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Abstract: Wind power generation has constituted a major body of generation portfolio in many countries. In stormy weather conditions,
however, wind power generation would be curtailed due to the over-speed protection of wind turbines. In this study, the authors propose
to apply the risk-limiting unit commitment (UC) in a rolling framework to improve the efficient utilisation of wind power. The proposed
method includes three modules, namely, day-ahead UC, hourly-ahead UC, and real-time load shedding. The first module provides the baseline
of hourly dispatch, whereas the latter two serve as recourse means applied during stormy event unfolding. Illustrative examples are provided,
demonstrating that the proposed method will reduce the overall generation cost of the time horizon under consideration, as compared to con-
servative dispatch methods, by postponing the timing of proactive wind curtailment.
1 Introduction

Wind power generation has been playing an important role in the
generation portfolio across the world. For example, in 2015, annual
wind power installations had reached 63 GW globally, increased
by 22% as compared to 2014. Meanwhile, 433 GWwind power gen-
eration had been installed globally by the end of last year, a cumula-
tive 17% increase [1]. A total of 12.5 GW of new wind power
capacity was installed and grid-connected in the EU during 2016.
Wind power had accounted for about 51% of total power capacity
in the EU [2]. Over 54 GW wind power was installed globally in
2016, a cumulative 12.8%, reaching a total of 486.8 GW [3].
The variability and uncertainty of wind power impose great chal-

lenges in operation of electric power grids. Particularly, in stormy
weather conditions, the output of wind farms being hit by the
storm will drop significantly due to the shutdown of wind turbines.
For example, in the storm of January 2005, the output of wind farm
in Denmark dropped by 80% in 6 h [4]. Under extreme weather
conditions, the operational resilience of electric power grids with
significant wind power generation has become a major concern.
This paper aims to improve wind power utilisation during stormy

weather events by identifying optimal timing and amount for wind
curtailment. Two extreme cases are given as follows to motivate our
work. On the one hand, if the wind farm that will be hit by the storm
is shut down in advance far from the advent of the storm, wind
power will be curtailed in vain. On the other hand, if the wind
farm is shut down reluctantly during the storm unfolds, the sharp
decrease in a generation may lead to emergent load shedding
(LS) for power balance. In this perspective, we propose a risk-
limiting (RL) unit commitment (UC) method to achieve a trade-off
between efficient utilisation of wind power and operational resili-
ence of electric power grids under stormy weather conditions.
Our proposed RL method consists of three building blocks,

namely, day-ahead UC, hourly-ahead UC for fast-start units, and
wind curtailment/LS as emergency measures. By continuously up-
dating the storm front prediction, these building blocks are applied
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in a sequential manner yet collaboratively to achieve the optimality
over the time horizon being considered, i.e. minimising the expect-
ation of operational cost during stormy events. The operational cost
includes the fuel cost, start-up/operation cost of quick-start units,
and the loss due to wind curtailment or LS.

The remaining of this paper is structured as follows. The RL dis-
patch methodology is briefly reviewed in Section 2. The proposed
RL UC method is elaborated in Section 3. Illustrative examples
are provided in Section 4 to demonstrate the merits of our proposed
methodology. We conclude our work with discussions in Section 5.

2 Methodology of RL dispatch

Several methodologies have been successfully applied to solve power
dispatch problems with significant uncertainty, such as scenario-based
stochastic programming, look-ahead dispatch, and RL dispatch [5].

2.1 Scenario-based stochastic programming

Scenario-based stochastic programming consists of three major
steps. The first step is to sample continuous probability density
function into discrete scenarios. An s(t) continuous probability
can be sampled into N points with different probabilities. Each
point is described as si(t)(i [ {1, . . . , N}).

The second step is to build a scenario tree. We use t to denote a
time interval within the entire time horizon, i.e. t [ {1, . . . , T}.
The first step is repeated for each time interval t, the scenario tree
is then formed for the entire time horizon. Each branch in this
tree represents a scenario.

Finally, the stochastic optimisation model is constructed to min-
imise the operational cost under the scenario tree.

2.2 Look-ahead dispatch

Look-ahead dispatch uses model predictive control (MPC) to deal
with the dynamic receding horizon optimisation control problem.
The MPC uses stochastic model to deal with uncertainty problem.
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This method is capable to reduce static error and compensate the
random terms in the model.

At each stage, the system operators determine operations of
current period by predicting n steps ahead and update prediction
with coming information. A multi-stage optimisation model is
solved and the action on the first stage is implemented. At the
next period, the similar procedure is repeated. As time goes on, a
number of optimisation models have been solved by rolling
forward until the final period.

The advantage of look-ahead dispatch is rolling forward. The
operator can use the updated information to decide the optimal op-
eration. However, the strategy of look-ahead dispatch is not global-
ly optimal as far as the entire time horizon is concerned.

2.3 RL dispatch

RL dispatch also uses dynamic strategies to the solved stochastic
problem. RL dispatch reduces the uncertainty risk by adding a series
of recourse decisions between the initial stage and the final stage.
And the final stage can be a single time point or a time horizon. On
condition that adequate prediction information is obtained, RL dis-
patch is able to find the global optimal scheduling strategy. At the re-
course stages, the operation strategies are revised with updated
prediction information. The prediction information is modelled using
conditional probability. The recourse means are calculated to safeguard
potential risks. The model of RL dispatch is shown as below:

Min E s1c1 +
∑n−1

i=2

sici + sncn

{ }
(1a)

s.t. P s1 + sn +
∑n−1

i=2

si + sw = d

( )
|Yn

{ }
≥ h (1b)

where s1, c1 are the power of unit and the operating cost of unit at the
initial stage, respectively, si and ci are the unit’s power and the oper-
ating cost of unit at i recourse stage, respectively. sn and cn are the
power of unit and the operating cost of unit at the final stage, respect-
ively. sw is the power of wind, d is the power demand and Yn is the
prediction information in stage n.

RL dispatch comprises three features. The first feature is that it
can reduce the computation complexity. And risk index can
change with the operation requirements; it brings more flexibility
on solving operation problem. Second, this methodology uses
dynamic strategies to solve stochastic problems. Third, the strategy
of RL is the global optimal, if providing the conditional probability
of renewable energy. The advantages of RL dispatch are very
obvious, so it often is used to solve some actual problems.

Particularly, the RL dispatch methodology has gained much re-
search attention in renewable energy integration to the electric power
grids owing to its desirable features [6, 7]. In [8–10], RL dispatch is
applied to determine the price of uncertainty and the price of renewable
energy sources. In [11], RL dispatch is employed to integrate renew-
able energy sources with ramping products. In [12], multi-period RL
dispatch is proposed for large-scale renewable integrations. RL meth-
odology has also been applied to active distribution system [13], load
scheduling [14], and energy storage dispatch [15]. Solution methods to
solve RL dispatch are also developed to account for realistic operation-
al constraints [16] and congested transmission networks [17, 18].

In this work, the RL dispatch methodology is applied to improve
the wind power utilisation under stormy weather conditions due to
the following considerations. First, RL methodology allows inserting
recourse actions (i.e. starting up quick-start units and emergent LS) in
between multi-stage dispatch. In other words, hourly-ahead and real-
time dispatch can be applied during the stormy event unfolding.
Second, the prediction accuracy for the storm front and its intensity
can be improved gradually. As a result, recourse actions within the
RL dispatch methodology can be established more accurately and
This is an open access article published by the IET under the Creative
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less conservative. Third, the amount of LS can be restricted by the
RL constraints. That is, a trade-off between reliability and economy
of generation dispatch can be achieved by the proposed method.

3 RL UC

Our proposed RL UC method consists of three building blocks,
namely, day-ahead UC, hourly-ahead UC, and real-time LS program.

Day-ahead UC aims to compute the power and state of normal
units and quick-start units during 24 h. And the state of normal
unit and quick-start units are the precondition of units in
hourly-ahead UC. Hourly-ahead UC acts for getting power and
state of these units during six hours before the storm by update pre-
diction information. Real-time LS will adopt an emergency dis-
patching strategy in case wind generation drop unexpectedly sharp.

We elaborate the aforementioned models as follows.

3.1 Day-ahead UC

Day-ahead UCmodel is composed of one units’ cost objective function
and some constraints. The objective includes quadratic cost, linear cost,
fixed cost and startup/shutdown cost. The constraints include unit gen-
eration constraints, the system power balance constraints, unit ramping
up/down constraints, units startup/shutdown cost constraints. Four
samples are involved with this model. Each sample represents a situ-
ation of prediction information of units running in 24 h.
3.1.1 Mathematical model of day-ahead UC: The model for
day-ahead UC is formulated as (2a)–(2k). The objective function
(2a) is a quadratic formulation of the cost of day-ahead UC.
Equations (2b) and (2c) are the formulas of the total startup/shutdown
cost. The first inequality (2d) means that real power generation of the
unit cannot be over the upper limit of unit power, and should not be
lower than the lower limit of unit power. The second equality is the
system power balance constraints (2e). We can know that the power
generation of the unit between two adjacent moments should be con-
sidered only when the state of the unit is all start from (2f) to (2g). If
one unit’s state is start or stop, it must keep the same state at a period
time, according to (2h) and (2i). The startup/shutdown cost must be
positive (2j) and (2k).

(i) Objective function

Min Objectiveday−ahead = as2 + bs+ cs + cup + cdown (2a)

(ii) Unit startup/shutdown cost

cup =
∑NG
i=1

∑DT
t=1

Ii,t − Ii,t−1

[ ]× cupi (2b)

cdown =
∑NG
i=1

∑DT
t=1

Ii,t−1 − Ii,t
[ ]× cdowni (2c)

(iii) Unit generation constraints

smin
i

× Ii,t ≤ si,t ≤ smax
i × Ii,t

(i = 1, . . . , NG; t = 1, . . . , DT )
(2d)

(iv) The system power balance constraints

∑NG
i=1

(si,t × Ii,t)+ s f 1w,t = sDd,t + sDl,t (i = 1, . . . , NG) (2e)
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(v) Unit ramping up/down constraints

si,t − si,t−1 ≤ 1− Ii,t 1− Ii,t−1

( )[ ]
URi

+ Ii,t 1− Ii,t−1

( )
smin
i (2f )

si,t−1 − si,t ≤ 1− Ii,t−1 1− Ii,t
( )[ ]

DRi + Ii,t−1 1− Ii,t
( )

smin
i

i = 1, . . . , NG; t = 1, . . . , DT( )
(2g)

(vi) Unit minimum on/off time constraints

X on
i,t−1 − Ton

i

[ ]× Ii,t−1 − Ii,t
[ ] ≥ 0 (2h)

X off
i,t−1 − Toff

i

[ ]× Ii,t − Ii,t−1

[ ] ≥ 0

i = 1, . . . , NG; t = 1, . . . , DT( )
(2i)

(vii) Unit startup/shutdown cost constraints

Ii,t − Ii,t−1

[ ]× cupi ≥ 0 (2j)

Ii,t−1 − Ii,t
[ ]× cdowni ≥ 0

i = 1, . . . , NG; t = 1, . . . , DT( )
(2k)

In the above model, a is the coefficient of the quadratic item, b is
the coefficient of the linear item. s is a generation of the generating
unit. cs is the fixed cost of the unit. cup and cdown are the total startup
and shutdown costs, respectively. smax

i and smin
i are the upper limit

of real power generation of the unit i and lower limit of real-power
generation of the unit i, respectively. st,i is the generation of the unit
i in time t. It,i is commitment state of the unit i at time t. cupi and
cdowni are the cost of units starting and stopping of the unit i, respect-
ively. X on

t,i and X off
t,i are ON time and OFF time of unit i at time t,

respectively. Ton
i and Toff

i are minimum ON time and minimum
OFF of unit i, respectively. s f 1w,t is the forecasted generation of
wind power unit at the time t of day-ahead UC. sDd,t is system
demand at the time t of day-ahead UC. sDl,t is system losses at the
time t of day-ahead UC. DT is the number of periods under 24 h.
NG is the number of units. URiis the ramp-up rate limit of the
unit. DRi is the ramp-down rate limit of the unit.
3.2 Hourly-ahead UC

Hourly-ahead UC model includes cost objective function and some
constraints. The form and meaning of objective function and con-
straints are similar to them in day-ahead UC. However, the time
horizon of hourly-ahead is six hours and the space of time
between two adjacent sampling points is a half hour. Four
samples are involved in this model. Each sample represents a situ-
ation of prediction information of units running in 6 h. Samples
have different probabilities. The value of samples should be
higher than them of day-ahead UC.
3.2.1 Mathematical model of hourly-ahead UC: The model of
hourly-ahead UC is similar to day-ahead UC.
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(i) Objective function

Min Objectivehourly−ahead = as2 + bs+ cs + cup

+ cdown (3a)

(ii) Unit startup/shutdown cost

cup =
∑NG
i=1

∑HT
t=1

Ii,t − Ii,t−1

[ ]× cupi (3b)

cdown =
∑NG
i=1

∑HT
t=1

Ii,t−1 − Ii,t
[ ]× cdowni

i = n, . . . , NG; t = 1, . . . , HT( )
(3c)

(iii) Unit generation constraints

smin
i

× Ii,t ≤ si,t ≤ smax
i × Ii,t

i = 1, . . . , NG; t = 1, . . . , HT( )
(3d)

(iv) The system power balance constraints

∑NG
i=1

(si,t × Ii,t)+ s f 2w,t = sHd,t + sHl,t i = 1, . . . , NG( ) (3e)

(v) Unit ramping up/down constraints

si,t − si,t−1 ≤ 1− Ii,t 1− Ii,t−1

( )[ ]
URi

+ Ii,t 1− Ii,t−1

( )
smin
i (3f )

si,t−1 − si,t ≤ 1− Ii,t−1 1− Ii,t
( )[ ]

DRi + Ii,t−1 1− Ii,t
( )

smin
i

i = n, . . . , NG; t = 1, . . . , HT( )
(3g)

(vi) Unit minimum on/off time constraints

X on
i,t−1 − Ton

i

[ ]× Ii,t−1 − Ii,t
[ ] ≥ 0 (3h)

X off
i,t−1 − Toff

i

[ ]× Ii,t − Ii,t−1

[ ] ≥ 0

i = n, . . . , NG; t = 1, . . . , HT( )
(3i)

(vii) Unit startup/shutdown cost constraints

Ii,t − Ii,t−1

[ ]× cupi ≥ 0 (3j)

Ii,t−1 − Ii,t
[ ]× cdowni ≥ 0

i = n, . . . , NG; t = 1, . . . , HT( )
(3k)

s f 2w,t is the forecasted generation of wind power unit at the time t
of hourly-ahead UC. sHd,t is system demand at the time t of
hourly-ahead UC. sHl,t is system losses at the time t of hourly-ahead
UC. HT is the number of periods of this model. In this model, we
suppose quick-start units are the unit n to unit NG. The meaning of
other variables and parameters is similar to them of day-ahead UC.
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oDerivs License (http://creativecommons.org/licenses/by-nd/3.0/)



Fig. 1 Trend of cost of conventional dispatch in capacity effect

Fig. 2 Trend of cost of RL dispatch in capacity effect
It should be noted the state of units at this stage. Units’ state should
base on the state of units of the same moment in day-ahead UC.
And the normal unit state cannot change. Six hours before the
storm, the system uses hourly-ahead UC.

3.3 Real-time LS

Before one hour of the storm, the system uses real-time LS to carry out
the storm. There is a drastic decline in wind power in this condition. So
conventional units and quick-start units must generate more power for
this condition. If conventional units and quick-start units cannot carry
out lacked power by wind power reducing, the system has to remove a
part of the load. And there is a virtual unit for representing LS. The
time horizon of real-time LS is one hour and the space of time
between two adjacent sampling points is a quarter of an hour.

3.3.1 Mathematical model of real-time LS: The constraints of
real-time LS are similar to day-ahead UC, whereas the load is mod-
elled as generators with the negative output.

(i) Objective function

MinObjectivereal−time = as2 + bs+ cs (4a)

(ii) Unit generation constraints

smin
i × Ii,t ≤ si,t ≤ smax

i × Ii,t

i = 1, . . . , NGr; t = 1, . . . , RT
( ) (4b)

(iii) The system power balance constraints

∑NG,
i=1

(si,t × Ii,t)+ s f 3w,t = sRd,t + sRl,t i = 1, . . . , NGr

( )
(4c)

(iv) Unit ramping up/down constraints

si,t − si,t−1 ≤ 1− Ii,t 1− Ii,t−1

( )[ ]
URi

+ Ii,t 1− Ii,t−1

( )
smin
i (4d)

si,t−1 − si,t ≤ 1− Ii,t−1 1− Ii,t
( )[ ]

DRi + Ii,t−1 1− Ii,t
( )

smin
i

i = n, . . . , NGr; t = 1, . . . , RT
( )

(4e)

s f 3w,t is the forecasted generation of wind power unit at the time t
of real-time LS. sRd,t is system demand at the time t of real-time LS.
sHl,t is system losses at the time t of real-time LS. RT is the number of
periods. NGr is the number of units including a virtual unit. The
meaning of other variables and parameters is similar to them of
day-ahead UC.

In conclusion, we can create a complete model of RL UC. The
mathematical model is as follows:

Min Objectiveday−ahead + Objectivehourly−ahead

+ Objectivereal−time (5a)

s.t. (2d)− (2k), (3d)− (3k), (4b)− (4e) (5b)

P
∑n
i=1

si + sw = sd + sl

( )
|Yn

{ }
≥ h (5c)
This is an open access article published by the IET under the Creative
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where si is the power of all units of the stage i. sw is the power of
wind. sd is the power demand. sl is system losses. Yn is the predic-
tion information in the stage n.

4 Illustrative examples

In this section, illustrative examples are used to demonstrate the
merit of the proposed method. The RL dispatch and the convention-
al dispatch are implemented on MATLAB with YALMIP. The
MILP solver is CPLEX V.12.5.

We compare conventional dispatch and the RL dispatch during
stormy weather condition. We set four conventional units and
four quick-start units. There is an additional unit for simulating
LS. In the conventional dispatch, we build a model for power dis-
patch that includes storm in the next day.

The operation cost and capacity of the quick-start units were two
factors which influenced the total cost. Then we would analyse the
impact of these two factors. In order to simplify the calculation, we
made the parameters’ value of all quick-start units same and did not
change the parameters’ value of the conventional units. The ana-
lysis of these two factors is as follows.

4.1 Effect of the quick-start unit capacity

In order to study the impact of the capacity of the quick-start units
on the total cost, we increased the capacity of each quick-start unit
from 80 to 260 mW by an increase of 20 MW per unit every time.
We define r is the ratio of the cost of conventional dispatch and the
RL dispatch to represent the advantage of RL dispatch compared
with conventional dispatch. The computational results are given
below.

According to Figs. 1 and 2, the decrease of the cost in the two
dispatch methods with the increase of the capacity of the quick-start
units, there was an obvious advantage in the utilisation of wind
power in the RL dispatch compared with the conventional dispatch.
There was no change in the cost of the conventional dispatch when
the capacity of each unit increased over 200 MW because the total
Commons
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Fig. 4 Net load scenario

Fig. 3 Trend of advantage of RL dispatch in capacity effect

Fig. 6 Trend of cost of RL dispatch in unit cost effect

Fig. 7 Trend of advantage of RL dispatch in capacity effect
amount of power generated by all units was sufficient to deal with
the storm, and there was no demand of the LS. According to Fig. 3,
with the increase of the capacity of the quick-start units, there were
more and more advantages in the RL dispatch compared with the
conventional dispatch. Next, we would study the impact of the op-
eration cost of the quick-start units on the total cost of scheduling.
The net load scenario is shown in Fig. 4.
4.2 Effect of the operation cost of the quick-start unit

For ease of demonstration, we studied only the linear cost and the
quadratic cost of the units on the total cost. Similarly, the conven-
tional units’ parameters were constant, and perturb the linear cost
and the quadratic cost of the quick-start unit from 100 to 30% by
a decrease of 10% simultaneously. We use the per-unit value to in-
dicate the linear cost and quadratic cost. The cost in the initial stage
is the baseline value. Similarly, we define r is the ratio of the cost of
conventional dispatch and the RL dispatch to represent the
Fig. 5 Trend of cost of conventional dispatch in unit cost effect
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advantage of RL dispatch compared with conventional dispatch.
The calculation result is as follows.

According to Figs. 5 and 6, with the reduction of the linear cost
and the quadratic cost of the quick-start unit simultaneously, the
total cost in the two kinds of scheduling methods is decreased.
There were obvious advantages in the RL dispatch compared
with the conventional dispatch. According to Fig. 7, these advan-
tages would shrink as the cost of quick-start units decreased.

5 Conclusions

In this paper, we propose a RL UC model to improve the efficient
utilisation of wind power generation in stormy weather conditions.
Our proposed method constructs a sequential operational strategy
with continuous update of storm front and intensity information.
Therefore, the proactive wind curtailment is postponed and the
risk of LS is restricted. Our major findings are twofold. On the
one hand, the RL dispatch method is superior to conservative strat-
egies (i.e. considering severe scenarios in advance) if quick-start
units are available. On the other hand, such superiority will
reduce if the linear cost and the quadratic cost of quick-start units
decrease concurrent with the same range. Further work will study
the composite effect of cost and capacity of quick-start units on
the RL dispatch method.
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