate transformations from Ontology Web Language-Service (OWL-S) [2]
to Business Process Execution Language (BPEL) [13].

However, all these model transformation frameworks are not tailored to the specific requirements
for business process model transformation.

There exist a bundle of works that convert one specific process language to another, for example,
from EPC to Petri Net [20], from BPMN to BPEL [9], from BPEL to EPC [23], and so on. This sort of
transformation aims at preserving the semantics from a model notation to another. However, this
assumption does not work for our approach because PMR metamodel only captures the minimal common
metadata about processes, aiming to facilitate the federated discovery and re-use of process models
expressed in diverse languages and stored in different repositories.

There are also some frameworks that map heterogonous process notations to a normal and neutral
metamodel. In these work, different kinds of process metamodels have been proposed in order to satisfy
a specific requirement. For example, IPM Executable Process Definition Language [19] is designed to
support flexible process specification of organizational structures and role models. Process information
can be exchanged with the repository through the IPM EPDL, which is an XML-based format that can
be used to store information about process models and activities, control flow, organizational structure,
authorization and resource assignment, data and monitoring. Marcello et al. [10] built an Advanced
Process Model Repository (APROMORE), which aims to hold, analyze and re-use large sets of process
models. The re-use of process models in APROMORE is based on a canonical process format, which
provides a common, unambiguous representation of business processes captured in different notations
and at different abstraction levels. Oryx [15] is a Web-based process modeling tool that supports users
browsing, creating, storing, and updating process models online. The tool uses a repository for storing
the business process models that are created with it. Oryx mainly focuses on the activity and control-
flow aspect. It supports many process notations, including BPMN, EPC, Petri nets, FMC Diagram, and
XForms. However, as far as we know, no conversion framework and algorithms have been given in
these works.

describing_model Process_Model expressed_model describing_language Process_Modelling_Language
0 name[1..1]:String [0.~ 1.1 namef1..1]:String
0.* containing_model
1..* |contained_process_model_element
created_resource creator Split_Dependency_Option
Resource 0. 0.% PrOCEISS—MOtdeI— following_element preceding_option |guard ¢ 0..1]:String
name[1..1]:String used_resource user emen 11 0.*
annotation[0..*]:Ontology_[0..* 0.% following_option | 2. *
Concept_URI consumed_resource consumer preceding_element -
0.* 0.* 1.1
roduced event roducer preceding_element following_option] Join_Dependency_Option
Event PO“* p! o 11 0* guard_condition[0..1]:String
—_ triggered_process . i N N
name[lv.l].StT;%nmmgy trigger model element following_element preceding_option| 2.,
_Concept_URI 0.* 0.* 1.1
composing_process |
_model_element
decomposed 0.%
_process -
described_process Process Dependency
0.1 name[L..1]:String
o annotation[0..*]:Ontology_Concept_
URI
preceding_process | 1.1 1.1 following_process f E
successor | 0.* (. Pprecedent successor | 0.* 1..1| precedent
Sequence_Dependency Split_Dependency Join_Dependency
split_dependency_type[1..1]:String join_dependency_type[1..1]:String
is_synchronous[0..1]:Boolean is_synchronous[0..1]:Boolean
precedent|1.1 0. successor

NOTE Metaclasses whose names are italicized are abstract metaclasses

Fig. 1. The metamodel of PMR (adapted from [5]).

3 PRELIMINARIES

In the past decade, a couple of business process model repositories have been developed, which in
general is employed to store business process models described in a specified process language, for
example, IBM BPEL (Business Process Execution Language) Repository [21], BPMN (Business Process
Model and Notation) Repository [22]. In order to promote business process collaboration among
enterprises, we provided a metamodel for the registration and indexing of the existing process models
in our previous work [5,25,26,30]. PMR is mainly designed to register business process automatically,
facilitate the semantic discovery of business processes across enterprises, and promote process
interoperation and business collaboration. For this purpose, it only provides selected metadata and
common semantics of process models created with a specific process modeling language, including
BPMN [11], BPEL [13], EPC [24], OWL-S Process [2], UML[27], PSL[28] and IDEF3[29]. The metamodel
can help discovery of the function and composition of a process, and promote reuse of its components
at different levels of granularity. Fig. 1 shows an overview of our PMR metamodel.

For PMR, a process model is used as a representation of a process, and it describes the contained
process model elements using a specified process modeling language. The process model elements
include processes and dependencies among processes and other process model elements. For each
process model element, there are some events that can be used to trigger a process model element or to
be produced by a process model element.

Dependencies represent the control constraints among processes represented by a process model. A
dependency can be specialized as a sequence dependency, a split dependency, or a join dependency. A
sequence dependency specifies that the processes are executed in order. A split dependency specifies
that when the preceding process model element is completed, one or more of the following process
model elements will be executed in parallel. A join dependency specifies that the following process

AUTHOR: TITLE 5

fully_realized_ fully_realizing_

achieved_goal achieving_process process service_operation . .
Goal " Service_Operation
0.1 0.. Process 0.* 0.* -
involving_process contained_process
] 1.1 ’ 0.*
involved_process . .
0.% involvement constrained | 1 ¢ 1..1| constrained
= _process _process
Process_Involvement
containing_ containing_ containing_exit_ 0.1
precondition | 0-1 0.1 postcondition condition
Postcondition Precondition Exit_Condition

Fig. 2. The metamodel of PMR: Part 251,

model element will start when the selected preceding process model elements are completed. A split
dependency type is used to specify a logical gate for the following processes. Similarly, a join
dependency type is used to specify a logical gate for the preceding processes. The logic of both a split
dependency type and a join dependency type can be XOR, OR, and AND. For a split dependency type,
XOR means that one and only one of the succeeding process model elements is allowed to execute, OR
means that one or more of the succeeding process model elements are allowed to execute, and AND
means that all of the succeeding process model elements must be executed. For a join dependency type,
XOR means that the succeeding process model element executes if one and only one of the preceding
process model elements completes successfully, OR means that the succeeding process model element
executes if one or more of the preceding process model elements completes successfully, and AND
means that the succeeding process model element executes if, and only if, all of preceding process model
elements completes successfully. In addition, a split dependency option represents the guard conditions
of the following process model elements to be executed after the value of a split dependency type is
decided. Similarly, a join dependency option specifies the guard conditions of the preceding process
model elements to be executed after the value of a join dependency type is decided.

Particularly, processes, resources, and events can be annotated with zero, one or more concepts of
domain-specific ontologies, which expose essential information of heterogeneous business processes in
a unified way to promote business process collaboration and interoperation.

Fig. 2 shows the associations between process models, business goals, and services, which are
important task resources for process model. The association between process and goal specifies that
each process achieves zero, one, or more goals, and each goal is achieved by zero, one, or more processes.
A goal may exist that is not specified to be achieved by a process, and a process may exist, which is not
applied to achieve a specific goal. Similarly, each process involves zero, one, or more process
involvements, where each process involvement denotes the involvement of a role with a process, such
as actor or beneficiary. Each process involvement indicates that a role is involved in the execution of one
and only one process. A process involvement shall have exactly one associated process.

The association between process model and service model specifies that each process is fully realized
by zero, one, or more service operations, and each service operation can fully realize zero, one, or more
processes. A process may exist that is not specified to be realized by a service, and a service may exist
that is not applied to realize a process. Each process may have one pre-condition and/or one post-
condition. A process may exist with no associated pre-condition or post-condition. Each process has
zero or one exit condition to state a set of conditions that will exist to cause a process to terminate before
its completion.

4 OUR APPROACH

Our preliminary work described the details of the PMR and its elements. However, it is still a problem
that how different language constructs are aligned together in the process model registration, how
language constructs exist in the original languages, and how they will be in PMR. These problems
further boil down to firstly, how to decompose the existing business process model described by a
specified process languages into language-specific manageable atoms, and secondly, how to reconstruct
these language-specific manageable atoms onto PMR graph. In this section, we generalize our
registration method and point out how these process models in the original languages are mapped into

AUTHOR: TITLE 6

Process Structure Tree

TanIE:
root PMR
1% layer
Metamodel of a Language- 2 layer PMR Metamodel
Specific Process Model A
L. n"'W .Ia.yer Table:
Language-Specific Manageable Atoms ~ Process

(2) Reconstraction

o T o o T e T i
R1: Arc = Ed
e (2.1) Map elements

R3: Event = Sequence Node

ransformatio
Rules Repositor;

Instance of (1) Decompose

Instance of

(2.2) Map attributes

(2.3) Clean operation

PMR Graph

Metadata about process model

Language-Specific Process Models Process Model Registry basesd on PMR

Fig. 3. Registration Framework based on PMR.

PMR in a uniform way.

The process registration framework based on PMR is shown in Figure 3. The objective of the process
registration framework is to provide a generic solution of integrating heterogeneous business process
models based on the selected metadata provided by the PMR metamodel.

First, a language-specific process model is decomposed based on process structure trees (PSTs). A PST
represents the abstract hierarchical structure of a process model. Each node of a PST represents the
model elements of a process while it records dependency information such as predecessor(s) and
successor(s) and its parent node as well. Each edge of a PST denotes a sub-process relationship. A PST
is designed to be implemented on top of standard relational databases, which is called language-specific
manageable atoms.

Next, language-specific manageable atoms are mapped to PMR-based manageable atoms based on
language-specific mapping rules, which correspond to elements and attributes pertained to a specific
process language to the elements or attributes in the PMR model. The reconstruction step consists of
three sub-steps, i.e. mapping elements, mapping attributes and cleaning redundant nodes inside PMR
graphs. Then, PMR-based manageable atoms are ingested into the process register eventually.

To implement registration of business processes in different languages, it is necessary to define the
mappings from the specific process modeling language to the PMR metamodel. Due to the popularity
of application of EPC in industry domain, we take EPC as an example in this article to illustrate how to
define the mapping rules and the corresponding algorithms for implementing process registration.

4.1 Model Decomposition
In the phase of decomposing an existing process model, a language-specific process model, such as

AUTHOR: TITLE 7

EPML (for EPC), BPEL, or OWL-S Process model, is parsed and decomposed into language-specific
manageable atoms. No matter block-oriented languages (such as BPEL and OWL-S Process Model) or
graph-oriented languages (such as EPCs, BPMN, and UML Activity Diagram), the decomposing phase is
implemented by the following two steps.

- Stepl: Decompose the original process model into a process structure tree.

- Step2: Build the common language-specific manageable atoms.

A language-specific process model is decomposed based on process structure tree (PST). A PST
describes the abstract hierarchical structure of a language-specific process model. Besides, it records the
dependency information, such as parent, predecessor, and successor, for each process model element. The
root of PST represents the whole process model. The nodes of a PST represent the model elements of a
process model.

4.1.1 A Tree Representation of a Language-Specific Process Model

A language-specific process model is represented as a PST. The nodes of a PST contain a process model's
common structural manageable atoms. Each node has a name, which is also the name of the process
model element that is represented by the node. PSTs are designed to represent hierarchical structures of
any kind of process model. Each edge of PST denotes a sub-process relationship.

For a graph-based process model (e.g. EPC), each leaf node of PST represents a graphical notation of a
process model, for example, XOR connector, function or event in EPC model. At the same time, each
non-leaf node also represents the root of a sub-process. The number of non-leaf layers of PST depends
on the maximum nested layers of the process model. For instance, the number of nested layers of EPC
model in Fig. 4a is 2. Accordingly, the number of non-leaf layers of its PST is also 2. For a block-oriented
process model (e.g., OWL-S, BPEL), each node of PST represents a structural activity of process model.
For example, an OWL-S process model contains tags that represent the underlying document structure,
e.g., process: Composite: Process, list: first, list:rest, which can be exploited to detect the structure.
The nesting of structured activities is preserved as functions with sub-process relationships in PST. The
number of non-leaf layers of PST depends on not only the maximum nested layers of structural process
definition, but also the maximum nested layers of process model.

The PSTs we consider are unordered trees. That is, the children of a node in a PST do not have a fixed
order. However, the dependency information between nodes of a process model is attached to the nodes
of a PST. PST is composed of three types of nodes, i.e. root nodes, non-leaf nodes, and leaf nodes,. The
functionalities and index structures of these three types of nodes are illustrated as follows.

e Rootnode:
The root of a PST represents the root of the process model. A standard relational table is designed for
the PST root node, i.e., Process(Processld, Languge, PMEId, ProcessType). Table Process contains all
the language-specific process models. Processid is automatically generated by incrementing a counter
every time when a new language-specific process model is registered. Language is the process notation
that a new language process model to be registered. For instance, a process model in the format of EPC
is demonstrated in Fig. 4a. The Processld of this processis "1" and the Language of this process is "EPC".
PMEId consists of the entire modeling element units decomposed from the original process model. For
example, the process model in Figure 4a contains 10 process model elements. Each of the process model
element has a unique id, i.e. 01, 02,..., 10, respectively. Each modeling element corresponds to a node in
PST. ProcessType represents the type of process model to be registered, i.e., graph-based or block-
oriented. For instance, the process model to be registered in Fig. 4 is graph-based as it is an EPC model.

e Non-leaf node
The non-leaf node of a PST represents a process model element to be transformed. For a graph-based
process model, a non-leaf node of PST represents a graphical notation of process model, for example,
XOR connector, function or event in EPC model. For a block-oriented process model, a non-leaf node of
PST means a structural element of the process model, for example, a structural activity < pick ><
/pick > in BPEL process can be corresponding to a PST node.

Table PME is the main component of the language-specific manageable atoms. A standard relational
table is designed for the PST non-leaf nodes, ie.,
PME(PMEId, PMEType, PMEDecs, Parent, Predecessor, Successor). PMEId assigns a unique identifier
to each indexed PME, where PMEDesc is the text label of a PME, PMEType is the type of this PME,
Parent contains the identifier of the superior process model element of this PME, Predecessor and
Successor refer to the identifiers of the predecessor and successor of this PME, respectively.

AUTHOR: TITLE 8

e Leaf node
A non-leaf node of a PST also represents a process model element to be transformed. Different from
non-leaf nodes, the process model element that a leaf node corresponds to cannot be nested. We also
use a relational table to manage PST leaf nodes, ie.,
PME(PMEId, PMEType, PMEDecs, Parent, Predecessor, Successor).

AUTHOR: TITLE 9

a)

Function C Event D Function E

Connector K

Event A @ Function B

Connector L

Event G v<7

v

Event F
c)
Process Process Model Element Process Model Element Process Model Element Process Model Element Process Model Element
PMEId 01 PMEId 02 PMEId 03 PMEId 04 PMEId 05
Processid 1 PMEType Root PMEType Event PMEType XOR PMEType Function PMEType Event
Language EPC PMEDesc Root PMEDesc A PMEDesc L PMEDesc B PMEDesc F
01,02.03.04.05 Parent NULL Parent 01 Parent 01 Parent 01 Parent 01
PMEId 06,07,08,09,10 Predecessor| NULL Predecessor NULL Predecessor 04 Predecessor 07 Predecessor 03
Successor NULL Successor 07 Successor 05,06 Successor 03 Successor NULL
Nested TRUE
Process Model Element Process Model Element Process Model Element Process Model Element Process Model Element
PMEId 06 PMEId 07 PMEId 08 PMEId 09 PMEId 10
PMEType Event PMEType XOR PMEType | Function PMEType Event PMEType | Function
PMEDesc G PMEDesc K PMEDesc C PMEDesc D PMEDesc E
Parent 01 Parent 01 Parent 04 Parent 04 Parent 04
Predecessor 03 Predecessor 02,06 Predecessor NULL Predecessor 08 Predecessor 09
Successor 07 Successor 04 Successor 09 Successor 10 Successor NULL
d)
<flow>
<sequence> B
<assign> |D
<assign> |E
<sequence> C
<assign> | F
‘ 2 ‘ ‘ i ‘ ‘ 7 ‘ ‘ ldG ‘
<assign> G Id: 05 Id: 06 1d: 07 : 08
f) Process Process Model Element Process Model Element Process Model Element Process Model Element
PMEId 01 PMEId 02 PMEId 03 PMEId 04
Processld 1 PMEType Root PMEType flow PMEType | sequence PMEType | sequence
Language BPEL PMEDesc Root PMEDesc A PMEDesc B PMEDesc C
01.02,03,04.05 Parent NULL Parent 01 Parent 01 Parent 01
PMEId 06,07,08 Predecessor| NULL Predecessor NULL Predecessor NULL Predecessor 03
Successor NULL Successor NULL Successor 04 Successor NULL
Process Model Element Process Model Element Process Model Element Process Model Element
PMEId 05 PMEId 06 PMEId 07 PMEId 08
PMEType assign PMEType assign PMEType assign PMEType assign
PMEDesc D PMEDesc E PMEDesc F PMEDesc G
Parent 03 Parent 03 Parent 04 Parent 04
Predecessor NULL Predecessor 05 Predecessor NULL Predecessor 07
Successor 06 Successor NULL Successor 08 Successor NULL

Fig. 4. Example of a) EPC process model, b) PST of the EPC model, c¢) the common language-specific
manageable atoms of the EPC model, d) BPEL process model, e) PST of BPEL model, and f) the common
language-specific manageable atom of BPEL model.

AUTHOR: TITLE 10

4.2 Model Reconstruction

The model reconstruction phase maps manageable atoms in a language-specific process model to PMR-
based manageable atoms. The common targeting format for mapping is PMR graph, which is the instance
of PMR metamodel described in our preliminary work. The definition of PMR graph is shown as follows.
Definition 1: PMR graph Gy, = (N,Pre,Eff T,Typ, L,E,p, 7,¢,4,7,7) consists of six finite sets N , Pre, Eff , T, Typ
, and L . Furthermore, the node set N is the disjoint union of its subsets, i.e,
N=N,UN UN;UN,UN;; UNg UN; UN,, a binary relation E< NxN , a surjective function p:N, > Pre, a
surjective function 7:N, —eff asurjective function £:(N;UNy UN) =T, a partial function A:(NUE)— L

,a function 7:Ny > Typ, and a function 7:Ng —>Typ such that:

- Wewrite N=N,UN, UN;UNG UN; UNy UN, UN, for all nodes of the PMR graph.
- N,is a finite set of the process nodes.

- N, is a finite set of resource nodes.

- N,is a finite set of sequence nodes.

- N, is a finite set of split dependency nodes.

- Ny, is a finite set of join dependency nodes.

- Ny is a finite set of split dependency option nodes.

- Ny is a finite set of join dependency option nodes.

- N,is a finite set of event nodes.

- Preis a finite set of pre-conditions for an process node. Each precondition represents a condition
that should be true before an activity node is executed.

- Eff is a finite set of effects for an process node. Each effect represents a condition that should be
true at the completion of execution for an activity node.

- Tis a finite set of transitional expression, each of which is used as a property to save the event text
label temporarily by the split and join dependency nodes.

- Typis a finite set of logical types for split dependency nodes N, and join dependency nodes N4,

such as AND, OR, and XOR.

- E is a set of sequence flows. Each sequence flow ecE represents a directed edge between two
nodes.

- Wewrite U=N,UN UE for all units of the PMR graph which can carry a label.

- L is afinite set of text labels.
- The surjective function p specifies the assignment of a set of pre-conditions Pre to process nodes

N,. Hence, every process node can be associated with one or more pre-conditions.

- The surjective function » specifies the assignment of a set of effects eff to process nodes N, .

Hence, every process node can be associated with one or more effects.
- The surjective function ¢ specifies the assignment of a piece of transitional expression teT to

sequence, split and join dependency nodes N,UN, UN, . Hence, every split and join dependency

node can be associated with a piece of transitional expression.
- The partial function 2 defines the assignment of a label I €L to a process model unit ueU ;

- The function 7 specifies the type of a split dependency n, eN, as AND, OR, XOR.
- The function ¢ specifies the type of a join dependency n; € N as AND, OR, XOR.

The reconstruction of manageable atoms is further reduced into three sub-steps, which are illustrated
below:

- Stepl: We create an intermediate graph based on the common manageable atoms of language-
specific business process model. The creation of an intermediate graph is according to the pre-
defined mapping rules, which map manageable atoms of language-specific business process
model to PMR graph elements.

- Step 2: We map element attributes of a language-specific process model to the corresponding

AUTHOR: TITLE 11

TABLE 1. MAPPING RULES FOR CORE ELEMENTS

Rule | EPC Element PMR Graph Element

No.

R1 Arc Edge

R2 Function Process Node

R3 Connector (in-degree > 1 & out-degree =1) Join Option Node connected to Join Dependency
Node

R4 Connector (in-degree=1 & out-degree > 1) Split Dependency Node connected to Split Option
Node

R5 Event (Predecessor: function & Successor: function) Sequence Node

R6 Event (in-degree =0 | out-degree = 0) Event Node

R7 Event (Predecessor : Connector & out-degree!=0) The Event is removed

element attributes of PMR graph based on pre-defined mapping rules. Part of attribute value is
propagated and reassigned inside PMR graph.
- Step 3: Some redundant nodes are removed to simply the PMR graph.

The reconstruction of manageable atoms is based on a series of mapping rules, which defines the
correspondence of elements and attributes between a specific process language and the PMR model. It
is necessary to define the mapping rules to PMR customized for each process language. In our previous
work, we have already defined mapping rules from BPEL to PMR [25,26] and from OWL-S to PMR [30].

In the rest of this section, we first present the meta-rule for mapping elements to PMR, followed by
the concrete rules from EPC to PMR as an example. Next, the meta-rule for mapping attributes to PMR
is also presented with rules of mapping attributes from EPC to PMR as an instance. Then, a general
transformation algorithm is proposed as the core of our framework. Next, we detail a solution
considering a common scenario that text label of event is propagated in the chain of dependency nodes
in an intermediate PMR graph. Lastly, we introduce a reduction rule to remove the unnecessary
elements and obtain the final PMR graph.

4.2.1 Mapping Elements

As one of the generic phases, all core elements of a specified process model will be first mapped to the
corresponding elements in the PMR metamodel one by one, and the skeleton of PMR graph is created
at the same time.

The meta-rule for mapping elements from a language-specific process model to PMR graph is shown
below.

Element(X)APredecesor (Y)ASuccessor(Z)AParent(W) A Constraint(cy,Cy,..,Cnm)
= ElementInPMR(V)

This rule describes that a process model element X in a language-specific process model is mapped to
an element V in PMR graph under the condition that ¥ is the predecessor of X, Z is the successor of X ,
and W is the parent of X, and the constraints cy, ¢, .., ¢, on X are satisfied. Here, Y, Z, and W denote the
process elements in a language-specific process model.

Let us take the conversion from an EPC to PMR graph as an example. EPC core elements comprise
Function, Connector, Arc, and Event. All the core elements will be converted first during the mapping
procedure. The mapping rules for core elements are shown in Table 1.

1) Arcin EPCis used to connect different elements. Similar to the meaning of edge in PMR graph, the
meaning of EPC arc is determined by the type of source node and target node. Hence, the arc in EPC
is mapped to the edge in PMR graph, which is shown in R1.

2) Trigged by one or more events producing one or more new events, Function in EPC represents a
specific activity, which corresponds to process node in PMR Graph. So, Function in EPC is mapped to
process model in PMR graph, as shown in rule R2.

3) Connector in EPC model can be mapped into different kinds of nodes in PMR graph according to its
in-degree and out-degree. For the split dependency node and join dependency node, the logic type of
Connector such as XOR, AND, and OR is transferred to the logical type TYp in PMR graph.
Constrained by the definition of structural requirements of PMR graph, a new split option node or
join option node is added into each branch after finishing Connector map, as described by R3 and R4.
The detailed mapping procedure for Connector is shown in Algorithm 2.

AUTHOR: TITLE 12

EventA) < R6E————a EventNode A

<«—R2 —A ProcessNode B
Function B

SplitDependencyNode
Type = OR

— R

Delete

:; R
Event C Event D

Connector GY
R4 >

Function E

Connector F /v\

JoinOptienNode

JoinDependencyNode
Type = XOR

ProcessNode E

Fig. 5.Mapping rules for core elements.

4) If the previous node and subsequent node of an Event are Functions, the Event is converted to
sequence node in PMR graph, which is described by rule R5. If an Event has no previous node or has
no subsequent node, it is mapped into event node in PMR graph, working as start node or end node
of PMR Graph, which is described in rule Ré. If the previous node of Event is Connector and there
are one or more subsequent nodes, the Event is not mapped into any node in PMR graph and is
removed, which is shown in rule R7. It is noted that all the text labels contained in the Event will be
kept and transferred into corresponding nodes in PMR Graph, and how to transfer them is left to the
Section 4.2.2.

A process fragment is shown in Fig. 5, which exemplifies how to map the core elements of EPC model
to those in PMR graph. First, according to R3, the OR connector in EPC model is mapped to split
dependency node of type OR. At the same time, a new split option node is added for each of two branches.
Similarly, the XOR connector in EPC model is mapped into join dependency node as well as a new join
option node according to R4. Then, we obtain a split option node connected directly to a join option node at
each branch. Next, Event A is mapped to the start node of the PMR graph through Ré. Lastly, in terms
of R7, Event C and D are deleted due to their previous nodes are connectors and there is another
connector to the subsequent node.

4.2.2 Mapping Attributes of Elements

After using the rules in Table 1 to map the core elements, a skeleton of PMR graph is obtained. However,
as a generic phase, part of the attributes will need to be redistributed and adjusted after the core elements
have been mapped from a specified process model to PMR graph.

The meta-rule for mapping attributes from a language-specific process model to PMR graph is
depicted below.

Element(X)APredecessor (Y)NAttr(Y,y) A Successor(Z) A Attr(Z,z) A Parent(W) A Attr(W,w)
A ElementInPMR (V) A Attr(V,v) AM(X,V)
= Transfer(y,v) V Transfer(z,v) V Transfer(w, v)

The rule describes that a process model element X in a language-specific process model corresponds
to an element V in PMR graph. v is one of attributes of V. If Y is the predecessor of X, Z is the successor
of X, W is the parent of X, and y, z,w are attributes of Y, Z, W, then the attribute y, or the attribute z, or
the attribute w is mapped to the attribute v.

AUTHOR: TITLE 13

With regard to EPC model, the attribute mapping rules are shown in Table 2, which are applied to
fill the PMR graph with text labels existed in event of original EPC model. Text labels contained in event
will be mapped into a set of pre-conditions and effects associated with a process node after the core
elements have been aligned between the EPC model and PMR graph. In Table 2, the column “Elements
connected with Event” describes the different situations categorized by the successive or previous nodes
of the event in EPC model, while the column “PMR graph node or properties” represents the
corresponding elements in PMR graph after mapping event and all the other core elements adjacent to
event to PMR graph and completing text label propagation.

R8 describes a mapping scenario where the subsequent node of an event is a function. In this scenario,
the event triggers the function while the precondition of a process node describes the constraints that
must be true before a process node is invoked. The text label of the Event is mapped to the precondition
of the aligned process node due to the semantic equivalence between them. A similar mapping scenario
is described in R9, where the previous node of an event is a function.

R10 and R11 describe the scenarios where the previous or subsequent node of an event is a connector.
To facilitate the mapping of an event text label, a property named transitional expression is designated
and associated with a dependency node in PMR graph for saving the event text label temporarily. With
the help of this property, the event text label could be mapped from the event to the process nodes that
the nearest function corresponds to.

A process fragment shown in Fig. 6 is used to exemplify how to map the event text labels. According
to R10, the text label of Event B is mapped to the upper split dependency node and the lower join
dependency node, in which the transitional expression property is harnessed to save the text label of
Event B. Next, the text labels for Event C and D are propagated to the upper split dependency node and
the lower join dependency node and saved temporarily under the guidance of R11, as shown in Fig. 6.

TABLE 2. MAPPING RULES FOR ELEMENT ATTRIBUTES

Rule | Elements that attribute propagates to Propagation of label
No.

R8 Function (Predecessor: Event) M(Function). precondition < Event.name
R9 Function (Successor: Event) M(Function). effect < Event.name

R10 Connector (Predecessor/Successor: Event and | M(connector). TransitExp < Event.name

M(connector).TransitExp is empty)

R11 Connector (Predecessor/Successor: Event and | M(connector). TransitExp. append(Connector. Type

M(connector).TransitExp is not empty) + Event. name)

AUTHOR: TITLE 14

Function A ProcessNode A

Connector F +
_______-————*»

RY l
V el

<Event B> <Event C> Event D)

\ \"?J .
*\\\\ Connector G —R11 1

@R R10

SplitDependencyNode

TransitExp: EventC. Name
XOR EventD. Name

TransitExp: EventB. Name
XOR EventC. Name XOR EventD. Name

Function E O

ProcessNode E

Fig. 6.Mapping attributes of text label of Event.

4.2.3 Transformation Algorithm

Before we present the transformation algorithms, we need to define the mapping function M that
transforms a node in PST to a node in PMR graph.

Definition 2 (Mapping Function M). Let F be a set of nodes of a PMR graph and Basic a set of nodes a
process structure tree PST. The mapping M: Basic — F defines a transformation of a node of PST to a
node in PMR graph.

Algorithm 1 for this phase takes a PST as input and returns a PMR graph. The general idea of our
strategy is to recursively traverses the nested structure of a PST in a top-down manner. The input is the
root of this PST. The output is the corresponding PMR graph to the PST. The main procedure is
described as follows. First, all of the children of the root are populated to queue q. Then, all the PST
nodes in q are traversed. If a PST node is leaf node of PST, which means it cannot be further decomposed,
it is transformed to a process element in PMR graph according to a specified transformation rule.
However, if a PST node is a non-leaf one, which means it can be further decomposed, the function
PSTTransform will be recursively called with this non-leaf node as the root. The recursive call will
terminate after all the non-leaf nodes in the PST have been traversed.

The procedure transformPSTNode used in the PSTTransform procedure generates the PMR graph
element that corresponds to the respective process element in language-specific process model. This
procedure conducts the concrete transformation between language-specific process models to PMR
graphs. In the following, we give two concrete examples, ie., transformConnector and
transformEvent, which help transform Connector and Event in a EPC model to the corresponding
elements in PMR graph. The last step is to transfer the label text on the path of Dependency Nodes to
the neighboring process nodes and then update the PMR graph.

Algorithm 2 shows how to map a connector in EPC model into a dependency node in PMR graph. Line
1-2 obtains all the previous and successive nodes of a connector. Line 3-12 shows how a connector is
mapped into a split dependency node in PMR graph. Line 4 creates a new split dependency node, and the
logical types or this split dependency node is assigned in Line 5. Line 7-11 connects split dependency
nodes with its previous nodes and successive nodes, which are created by means of mapping rules
described in Table 1. Similarly, the join dependency node is created from Line 13 to Line 21.

Algorithm 3 describes how to map an event in EPC model into the corresponding node in PMR graph.
First, the position where an event lies in is judged and categorized into three different situations. Then,
mapping rules are invoked to create new nodes and edges in PMR graph in terms of mapping rules
described above. The previous or successive nodes for the event are obtained in Line 1-2. The event

AUTHOR: TITLE 15

Algorithm 1. Pseudo code for PSTtransform(PSTNode root, PST pst, PMRGraph pg)

Input: PSTNode root, PST pst

Output: PMRGraph pg

01. g « empty queue

02. q.enqueue(root. getAllChildren())

03. while (not q.isEmpty())

04. node < g.dequeue()

05. if node € leafNode in pst then

06. pg « transformPSTNode(node, pst)

07. endif

08. else if node € non leafNode then

09. pg < PSTtransform(node, pst,pg)

10. endif

11. end while

12. For each Dependency Node Chain p in pg

13. pg « GetTransitExp(pg, p)

14. end for
without previous nodes or successive nodes is mapped to the newly created event node in PMR graph.
The text label in the event is mapped to the previous or successive nodes in terms of the rules described
in Table 2. If both the previous and successive node of an event are functions, the event is converted to
sequence node in PMR graph, and the text label of the event is mapped to the process nodes that its adjacent
functions correspond to in terms of R8 and R9 (Line 9-14). Line 15-17 illustrates a situation that the
previous node of an event is a connector and the successive node is a function. In this case, the event is
totally removed, while the text label is mapped to the process node of that its successive function
corresponds to.

4.2.4 Propagation for Text Label of Event

So far we have mapped the attributes of elements into the most directly mapped elements in PMR graph.
This, however, does not necessarily lead to a correct solution in terms of the definition of PMR graph.
In fact, after mapping nodes and events from EPC model to PMR graph, the text label of some events are
still kept in the Split/Join Dependency Nodes as a transitional expression, which needs to be transferred to
the nearby process nodes eventually.

Fig. 7 illustrates another example with regard to this point. Here H, I,] are dependency nodes
partially mapped to connector H, I, and J in EPC model. The transitional expression of] is the union set
of name of Event E, F, and G. The transitional expression of I is any one of names of Event C, D, and
transitional expression of], while the transitional expression of H is the combination of name of Event
node B and the transitional expression of dependency node I. These transitional expressions temporarily
stored in the dependency node represent a state after an activity is finished and must be propagated to
the closest process node as the effect attribute.

If we analyze this phenomenon further, we observe that the underlying cause is the existence of a
chain of dependency nodes, which obstruct the attribute propagation from event to process node.
Specially, the attribute of Event F in the left graph is firstly mapped to the transitional expression of
Dependency nodeJ. Yet, there are other two Dependency nodes H and I, which need to be stepped over
for the attribute propagation from Dependency] to Process Node A.

To overcome this situation, we define four other rules to describe attribute propagations between a
pair of neighbor nodes A and B in PMR graph. The rules are shown in Table 3.

R12 and R13 describe the scenario that another Dependency Node named B is the previous/successive
element of the Dependency Node named A. If there is no transitional expression in the Dependency Node,
then transitional expression of Dependency Node A is propagated into Dependency Node B, which is
described in rule R12. On the other hand, if transitional expression of Dependency Node B is not empty,
transitional expression of Dependency Node A is propagated to the Dependency Node B, and then
appended to the transitional expression of Dependency Node B through the logical type of Dependency Node
B, constituting a new composite transitional expression, which is illustrated in rule R13.

Rules R14 and R15 illustrate the scenario that Process Node is the previous/successive element of
Dependency Node. In these scenarios, the transitional expression is propagated to the Process Node, and
saved as effect/precondition property in the process node.

AUTHOR: TITLE 16

Algorithm 2. transformPSTNode(Connector c, PST pst, PMRGraph pg)

Input: Connector c, PST pst, PMR graph pg

Output: Updated PMR Graph pg

01. NodeSetN, « pst.c.predecessor

02. NodeSet Ny « pst.c.successor

03. If the number of N, = 1and the number of Ny > 1 then

04. Create Split Dependency Node SDN

05. Thetype of SDN « thetype ofc

06. Connect M(N,) to SDN

07. For each Node ng in N;

08. Create Split Dependency Option Node SDON

09. Connect SDN to SDON

10. Connect SDON to M (N;)

11. Endfor

12. End if

13. If the number of N, > 1 and the number of N; > 1 then

14. Create Join Dependency Node /DN

15. The type of [DN « the type of ¢

16. For each Node n, in N,

17. Create Join Dependency Option Node JDON

18. Connect M(n,) to JDN

19. Connect /DN to JDON

20. End for

21. End if

22. Returnpg

Algorithm 3 transformPSTNode(Event e, PST pst, PMRGraph pg)

Input: Event e, PST pst, PMR graph pg

Output: Updated PMR Graph pg

01. NodeSetN, « pst.e.predecessor

02. NodeSet Ny « pst.e.successor

03. If the number of N, = 0 or the number of Ny = 0 then

04. Create Event Node EN

05. Add EN into pg

06. Connect M(N,) to EN inpg

07. Connect EN to M(N;) inpg

08. Invoke R8,R9,R10,R11 to propagate text label in e

09. Elseif N, is Function and N is Function then

10. Create Sequence Node SQN

11. Add SQN into pg

12. Connect M(N,) to SQN inpg

13. Connect SQN to M(Ny) in pg

14. Invoke R8,R9 to propagate text label in e

15. Else if N, is Connector and the number of Ny = 1 then

16. Connect M(N,) to M(N;) inpg

17. Invoke R10,R11 to propagate text label in e

18. End if

19. Returnpg

Let N, be the start point of a chain of Dependency Nodes expressed as p = {Ny, Ny, N,, ..., N, }. TE; is the

transitional expression of the node N; of the dependency node chain. The transitional expression of N,
could be obtained by the function GetTransitExp() in Algorithm 4. This algorithm starts by calling R12
or R13 shown in Table 3 to obtain the transitional expression from the last Dependency Node N,, to the
start point N, of p, obtaining the transitional expression of the start point Ny, which will be transferred
to the neighboring process node as Postcondition. A similar process can be employed to obtain
Precondtion for a process node from a chain of Dependency Nodes.

AUTHOR: TITLE 17
ProcessNode A
Effect:
TransitExp Of H
Function A R15
TransitExp:
(TransitExp Of I Dependency H
AND EventB.Name) AND
Rules in Table 1
Connector H and 2

TransitExp:(EventC.Name

XOR TransitExp of J

Dependency | XOR EventD.Name)
Event B
Connector | @ . SplitOptionNode
EventNode B
Dep‘ ;ndency J §
OR : EventNode D
TransitExp:(EventE.Name
EventNode C
SIEIE Sl ventiiode OR EventF.Name OR
vV EventG.Name)
Connector J
SplitOptionNode SplitOptionNode
A,
Event G

4 A,
(Event E) (EventF)

EventNode E

EventNode G

EventNode F

Fig. 7. Propagation for text label of Event in the chain of dependency nodes.

Table 3. PROPAGATION RULES FOR LABELS INSIDE PMR GRAPH

Rule No. | Elements that attribute propagates to Propagation of label

R12 Dependency Node (Predecessor/Successor: another DependencyNode. TransitExp < Predecessor/Sucessor. TransitExp
Dependency Node and Dependency
Node.TransitExp is empty)

R13 Dependency Node (Predecessor/Successor: another DependencyNode. TransitExp. append(DependencyNode. Type
Dependency Node and Dependency +Predecessor/Sucessor. TransitExp)
Node.TransitExp is not empty)

R14 Process Node (Predecessor: Dependency Node) ProcessNode. Precondition < DependencyNode. TransitExp

R15 Process Node (Successor: Dependency Node) ProcessNode. Postcondition < DependencyNode. TransitExp

1
2
3
4.
5
6

Algorithm 4. GetTransitExp(PMR Graph pg, Dependency Node Chain p)
Input: PMR graph pg, Dependency Node Chain p
Output:Updated PMR graph pg

Let N, be the start point of p = {Ny, Ny, N, ..., N, }
. foreach Dependency Node N; ordered from N,, to N,
call R12 or R13 to obtain TE;
end for
. call R14 or R15 to transfer lable text from N, to the neighbouring process node
Return updated pg

The right graph of Fig. 7 exemplifies how to propagate the attributes in the Dependency node chain.
According to R12, the transitional expression of Dependency node] is transferred and integrated into
the transitional expression of Dependency node I combining with the attributes from Event E, F, and G.

AUTHOR: TITLE 18

After that, similarly, the transitional expression of the Dependency node I is transferred and integrated
into the transitional expression of the Dependency node H in terms of rule R13. Eventually, according
to rule R15, the transitional expression of the Dependency node H is transferred and becomes the effect
of Process Node A. By this means, the text label attribute of the Dependency node chain propagate
progressively until they become the precondition or effect of functions of PMR graph.

4.2.5 Reduction Rule

After transforming a language-specific process model into a PMR graph, we can simplify the resulting
graph by applying the reduction rules. This rule is designed to eliminate "unnecessary" split option
nodes or split join nodes. The rules are applied until a PMR graph cannot be further reduced.

Function MergeConsecutiveOptionNodes is a cleaning operation that merges two consecutive option
nodes into a single split (join) option node between a pair of split/join dependency nodes. Here, one of
the option node is redundant and can be removed if a split/join option node is connected directly to
another join/split option node. As shown in Fig. 8, an arbitrary one of these two option nodes should be
removed to avoid redundancy. Here, we remove the split option nodes C and H, while keeping the join
option nodes D and F.

4.3 Complexity Analysis

The algorithm for transforming a PST to the PMR graph is a recursive algorithm. The number of
recursive calls depend on the number of sub-processes in the language-specific process model. Suppose
there exist m sub-processes in the process model, the complexity of the transforming algorithm is
mT (n), where T (n) represents the complexity of transforming a process model in which all the process
elements are at the same level.

The complexity of the algorithm for transforming connectors (Algorithm 2) is linear on the maximum
number of predecessors/successors of each connector. The number of connectors is bounded by the
number of the nodes € of the language-specific process model, while the maximum number of
predecessors/successors of a connector is bounded by the maximum degree 6 among of nodes in the
language-specific process model. Thus the complexity of transforming all of connectors is 0 (€5).

The complexity of the algorithm for transforming an event (Algorithm 3) is 0(1). Thus the complexity
of transforming all of events in a process model is bounded by the number of the nodes ¢, which is 0 (¢).
The complexity of algorithm for calculating label transfer on a dependency node path is linear on the
number of dependency nodes on the chain of dependency nodes. The number of dependency nodes is
bounded by the number of the nodes ¢ of the language-specific process model. Thus the complexity of
Algorithm 4 is 0(¢). Hence, the complexity of the whole transformation algorithm is m(8 + 2)0(e).

AUTHOR: TITLE 19

EventNode A
EventNode A
A

ProcessNode B ProcessNode B

SplitDependencyNode |
Type = OR
SplitOpgjonNode H

Cleaning
- operation

SplitDependencyNode |
Type = OR

SplitOptionNgde C

tionNode F JoinOptignNode D JoinOptionNode F

JoinDependencyNode J
Type = XOR
JoinDependencyNode J
Type = XOR

O
Q ProcessNode E

ProcessNode E

Fig. 8. Cleaning Operation.

4.4 Property of the Algorithm

In Section 1, we stated that the algorithm should satisfy the requirement of behavior-preservation. Below,

we sketch the proof of this proposition showing that the algorithms fulfill the requirement of behavior-

preservation.

Proposition 1. Let PG be the PMR graph that is converted from an EPC model via using Algorithms 1, 2, 3,
and 4. Let EG represent the graph structure of the EPC model. Any execution trace of EG has the identical mapping
in PG, and all execution traces of EG can be mapped to PG. That is to say, PG and EG have the same execution
traces.

Proof. Let €,€,,. € be an execution trace of EG, which is represented as a sequence of edges.
Taking an edge € = (k, ns as an example, here are a couple of situations that we should consider if €
is a subset of edge set of PG.

(1) There is no adding or removal of nodes during the process of edge mapping - For instance, if K is
an event and N is a function, according to the lines 3~7 of the Algorithm 3, there should be a node
k' in PG, that is transformed from the event k , and k' is connected to its process node n', which
is transformed from the function N. According to R2, the process node in PG is corresponding to
the function in EG. Accordingly, the edge (k N corresponds to the edge (k, n) in EG. Similarly,
for the edge (k, n),if K is a function and N is an event, we can arrive at the same conclusion.

(2) There exist adding or removal of nodes during the process of edge mapping from EG to PG - For
instance, if K isan OR-split connector and N is an event. According to lines 3~7of the Al orithrln 2,
this connector is mapped to a Split Dependency Node K' and a couple of Option Nodes N, , N, ...,

n; ", Further, in terms of lines 15~17 of the Algorithm 2, the event is removed while the text label

of this event is transferred and stored into the Option Nodes ", ', Ny ..., N; " So the edge (k,n) is
corresponding to the edges ,nl) , (k ,n2) Jenes (k n i ') . For other similar situations, the same
conclusions can be obtained.

3 If K isa split option node and N is a join option node - In this case, cleaning operations remove the
redundant edge between split option node and join option node. However, there is no
corresponding edge of this kind of redundant edge in EG. So the execution trace is preserved since
the removed edge (K,) does not matter.

In summary, any execution trace in EG is also an execution trace of PG. Accordingly, our proposed
mapping algorithm can preserve the behavior of EPC model.

AUTHOR: TITLE 20

5 EVALUATION

The mapping algorithms from different process languages to PMR metamodel has been implemented
as a tool, namely Process Graph Generator, that is freely available as part of the PMRMP toolset [23].7 So
far, the tool supports conversion of EPC represented in the EPML format, BPEL [13], and OWL-S [2]
process model represented in OWL format. BPEP allows users to edit process models in a variety of
languages (such as EPCs, BPEL, and OWL-S Process) through the Web portal. Different kinds of process
models can be transformed into PMR graph as the output, which can be further stored in a relational
database.

Using the implementation of the algorithm, we conducted experiments to evaluate the correctness
and the performance of our mapping algorithms from the perspective of EPC conversion. Furthermore,
we conducted a case study to evaluate the usefulness based on a real-world repository. The tests were
conducted on a laptop with a quad-core Intel processor, 2.7 GHz, 4GB memory, running Microsoft
Windows 10 64-bit.

5.1Correctness of the algorithm

We evaluate the percentage of EPC models that can be converted to PMR graph by means of our
mapping rules and algorithms in order to verify the correctness of our algorithm. We conducted the
experiments on the real-world SAP R/3 reference model [24], which contains 604 models with sizes
ranging from 5 to 119 nodes. Our experiment result shows that 573 models of them can be converted
successfully. The success rate is: 573/604 = 94.9%. The rest of EPC models failed to be converted due to
the violation of the EPC well-formedness constraint defined by Rosemann and van der Aalst [4]. For example,
there are some models with connectors possessing multiple inputs and multiple outputs, which break
the constraint of a legal EPC model.

1 Available at: https:/ / github.com/Zaiwen/ PMRMP

AUTHOR: TITLE 21

All nodss and converting time Event and converting time

1 — 140
g 1m s g 1= -
M . P Tr

20 3 = L e -
E 60 : E &8 5 - ‘ ‘ .
.?En 4 g o -]
e E " llabl Y
2o E] I
8 [i] .l 0 o] 0 m 10 i 3 [+] 10 2% Ei) 40 =] a0 ko)

Number of all kinds of nodes Numiber of Event

(a) (b)

Functlon and corwerting time Connector and converting time
~ 145 ,'?‘ 150
g . E e o
E aa e
- 1o b . @ 1= . D
£ w . E 8
- 8 |s = ¥ ®
g =] a Y Qs 7]
E w0 Npe, £ w
T o TLIM - [<
g = vt [g o
§ ~Iiffrihizer—
a 5 10 15 20 25 E*) [W] o 10 20 k)])
Number of Function Nurnber of Cennector

(c) (d)

Fig. 9. The response time related to (1) Number of all kinds of nodes (2) Number of events
(3) Number of functions (4) Number of connectors.

5.2 Time performance

This experiment aims to evaluate the time performance of the algorithm and analyze the relationship
between the response time and various types of nodes in EPC models. We compute the number of all
types of nodes including event, function, and connector, recording the response time from converting EPC
model to PMR graph for each of legitimate EPC model at the same time. We obtain the results shown in
Fig. 9.

As shown in Fig. 9(a), we can conclude that the response time is positively correlated with the number
of nodes in EPC. It is possible for some models with less number of nodes to consume more processing
time, since the distribution of node type is uneven and the processing costs for connector and event are
more than function. From Fig. 9(b), we can see that the number of events in EPC model takes a significant
positively effect on the response time. Simlilarly, the reponse time are highly positively related with the
number of connectors in EPC model, which is shown in Fig. 9(d). Different from event and connector,
when the number of function increases, the response time does not show a distinct incremental trend,
indicating that the number of function has no obvious effect on the response time, which is shown in Fig.
9(c).

AUTHOR: TITLE 22

R—— Mapping elements/attributes

R——-—= Attributes Propagation

<flow>(C)

<receive variable="Planning Carried out"/>(A)

<receive variable="Posting to be Made in General Ledger"/>(B)
</flow>

%/ <pick >(D)

. <onMessage operation="Accrual/Deferral Posting" >(Q)
<invoke operation="Accrual/Deferral Posting"(E)
/ outvariable = "Accrual/deferral Posting made"/>(1)

JoinDependencyNode
Type = AND </onMessage>
TransitEXP = Event AND Ex B.R4 o
<onMessage operation="Recurring Entry” >(R)
splitDependencyNode R12 <invoke operation="Recurring Entry"(G)

Type = XOR T -
THARSEXP = Event AND Eventa outvariable = "Recurring entry is made"/>(K)

</onMessage>

B.R5 <onMessage operation="Clearing" >(S)
|

ProcessNode <invoke operation="Clearing"(H)

o Precondition= Events outvariable = "Offsetting reversed"/>(L)
Effect = Event L _E&’ /</unMessage>
-—
<onMessage operation="Park G/L Account Document" >(T)
<sequence>

° ° <invoke operation="Park G/L Account Document"(F)

outvariable = "G/L account document parked"/>(J)

JoinDependencyNode B.R7 <flow>(N) .

XOR f— <onMessage operation = "G/L account document parked">(U)

Type = X0 : - —
TransitEXP = EventJ XOR EventM R14 <invoke operation = "G/L Account Posting"(O)

outVariable = "Document posted"/>(P)

ProcessNode </onMessage>
Precondiion= Even) XOR Eventi <onMessage operation = "Direct G/L account posting to be made”>(V)
<invoke operation = "G/L Account Posting"(O)
outVariable = "Document posted"/>(P)
Eventiode B.R6 _/
—_— </onMessage>
</flow>
</sequence>
</onMessage>
</pick>
EpC PMR
Graph BPEL

Fig. 10. A sample scenario for integrating different models into PMR

5.3 Case study
In order to further illustrate the operational steps of integrating different process models into PMR and
prove the generalization of the proposed registering framework, we take a real financial business
process model from SAP R/3 reference model for another case study. The process model is initially in
the format of EPML. However, a BPEL model with similar semantics of the EPC model is built by a
domain expert after understanding the meaning of EPC model thoroughly. Then, the same registration
framework is followed to map the dual process models into PMR graph.

As we point out in Section 4.2, different mapping rules are needed for transforming different
language-specific process model into PMR graph even though the general meta-rules exist and can be

TABLE 4. MAPPING RULES FOR BPEL ELEMENTAND ATTRIBUTES

Rule No. BPEL Elements PMR Graph Elements

B.R1 bpel:invoke Process

B.R2 bpel:invoke/@operation Process.name = operation

B.R3 bpel:flow Split_Dependency and Join_Dependency

B.R4 bpel:pick Split_Dependency and Join_Dependency

B.R5 bpel:pick/bpel:onMessage Split_Dependency_OptionJoin_Dependency_Option

B.R6 bpel:invoke/@outputVariable The association between ProcessNode and EventNode
EventNode.name = outputVariable.value

B.R7 bpel:flow/bpel:onMessage Split_Dependency_OptionJoin_Dependency_Option

used to advise the generation of language-specific mapping rules. We reuse part of the mapping rules
from BPEL to PMR described in our previous work [25]. These mapping rules are shown in Table 4.
Step 1: Model Decomposition

The EPC model and BPEL model are firstly decomposed into two PSTs respectively. For EPC model,
only one leaf layer exists in PST because there is not any sub-process in the model. Each leaf node
represents an EPC model element in this PST, while at the same time corresponds to a language-specific
manageable atom. Every manageable atom records the predecessor(s) and successor(s) of each EPC

AUTHOR: TITLE 23

modeling element. For instance, the node N (id: 15) is a XOR connector. It has two predecessors which
are Event J (id: 11) and M (id: 14), and one successor which is Function O (id: 16).

The PST that BPEL model is decomposed into is shown in Figure 11. Comparing to PST of EPC model,
it has multiple non-leaf layers because BEPL is categorized into a block-structured process modeling
language and each non-leaf node represents a structural activity in BEPL model. For instance, the node
S (id: 08) represents a structural activity< onMessage > and it contains another block namedH (id: 12),
which stands for the structural activity< invoke >.

AUTHOR: TITLE

NIRIE
1d: 02 1d: 03 1d: 04

24

G H
1d: 08 Id: 09

| J
1d: 10| | Id:11

M
Id: 14

N
Id: 15

(6] P
1d: 16 Id: 17

Process Process Model Element Process Model Element Process Model Element Process Model Element Process Model Element
Processld 1 PMEId 01 PMEId 02 PMEId 03 PMEId 04 PMEId 05
PMEType Root PMEType Event PMEType Event PMEType AND PMEType XOR
Language EPC PMEDesc Root PMEDesc A PMEDesc B PMEDesc [PMEDesc D
01,02,03,04,05, Parent NULL Parent 01 Parent 01 Parent 01 Parent 01
PMEId 06,07,08,09,10,| predecessor| NULL Predecessor NULL Predecessor NULL Predecessor 02,03 Predecessor 04
11’12]:(1;’]:%4’15’ Successor NULL Successor 04 Successor 04 Successor 05 Successor |06,07,08,09
Process Model Element Process Model Element Process Model Element Process Model Element Process Model Element Process Model Element
PMEId 06 PMEId o7 PMEId 08 PMEId 09 PMEId 10 PMEId 11
PMEType Function PMEType Function PMEType Function PMEType Function PMEType Event PMEType Event
PMEDesc E PMEDesc F PMEDesc G PMEDesc H PMEDesc I PMEDesc J
Parent 01 Parent 01 Parent 01 Parent 01 Parent 01 Parent 01
Predecessor 05 Predecessor 05 Predecessor 05 Predecessor 05 Predecessor 06 Predecessor F
Successor 10 Successor 11 Successor 12 Successor 13 Successor NULL Successor 15

Process Model Element

Process Model Element

Process Model Element

Process Model Element

Process Model Element

Process Model Element

PMEId 12 PMEId 13 PMEId 14 PMEId 15 PMEId 16 PMEId 17
PMEType Event PMEType Event PMEType Event PMEType XOR PMEType Function PMEType Event
PMEDesc K PMEDesc L PMEDesc M PMEDesc N PMEDesc [0 PMEDesc P

Parent 01 Parent 01 Parent 01 Parent 01 Parent 01 Parent 01

Predecessor 08 Predecessor 09 Predecessor NULL Predecessor 11,14 Predecessor 15 Predecessor 16
Successor NUL Successor NULL Successor 15 Successor 16 Successor 17 Successor NULL
L] |] el i s L
<receive> <receive> | | | | |
Id: 04 Id: 05 \I/ld: 06 \I/ Id: 07 \I/ 1d: 08 M
K Em = BN
<invoke> <invoke> <invoke> <invoke> <flow>
Id: 10 Id: 11 Id: 12 Id: 1:
Process
Processld 3
Language BPEL
PMEId 01,02,03,04,05,06,07,08,09,
10,11,12,13,14,15,16,17,18
1d: 17 1d: 18
Process Model Element Process Model Element Process Model Element Process Model Element Process Model Element Process Model Element

PMEId 01 PMEId 02 PMEId 03 PMEId 04 PMEId 05 PMEId 06
PMEType Root PMEType <flow> PMEType <pick> PMEType | <receive> PMEType | <receive> PMEType | <onMessage>
PMEDesc Root PMEDesc (o} PMEDesc D PMEDesc A PMEDesc B PMEDesc Q

Parent NULL Parent 01 Parent 01 Parent 04 Parent 05 Parent 03

Predecessor | NULL Predecessor NULL Predecessor 02 Predecessor NULL Predecessor 04 Predecessor NULL

Successor NULL Successor 03 Successor NULL Successor 05 Successor NULL Successor 07
Nested FALSE Nested FALSE Nested FALSE

Process Model Element Process Model Element Process Model Element Process Model Element Process Model Element Process Model Element

PMEId 07 PMEId 08 PMEId 09 PMEId 10 PMEId 11 PMEId 12
PMEType | <onMessage> PMEType | <onMessage> PMEType | <onMessage> PMEType | <invoke> PMEType | <invoke> PMEType | <invoke>
PMEDesc R PMEDesc S PMEDesc T PMEDesc E PMEDesc G PMEDesc H

Parent 03 Parent 03 Parent 03 Parent Q Parent R Parent S

Predecessor 06 Predecessor 07 Predecessor 08 Predecessor NULL Predecessor NULL Predecessor NULL
Successor 08 Successor 09 Successor NULL Successor NULL Successor NULL Successor NULL
Nested FALSE Nested FALSE Nested FALSE
Process Model Element Process Model Element Process Model Element Process Model Element Process Model Element Process Model Element
PMEId 13 PMEId 14 PMEId 15 PMEId 16 PMEId 17 PMEId 18
PMEType <invoke> PMEType <flow> PMEType | <onMessage> PMEType | <onMessage> PMEType <invoke> PMEType <invoke>
PMEDesc F PMEDesc N PMEDesc U PMEDesc Vv PMEDesc (¢] PMEDesc o
Parent T Parent T Parent N Parent N Parent 0] Parent \Y2
Predecessor NULL Predecessor 13 Predecessor NULL Predecessor 15 Predecessor NULL Predecessor NULL
Successor 14 Successor NULL Successor 16 Successor NULL Successor NULL Successor NULL
Nested FALSE Nested FALSE Nested FALSE

Fig. 11. PST and the common language-specific manageable atoms of the EPC and BPEL model in Fig. 10.

AUTHOR: TITLE 25

Step 2: Mapping elements

As Fig. 10 shows, the elements in the EPC model are converted into structure of PMR graph based on
the rules in Table 1. Three Connectors, named C, D, and N, are mapped to Split Dependency Nodes and
Join Dependency Nodes in PMR graph accordingly by using the rule R3 and R4. Seven Events, named A,
B, L K, L, M, P, are mapped to Event Nodes in PMR graph under the guideline of R6, while Event I is
removed according to R7. Five Functions, named E, F, G, H, and O, are mapped into Process Nodes
according to R2.

The BPEL process model with the same semantics is shown in the right side of Fig. 10. The
corresponding elements between EPC and BPEL are aligned with the same alphabet. Five invoke activity
E, F, G, H, O are mapped to Process Nodes in PMR graph referring to the rule B.R1. Two flow elements C
and N are mapped to Split Dependency Node and Join Dependency Node according to B.R3. The pick element
D is mapped into Split Dependency Node by using B.R4. The on-message elements Q, R, S, and T are
mapped into Split Option Node according to B.R5 while the other on-message elements U, V are mapped
into Join Option Node according to B.R7.

Step 3: Mapping attributes

As described in Section 4.2.2, the attributes of elements such as event name and function name must
be assigned to the node of PMR graph when EPC model is mapped into PMR graph. For instances, the
name of Event A and B are mapped into the transitional expression of Join Dependency Node C in PMR
graph according to R10 and R11. The name of Event P will be assigned to the effect of Process Node
according to R9. With regard to the mapping of BPEL process, the operation field of invoke activity is
mapped to the name of Process Node in PMR Graph by using B.R2. The out variable of invoke, such as
element P, is mapped to the name of Event Node.

The intermediate PMR graph is created after the elements and attributes are mapped from a specified
model into PMR graph. This step aims to adjust and redistribute some attributes inside the PMR graph.
As shown in Fig. 10, the transit Exp of Split Dependency Node D is empty before attribute propagation.
The transit Exp of previous Join Dependency Node C, namely Event A and Event B, is propagated to D
according to the rule R12. The precondition of Process Node H is empty and then assigned to be transit
Exp of Join Dependency D according to the rule R14. The similar situation happens on the propagation of
transit Exp of Join Dependency Node N to precondition of Process Node O.

Following the same procedure defined in the registering framework, two process models in Fig. 10,
though they are described by the different process languages, are mapping into the same PMR graph.
This case study proves that our framework and procedures are generic and could be applied for different
kinds of process languages if corresponding mapping rules are provided.

6 CONCLUSION AND FUTURE WORK

In this article, we proposed a generic registration framework that maps a process model in a specific
process language to PMR registration item. Considering Event-driven Process Chain (EPC) is a kind of
popular process model that is widely used in industry, we focus on the mapping rules and related
algorithm from EPC to PMR graph and develop an automatic process model registration tool for EPC.
The interoperation capability of the PMR metamodel was evaluated in our article. In addition, based on
SAP EPCs, we conducted experiments to demonstrate the feasibility and performance of our approach.
The experiments showed that, first of all, our proposed registering framework is generic for mapping
different kinds of process languages to PMR. Moreover, our approaches could realize the mapping from
EPC models to PMR graph within 100ms. The response time for mapping EPC model to PMR graph has
a positive correlation with the number of all nodes, connectors and events. The results indicate that our
approach provides a solid foundation and infrastructure for the modeling and execution of adaptable
processes for enterprise collaboration.

In the future, we plan to complement adaption operations based on PMR graph further, summarize
adaption operations based on EPC models, and set up the change propagation operations between EPC
models and PMR graph. For real-life applications, we are planning to apply our study into different
real-life applications of tourism [16] and workforce management [17].

ACKNOWLEDGEMENT
This work is supported by the National 973 Basic Research Program of China under Grant

AUTHOR: TITLE 26

No0.2014CB340404, the National Natural Science Foundation of China under Grant 61100017,61562073,
and 61672387. We would like to appreciate the anonymous reviewers for the valuable comments.

REFERENCE

1. Davies, I, Green, et al (2006). How do practitioners use conceptual modeling in practice, Data and Knowledge
Engineering, 58(3), 358-380.

2. OWL-S: Semantic Markup for Web Services, available at: http://www.ai.sri.com/daml/services/owl-s/1.2/overview/,
Access at 12 Aug 2016.

3. J. Mending, K.B. Lassen, and U. Zdun, On the transformation of control flow between block-oriented and graph-oriented process
modeling languages, International Journal of Business Process Integration and Management, Vol. 3, No. 2, pp.96-108, 2008.

4. M Rosemann, WMP van der Aalst. A Configurable Reference Modelling Language, Information Systems, 2007, Elsevier

5. Keqing He and Chong Wang.ISO/IEC 19763-5:2015, Information technology- Metamodel for interoperability - Part
5:Metamodel for process model
registration,http:/ /www.iso.org/iso/home/store/catalogue_tc/catalogue_detail. htm?csnumber=53761

6. Frederic Jouault, Freddy Allilaire, Jean Bezivin, and Ivan Kurtev, ATL: A model transformation tool, Science of Computer
Programming, 72: 31-39, 2008.

7. Arthur HM. ter Hofstede, Chun Ouyang, Marcello La Rosa, et al., APQL: A Process-Model Query Language, In: AP-
BPM 2013, LNBIP 159, pp. 23-38, 2013.

8. Object Management Group, MOF model to text transformation language, V 1.0, available at:
http://www.omg.org/spec/MOFM2T/About-MOFM2T/, 2018.

9. Chun Ouyang, Marlon Dumas, Wil M.P. Van der Aalst, Arthur H.M. Ter Hofstede, and Jan Mending, From Business
Process Models to Process-Oriented Software Engineering, ACM Transactions on Software Engineering and Methodology,
Vol.19, No.1, 2009.

10. La Rosa, Marcello, et al. "APROMORE: An advanced process model repository." Expert Systems with Applications, 38.6
(2011): 7029-7040.

11. Business Process Model and Notation (BPMN) Version 2.0, OMG, January, 2011. Available at:
http://www.omq.org/spec/BPMN/2.0.

12. D.H. Akehurst, B.Bordbar, M.]. Evans, et al., SiTra: Simple Transformations in Java, In: MoDELS 2006, LNCS 4199, pp.
351-364, 2006.

13. Business Process Execution Language for Web Services. (BPEL 1.1), Availableat:
http:/ /xml.coverpages.org/BPELv11-May052003Final.pdf

14. Esther Guerra, Juan de Lara, Manuel Wimmer, et al., Automated verification of model transformations based on visual contracts,
Automated Software Engineering, 20: 5-46, 2013.

15. G. Decker, H.overdick, M. Weske, Oryx: An open Modeling Platform for the BPM Community, In: proceeding of BPM
2008, PP. 382-385.

16. D.K.W. Chiu and H.F. Leung. Towards ubiquitous tourist service coordination and integration: a multi-agent and semantic web
approach. In: Proc. of the 7 th Int’l Conf. on Electronic Commerce (ICEC’05): 574-581.

17. D.K.W. Chiu, S.C. Cheung, and H.F. Leung. A Multi-Agent Infrastructure for Mobile Workforce Management in a Service
Oriented Enterprise. In System Sciences, 2005. HICSS'05. Proceedings of the 38th Annual Hawaii International Conference on
(pp. 85c-85¢). IEEE.

18. BehzadBordbar Gareth Howells, Michael Evans, and et al., Model Transformation from OWL-S to BPEL via SiTra, In: ECMDA-
FA 2007, LNCS 4530, pp. 43-58, 2007.

19. Injun Choi, HyunbaeJeong, Minseok Song, and Yong U. Ryu, IPM-EPDL: an XML-based executable process definition language,
Computer in Industry, 56 (2005) 85-104.

20. B.F. van Dongen, M.H. Jansen-Vullers, H.M.W. Verbeek, W.M.P. van der Aalst, Verification of the SAP reference models using
EPC reduction, state-space analysis, and invariants, Computer in Industry, 58 (2007) 578-601.

21. JussiVanhatalo, Jana Koehler, and Frank Leymann (2006) ‘Repository for business processes and arbitrary associated metadata’,
Proceedings of International Conference on Business Process Management, Springer, pp.25-31.

22. Thomas Theling, JorgZwicker, Peter Loos, and Dominik Vanderhaeghen (2005) ‘An Architecture for Collaborative Scenarios
Applying a Common BPMN- Repository’, Proceedings of Distributed Applications and Interoperable Systems, Springer, pp. 169-
180.

23. Jan Mendling and Jorg Ziemann, Transformation of BPEL Processes to EPCs, In: Proceedings of the 4th GI Workshop on Business
Process Management with Event-Driven Process Chains (EPK 2005), pp. 41-53.

24. G. Keller, T. Teufel, SAP R/3 Process Oriented Implementation: lterative Process Prototyping, Addison-Wesley. 1998.

25. Wang C, Luo Z, Zhang X, et al. An approach to business process registration for enterprise collaboration: using BPEL as an

http://www.ai.sri.com/daml/services/owl-s/1.2/overview/
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=53761
http://www.omg.org/spec/BPMN/2.0
http://xml.coverpages.org/BPELv11-May052003Final.pdf

AUTHOR: TITLE 27

26.

217.

28.

29.
30.

3L

32.

33.
34.

example[J]. International Journal of Business Process Integration and Management, 2015, 7(3): 181-196.

Cheng J., Wang C., He K., Jia J., Liang P. (2012) Mappings from BPEL to PMR for Business Process Registration. In: Camarinha-
Matos L.M., Xu L., Afsarmanesh H. (eds) Collaborative Networks in the Internet of Services. PRO-VE 2012. IFIP Advances in
Information and Communication Technology, vol 380. Springer, Berlin, Heidelberg

ISO/IEC 19505-2, Information technology - Object Management Group Unified Modeling Language (OMG UML) - Part 2:
Superstructure.

ISO 18629-1:2004, Industrial automation systems and integration - Process specification language - Partl: Overview and basic
principles.

IDEF3 Process Description Capture Method Report, September 1995. Available at: http://www.idef.com/pdf/Idef3_fn.pdf.

Wen Zhu, Implementation of Process Reuse Technology based on Metamodel for Process Model Registration, Master Thesis,
Wuhan University, 2011.

R. Khadka, B. Sapkota, Luis. F. Pires, et al., WSCDL to WSBPEL: A Case Study of ATL-based Transformation,In: 3rd International
Workshop on Model Transformation with ATL(MtATL2011), CEUR Workshop Proceedings, ISSN 1613-0073, 2011.

Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web Services Choreography Description Language Version 1.0, W3C
Candidate Recommendation, November 2005. World Wide Web Consortium (2005), Available at: http://www.w3.0rg/TR/ ws-cdI-
10/

Object Management Group, QVT Specification Version 1.1. http://www.omg.org/spec/QVT/1.1/, 2011.

Dimitrios S. Kolovos, Richard F. Paige and Fiona A.C. Polack, The Epsilon Transformation Language, In: ICMT'08. LNCS,vol.
5063, pp.46-60. Springer, Berlin, 2008.

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Our approach
	4.1 Model Decomposition
	4.1.1 A Tree Representation of a Language-Specific Process Model

	4.2 Model Reconstruction
	4.2.1 Mapping Elements
	4.2.2 Mapping Attributes of Elements
	4.2.3 Transformation Algorithm
	4.2.4 Propagation for Text Label of Event
	4.2.5 Reduction Rule

	4.3 Complexity Analysis
	4.4 Property of the Algorithm

	5 Evaluation
	5.1Correctness of the algorithm
	5.2 Time performance
	5.3 Case study

	6 Conclusion and Future Work
	Acknowledgement
	Reference

