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Abstract—To facilitate business collaboration and interoperation among enterprises, it is critical to discover 
and reuse appropriate business processes modeled in different languages and stored in different repositories. 
However, the formats of business process models are very different, which makes it a challenge to fuse them 
in a unified way without changing their original representations and semantics. To solve this problem, this 
paper uses semantic interoperability technique, which is able to transform heterogonous process models into 
uniform registered items. Based on the general and unambiguous metamodel for process model registration 
(PMR for short) that we proposed before, in this article, we provide a generic process model registration 
framework for registering heterogeneous business process models to facilitate semantic discovery of business 
processes across enterprises, and promote process interoperation and business collaboration. Considering 
Event-driven Process Chain (EPC) is a popular process model widely used in the industry, we focus on the 
mapping rules and related algorithms from EPC to PMR and develop an automatic process model registration 
tool for EPC. Moreover, we conduct a series of experiments to verify the correctness and efficiency of our 
proposed framework by leveraging the real data set of 604 EPCs from SAP. 

Index Terms—business process model; EPC; process repository, semantic interoperation 

———————————————————— 

1 INTRODUCTION 
Rapid progress of economic globalization brings greater and more frequent collaboration between 
businesses around the globe, demanding solutions for a wide range of ever complicated interoperability 
problems [1]. To share knowledge, the discovery and reuse of business process is an effective way to 
improve the interoperability of various existing business processes in different enterprises. Process 
designers may reuse similar existing process models via discovering them in the repository to improve 
efficiency and correctness of process modeling. However, business process models are currently 
designed with various kinds of modeling language and dispersed in different repositories, with 
different motivations and approaches. Although different modeling languages might share some similar 
concepts, the differences between semantics and grammar are distinct. Therefore, there are no trivial 
one-to-one mapping relations among these models built with different modeling languages. Such 
problems hinder the reuse of cross-domain and cross-enterprise business processes, causing great 
barriers in deep collaboration among enterprises. 

Aiming to address these problems, our initial work [5,25,26,30] advocated the use of model-driven 
and ontology-supported methodologies to facilitate process interoperation for enterprise collaboration 
by providing a common and unambiguous metamodel. A process normal form named PMR metamodel 
captures the essential information of heterogeneous business processes in a unified way. By leveraging 
this normal form, we can standardize the registration of business process models and further facilitate 
business process reuse, integration, and collaboration. However, our previous work has not yet 
provided a general and logical-level framework that is able to guide the registration of heterogeneous 
business process. Besides that, the prototype needs to be improved to support more process languages.  

The objective of this article is to enable registration for heterogeneous business process models based 
on ISO/IEC 19763-5 to facilitate the semantic discovery of business processes across enterprises. Existing 
technologies has enabled some aspects of addressing this issue. To date, a large number of languages 
have been proposed for specifying and executing transformations between models conforming to 
different metamodels. The ability to automatically transform between models expressed in different 
languages (metamodels) is of importance to the wide-spread adoption of Model-Driven Development 
(MDD). Although various approaches to automated model transformation have been proposed, the 
current consensus is that specialized languages, such as QVT [33], ATL [6] and ETL [34], which provide 
a mixture of declarative and imperative constructs, are most suitable for specifying model 
transformations. Model-driven methods have also been exploited to standardize process modeling and 
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support interoperation between these models [10]. There are also some other transformation approaches 
particularly used in a pair of specified process modeling notation, like [9,20]. Although general 
transformation languages like ATL [6], QVT [33] or programming languages like Java [12] provide very 
comprehensive model transformation, there is no transformation framework particularly aiming at 
business process model transformation. 

The purpose of PMR is to allow analysts to conduct federated query across language-specific process 
model repositories. So, the PMR metamodel does not keep all of the metadata from a language-specific 
process model. The exposed registration information can be abstract and incomplete. However, it has to 
be sufficient to discover reusable business processes and locate them in the repositories. Contemporary 
business process query languages, like APQL [7], support not only structural process characteristics but 
also process model behavior. Accordingly, the behavior semantics of language-specific process models 
must be preserved after transformation to PMR graphs. In other words, every behavior captured in the 
language-specific process model should also be captured by the PMR graph. This requirement ensures 
that the execution semantics of the language-specific process model is not lost in the PMR graph. 

With the aim of registering language-specific process models into PMR, this article proposes a general 
framework and algorithm of mapping heterogonous business process model to PMR metamodel. A 
language-specific process model can be mapped to PMR while preserving its behavioral semantics. 
Specially, considering Event-driven Process Chain (EPC) is a popular process model widely used in the 
industry, we specify the mapping rules and related algorithm from EPC to PMR metamodel as an 
instantiation of our approach. The main contributions of this work are threefold: 
1. We propose a generic registration framework that maps a process model in various process languages 

to PMR registration items. Taking EPC as an example, we illustrate how to specify mapping rules 
and algorithms from a specific process to PMR metamodel. 

2. We conduct experiments to evaluate the correctness and the performance of our mapping algorithm. 
3. We have implemented an open-source tool to facilitate PMR based on our framework. 

The rest of the article is organized as follows: Section 2 discusses related work. Section 3 describes our 
previous work on PMR metamodel. Section 4 presents the framework of mapping diverse business 
process modeling languages to PMR, and the algorithm design on the mapping from EPC to PMR. 
Section 5 details some experiments conducted to demonstrate the effectiveness and efficiency of our 
approach. Section 6 concludes this paper with our future work directions. 

2 RELATED WORK 
Since the work in this article focuses on how to register heterogonous business process models into the 
common manageable atoms based on PMR metamodel, we put the emphasis on the mapping or 
conversion approaches of heterogonous business process models. 

Currently, as far as we know, there is no model conversion approach particularly for business 
process transformation. However, there exist a lot of Model-to-Model (M2M) transformation 
approaches and languages for the task of transforming general models, like QVT [33], ATL [6] or ETL 
[34].  

QVT is the current OMG standard for model transformation. QVT adopts a hybrid style by 
providing both declarative and imperative constructs. With regard to integration, the OMG has also 
standardized a model-to-text transformation language (MOF2Text) [8] that reuses parts of QVT. The 
MOF model-to-text standard addresses how to translate a model to various text artifacts such as code, 
deployment specifications, reports, documents, etc. A template-based approach is used wherein a 
Template specifies a text template with placeholders for data to be extracted from models. These 
placeholders are essentially expressions specified over metamodel entities with queries being the 
primary mechanisms for selecting and extracting the values from models. These values are then 
converted into text fragments using an expression language augmented with a string manipulation 
library. 

ATL [6] (ATLAS Transformation Language) is a domain-specific language for specifying model-to-
model transformations. The general transformation pattern of ATL is that a source model is transformed 
into a target model according to a transformation rule written in the ATL language. Transformation rule 
is the basic construct in ATL used to express the transformation logic. ATL rules may be specified either 
in a declarative style or in an imperative style. ATL transformations are unidirectional, operating on 
read-only source models and producing write-only target models. A model transformation case study 
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from Web Service Choreography Description Language (WSCDL) [32] to BPEL is presented that uses 
ATL as transformation languages [31]. 

ETL [34] (Epsilon Transformation Language) is a hybrid model transformation language that is 
integrated with a number of additional purposes such as model comparison, merging, validation, and 
model-to-text transformation to help realize complex model management workflows. Unlike most 
contemporary model transformation languages, ETL is capable of transforming an arbitrary number of 
source models into an arbitrary number of target models. ETL adopts a hybrid style and features 
declarative rule specification using advanced concepts such as guards, abstract, lazy, and primary rules, 
and automatic resolution of target elements from their source counterparts.  

SiTra [12] (Simple Transformer, SiTra) is a minimal, Java based library that can be used to support 
the implementation of many practical transformations. The underlying idea of SiTra is to put less focus 
on the specification language, maintenance, and documentation aspects of transformation, by focusing 
on the implementation of transformations. SiTra uses Java for the specification of transformations. This 
relinquishes the programmer from learning a new language for the specification transformation. A case 
study is reported in [18] to illustrate transformations from Ontology Web Language-Service (OWL-S) [2] 
to Business Process Execution Language (BPEL) [13].   

However, all these model transformation frameworks are not tailored to the specific requirements 
for business process model transformation. 

There exist a bundle of works that convert one specific process language to another, for example, 
from EPC to Petri Net [20], from BPMN to BPEL [9], from BPEL to EPC [23], and so on. This sort of 
transformation aims at preserving the semantics from a model notation to another. However, this 
assumption does not work for our approach because PMR metamodel only captures the minimal common 
metadata about processes, aiming to facilitate the federated discovery and re-use of process models 
expressed in diverse languages and stored in different repositories.  

There are also some frameworks that map heterogonous process notations to a normal and neutral 
metamodel. In these work, different kinds of process metamodels have been proposed in order to satisfy 
a specific requirement. For example, IPM Executable Process Definition Language [19] is designed to 
support flexible process specification of organizational structures and role models. Process information 
can be exchanged with the repository through the IPM EPDL, which is an XML-based format that can 
be used to store information about process models and activities, control flow, organizational structure, 
authorization and resource assignment, data and monitoring. Marcello et al. [10] built an Advanced 
Process Model Repository (APROMORE), which aims to hold, analyze and re-use large sets of process 
models. The re-use of process models in APROMORE is based on a canonical process format, which 
provides a common, unambiguous representation of business processes captured in different notations 
and at different abstraction levels. Oryx [15] is a Web-based process modeling tool that supports users 
browsing, creating, storing, and updating process models online. The tool uses a repository for storing 
the business process models that are created with it. Oryx mainly focuses on the activity and control-
flow aspect. It supports many process notations, including BPMN, EPC, Petri nets, FMC Diagram, and 
XForms. However, as far as we know, no conversion framework and algorithms have been given in 
these works.  
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3 PRELIMINARIES 
In the past decade, a couple of business process model repositories have been developed, which in 
general is employed to store business process models described in a specified process language, for 
example, IBM BPEL (Business Process Execution Language) Repository [21], BPMN (Business Process 
Model and Notation) Repository [22].  In order to promote business process collaboration among 
enterprises, we provided a metamodel for the registration and indexing of the existing process models 
in our previous work [5,25,26,30]. PMR is mainly designed to register business process automatically, 
facilitate the semantic discovery of business processes across enterprises, and promote process 
interoperation and business collaboration. For this purpose, it only provides selected metadata and 
common semantics of process models created with a specific process modeling language, including 
BPMN [11], BPEL [13], EPC [24], OWL-S Process [2], UML[27], PSL[28] and IDEF3[29]. The metamodel 
can help discovery of the function and composition of a process, and promote reuse of its components 
at different levels of granularity. Fig. 1 shows an overview of our PMR metamodel. 

For PMR, a process model is used as a representation of a process, and it describes the contained 
process model elements using a specified process modeling language. The process model elements 
include processes and dependencies among processes and other process model elements. For each 
process model element, there are some events that can be used to trigger a process model element or to 
be produced by a process model element.  

Dependencies represent the control constraints among processes represented by a process model. A 
dependency can be specialized as a sequence dependency, a split dependency, or a join dependency. A 
sequence dependency specifies that the processes are executed in order. A split dependency specifies 
that when the preceding process model element is completed, one or more of the following process 
model elements will be executed in parallel. A join dependency specifies that the following process 
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Fig. 1. The metamodel of PMR (adapted from [5]). 
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model element will start when the selected preceding process model elements are completed. A split 
dependency type is used to specify a logical gate for the following processes. Similarly, a join 
dependency type is used to specify a logical gate for the preceding processes. The logic of both a split 
dependency type and a join dependency type can be XOR, OR, and AND. For a split dependency type, 
XOR means that one and only one of the succeeding process model elements is allowed to execute, OR 
means that one or more of the succeeding process model elements are allowed to execute, and AND 
means that all of the succeeding process model elements must be executed. For a join dependency type, 
XOR means that the succeeding process model element executes if one and only one of the preceding 
process model elements completes successfully, OR means that the succeeding process model element 
executes if one or more of the preceding process model elements completes successfully, and AND 
means that the succeeding process model element executes if, and only if, all of preceding process model 
elements completes successfully. In addition, a split dependency option represents the guard conditions 
of the following process model elements to be executed after the value of a split dependency type is 
decided. Similarly, a join dependency option specifies the guard conditions of the preceding process 
model elements to be executed after the value of a join dependency type is decided. 

Particularly, processes, resources, and events can be annotated with zero, one or more concepts of 
domain-specific ontologies, which expose essential information of heterogeneous business processes in 
a unified way to promote business process collaboration and interoperation. 

Fig. 2 shows the associations between process models, business goals, and services, which are 
important task resources for process model. The association between process and goal specifies that 
each process achieves zero, one, or more goals, and each goal is achieved by zero, one, or more processes. 
A goal may exist that is not specified to be achieved by a process, and a process may exist, which is not 
applied to achieve a specific goal. Similarly, each process involves zero, one, or more process 
involvements, where each process involvement denotes the involvement of a role with a process, such 
as actor or beneficiary. Each process involvement indicates that a role is involved in the execution of one 
and only one process. A process involvement shall have exactly one associated process. 

The association between process model and service model specifies that each process is fully realized 
by zero, one, or more service operations, and each service operation can fully realize zero, one, or more 
processes. A process may exist that is not specified to be realized by a service, and a service may exist 
that is not applied to realize a process. Each process may have one pre-condition and/or one post-
condition. A process may exist with no associated pre-condition or post-condition. Each process has 
zero or one exit condition to state a set of conditions that will exist to cause a process to terminate before 
its completion. 

4 OUR APPROACH 
Our preliminary work described the details of the PMR and its elements. However, it is still a problem 
that how different language constructs are aligned together in the process model registration, how 
language constructs exist in the original languages, and how they will be in PMR. These problems 
further boil down to firstly, how to decompose the existing business process model described by a 
specified process languages into language-specific manageable atoms, and secondly, how to reconstruct 
these language-specific manageable atoms onto PMR graph. In this section, we generalize our 
registration method and point out how these process models in the original languages are mapped into 
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PMR in a uniform way. 
The process registration framework based on PMR is shown in Figure 3. The objective of the process 

registration framework is to provide a generic solution of integrating heterogeneous business process 
models based on the selected metadata provided by the PMR metamodel.  

First, a language-specific process model is decomposed based on process structure trees (PSTs). A PST 
represents the abstract hierarchical structure of a process model. Each node of a PST represents the 
model elements of a process while it records dependency information such as predecessor(s) and 
successor(s) and its parent node as well. Each edge of a PST denotes a sub-process relationship. A PST 
is designed to be implemented on top of standard relational databases, which is called language-specific 
manageable atoms.  

Next, language-specific manageable atoms are mapped to PMR-based manageable atoms based on 
language-specific mapping rules, which correspond to     elements and attributes pertained to a specific 
process language to the elements or attributes in the PMR model. The reconstruction step consists of 
three sub-steps, i.e. mapping elements, mapping attributes and cleaning redundant nodes inside PMR 
graphs. Then, PMR-based manageable atoms are ingested into the process register eventually.  

To implement registration of business processes in different languages, it is necessary to define the 
mappings from the specific process modeling language to the PMR metamodel. Due to the popularity 
of application of EPC in industry domain, we take EPC as an example in this article to illustrate how to 
define the mapping rules and the corresponding algorithms for implementing process registration. 

4.1 Model Decomposition 
In the phase of decomposing an existing process model, a language-specific process model, such as 
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EPML (for EPC), BPEL, or OWL-S Process model, is parsed and decomposed into language-specific 
manageable atoms. No matter block-oriented languages (such as BPEL and OWL-S Process Model) or 
graph-oriented languages (such as EPCs, BPMN, and UML Activity Diagram), the decomposing phase is 
implemented by the following two steps. 

- Step1: Decompose the original process model into a process structure tree. 
- Step2: Build the common language-specific manageable atoms.  

A language-specific process model is decomposed based on process structure tree (PST). A PST 
describes the abstract hierarchical structure of a language-specific process model. Besides, it records the 
dependency information, such as parent, predecessor, and successor, for each process model element. The 
root of PST represents the whole process model. The nodes of a PST represent the model elements of a 
process model.  

4.1.1 A Tree Representation of a Language-Specific Process Model 
A language-specific process model is represented as a PST. The nodes of a PST contain a process model's 
common structural manageable atoms. Each node has a name, which is also the name of the process 
model element that is represented by the node. PSTs are designed to represent hierarchical structures of 
any kind of process model. Each edge of PST denotes a sub-process relationship. 

For a graph-based process model (e.g. EPC), each leaf node of PST represents a graphical notation of a 
process model, for example, XOR connector, function or event in EPC model. At the same time, each 
non-leaf node also represents the root of a sub-process. The number of non-leaf layers of PST depends 
on the maximum nested layers of the process model. For instance, the number of nested layers of EPC 
model in Fig. 4a is 2. Accordingly, the number of non-leaf layers of its PST is also 2. For a block-oriented 
process model (e.g., OWL-S, BPEL), each node of PST represents a structural activity of process model. 
For example, an OWL-S process model contains tags that represent the underlying document structure, 
e.g., 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝:𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶:𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙: 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙: 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, which can be exploited to detect the structure. 
The nesting of structured activities is preserved as functions with sub-process relationships in PST. The 
number of non-leaf layers of PST depends on not only the maximum nested layers of structural process 
definition, but also the maximum nested layers of process model.  

The PSTs we consider are unordered trees. That is, the children of a node in a PST do not have a fixed 
order. However, the dependency information between nodes of a process model is attached to the nodes 
of a PST. PST is composed of three types of nodes, i.e. root nodes, non-leaf nodes, and leaf nodes,. The 
functionalities and index structures of these three types of nodes are illustrated as follows. 

• Root node:  
The root of a PST represents the root of the process model. A standard relational table is designed for 
the PST root node, i.e., 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃). Table Process contains all 
the language-specific process models. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is automatically generated by incrementing a counter 
every time when a new language-specific process model is registered. 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 is the process notation 
that a new language process model to be registered. For instance, a process model in the format of EPC 
is demonstrated in Fig. 4a. The 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 of this process is "1" and the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 of this process is "EPC". 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 consists of the entire modeling element units decomposed from the original process model. For 
example, the process model in Figure 4a contains 10 process model elements. Each of the process model 
element has a unique id, i.e. 01, 02,..., 10, respectively. Each modeling element corresponds to a node in 
PST. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 represents the type of process model to be registered, i.e., graph-based or block-
oriented. For instance, the process model to be registered in Fig. 4 is graph-based as it is an EPC model. 

• Non-leaf node 
The non-leaf node of a PST represents a process model element to be transformed. For a graph-based 
process model, a non-leaf node of PST represents a graphical notation of process model, for example, 
XOR connector, function or event in EPC model. For a block-oriented process model, a non-leaf node of 
PST means a structural element of the process model, for example, a structural activity < 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ><
/𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐 > in BPEL process can be corresponding to a PST node.  

Table PME is the main component of the language-specific manageable atoms. A standard relational 
table is designed for the PST non-leaf nodes, i.e., 
𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆). 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 assigns a unique identifier 
to each indexed PME, where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is the text label of a PME, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is the type of this PME, 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 contains the identifier of the superior process model element of this PME,  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 refer to the identifiers of the predecessor and successor of this PME, respectively. 
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• Leaf node 
A non-leaf node of a PST also represents a process model element to be transformed. Different from 
non-leaf nodes, the process model element that a leaf node corresponds to cannot be nested. We also 
use a relational table to manage PST leaf nodes, i.e., 
𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆). 
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Fig. 4. Example of a) EPC process model, b) PST of the EPC model, c) the common language-specific 
manageable atoms of the EPC model, d) BPEL process model, e) PST of BPEL model, and f) the common 

language-specific manageable atom of BPEL model. 
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4.2 Model Reconstruction 
The model reconstruction phase maps manageable atoms in a language-specific process model to PMR-
based manageable atoms. The common targeting format for mapping is PMR graph, which is the instance 
of PMR metamodel described in our preliminary work. The definition of PMR graph is shown as follows. 
Definition 1: PMR graph , , , , , , ,PMRG = (N,Pre,Eff,T,Typ L E, )ρ π ε λ γ τ  consists of six finite sets N , Pre , Eff , T , Typ
, and L . Furthermore, the node set N  is the disjoint union of its subsets, i.e., 

p r s sd jd sdo jdo eN N N N N N N N N= ∪ ∪ ∪ ∪ ∪ ∪ ∪ , a binary relation E N N⊆ × , a surjective function : pN Preρ → , a 
surjective function : pN effπ → , a surjective function : ( )s sd jdN N N Tε ∪ ∪ → , a partial function : ( )N E Lλ ∪ 

, a function : sdN Typγ → , and a function : sjN Typτ →  such that: 
- We write p r s sd jd sdo jdo eN N N N N N N N N= ∪ ∪ ∪ ∪ ∪ ∪ ∪  for all nodes of the PMR graph. 

- pN is a finite set of the process nodes. 

- rN is a finite set of resource nodes. 
- sN is a finite set of sequence nodes. 
- sdN is a finite set of split dependency nodes. 

- jdN is a finite set of join dependency nodes. 

- sdoN is a finite set of split dependency option nodes. 

- jdoN is a finite set of join dependency option nodes. 

- eN is a finite set of event nodes. 
- ePr is a finite set of pre-conditions for an process node. Each precondition represents a condition 

that should be true before an activity node is executed. 
- Eff is a finite set of effects for an process node. Each effect represents a condition that should be 

true at the completion of execution for an activity node. 
- T is a finite set of transitional expression, each of which is used as a property to save the event text 

label temporarily by the split and join dependency nodes. 
- Typ is a finite set of logical types for split dependency nodes sdN  and join dependency nodes jdN , 

such as AND, OR, and XOR. 
- E is a set of sequence flows. Each sequence flow e E∈  represents a directed edge between two 

nodes. 
- We write p rU N N E= ∪ ∪  for all units of the PMR graph which can carry a label. 

- L  is a finite set of text labels. 
- The surjective function ρ  specifies the assignment of a set of pre-conditions Pre  to process nodes 

pN . Hence, every process node can be associated with one or more pre-conditions.  

- The surjective function π  specifies the assignment of a set of effects eff  to process nodes pN . 
Hence, every process node can be associated with one or more effects. 

- The surjective function ε  specifies the assignment of a piece of transitional expression t T∈  to 
sequence, split and join dependency nodes s sd jdN N N∪ ∪ . Hence, every split and join dependency 
node can be associated with a piece of transitional expression. 

- The partial function λ  defines the assignment of a label l L∈  to a process model unit u U∈ ; 
- The function γ  specifies the type of a split dependency sd sdn N∈  as AND, OR, XOR.  

- The function τ  specifies the type of a join dependency sj sjn N∈  as AND, OR, XOR. 
The reconstruction of manageable atoms is further reduced into three sub-steps, which are illustrated 

below: 
- Step1: We create an intermediate graph based on the common manageable atoms of language-

specific business process model. The creation of an intermediate graph is according to the pre-
defined mapping rules, which map manageable atoms of language-specific business process 
model to PMR graph elements. 

- Step 2: We map element attributes of a language-specific process model to the corresponding 
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element attributes of PMR graph based on pre-defined mapping rules. Part of attribute value is 
propagated and reassigned inside PMR graph. 

- Step 3: Some redundant nodes are removed to simply the PMR graph. 
The reconstruction of manageable atoms is based on a series of mapping rules, which defines the 

correspondence of elements and attributes between a specific process language and the PMR model.  It 
is necessary to define the mapping rules to PMR customized for each process language. In our previous 
work, we have already defined mapping rules from BPEL to PMR [25,26] and from OWL-S to PMR [30].  

In the rest of this section, we first present the meta-rule for mapping elements to PMR, followed by 
the concrete rules from EPC to PMR as an example. Next, the meta-rule for mapping attributes to PMR 
is also presented with rules of mapping attributes from EPC to PMR as an instance. Then, a general 
transformation algorithm is proposed as the core of our framework. Next, we detail a solution 
considering a common scenario that text label of event is propagated in the chain of dependency nodes 
in an intermediate PMR graph. Lastly, we introduce a reduction rule to remove the unnecessary 
elements and obtain the final PMR graph. 

4.2.1 Mapping Elements 
As one of the generic phases, all core elements of a specified process model will be first mapped to the 
corresponding elements in the PMR metamodel one by one, and the skeleton of PMR graph is created 
at the same time. 

The meta-rule for mapping elements from a language-specific process model to PMR graph is shown 
below. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑋𝑋)⋀𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑌𝑌)⋀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑍𝑍)⋀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑊𝑊) ∧ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐1, 𝑐𝑐2, . . , 𝑐𝑐𝑚𝑚)
⇒ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑉𝑉) 

This rule describes that a process model element 𝑋𝑋 in a language-specific process model is mapped to 
an element 𝑉𝑉 in PMR graph under the condition that 𝑌𝑌 is the predecessor of 𝑋𝑋, 𝑍𝑍 is the successor of 𝑋𝑋 , 
and 𝑊𝑊 is the parent of 𝑋𝑋, and the constraints 𝑐𝑐1, 𝑐𝑐2, . . , 𝑐𝑐𝑚𝑚 on 𝑋𝑋 are satisfied. Here, 𝑌𝑌, 𝑍𝑍, and 𝑊𝑊 denote the 
process elements in a language-specific process model.  

Let us take the conversion from an EPC to PMR graph as an example. EPC core elements comprise 
Function, Connector, Arc, and Event. All the core elements will be converted first during the mapping 
procedure. The mapping rules for core elements are shown in Table 1. 
1) Arc in EPC is used to connect different elements. Similar to the meaning of edge in PMR graph, the 

meaning of EPC arc is determined by the type of source node and target node. Hence, the arc in EPC 
is mapped to the edge in PMR graph, which is shown in R1. 

2) Trigged by one or more events producing one or more new events, Function in EPC represents a 
specific activity, which corresponds to process node in PMR Graph. So, Function in EPC is mapped to 
process model in PMR graph, as shown in rule R2. 

3) Connector in EPC model can be mapped into different kinds of nodes in PMR graph according to its 
in-degree and out-degree. For the split dependency node and join dependency node, the logic type of 
Connector such as XOR, AND, and OR is transferred to the logical type Typ  in PMR graph. 
Constrained by the definition of structural requirements of PMR graph, a new split option node or 
join option node is added into each branch after finishing Connector map, as described by R3 and R4. 
The detailed mapping procedure for Connector is shown in Algorithm 2. 

TABLE 1. MAPPING RULES FOR CORE ELEMENTS 
Rule 
No. 

EPC Element PMR Graph Element 

R1 Arc Edge 
R2 Function Process Node 
R3 Connector (in-degree > 1 & out-degree = 1) Join Option Node connected to Join Dependency 

Node 
R4 Connector (in-degree=1 & out-degree > 1) Split Dependency Node connected to Split Option 

Node 
R5 Event (Predecessor: function & Successor: function) Sequence Node  
R6 Event (in-degree = 0 | out-degree = 0) Event Node  
R7 Event ( Predecessor : Connector & out-degree!= 0 ) The Event is removed 
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4) If the previous node and subsequent node of an Event are Functions, the Event is converted to 
sequence node in PMR graph, which is described by rule R5. If an Event has no previous node or has 
no subsequent node, it is mapped into event node in PMR graph, working as start node or end node 
of PMR Graph, which is described in rule R6. If the previous node of Event is Connector and there 
are one or more subsequent nodes, the Event is not mapped into any node in PMR graph and is 
removed, which is shown in rule R7. It is noted that all the text labels contained in the Event will be 
kept and transferred into corresponding nodes in PMR Graph, and how to transfer them is left to the 
Section 4.2.2. 

A process fragment is shown in Fig. 5, which exemplifies how to map the core elements of EPC model 
to those in PMR graph. First, according to R3, the OR connector in EPC model is mapped to split 
dependency node of type OR. At the same time, a new split option node is added for each of two branches. 
Similarly, the XOR connector in EPC model is mapped into join dependency node as well as a new join 
option node according to R4. Then, we obtain a split option node connected directly to a join option node at 
each branch. Next, Event A is mapped to the start node of the PMR graph through R6. Lastly, in terms 
of R7, Event C and D are deleted due to their previous nodes are connectors and there is another 
connector to the subsequent node. 

4.2.2 Mapping Attributes of Elements  
After using the rules in Table 1 to map the core elements, a skeleton of PMR graph is obtained. However, 
as a generic phase, part of the attributes will need to be redistributed and adjusted after the core elements 
have been mapped from a specified process model to PMR graph.  

The meta-rule for mapping attributes from a language-specific process model to PMR graph is 
depicted below. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑋𝑋)⋀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑌𝑌)⋀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑌𝑌, 𝑦𝑦) ∧ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑍𝑍) ∧ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑍𝑍, 𝑧𝑧) ∧ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑊𝑊) ∧ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑊𝑊,𝑤𝑤)
∧ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑉𝑉) ∧ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑉𝑉, 𝑣𝑣) ∧ 𝑀𝑀(𝑋𝑋,𝑉𝑉)
⇒ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑦𝑦, 𝑣𝑣) ∨ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑧𝑧, 𝑣𝑣) ∨ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑤𝑤, 𝑣𝑣) 

The rule describes that a process model element 𝑋𝑋 in a language-specific process model corresponds 
to an element 𝑉𝑉 in PMR graph. 𝑣𝑣 is one of attributes of 𝑉𝑉. If 𝑌𝑌 is the predecessor of 𝑋𝑋, 𝑍𝑍 is the successor 
of 𝑋𝑋, 𝑊𝑊 is the parent of 𝑋𝑋, and 𝑦𝑦, 𝑧𝑧,𝑤𝑤 are attributes of 𝑌𝑌,𝑍𝑍,𝑊𝑊, then the attribute 𝑦𝑦, or the attribute 𝑧𝑧, or 
the attribute 𝑤𝑤 is mapped to the attribute 𝑣𝑣. 
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Fig. 5.Mapping rules for core elements. 
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With regard to EPC model, the attribute mapping rules are shown in Table 2, which are applied to 
fill the PMR graph with text labels existed in event of original EPC model. Text labels contained in event 
will be mapped into a set of pre-conditions and effects associated with a process node after the core 
elements have been aligned between the EPC model and PMR graph. In Table 2, the column “Elements 
connected with Event” describes the different situations categorized by the successive or previous nodes 
of the event in EPC model, while the column “PMR graph node or properties” represents the 
corresponding elements in PMR graph after mapping event and all the other core elements adjacent to 
event to PMR graph and completing text label propagation. 

R8 describes a mapping scenario where the subsequent node of an event is a function. In this scenario, 
the event triggers the function while the precondition of a process node describes the constraints that 
must be true before a process node is invoked. The text label of the Event is mapped to the precondition 
of the aligned process node due to the semantic equivalence between them. A similar mapping scenario 
is described in R9, where the previous node of an event is a function. 

R10 and R11 describe the scenarios where the previous or subsequent node of an event is a connector. 
To facilitate the mapping of an event text label, a property named transitional expression is designated 
and associated with a dependency node in PMR graph for saving the event text label temporarily. With 
the help of this property, the event text label could be mapped from the event to the process nodes that 
the nearest function corresponds to.  

A process fragment shown in Fig. 6 is used to exemplify how to map the event text labels. According 
to R10, the text label of Event B is mapped to the upper split dependency node and the lower join 
dependency node, in which the transitional expression property is harnessed to save the text label of 
Event B. Next, the text labels for Event C and D are propagated to the upper split dependency node and 
the lower join dependency node and saved temporarily under the guidance of R11, as shown in Fig. 6. 

TABLE 2. MAPPING RULES FOR ELEMENT ATTRIBUTES 
Rule 
No. 

Elements that attribute propagates to Propagation of label 

R8 Function (Predecessor: Event) M(Function). precondition ← Event. name 
R9 Function (Successor: Event) M(Function). effect ← Event. name 
R10 Connector (Predecessor/Successor: Event and 

M(connector).TransitExp is empty) 
M(connector). TransitExp ← Event. name 

R11 Connector (Predecessor/Successor: Event and 
M(connector).TransitExp is not empty) 

M(connector). TransitExp. append(Connector. Type
+ Event. name) 
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4.2.3 Transformation Algorithm 
Before we present the transformation algorithms, we need to define the mapping function M  that 
transforms a node in PST to a node in PMR graph. 
Definition 2 (Mapping Function 𝑴𝑴). Let 𝐹𝐹 be a set of nodes of a PMR graph and 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 a set of nodes a 
process structure tree PST. The mapping 𝑀𝑀:𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 → 𝐹𝐹 defines a transformation of a node of PST to a 
node in PMR graph. 

Algorithm 1 for this phase takes a PST as input and returns a PMR graph. The general idea of our 
strategy is to recursively traverses the nested structure of a PST in a top-down manner. The input is the 
root of this PST. The output is the corresponding PMR graph to the PST. The main procedure is 
described as follows. First, all of the children of the root are populated to queue 𝑞𝑞. Then, all the PST 
nodes in 𝑞𝑞 are traversed. If a PST node is leaf node of PST, which means it cannot be further decomposed, 
it is transformed to a process element in PMR graph according to a specified transformation rule. 
However, if a PST node is a non-leaf one, which means it can be further decomposed, the function 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 will be recursively called with this non-leaf node as the root. The recursive call will 
terminate after all the non-leaf nodes in the PST have been traversed.  

The procedure 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 used in the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 procedure generates the PMR graph 
element that corresponds to the respective process element in language-specific process model. This 
procedure conducts the concrete transformation between language-specific process models to PMR 
graphs. In the following, we give two concrete examples, i.e., 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  and 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, which help transform Connector and Event in a EPC model to the corresponding 
elements in PMR graph. The last step is to transfer the label text on the path of Dependency Nodes to 
the neighboring process nodes and then update the PMR graph. 

Algorithm 2 shows how to map a connector in EPC model into a dependency node in PMR graph. Line 
1-2 obtains all the previous and successive nodes of a connector. Line 3-12 shows how a connector is 
mapped into a split dependency node in PMR graph. Line 4 creates a new split dependency node, and the 
logical types or this split dependency node is assigned in Line 5. Line 7-11 connects split dependency 
nodes with its previous nodes and successive nodes, which are created by means of mapping rules 
described in Table 1. Similarly, the join dependency node is created from Line 13 to Line 21. 

Algorithm 3 describes how to map an event in EPC model into the corresponding node in PMR graph. 
First, the position where an event lies in is judged and categorized into three different situations. Then, 
mapping rules are invoked to create new nodes and edges in PMR graph in terms of mapping rules 
described above. The previous or successive nodes for the event are obtained in Line 1-2. The event 
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Fig. 6.Mapping attributes of text label of Event. 
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without previous nodes or successive nodes is mapped to the newly created event node in PMR graph. 
The text label in the event is mapped to the previous or successive nodes in terms of the rules described 
in Table 2. If both the previous and successive node of an event are functions, the event is converted to 
sequence node in PMR graph, and the text label of the event is mapped to the process nodes that its adjacent 
functions correspond to in terms of R8 and R9 (Line 9-14). Line 15-17 illustrates a situation that the 
previous node of an event is a connector and the successive node is a function. In this case, the event is 
totally removed, while the text label is mapped to the process node of that its successive function 
corresponds to. 

4.2.4 Propagation for Text Label of Event 
So far we have mapped the attributes of elements into the most directly mapped elements in PMR graph. 
This, however, does not necessarily lead to a correct solution in terms of the definition of PMR graph. 
In fact, after mapping nodes and events from EPC model to PMR graph, the text label of some events are 
still kept in the Split/Join Dependency Nodes as a transitional expression, which needs to be transferred to 
the nearby process nodes eventually. 

Fig. 7 illustrates another example with regard to this point. Here H, I, J are dependency nodes 
partially mapped to connector H, I, and J in EPC model. The transitional expression of J is the union set 
of name of Event E, F, and G. The transitional expression of I is any one of names of Event C, D, and 
transitional expression of J, while the transitional expression of H is the combination of name of Event 
node B and the transitional expression of dependency node I. These transitional expressions temporarily 
stored in the dependency node represent a state after an activity is finished and must be propagated to 
the closest process node as the effect attribute. 

If we analyze this phenomenon further, we observe that the underlying cause is the existence of a 
chain of dependency nodes, which obstruct the attribute propagation from event to process node. 
Specially, the attribute of Event F in the left graph is firstly mapped to the transitional expression of 
Dependency node J. Yet, there are other two Dependency nodes H and I, which need to be stepped over 
for the attribute propagation from Dependency J to Process Node A. 

To overcome this situation, we define four other rules to describe attribute propagations between a 
pair of neighbor nodes A and B in PMR graph. The rules are shown in Table 3.  

R12 and R13 describe the scenario that another Dependency Node named B is the previous/successive 
element of the Dependency Node named A. If there is no transitional expression in the Dependency Node, 
then transitional expression of Dependency Node A is propagated into Dependency Node B, which is 
described in rule R12. On the other hand, if transitional expression of Dependency Node B is not empty, 
transitional expression of Dependency Node A is propagated to the Dependency Node B, and then 
appended to the transitional expression of Dependency Node B through the logical type of Dependency Node 
B, constituting a new composite transitional expression, which is illustrated in rule R13. 

Rules R14 and R15 illustrate the scenario that Process Node is the previous/successive element of 
Dependency Node. In these scenarios, the transitional expression is propagated to the Process Node, and 
saved as effect/precondition property in the process node. 

Algorithm 1. Pseudo code for PSTtransform(PSTNode 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, PST 𝑝𝑝𝑝𝑝𝑝𝑝,𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ 𝑝𝑝𝑝𝑝) 
Input: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝  
Output: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ 𝑝𝑝𝑝𝑝 
01. 𝑞𝑞 ← empty queue 
02. 𝑞𝑞. enqueue(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. getAllChildren()) 
03. 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 (not 𝑞𝑞. isEmpty()) 
04.    𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ← 𝑞𝑞. dequeue() 
05.    𝐢𝐢𝐢𝐢 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 in 𝑝𝑝𝑝𝑝𝑝𝑝 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 
06.       𝑝𝑝𝑝𝑝 ← transformPSTNode(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑝𝑝𝑝𝑝𝑝𝑝) 
07.    𝐞𝐞𝐞𝐞𝐞𝐞 𝐢𝐢𝐢𝐢 
08.    𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 𝐢𝐢𝐢𝐢 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∈ non leafNode 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 
09.       𝑝𝑝𝑝𝑝 ← PSTtransform(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑝𝑝𝑝𝑝𝑝𝑝, 𝑝𝑝𝑝𝑝) 
10.    𝐞𝐞𝐞𝐞𝐞𝐞 𝐢𝐢𝐢𝐢 
11. 𝐞𝐞𝐞𝐞𝐞𝐞 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 
12. 𝐅𝐅𝐅𝐅𝐅𝐅 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 Dependency Node Chain 𝑝𝑝 in 𝑝𝑝𝑝𝑝 
13.    𝑝𝑝𝑝𝑝 ← 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑝𝑝𝑝𝑝, 𝑝𝑝) 
14. 𝐞𝐞𝐞𝐞𝐞𝐞 𝐟𝐟𝐟𝐟𝐟𝐟 
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Let 𝑁𝑁0 be the start point of a chain of Dependency Nodes expressed as 𝑝𝑝 = {𝑁𝑁0,𝑁𝑁1,𝑁𝑁2, … ,𝑁𝑁𝑚𝑚}. 𝑇𝑇𝑇𝑇𝑖𝑖 is the 
transitional expression of the node 𝑁𝑁𝑖𝑖  of the dependency node chain. The transitional expression of 𝑁𝑁0 
could be obtained by the function 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺() in Algorithm 4. This algorithm starts by calling R12 
or R13 shown in Table 3 to obtain the transitional expression from the last Dependency Node 𝑁𝑁𝑚𝑚 to the 
start point 𝑁𝑁0 of 𝑝𝑝, obtaining the transitional expression of the start point 𝑁𝑁0, which will be transferred 
to the neighboring process node as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 . A similar process can be employed to obtain 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 for a process node from a chain of Dependency Nodes. 

Algorithm 2. 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝒄𝒄,𝑷𝑷𝑷𝑷𝑷𝑷 𝒑𝒑𝒑𝒑𝒑𝒑,𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝒑𝒑𝒑𝒑) 
Input：Connector 𝑐𝑐, PST 𝑝𝑝𝑝𝑝𝑝𝑝, PMR graph 𝑝𝑝𝑝𝑝 
Output：Updated PMR Graph 𝑝𝑝𝑝𝑝 
01．NodeSet 𝑁𝑁𝑝𝑝  ← 𝑝𝑝𝑝𝑝𝑝𝑝. 𝑐𝑐. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  
02．NodeSet 𝑁𝑁𝑠𝑠  ← 𝑝𝑝𝑝𝑝𝑝𝑝. 𝑐𝑐. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
03．𝐈𝐈𝐈𝐈 the number of 𝑁𝑁𝑝𝑝  =  1 and the number of 𝑁𝑁𝑠𝑠 > 1  𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 
04．   Create Split Dependency Node 𝑆𝑆𝑆𝑆𝑆𝑆 
05．   The type of 𝑆𝑆𝑆𝑆𝑆𝑆 ←  the type of 𝑐𝑐 
06．   Connect 𝑀𝑀(𝑁𝑁𝑝𝑝) to 𝑆𝑆𝑆𝑆𝑆𝑆 
07．   𝐅𝐅𝐅𝐅𝐅𝐅 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 Node 𝑛𝑛𝑠𝑠 in 𝑁𝑁𝑠𝑠 
08．      Create Split Dependency Option Node 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
09．      Connect 𝑆𝑆𝑆𝑆𝑆𝑆 to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
10．      Connect 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 to 𝑀𝑀(𝑁𝑁𝑠𝑠) 
11．   𝐄𝐄𝐄𝐄𝐄𝐄 𝐟𝐟𝐟𝐟𝐟𝐟 
12．𝐄𝐄𝐄𝐄𝐄𝐄 𝐢𝐢𝐢𝐢  
13．𝐈𝐈𝐈𝐈 the number of 𝑁𝑁𝑝𝑝 >  1 and the number of 𝑁𝑁𝑠𝑠 > 1 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 
14．   Create Join Dependency Node 𝐽𝐽𝐽𝐽𝐽𝐽 
15．   The type of 𝐽𝐽𝐽𝐽𝐽𝐽 ←  the type of 𝑐𝑐 
16．   𝐅𝐅𝐅𝐅𝐅𝐅 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 Node 𝑛𝑛𝑝𝑝 in 𝑁𝑁𝑝𝑝 
17．      Create Join Dependency Option Node 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 
18．      Connect 𝑀𝑀(𝑛𝑛𝑝𝑝) to 𝐽𝐽𝐽𝐽𝐽𝐽 
19．      Connect 𝐽𝐽𝐽𝐽𝐽𝐽 to 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 
20．   𝐄𝐄𝐄𝐄𝐄𝐄 𝐟𝐟𝐟𝐟𝐟𝐟 
21．𝐄𝐄𝐄𝐄𝐄𝐄 𝐢𝐢𝐢𝐢 
22.   Return 𝑝𝑝𝑝𝑝 

Algorithm 3 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝒆𝒆,𝑷𝑷𝑷𝑷𝑷𝑷 𝒑𝒑𝒑𝒑𝒑𝒑,𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝒑𝒑𝒑𝒑) 
Input: Event 𝑒𝑒, PST 𝑝𝑝𝑝𝑝𝑝𝑝, PMR graph 𝑝𝑝𝑝𝑝 
Output：Updated PMR Graph 𝑝𝑝𝑝𝑝 
01．NodeSet 𝑁𝑁𝑝𝑝  ← 𝑝𝑝𝑝𝑝𝑝𝑝. 𝑒𝑒. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
02．NodeSet 𝑁𝑁𝑠𝑠 ←  𝑝𝑝𝑝𝑝𝑝𝑝. 𝑒𝑒. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
03．𝐈𝐈𝐈𝐈 the number of 𝑁𝑁𝑝𝑝  =  0 or the number of 𝑁𝑁𝑠𝑠 =  0 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 
04．   Create Event Node 𝐸𝐸𝐸𝐸 
05．   Add 𝐸𝐸𝐸𝐸 into 𝑝𝑝𝑝𝑝 
06．   Connect 𝑀𝑀(𝑁𝑁𝑝𝑝) to 𝐸𝐸𝐸𝐸 in 𝑝𝑝𝑝𝑝 
07．   Connect 𝐸𝐸𝐸𝐸 to 𝑀𝑀(𝑁𝑁𝑠𝑠) in 𝑝𝑝𝑝𝑝 
08．   Invoke R8, R9, R10, R11 to propagate text label in 𝑒𝑒 
09．𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝐢𝐢𝐢𝐢 𝑁𝑁𝑝𝑝 is Function and 𝑁𝑁𝑠𝑠 is Function 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 
10．   Create Sequence Node 𝑆𝑆𝑆𝑆𝑆𝑆 
11．   Add 𝑆𝑆𝑆𝑆𝑆𝑆 into 𝑝𝑝𝑝𝑝 
12．   Connect 𝑀𝑀(𝑁𝑁𝑝𝑝) to 𝑆𝑆𝑆𝑆𝑆𝑆 in 𝑝𝑝𝑝𝑝 
13．   Connect 𝑆𝑆𝑆𝑆𝑆𝑆 to 𝑀𝑀(𝑁𝑁𝑠𝑠) in 𝑝𝑝𝑝𝑝 
14．   Invoke R8, R9 to propagate text label in 𝑒𝑒 
15.   𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝐢𝐢𝐢𝐢 𝑁𝑁𝑝𝑝 is Connector and the number of 𝑁𝑁𝑠𝑠 =  1 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 
16．   Connect 𝑀𝑀(𝑁𝑁𝑝𝑝) to 𝑀𝑀(𝑁𝑁𝑠𝑠) in 𝑝𝑝𝑝𝑝 
17．   Invoke R10, R11 to propagate text label in 𝑒𝑒 
18.   𝐄𝐄𝐄𝐄𝐄𝐄 𝐢𝐢𝐢𝐢 
19.   Return 𝑝𝑝𝑝𝑝 
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The right graph of Fig. 7 exemplifies how to propagate the attributes in the Dependency node chain. 
According to R12, the transitional expression of Dependency node J is transferred and integrated into 
the transitional expression of Dependency node I combining with the attributes from Event E, F, and G. 
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Fig. 7. Propagation for text label of Event in the chain of dependency nodes. 

Table 3. PROPAGATION RULES FOR LABELS INSIDE PMR GRAPH 

Rule No. Elements that attribute propagates to Propagation of label 
R12 Dependency Node (Predecessor/Successor: another 

Dependency Node and Dependency 
Node.TransitExp is empty) 

DependencyNode. TransitExp ← Predecessor/Sucessor. TransitExp 

R13 Dependency Node (Predecessor/Successor: another 
Dependency Node and Dependency 
Node.TransitExp is not empty) 

DependencyNode. TransitExp. append(DependencyNode. Type 
+Predecessor/Sucessor. TransitExp) 

R14 Process Node  (Predecessor: Dependency Node) ProcessNode. Precondition ← DependencyNode. TransitExp 
R15 Process Node (Successor: Dependency Node) ProcessNode. Postcondition ← DependencyNode. TransitExp 

Algorithm 4. 𝑮𝑮𝑮𝑮𝑮𝑮𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻(𝑷𝑷𝑷𝑷𝑷𝑷 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 𝒑𝒑𝒑𝒑,𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝒑𝒑) 
Input：PMR graph 𝑝𝑝𝑝𝑝, Dependency Node Chain 𝑝𝑝 
Output:Updated PMR graph 𝑝𝑝𝑝𝑝 
1．Let 𝑁𝑁0 be the start point of 𝑝𝑝 = {𝑁𝑁0,𝑁𝑁1,𝑁𝑁2, … ,𝑁𝑁𝑚𝑚} 
2．𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 Dependency Node 𝑁𝑁𝑖𝑖  ordered from 𝑁𝑁𝑚𝑚 to 𝑁𝑁0  
3．   call R12 or R13 to obtain 𝑇𝑇𝑇𝑇𝑖𝑖 
4． 𝐞𝐞𝐞𝐞𝐞𝐞 𝐟𝐟𝐟𝐟𝐟𝐟     
5．call R14 or R15 to transfer lable text  from 𝑁𝑁0 to the neighbouring process node    
6．Return updated 𝑝𝑝𝑝𝑝 
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After that, similarly, the transitional expression of the Dependency node I is transferred and integrated 
into the transitional expression of the Dependency node H in terms of rule R13. Eventually, according 
to rule R15, the transitional expression of the Dependency node H is transferred and becomes the effect 
of Process Node A. By this means, the text label attribute of the Dependency node chain propagate 
progressively until they become the precondition or effect of functions of PMR graph. 

4.2.5 Reduction Rule 
After transforming a language-specific process model into a PMR graph, we can simplify the resulting 
graph by applying the reduction rules. This rule is designed to eliminate "unnecessary" split option 
nodes or split join nodes. The rules are applied until a PMR graph cannot be further reduced. 

Function 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is a cleaning operation that merges two consecutive option 
nodes into a single split (join) option node between a pair of split/join dependency nodes. Here, one of 
the option node is redundant and can be removed if a split/join option node is connected directly to 
another join/split option node. As shown in Fig. 8, an arbitrary one of these two option nodes should be 
removed to avoid redundancy. Here, we remove the split option nodes C and H, while keeping the join 
option nodes D and F. 

4.3 Complexity Analysis 
The algorithm for transforming a PST to the PMR graph is a recursive algorithm. The number of 
recursive calls depend on the number of sub-processes in the language-specific process model. Suppose 
there exist 𝑚𝑚  sub-processes in the process model, the complexity of the transforming algorithm is 
𝑚𝑚𝑚𝑚(𝑛𝑛), where 𝑇𝑇(𝑛𝑛) represents the complexity of transforming a process model in which all the process 
elements are at the same level.  

 The complexity of the algorithm for transforming connectors (Algorithm 2) is linear on the maximum 
number of predecessors/successors of each connector. The number of connectors is bounded by the 
number of the nodes 𝜖𝜖  of the language-specific process model, while the maximum number of 
predecessors/successors of a connector is bounded by the maximum degree 𝛿𝛿 among of nodes in the 
language-specific process model. Thus the complexity of transforming all of connectors is 𝑂𝑂(𝜖𝜖𝜖𝜖). 

The complexity of the algorithm for transforming an event (Algorithm 3) is 𝑂𝑂(1). Thus the complexity 
of transforming all of events in a process model is bounded by the number of the nodes 𝜀𝜀, which is 𝑂𝑂(𝜀𝜀). 
The complexity of algorithm for calculating label transfer on a dependency node path is linear on the 
number of dependency nodes on the chain of dependency nodes. The number of dependency nodes is 
bounded by the number of the nodes 𝜀𝜀 of the language-specific process model. Thus the complexity of 
Algorithm 4 is 𝑂𝑂(𝜀𝜀). Hence, the complexity of the whole transformation algorithm is 𝑚𝑚(𝛿𝛿 + 2)𝑂𝑂(𝜖𝜖). 
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4.4 Property of the Algorithm 
In Section 1, we stated that the algorithm should satisfy the requirement of behavior-preservation. Below, 
we sketch the proof of this proposition showing that the algorithms fulfill the requirement of behavior-
preservation.  

Proposition 1. Let PG be the PMR graph that is converted from an EPC model via using Algorithms 1, 2, 3, 
and 4. Let EG represent the graph structure of the EPC model. Any execution trace of EG has the identical mapping 
in PG, and all execution traces of EG can be mapped to PG. That is to say, PG and EG have the same execution 
traces.  

Proof. Let 1e , 2e ,…, ne  be an execution trace of EG, which is represented as a sequence of edges. 
Taking an edge ( , )ie k n=  as an example, here are a couple of situations that we should consider if ie  
is a subset of edge set of PG. 
(1) There is no adding or removal of nodes during the process of edge mapping - For instance, if k  is 

an event and n  is a function, according to the lines 3~7 of the Algorithm 3, there should be a node 
'k  in PG, that is transformed from the event k , and 'k  is connected to its process node 'n , which 

is transformed from the function n . According to R2, the process node in PG is corresponding to 
the function in EG. Accordingly, the edge ( ', ')k n  corresponds to the edge ( , )k n  in EG. Similarly, 
for the edge ( , )k n , if k  is a function and n  is an event, we can arrive at  the same conclusion.  

(2) There exist adding or removal of nodes during the process of edge mapping from EG to PG - For 
instance, if k  is an OR-split connector and n  is an event. According to lines 3~7of the Algorithm 2, 
this connector is mapped to a Split Dependency Node 'k  and a couple of Option Nodes 1 'n , 2 'n ,…,

'jn . Further, in terms of lines 15~17 of the Algorithm 2, the event is removed while the text label 
of this event is transferred and stored into the Option Nodes 1 'n , 2 'n ,…, 'jn . So the edge ( , )k n  is 
corresponding to the edges 1( ', ')k n , 2( ', ')k n ,…, ( ', ')jk n . For other similar situations, the same 
conclusions can be obtained.  

(3) If k  is a split option node and n  is a join option node - In this case, cleaning operations remove the 
redundant edge between split option node and join option node. However, there is no 
corresponding edge of this kind of redundant edge in EG. So the execution trace is preserved since 
the removed edge ( , )k n does not matter.  

In summary, any execution trace in EG is also an execution trace of PG. Accordingly, our proposed 
mapping algorithm can preserve the behavior of EPC model. 

JoinOptionNode F

SplitOptionNode C

JoinDependencyNode J 
Type = XOR

ProcessNode E

SplitDependencyNode I 
Type = OR

ProcessNode B

EventNode A

JoinOptionNode D

JoinDependencyNode J
Type = XOR

Cleaning
Operation

SplitDependencyNode I
Type = OR

ProcessNode E

ProcessNode B

EventNode A

JoinOptionNode D

SplitOptionNode H

JoinOptionNode F

 

Fig. 8. Cleaning Operation. 
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5 EVALUATION 
The mapping algorithms from different process languages to PMR metamodel has been implemented 
as a tool, namely Process Graph Generator, that is freely available as part of the PMRMP toolset [23].1 So 
far, the tool supports conversion of EPC represented in the EPML format, BPEL [13], and OWL-S [2] 
process model represented in OWL format. BPEP allows users to edit process models in a variety of 
languages (such as EPCs, BPEL, and OWL-S Process) through the Web portal. Different kinds of process 
models can be transformed into PMR graph as the output, which can be further stored in a relational 
database.  

Using the implementation of the algorithm, we conducted experiments to evaluate the correctness 
and the performance of our mapping algorithms from the perspective of EPC conversion. Furthermore, 
we conducted a case study to evaluate the usefulness based on a real-world repository. The tests were 
conducted on a laptop with a quad-core Intel processor, 2.7 GHz, 4GB memory, running Microsoft 
Windows 10 64-bit. 

5.1Correctness of the algorithm 
We evaluate the percentage of EPC models that can be converted to PMR graph by means of our 
mapping rules and algorithms in order to verify the correctness of our algorithm. We conducted the 
experiments on the real-world SAP R/3 reference model [24], which contains 604 models with sizes 
ranging from 5 to 119 nodes. Our experiment result shows that 573 models of them can be converted 
successfully. The success rate is: 573/604 = 94.9%. The rest of EPC models failed to be converted due to 
the violation of the EPC well-formedness constraint defined by Rosemann and van der Aalst [4]. For example, 
there are some models with connectors possessing multiple inputs and multiple outputs, which break 
the constraint of a legal EPC model. 

                                                             
1 Available at: https://github.com/Zaiwen/PMRMP 
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5.2 Time performance 
This experiment aims to evaluate the time performance of the algorithm and analyze the relationship 
between the response time and various types of nodes in EPC models. We compute the number of all 
types of nodes including event, function, and connector, recording the response time from converting EPC 
model to PMR graph for each of legitimate EPC model at the same time. We obtain the results shown in 
Fig. 9. 

As shown in Fig. 9(a), we can conclude that the response time is positively correlated with the number 
of nodes in EPC. It is possible for some models with less number of nodes to consume more processing 
time, since the distribution of node type is uneven and the processing costs for connector and event are 
more than function. From Fig. 9(b), we can see that the number of events in EPC model takes a significant 
positively effect on the response time. Simlilarly, the reponse time are highly positively related with the 
number of connectors in EPC model, which is shown in Fig. 9(d). Different from event and connector, 
when the number of function increases, the response time does not show a distinct incremental trend, 
indicating that the number of function has no obvious effect on the response time, which is shown in Fig. 
9(c). 

 
Fig. 9. The response time related to (1) Number of all kinds of nodes (2) Number of events  

(3) Number of functions (4) Number of connectors. 
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5.3 Case study 
In order to further illustrate the operational steps of integrating different process models into PMR and 
prove the generalization of the proposed registering framework, we take a real financial business 
process model from SAP R/3 reference model for another case study. The process model is initially in 
the format of EPML. However, a BPEL model with similar semantics of the EPC model is built by a 
domain expert after understanding the meaning of EPC model thoroughly. Then, the same registration 
framework is followed to map the dual process models into PMR graph.  

As we point out in Section 4.2, different mapping rules are needed for transforming different 
language-specific process model into PMR graph even though the general meta-rules exist and can be 

used to advise the generation of language-specific mapping rules. We reuse part of the mapping rules 
from BPEL to PMR described in our previous work [25]. These mapping rules are shown in Table 4. 
Step 1: Model Decomposition 
The EPC model and BPEL model are firstly decomposed into two PSTs respectively. For EPC model, 
only one leaf layer exists in PST because there is not any sub-process in the model. Each leaf node 
represents an EPC model element in this PST, while at the same time corresponds to a language-specific 
manageable atom. Every manageable atom records the predecessor(s) and successor(s) of each EPC 

TABLE 4. MAPPING RULES FOR BPEL ELEMENTAND ATTRIBUTES 
Rule No. BPEL Elements PMR Graph Elements 
B.R1 bpel:invoke Process 
B.R2 bpel:invoke/@operation Process.name = operation  
B.R3 bpel:flow Split_Dependency and Join_Dependency 
B.R4 bpel:pick Split_Dependency and Join_Dependency 
B.R5 bpel:pick/bpel:onMessage Split_Dependency_OptionJoin_Dependency_Option 
B.R6 bpel:invoke/@outputVariable The association between ProcessNode and EventNode 

EventNode.name = outputVariable.value 
B.R7 bpel:flow/bpel:onMessage Split_Dependency_OptionJoin_Dependency_Option 
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 <flow>(C)
      <receive variable="Planning Carried out"/>(A)
      <receive variable="Posting to be Made in General Ledger"/>(B)
 </flow>

 <pick >(D)
      <onMessage operation="Accrual/Deferral Posting" >(Q)
          <invoke  operation="Accrual/Deferral Posting"(E)
      outvariable = "Accrual/deferral Posting made"/>(I)

      </onMessage>

      <onMessage operation="Recurring Entry" >(R)
          <invoke  operation="Recurring Entry"(G)
      outvariable = "Recurring entry is made"/>(K)

      </onMessage>

      <onMessage operation="Clearing" >(S)

          <invoke  operation="Clearing"(H)
      outvariable = "Offsetting reversed"/>(L)
      </onMessage>

      <onMessage operation="Park G/L Account Document" >(T)
          <sequence>
             <invoke  operation="Park G/L Account Document"(F)
               outvariable = "G/L account document parked"/>(J)
       

   <flow>(N)
       <onMessage operation = "G/L account document parked">(U)
           <invoke operation = "G/L Account Posting"(O)
               outVariable = "Document posted"/>(P)
         </onMessage>
       <onMessage operation = "Direct G/L account posting to be made">(V)
           <invoke operation = "G/L Account Posting"(O)
             outVariable = "Document posted"/>(P)

         </onMessage>
        </flow>
         </sequence>
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Fig. 10. A sample scenario for integrating different models into PMR 
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modeling element. For instance, the node 𝑁𝑁 (id: 15) is a XOR connector. It has two predecessors which 
are Event 𝐽𝐽 (id: 11) and 𝑀𝑀 (id: 14), and one successor which is Function O (id: 16). 

The PST that BPEL model is decomposed into is shown in Figure 11. Comparing to PST of EPC model, 
it has multiple non-leaf layers because BEPL is categorized into a block-structured process modeling 
language and each non-leaf node represents a structural activity in BEPL model. For instance, the node 
𝑆𝑆 (id: 08) represents a structural activity< 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 > and it contains another block named𝐻𝐻 (id: 12), 
which stands for the structural activity< 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 >.  
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Fig. 11. PST and the common language-specific manageable atoms of the EPC and BPEL model in Fig. 10. 
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Step 2: Mapping elements  
As Fig. 10 shows, the elements in the EPC model are converted into structure of PMR graph based on 

the rules in Table 1. Three Connectors, named C, D, and N, are mapped to Split Dependency Nodes and 
Join Dependency Nodes in PMR graph accordingly by using the rule R3 and R4. Seven Events, named A, 
B, I, K, L, M, P, are mapped to Event Nodes in PMR graph under the guideline of R6, while Event I is 
removed according to R7. Five Functions, named E, F, G, H, and O, are mapped into Process Nodes 
according to R2. 

The BPEL process model with the same semantics is shown in the right side of Fig. 10. The 
corresponding elements between EPC and BPEL are aligned with the same alphabet. Five invoke activity 
E, F, G, H, O are mapped to Process Nodes in PMR graph referring to the rule B.R1. Two flow elements C 
and N are mapped to Split Dependency Node and Join Dependency Node according to B.R3. The pick element 
D is mapped into Split Dependency Node by using B.R4. The on-message elements Q, R, S, and T are 
mapped into Split Option Node according to B.R5 while the other on-message elements U, V are mapped 
into Join Option Node according to B.R7. 
Step 3: Mapping attributes 

As described in Section 4.2.2, the attributes of elements such as event name and function name must 
be assigned to the node of PMR graph when EPC model is mapped into PMR graph. For instances, the 
name of Event A and B are mapped into the transitional expression of Join Dependency Node C in PMR 
graph according to R10 and R11. The name of Event P will be assigned to the effect of Process Node 
according to R9. With regard to the mapping of BPEL process, the operation field of invoke activity is 
mapped to the name of Process Node in PMR Graph by using B.R2. The out variable of invoke, such as 
element P, is mapped to the name of Event Node. 

The intermediate PMR graph is created after the elements and attributes are mapped from a specified 
model into PMR graph. This step aims to adjust and redistribute some attributes inside the PMR graph. 
As shown in Fig. 10, the transit Exp of Split Dependency Node D is empty before attribute propagation. 
The transit Exp of previous Join Dependency Node C, namely Event A and Event B, is propagated to D 
according to the rule R12. The precondition of Process Node H is empty and then assigned to be transit 
Exp of Join Dependency D according to the rule R14. The similar situation happens on the propagation of 
transit Exp of Join Dependency Node N to precondition of Process Node O.  

Following the same procedure defined in the registering framework, two process models in Fig. 10, 
though they are described by the different process languages, are mapping into the same PMR graph. 
This case study proves that our framework and procedures are generic and could be applied for different 
kinds of process languages if corresponding mapping rules are provided. 

6 CONCLUSION AND FUTURE WORK 
In this article, we proposed a generic registration framework that maps a process model in a specific 
process language to PMR registration item. Considering Event-driven Process Chain (EPC) is a kind of 
popular process model that is widely used in industry, we focus on the mapping rules and related 
algorithm from EPC to PMR graph and develop an automatic process model registration tool for EPC. 
The interoperation capability of the PMR metamodel was evaluated in our article. In addition, based on 
SAP EPCs, we conducted experiments to demonstrate the feasibility and performance of our approach. 
The experiments showed that, first of all, our proposed registering framework is generic for mapping 
different kinds of process languages to PMR. Moreover, our approaches could realize the mapping from 
EPC models to PMR graph within 100ms. The response time for mapping EPC model to PMR graph has 
a positive correlation with the number of all nodes, connectors and events. The results indicate that our 
approach provides a solid foundation and infrastructure for the modeling and execution of adaptable 
processes for enterprise collaboration. 

In the future, we plan to complement adaption operations based on PMR graph further, summarize 
adaption operations based on EPC models, and set up the change propagation operations between EPC 
models and PMR graph. For real-life applications, we are planning to apply our study into different 
real-life applications of tourism [16] and workforce management [17]. 
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