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Abstract—In this paper, we present the first detailed analysis of
influence maximization in noncooperative social networks under
the Independent Cascade Model. We propose a new influence
model based on the Independent Cascade Model and prove
the approximation guarantees for influence maximization in
noncooperative settings. We structure the influence diffusion into
two stages, namely, seed node selection and influence diffusion.
In the former, we introduce a modified hierarchy-based seed
node selection strategy which can take node noncooperation into
consideration. In the latter, we propose a game-theoretic model
to characterize the behavior of noncooperative nodes and design
a Vickrey-Clarke-Groves-like scheme to incentivise cooperation.
Then we study the budget allocation problem between the two
stages, and show that a marketer can utilize the two proposed
strategies to tackle noncooperation intelligently. We evaluate
our proposed schemes on large coauthorship networks, and the
results show that our seed node selection scheme is very robust to
noncooperation and the Vickrey-Clarke-Groves-like scheme can
effectively stimulate a node to become cooperative.

Keywords—influence maximization; cooperative; social net-
work.

I. INTRODUCTION

N order to maximize revenues, it is critical for online social

viral marketers to identify pilot users who are “influential”
to seed product adoption cascade. The influence maximization
problem [1] is about selecting optimal initial seed nodes.
However, intermediate (i.e., non-pilot) users cannot be ignored.
It is shown in advertising research literature [2] that pilot
users are more cooperative to recommend the product to their
social neighbors because they feel obligated after accepting
discounts, or even free samples from advertisers. However,
non-pilot users may not be willing to pass on the influence,
for the recommendation action may cost time, credibility,
privacy, etc. We believe that it is important to study influence
maximization problem in the context of noncooperative social
networks.

It is natural to provide incentives to nodes in the social
network for them to be cooperative, and incentive mechanism
design is a hot topic in networking research. For example,
in Peer-to-Peer (P2P) applications, [3] proposes to design
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a taxation scheme to incentivise user participation in P2P
streaming. For file swarming applications, [4] introduces an
auction-based model to improve incentives in BitTorrent. [5]
also designs an incentive scheme named Networked Asyn-
chronous Bilateral Trading (NABT) to deter free-riding in
P2P applications. The Vickrey-Clarke-Groves (VCG) auction
scheme is also a powerful tool for designing incentive schemes
in networks such as mobile ad hoc networks and wireless
networks made up of selfish nodes [6] [7].

[8] claims that there are two ways to enhance the efficiency
of targeting influential users in large-scale online social net-
works (OSNs). One is to further optimize the greedy algorithm
in [1], as in [9]. The other is to propose new heuristics to solve
the problem. [8] tries both methods respectively, and suggests
that the second way is more promising based on experimental
results. However, the degree discount heuristic proposed in [8]
is only applicable to the Independent Cascade Model (ICM)
in which the propagation probability is very small. There
are several follow-on papers focusing on the second way
to enhance the efficiency as claimed in [8], like [10] [11],
and [12]. We find the hierarchy-based algorithm [12] the
only algorithm that can be readily adapted to consider node
noncooperation.

Prior efforts on solving influence maximization problems
are mainly focused on modeling the influence diffusion pro-
cess [13] [14] and solving the corresponding optimization
problems [15] [16]. [1] [17] first show that this optimization
problem is NP-hard, and provide a greedy heuristic which
can achieve near-optimal performance guarantee. However,
existing influence maximization algorithms and newly pro-
posed influence diffusion models (e.g., [10] [11] [14]) do not
distinguish between seed nodes (or pilot users) and nonseed
nodes and assume all nodes are cooperative in propagating
influence.

The efforts that are similar to ours are [18] [19], which
model social networks that allow negative opinions to emerge
and propagate. [18] extends ICM to incorporate a parameter,
namely, quality factor ¢ such that a node in the network
has probability ¢ to be negatively activated and to propagate
negative opinion. [19] uses a novel heat diffusion process to
model social network marketing campaigns in which negative
comments can spread.

To the best of our knowledge, the only paper that considers
the budget in influence maximization problem is [20]. [20]
generalizes the influence maximization problem with bud-
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get constraint, namely, the budgeted influence maximization
(BIM) problem. The BIM problem is similar to the budget
allocation problem (BAP) discussed in this paper. However,
we consider node noncooperation and BIM does not.

For a comprehensive survey on information diffusion in
OSNs, readers are referred to [21]. [22] is a good tutorial
on the cascading behavior in OSNs.

In our previous work [23], we design a VCG-like scheme
to incentivise cooperation in noncooperative social networks.
In this paper, we study the problem of influence maximization
in noncooperative social networks more thoroughly by struc-
turing the influence diffusion process into two stages. The
two stages are seed node selection and influence diffusion.
For the first stage, we design a hierarchy-based seed selection
algorithm which considers node noncooperation. The VCG-
like incentive scheme proposed in [23] is utilized in the second
stage. A viral marketer under the two-stage framework can
either choose one of the two strategies, or combine them to-
gether to achieve a satisfactory solution for the noncooperation
problem. Simulation results on large social network dataset
show that the proposed strategy can effectively encourage
cooperation among the participating nodes. To the best of our
knowledge, we are the first to investigate node noncooperation
on influence diffusion in social networks under ICM. Other
related work includes [24], but the paper is based on the
Linear Threshold Model (LTM) while this work is based on the
ICM model. Moreover, in this paper, we give a more detailed
study than [24] on noncooperative influence maximization
by discussing properly incentivising intermediate nodes. In
addition, different from the flow-based seed selection algo-
rithm designed for LTM, we develop a hierarchy-based seed
selection scheme, which is more suitable for ICM.

The rest of this paper is structured as follows. In Sec-
tion II, we briefly describe the problem formulation and
diffusion models. Then we generalize the original ICM into
a noncooperative one and prove some nice properties of the
model. This section also proposes the two-stage view of the
noncooperative influence maximization problem. We propose
a hierarchy-based seed selection algorithm in noncooperative
social networks in Section III. The VCG-like incentive scheme
designed for the influence diffusion stage is discussed in
Section IV. Then we discuss the BAP in Section V. The
evaluation results are shown in Section VI. We conclude this
study in Section VII.

II. SYSTEM MODEL

We first formulate the influence maximization problem
and introduce the noncooperative ICM. Following our prior
work [24] which proved the submodularity of the noncoopera-
tive Linear Threshold Model (LTM), we further present several
useful properties of the noncooperative ICM. Finally we
describe our two-stage view of the noncooperative influence
maximization problem.

A. Problem formulation

We consider an OSN as a directed graph G(V, &), where
V is the set of nodes (OSN users) and £ C V x V is the

set of edges (social ties) in the network. We also denote by
N, C V the set of neighbors of node u. Each node in the
system can either be active or inactive. As more neighbors of
an inactive node become active, it is more likely to switch to
being active. A node cannot return to the inactive state once
it becomes active. All nodes are inactive at the beginning of
the influence propagation process and marketing practitioners
initially activate K nodes to seed the information cascade in
the social network. The process ends when no more nodes can
be activated. The influence maximization problem is defined
as follows: Determine the K-node seed set to achieve the
maximal expected active nodes at the end of the process.

B. Diffusion models

The Independent Cascade Model (ICM) [25] is a popular
diffusion model. In ICM, a node 7 activated at time ¢t has a
probability p; ; to successfully activate its inactive neighbor j
at time ¢ 4+ 1. Node ¢ does not have any further opportunities
to activate j again whether it succeeds or not.

C. Noncooperative influence maximization under ICM

Traditional ICM implicitly assumes that nodes in the sys-
tem will not reserve their influence capacities during the
propagation process. To account for non-cooperativeness the
standard ICM is generalized such that Node j is activated by
Node i with probability c; ; - p; j, where o, ; € [0,1] is the
cooperativeness level of Node 7 on its neighbor Node j. We
assume that node cooperativeness levels are static during the
entire diffusion process.

D. Properties of the noncooperative ICM

We now discuss some nice properties of the noncooperative
ICM. First we define a set function o(-) to be submodular if
o(SU{v})—0o(S) > o(TU{v})—0o(T) for all v € V\T and
S CT,ie., o) satisfies a “diminishing returns” requirement:
the marginal gain from adding a node to a set 7 is at
most the same as the marginal gain from adding the same
node to a subset of 7. In addition, we say that o(:) is
monotone if o(T) > o(S) for all S C T, that is, o(-) will
at least stay the same after adding elements to the original
set. We also define a greedy algorithm as follows: starting
from an empty set, the algorithm iteratively selects a seed
which achieves the highest incremental change of o(-). The
result of [26] shows that the optimum of a non-negative,
monotone submodular objective function can be approximated
to within a factor of (1 — 1/e) (around 63%, here e is the
base of the natural logarithm) using the greedy algorithm. [1]
further proves that the final influence function o(-), which
is the expected number of active nodes in the network at
the end of the diffusion process, is submodular. Thus the
greedy algorithm can also achieve (1—1/e) approximation for
the influence maximization problem. Based on [1], we prove
that the influence function under the proposed noncooperative
ICM also satisfies the requirement of submodularity, so that
a greedy algorithm can also achieve the same (1 — 1/¢)
performance guarantee.
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Lemma 1. [I] The influence function o(-) is submodular for
an arbitrary instance of the ICM.

Theorem 1. The influence function o(-) of noncooperative
ICM is submodular.

Proof. Since the cooperativeness parameters «; ; are static, the
noncooperative ICM is equivalent to a standard ICM in which
p;j = @i - pij- Thus, according to Lemma 1, the influence
function of noncooperative ICM is also submodular. O

Proving that the influence function under noncooperative
ICM also satisfies the requirement of submodularity not only
shows that the model has a performance guarantee, but also
implies that the incentive needed for the advertising campaign
should show similar property, since the amount of incentive
needed is closely related to the seed-node set size. It is also
intuitively satisfying that incentive as a function of seed-
node set size would show a “diminishing returns” property.
The detailed study of the relationship between the amount of
incentive and seed-node set size in noncooperative influence
maximization problem will be our future work.

Since there is no explicit formula for the influence function,
we have to simulate the influence diffusion process for R
rounds. The average number of final active nodes is then the
estimated value of o(-). With a large enough R, this estimate
may be made arbitrarily close to the real value of o(-).

E. A two-stage solution to solve node noncooperation

To solve the node noncooperation problem, we examine the
influence diffusion process from a two-stage perspective as
follows.

1) Seed node selection stage: This stage corresponds to
when a viral marketer selects seed nodes in order to start an
influence cascade. Current influence maximization literature
mostly focuses on this stage. We claim that the initiator can
take the noncooperativeness of non-seed (intermediate) nodes
into consideration when choosing initial users to activate.
We propose a modified hierarchy-based seed node selection
method which can take node noncooperation into account. The
details can be found in Section III.

2) Influence diffusion stage: After the viral marketer has
chosen and activated the seed node set according to various
selection methods, the second stage starts. The influence will
propagate through the social network at this stage. The final
result of the marketing campaign (i.e. the size of the final
activated nodes) can be improved if intermediate nodes are
cooperative to forward the influence. We introduce a VCG-
like incentive scheme to stimulate cooperation of non-seed
nodes. A detailed description and discussion are provided in
Section IV.

III. STAGE I: SEED NODE SELECTION

As indicated in [27] [28], human emotions such as happi-
ness and loneliness can spread no more than three hops in a
large social network. These findings inspire the authors in [12]
to design a heuristic which approximates the influential power
of a single node in the social network as the influence in its

(a) Original social graph

7

(b) Input hierarchical network

B

(c) Output hierarchical network

Fig. 1: Up-to-2-hop hierarchical network for Node A [12]

up-to-2-hop social circle. Extensive simulations show that the
proposed heuristic performs well both in terms of accuracy
and efficiency on calculating social influence.

The special property of only considering the up-to-2-hop
neighbors in the heuristic proposed in [12] also makes it
suitable for a modification to consider node noncooperation.
As we have discussed in Section I, normally seed nodes are
more cooperative in forwarding influence received compared
to their one-hop, non-seed neighbors during influence diffu-
sion. Thus it is straightforward to adapt the original algorithm
to a noncooperative version.

In this section we first give a brief description of the algo-
rithm introduced in [12], then we describe the modifications
necessary to account for node noncooperation.

A. Up-to-2-hop hierarchical network

Before describing the original hierarchy-based algorithm
in [12], we first introduce the concepts of up-to-2-hop hierar-
chical network. To estimate the influential power of a single
node, we have to build an up-to-2-hop hierarchical network
of this node. There are two types of such networks, namely,
input and output hierarchical networks. Both networks contain
three levels of nodes, namely, (i) head node (i.e., the node
being considered), (ii) 1-hop neighbors of the head node, and
(iii) 2-hop neighbors of the head node. Both networks can
be built using Breadth-First Search (BFS). Figure 1 is the
example of how to formulate the up-to-2-hop input and output
hierarchical networks. Figure 1 (a) is the original social graph.
In Figure 1 (b) and (c), we treat Node A as the head node
and generate the corresponding input and output hierarchical



IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. XX, NO. XX, XXXXX 2017 4

networks, respectively. The construction of both input and
output hierarchical networks follows two principles as follows:

1. Intra-level link removal principle: We ignore links be-
tween nodes of the same level in the hierarchical network in
order to simplify calculations. Take Figure 1 (b) as example,
Nodes C' and F' are both 2-hop neighbors of the head node.
Under the Intra-level link removal principle, we delete the
edge from Node C to F' (the dotted line in Figure 1 (b)) in
the constructed network.

2. Hop-first principle: When a node is a 1-hop neighbor
as well as 2-hop neighbor of the head node, we treat it as a
1-hop neighbor. In this way we can ensure the uniqueness of
the constructed hierarchical network. For example, in Figure 1
(a), Node C' is both 1-hop neighbor (via path A — C') and
2-hop neighbor (via path A — D — () of the head node.
Under the hop-first principle, we treat Node C' as the 1-hop
neighbor in Figure 1 (c).

We use input hierarchical network to calculate the influence
from all active, up-to-2-hop neighbors of the head node on the
head node itself. In other words, we evaluate the probability
a node is activated by the seed set by approximating it as
the probability this node is activated by its active, up-to-2-
hop neighbors in its input hierarchical network. Consider the
head node ¢ and the active seed set S in the hierarchical
network, we define the up-to-2-hop input hierarchical influence
as InInf;(S). The calculation on InInf;(S) is as follows:

II

j€NH"
JEs

L= (1=p) NN, [1-p(1=(1—p) V" N5

ey

where NH{" is the set of nodes which are the in-degree

neighbors of Node 7 in the input hierarchical network H.

In (1), (1 — p)!VH" N S| represents the probability that none

of the active 1-hop neighbors succeed in activating Node <.

Similarly, [T [1—p(1—(1—p)NH" NS represents
JENHIj¢S

the likelihood that Node ¢ fails to be activated by any active

2-hop neighbors via non-blocked! 2-hop paths in its input
hierarchical network.

The output hierarchical network is utilized to estimate the
influential power of the head node in terms of the expected
number of nodes the head node can activate in its output hierar-
chical network. We define the up-to-2-hop output hierarchical
influence as OutInf;(S). The calculation on OutInf;(S) is
given as follows:

OutInf; = p-d?"" + Z 1—(1 _pQ)INH;nl] (2)
jeMHPOut

where d¢“! is the out-degree of Node i in the output hi-
erarchical network H, and M H?“' is the 2-hop out-degree
neighbor set of Node ¢ in H. Since NH j’?” can be considered

In [12], a 2-hop path ~ — j — i (Node i is the head node, Nodes r and
j are 2-hop and 1-hop neighbors of the head node, respectively) is defined as
blocked if both Nodes r and j belong to the active seed set S. The concept
of being blocked is useful when we generalize the hierarchy-based influence
maximization algorithm to consider node noncooperation in Section III-C.

as the set of 2-hop paths from Node ¢ to Node j, the term
1— (1 —p?)VH"l corresponds to the probability that Node j
is eventually activated.

For the detailed descriptions about the construction method
and properties of the hierarchical networks, and explanations
about the definitions of InInf;(S) and OutInf;(S), readers
are referred to [12].

B. Hierarchy-based algorithm for the influence maximization
problem

After introducing hierarchical networks, [12] further bor-
rows two important concepts, namely, intensification and di-
versification from meta-heuristic optimization theory to design
the hierarchy-based influence maximization algorithm. In the
hierarchy-based influence maximization algorithm, intensifi-
cation means that the viral marketer should choose seed
nodes which have common neighbors so that they can work
collectively to increase the probability of activation. On the
contrary, diversification indicates that the viral marketer should
spread out the seed nodes in different neighborhoods in order
to avoid influence overlapping, i.e., the influential ranges of
seed nodes overlap, which is kind of wasteful. The authors
further propose the marginal influence increment (MII) to
strike a balance between these two important factors.

MII calculates the marginal increment of activations a single
node can achieve given the existing seed set. Suppose S is the
existing seed set and Node ¢ is the candidate, then MII is
defined as follows:

MIL(S) = (1= pi(S))(1 + INT(S) + DIVi(S)) ()

In (3), 1 — p;(S) stands for the likelihood that Node i fails to
be activated by S. p;(S) can be approximated by InInf;(S)
as mentioned in Section III-A. INT;(S) is the intensification
part. The physical meaning of INT;(S) is the number of
nodes which are common out-degree neighbors that Node
i and S shares. DIV;(S) represents the diversification part,
which means the number of nodes which are only out-degree
neighbors of Node 7, but not out-degree neighbors of any node
in S. Under a greedy selection strategy, we want to choose a
node with the largest MIL. The equations for INT;(S) is:

D (R R AL R
j¢S,jeN™
jEN Irec S
t 1t -
p-(d7*" = [N N {S U{i}}])] )
and DIV;(S) is as follows:

> p-[14p-(d" = NS 0 {SU{i}}[)] (5)
j¢S,jeN™
j& Nt vre S

where N ;” is the set of in-degree neighbors of Node 5 in the
social graph, and dJQ“t is the out-degree of Node j in the social
graph.

The hierarchy-based algorithm roughly works as follows:
we first sort all nodes according to their OutInf;(S) values
by constructing the up-to-2-hop output hierarchical network.
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Then we choose the node with the largest OutInf;(S) value
as the first node in the seed node set. After that, for each
node not in S, we calculate their M11I;(S) values, and add
the node with the largest value into S. We repeat until K
nodes are selected for influence diffusion.

Finally, a formal statement of the hierarchy-based algorithm
is given in Algorithm 1.

Algorithm 1 Hierarchy-based heuristic
Let 1,..., N be nodes.
Input:
Network G(V,E) with activation probability p.
A given integer K;
Output:
The final target set S;
St < @
Calculate QutInf; for each node 4
Select u = argmaz; {OutInf;}
St — St U{u}
while |S;| < K do
for i =1to N do
if i ¢ S; then
Calculate MI1;(S;) for node i
Select v = argmax; { MII;(S)|i ¢ St}
St — St U {’U}
11: end if
12:  end for
13: end while

R A A R ol

_
=4

For a detailed description about the hierarchy-based seed-
selection algorithm with examples, readers are referred to [12].

C. Hierarchy-based algorithm for the noncooperative influ-
ence maximization problem

For the noncooperative version of the hierarchy-based seed-
selection algorithm, we just need to modify the equations of
the metrics used in the algorithm. The modified equations are
described in the following sections.

1) Input hierarchical network under the noncooperative
case: To calculate the up-to-2-hop input hierarchical influence
InInf;(S) considering node noncooperation, if the 1-hop
neighbor of Node ¢ is an active seed node, then it is cooperative
to activate Node ¢ (i.e., aj; = 1, j neighbor of Node ¢, if Node
j is a seed node). However, if a 2-hop neighbor of the head
node is an active seed node and tries to influence the head
node through a non-blocked path, even if the 1-hop neighbor
on that path is successfully activated, it may not be cooperative
to forward the influence it receives to the head node since it is
not a seed node (i.e., o;; < 1, j neighbor of Node i, if Node
j is an intermediate node on a 2-hop path »r — j — 4, and
Node 7 is a seed node).? Thus the equation for InInf;(S) in

In noncooperative ICM, the cooperativeness levels are determined by
individual nodes themselves. However, for simplicity, we adopt the two-tiered,
static node cooperativeness when explaining algorithms in this paper. That is,
we set a; ; = 1 if Node 7 belongs to the seed-node set and o ; < 1,
otherwise. The results can be generalized in a straightforward manner.

a noncooperative social network is as follows:

1=(=p) 08 T [magaep (1=(1—p) V" 050
j e NHI?
igs

(6)
2) Output hierarchical network under the noncooperative
case: As discussed in Section III-A, the up-to-2-hop output
hierarchical influence OutInf; is the expected number of
nodes activated by Node ¢ in the output hierarchical network
H, including 1-hop and 2-hop neighbors. In a noncooperative
social network, if the head node is a seed node, then it is
cooperative to activate its 1-hop neighbors. However, the 1-hop
neighbors activated by the head node may not be cooperative
to forward the influence it receives to the 2-hop neighbors of
the head node due to lack of incentives. Thus the equation for

OutInf;(S) in a noncooperative social network becomes

OutInfi(S) = p-d?* + Z 1- H (1 —ag;-p?)]
JEMHYu kENHI™

(N

3) Marginal influence increment under the noncooperative
case: The modifications regarding the calculation of the
intensification INT;(S) and the diversification DIV;(S) in
order to get the marginal influence increment MIT;(S) in
noncooperative social networks are similar to Section III-C2.
The 1-hop neighbors activated either collectively by the active
seed set S (i.e., the nodes activated because of intensification)
or only by the head node (i.e., the nodes activated because
of diversification) may not be cooperative to forward the
influence received to the 2-hop neighbors of the head node
due to lack of incentives. Thus the calculations are as follows:

INT,(S) = )
jgs,jeNgut
j € NQUt 3re s

A+ D aen) ®
r e Nout
r ¢ SU{i}
DIVy(S) = > p-(l4+p > aj) 9
j ¢S je Ngut re Ngut
jé N,?'”t,V7' €s r¢ SU{i}

The noncooperative version of hierarchy-based influence
maximization algorithm works the same way as Algorithm 1.
We just need to replace (1), (2), (4), (5) with (6), (7), (8),
and (9).

IV. STAGE II: INFLUENCE DIFFUSION

We introduce an incentive mechanism to solve the node
noncooperation problem in this section. We first introduce
a game-theoretic framework to model node noncooperation
in influence propagation. Next, we describe the incentive
method and derive some nice properties of the mechanism,
namely, individual-rationality (IR) and incentive-compatibility
(IC). Then we compare the proposed scheme to a fixed price
incentive mechanism to show some of its other advantages.
Finally, we discuss implementation details of the proposed
mechanism.

(1 =) NST — (1= p) N5 ST
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A. A VCG-like incentive mechanism to solve the noncoopera-
tion problem

We define C() as the cost of an individual node ¢ during
the influence diffusion process. The utility of an individual
node without payment should be

Ui = —C(i)

=_D. (10)

D

jneighborof i

Qi+ Pij

In (10) we model C() as the sum of the influence probabil-
ities Node ¢ imposes on all its neighbors mainly to reflect the
fact that the more a single node can impact its friends, the more
reward it will ask for from the initiator of the viral marketing
campaign, because “influence” here is considered a scarce
commodity. Also an influential node (e.g., a celebrity) in the
social network may have already expended a large amount of
resources (e.g., time, money, privacy, etc.) in order to cultivate
its impact. D > 0 is the cost-of-influence parameter, which
converts the amount of influence an individual node exerts
into cost. It is assumed to be constant over the whole network
and known to the operator in our model.

The action of Node ¢ is denoted as «; =
(aiyl,ai,g,... aai,\Ni\)’ in which 0 < Q5 < 1,
j=1,2,...,]JN;|. We also assume that all nodes determine
their actions (i.e., cooperativeness levels) at the beginning of
the game simultaneously.

Theorem 2. Without payment, the strategy ¢&; which consti-
tutes the Nash equilibrium should be ¢; ; = 0, j neighbor of
i.

Proof. Suppose that Node ¢ chooses an action «; different
from &;, with a; = (a1, Q42,...,05)x;)), St 3a;; # 0.
From the utility function (10) we can see that Node ¢ can
obtain a better payoff by setting «; ; = 0. Thus ¢ is a strictly
dominated action and cannot be used in any Nash equilibrium.
So the strategy which constitutes the Nash equilibrium should
be in the form &; ; = 0, 7 neighbor of . O

Define VCG-like payment to Node ¢ as

M;=B-q-(o(A) —0-i(A)) + C(2)
=pB-q-(0(4) —o-i(4) +D-

>

jneighborof i

Qi g Pig

Y

where 0(A) — o_;(A) is the difference of the expected final
active node set size when Node ¢ exists, and the expected size
if Node ¢ does not exist. ¢ > 0 is the amount of reward the
initiator is willing to pay for a successful activation. 8 > 0 is
the premium control parameter, used by the viral marketer to
ensure that the total payment is within the budget. The detailed
usage of this parameter will be explained in Section V. In other
words, (11) means that besides compensating the individual
cost C(), the initiator will additionally pay Node i for its
contribution during the influence diffusion stage.

Our proposed VCG-like incentive scheme is different from
the standard scheme in the following two aspects. First, in
traditional mechanism design theory, the goal of the VCG

auction is to encourage each selfish agent in the game to dis-
close its private information (“types”) to the auctioneer [29].
For example in [30], under the VCG payment scheme, each
node may choose to report its true forwarding cost so that
the least cost path can be found correctly. But the objective
of our proposed incentive mechanism is to ensure that each
selfish node is cooperative in the sense that they will exert
all its influence capacity (i.e. o;; = 1, j = 1,2,...,|N]
for an arbitrary Node 7). Second, in standard VCG, the cost
the operator has to compensate is the reported value claimed
by the selfish node, while in (11) the cost C(i) is the actual
cost Node ¢ has incurred taking its cooperativeness level into
consideration.

Although there are some differences, the proposed VCG-
like payment (11) is similar to the standard VCG payment
formula in structure in that they both consist of two parts:
premium, and some kind of “cost” (reported value or true
value). More importantly, the proposed VCG-like scheme
shares some nice properties of the standard scheme, and such
properties will be discussed next.

First we introduce Lemma 2 which is useful in showing
that the VCG-like incentive scheme will encourage nodes in
the network to be cooperative. In order to prove the lemma,
an equivalent view of the ICM proposed in [1] needs to be
described first.

The probability p; ; in ICM represents the likelihood Node
1 will activate Node 7 when Node ¢ becomes active while at
the same time Node j is inactive. The outcome of this random
event can be viewed as the flipping of a coin of bias p; ;. In
fact we can flip the coin corresponding to each of the edges
in the social network G at the beginning of the cascading
process and the result will only be revealed when Node ¢ is
active while its neighbor Node j is inactive. After all the coins
have been flipped in advance, we declare edges in G for which
the coin flip result in heads as live and the remaining edges as
blocked. In this graph, it is clear that a node will be active at
the end of the cascading process if it is on a path consisting
of only live edges from the target set A. Further we can see
that the number of nodes that are active at the end of the
cascading process will be the number of the nodes that are
on paths consisting of only live edges from the target set A.
This equivalent view also shows that the final activated set
size under ICM is an order-independent outcome, that is, if
a node has several newly activated neighbors, the order of
their activating attempts will not affect the final result. For a
detailed discussion on the equivalent view, readers are referred
to [1].

Lemma 2. The expression oc(A) — o_;(A) is always non-
negative, i.e., c(A) —o_;(A) > 0.

Proof. Based on the order-independent equivalent view of the
ICM process [1], we can divide the diffusion process of one
sample point X in a sample space .S into two steps. The first
step is to simulate the diffusion process in the whole graph,
but assuming all the incoming edges of Node ¢ to be “blocked”
and Node ¢ itself to be inactive. The active set size at the end
of the first step is thus ox,_;(A). In the second step, we keep
the original states of incoming edges (blocked or live) of <,
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and activate Node ¢ if it is in the original seed set A. The
result at the end of the second step is thus ox(A). If Node
i is activated first at the beginning of step two (i.e. 1 € A),
then it is obvious that ox (A) > ox _;(A). Consider the case
in which ¢ ¢ A. If there is a path from some node in A to i
consisting entirely of live edges, then Node ¢ will be active and
in turn may possibly initiate a cascading process (i.e. ox (A) >
ox,—i(A)); otherwise, Node ¢ will end up inactive and the
diffusion process ends (i.e. ox(A) = ox,—i(A4)). In general,
ox(A) > ox,_i(A). Since

a(4) =Y P[X]ox(A) (12)
Xes
and
o_i(A) =) P[X]ox,_i(A) (13)
XesS
So o(A) —o_;(A4) > 0. O
Lemma 3. [31] Let p € [0,1)Il be the true influence

probabilities on each edge. Given a target set A, then

o(A) =D ui(p, A) +|A]

i=1

(14)

where w;(p’, A) is the expected number of neighbors activated
by Node 1, given the target set.

Theorem 3. The strategy &; which constitutes the Nash
equilibrium should be &; j = 1, j neighbors of i, under the
VCG-like payment scheme.

Proof. Consider an arbitrary Node ¢, and fix the cooperative-
ness levels of the other nodes. If Node ¢ is cooperative (i.e.
a;.; = 1, 7 neighbors of 7), with the VCG-like payment, the
utility function of Node 7 now becomes
U, =M,;—C(i)
=B-q-(0(A) —0-i(4))

+D- Y

jneighborof i
=B-q-(0(4) —0-i(4))

In Lemma 2 we have proved that (A)—o_;(A) > 0. Since
8>0and ¢ >0,s0U; >0.

Let of = (01,0, --, 0 n)),s:t. Jaf; < 1 be the
cooperativeness level of a noncooperative Node i, then the
utility becomes
Uj = Mj = C'(i)

=B-q-(o'(A) =0 (A) + D-

>

jneighborof i
=B-q-(0'(4) —0’,(4))
=B-q-(0'(A) —o_;(A))(since the cooperativeness levels

(15)

>

jneighborof i

pij—D- Pi.j

!
E Q; 5 Dij

jneighborofi

/
-D- Q5 Pij

of other nodes are fixed)
(16)

Actually the true influence probability vector p’ in
Lemma 3 can be represented as (pl,p’;), where p, =

(Pi,1:Pi 25 -5 D) |n;)) 18 the true influence probability Node i
has on its neighbors while p’_, is the true influence probability
vector on all other edges in the graph. According to Lemma 3,
the final expected active node set size contains the expected
number of neighbors activated by each node, given target set
A. For each i, Node i can influence more neighbors when it
is cooperative, i.e. w;((pi,0";), A) > u;((p,p_;), A). Thus
o(A) > o/(A) and U; > U]. The cooperative strategy always
maximizes the node utility. O

Theorem 3 implies that the VCG-like incentive scheme sat-
isfies two important properties. The first property is individual-
rationality (IR), that is, for each player, it is always better (i.e.
achieving at least no less utility) to join the game than not
participating. Combining Lemma 2 and Theorem 3 we can
see that the individual utility of Node ¢ is always nonnegative
(0 is the utility when not participating in the game) under the
proposed incentive scheme, so our scheme is IR. The other
property is incentive-compatibility (IC) — each player prefers
to act in accordance with the objective of the mechanism.
Theorem 3 has proved that the dominant strategy for a single
node is to be cooperative to exert all its influence capacity
under the VCG-like scheme, which is exactly the design
objective of the proposed scheme, so the scheme is also IC.
IR and IC are also two nice properties of the standard VCG
auction [32].

B. Advantages of the VCG-like scheme over the fixed price
incentive scheme

Another possible, also intuitive incentive scheme is as
follows:

M; =+ C(i)

4D, (17)

>

j neighbor of i

Qij " Pij

where € can be any arbitrary positive number. Under this
scheme, besides compensating for the individual cost C(i),
the operator will also pay a fixed amount of incentive .

It can be easily shown that under the fixed price incentive
scheme, being cooperative (i.e. a;; = 1, j = 1,2,...,|N]
for an arbitrary Node ¢) is the weakly dominant strategy for
a selfish node. In other words, the utility of an individual
node is the same (i.e. €) whether it is cooperative or not.
However, Theorem 3 has already shown that under the VCG-
like scheme, being cooperative is the strongly dominant strat-
egy. That is to say, the individual utility is maximized if a
selfish node chooses to exert all its influence capacity. From
this aspect the VCG-like scheme is superior to the fixed price
scheme.

Another drawback of the fixed price scheme is that every
node can get the same premium ¢ regardless of its ability
to impact others. That means the fixed price scheme is not
“fair” in the sense that the specific contribution of an individ-
ual node during the influence diffusion process is ignored.
Some “influential” nodes in the social network may thus
find this property discouraging. In contrast, in the VCG-like
scheme (11), o(A) — o_;(A), which is the difference of
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the final performance when Node 7 does not exist, exactly
quantifies the contribution of Node ¢ during the diffusion
process. To conclude, being more “fair” is another advantage
of the proposed VCG-like incentive scheme.

C. Some technical discussions on the VCG-like incentive
scheme

1) How do we get the cooperativeness levels of nodes?

Suppose the social network marketer has already determined
the influence probability on each edge in the network through
various methods (e.g. machine learning techniques [33]). Since
the marketer has to pay the real cost (i.e. C'(i) in (11)),
it is vital for the proposed incentive scheme to get the
cooperativeness levels (i.e. «; ;) of nodes correctly. In this
model we assume that both nodes on the edge (u,v) have
various information about the properties of the edge. There
is a similar assumption in [31]. The difference is that in our
proposed incentive scheme, it is obvious that the influencer
(i.e., the node w in edge (u,v)) has motivation to lie about its
cooperativeness level in order to get a higher payment. So in
the VCG-like incentive scheme, the influencee (i.e., the node
v in edge (u,v)) will report the influence probability p}, , the
influencer node u has exerted on it to the marketer, thus

/
o pu,v
Pu,w

2) How do we calculate the premium given to Node i (i.e.
o(A) — 7_i(A))?

Another possible concern on the VCG-like incentive scheme
is the calculation of o(A)—o_;(A) via simulation. Since both
terms of the premium require the expected final active node set
size, the efficiency would be greatly improved if we can reduce
the Monte-Carlo simulation times needed while preserving the
accuracy of the result.

To solve this problem, from the proof of Lemma 2, we see
that the expression o(A) — o_;(A) at one sample point X
(i.e. ox(A) —ox,_i(A)) is exactly the marginal increase in
the active set size at the end of the present step compared to
the previous step. So for each simulation run we can store
the value of ox(A) — ox,_;(4) and the average number
over all simulation runs is the result desired. By using this
method we can avoid running two simulations separately and
the efficiency is hence improved.

Qo (18)

)

V. THE BUDGET ALLOCATION PROBLEM

In the previous two sections we have introduced two meth-
ods, namely, the hierarchy-based seed node selection method
and VCG-like incentive scheme to solve the node noncoop-
eration problem in the influence maximization process. These
two methods work at different stages. It is obvious that the
final influence diffusion in terms of the size of the active node
set will improve if there are more seeds chosen at the seed
node selection stage, or the network is more cooperative at the
influence diffusion stage. In real life, however, the marketer
only has a finite budget to promote his product. If one puts
all of the budget in selecting as many seed nodes as possible,
the final outcome might not be satisfactory because of the

noncooperation of non-seed nodes. On the other hand, if one
puts too much efforts on providing incentives to non-seed
nodes so that they can be cooperative during the influence
diffusion process, the cascading effect may be limited because
too few nodes are activated at the beginning. Therefore,
there exists a tradeoff between a larger seed set and a more
cooperative network. To study the tradeoff more rigorously,
we formulate the budget allocation problem as follows: Given
r as the cost of activating a seed node and B the budget at
the viral marketer’s disposal, what is the optimal seed node
set size so that the final active set size is maximized? Define
Koar = L%J as the largest possible number of seed nodes the
viral marketer can activate. Since normally K,,,, is a small
number compared to the total number of nodes in the social
network, one way to solve the problem is to enumerate from
1 to K4, seed nodes with the proposed seed node selection
heuristic and incentive scheme embedded, so that the optimal
value can be found.

A. Decision criteria of the budget

Let S, = V\ S; be the non-seed node set. Because
in (11) can be arbitrarily small, we can use this parameter
to control the premium given to non-seed nodes in order to
control the total budget. If a viral marketer wants to activate /'
seed nodes as well as provide all non-seed nodes the required
incentives to encourage their cooperativeness, it needs enough
budget to cover the activation cost of seed nodes and incentive
costs of non-seed nodes. Mathematically, the criteria for a viral
marketer to decide whether he has enough budget or not should

be
Bzr.K+D.Z Z

1€S), jneighborof i

Dij (19)

We omit «; ; in (19) since we have proved in Theorem 3 that
nodes will be cooperative (i.e., a;; = 1, j neighbor of i)
under the VCG-like payment scheme.

However, when a viral marketer decides whether it has
enough budget at the beginning of the campaign, it has not
determined the seed node set yet. In other words, it cannot
know S; and therefore .S,, in advance. It is also reasonable
to assume that |S;| < |S|. Thus a decision criteria not
only reflecting the reality more accurately, but also a good
approximation is as follows

BZT-K—FD-Z Z

i€S jneighborof i

Dij (20)

We will use (20) in the rest of this paper.

B. Seed node selection scheme when budget is not enough

Suppose the viral marketer only has enough budget to
activate K initial nodes, but cannot afford to pay all other non-
seed nodes incentives as required in the VCG-like scheme. In
other words,

7'~KSBS7’~K+D~Z Z

1€S jneighborofi

Dij (21)

Then the viral marketer can only provide incentives to a
portion of the total nodes in the network. In order to select
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a satisfactory seed node set considering node noncooperation,
the marketer needs to estimate the percentage of cooperative
nodes (i.e., seed nodes and non-seed nodes receiving VCG-like
incentives) in the network beforehand. We define the incentive
coverage estimation factor as the ratio between the remaining
budget and the sum of individual costs, that is

B-r- K
D- ZiGS Zj neighbor ofipivj

In (22) the denominator is the sum of the individual costs
of all nodes in the network. The reason is the same as in
Section V-A.

Since the physical meaning of 7 can also be interpreted as
the probability for a non-seed node to be cooperative during
the influence propagation, thus the cooperativeness level of a
non-seed node now becomes a random variable A\ with two
possible values, o and 1.

A= { L,
a?

We further define the equivalent cooperativeness level of a
non-seed node as the expected value of A, that is

n= (22)

with probability n
with probability 1 —n

o=n+(1-nxa (23)

This o’ will be used for choosing seed nodes under the
noncooperative version of the hierarchy-based influence max-
imization algorithm.

C. A greedy heuristic to allocate the incentive

In order to maximize the advertising revenue, one has to
choose a cost-effective way to allocate the remaining budget
B — r - K among non-seed nodes. An intuitive allocation
method is to provide incentives to non-seed nodes according
to their “importance” until all the budget is used up. Various
metrics can be utilized to measure the possible contribution of
nodes to the influence propagation, e.g. betweenness-centrality,
degree-centrality [1], etc. We distribute the remaining in-
centives to non-seed nodes in out-degree descending order.
Algorithm 2 gives a formal statement of the greedy incentive
allocation heuristic.

In Lines 10 - 12 of Algorithm 2, after the seed nodes are
chosen, in order to ensure that the dominant strategy for an
individual node is to be cooperative, the premium given to a
cooperative non-seed node ¢ 8- ¢ - (6(A) — o_;(A)) needs
to be greater than zero. Let B’ be the remaining budget after
activating K seed nodes and covering the individual costs of
selected non-seed nodes. Also define S; C S,, as the set of
non-seed nodes eligible for incentives and m = |S;|. 8 can be
calculated under the following procedure,

B-q- - oA
i€S;
B/
= 24
T e S o) Y

Actually [ also needs to be calculated even if the viral mar-
keter has enough budget which satisfies (20). The procedure
is exactly the same as (24). We only have to substitute .S,, for
S; in (24).

Algorithm 2 Greedy degree-based incentive allocation heuris-
tic
Let uq, ...,

U,k be non-seed nodes

Input:
A given integer K, the cost-of-influence parameter D, the
amount of budget B and the cost of activating a seed node

r
Out-degree-based centrality metric of non-seed nodes in
descending order: d" 9(1) ,d;’?fl_ K9 is a permutation
of Y = {1,2,. n—K}suchthatVieY\{n—
out out
K} d >d g(i+1)"
Output:

The final non-seed node set receiving incentive Sj;;
The premium control parameter .
B+ B-r-K
Start with S; = ()
for i =1ton— K do
U <= Ug(s)
if B—D- Zuneighbor Ofvpv,u 2 0 then
Si < S U{v}
B+ B-D- Zuneighborofvpvvu
end if
end for
= 1S4
: if m > 0 then
_ B
B = o =S s, oA
: end if

R A A S

— = =
M e e

—_
[95]

Finally we give a flow chart of the complete budget alloca-
tion decision process in Figure 2.

VI. EVALUATION
A. Dataset and influence model

Co-authorship networks are widely used in simulations
since many key features of social networks can be cap-
tured [34]. Therefore, the dataset chosen here is Arxiv’s co-
authorship network under the General Relativity and Quantum
Cosmology category [35], which was also used in [36]. In
this collaboration graph, each node is an author, and an edge
between two authors ¢ and j means that they have co-authored
a paper. We consider the co-authoring relationships between
two authors only once in case they have co-authored more than
one paper, and we only take the largest connected component
of the graph into consideration, which contains 4158 nodes
and 13422 edges.

To estimate the final active set size, o(A), we use the
Monte-Carlo method under the noncooperative independent
cascade model. We run simulations up to 10000 times and take
the average value. Two-tiered, static node cooperativeness is
adopted in the simulation. That is, we set «; ; = 1 if Node
i belongs to the seed-node set, otherwise o; ; = oo < 1. The
uniform activation probability p is another essential parameter
in noncooperative ICM. However, its accurate value is nontriv-
ial and cannot be learnt easily. Learning activation probability
is a separate research area and here we set p = 0.1 according
to the following observations:



IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. XX, NO. XX, XXXXX 2017 10

START ———— i =1
END No b € Koam
Yes
Enough Yes
No budget?

Calculate 77 and determine the

seed node set according to the

noncooperative hierarchy-based
influence maximization algorithm

Select non-seed nodes
eligible for incentive

Determine the seed node set
according to the hierarchy-based
influence maximization algorithm

Calculate 3

t=1+1

Fig. 2: Flow chart of the budget allocation decision process

In order to see the difference of information spreadings
under different activation probabilities, we let p range from
0.05 to 0.5 with step 0.05, and o« = 1. For each specific p,
we use the hierarchy heuristic to pick k seeds and test the
influence spread, where k = 1,2, ..., 100. The result is shown
in Figure 3(a). Since we want to observe the effect of non-
cooperativeness on the influence spread, we would expect the
difference of final active set size between 100 seeds (denoted
as Ajgp) and just 1 seed (denoted as Ap) to be large, while
their absolute values are not too small. Figure 3(b) shows
0(A100)/0(A;) for different values of p. Though the ratio
is large when p = 0.05, o(Aj00) is too small (less than 500).
In the case of p = 0.15, the difference between o(A;00) and
0(A;) is not obvious (less than 2 times). Therefore, p = 0.1
is the most appropriate choice.

B. Influence maximization under noncooperative ICM

We compare our modified hierarchy-based algorithm in
noncooperative ICM with three degree-based schemes.

o Pure degree algorithm. It simply selects seeds in an
out-degree descending order [1]. It is commonly used in
sociology to select influential nodes.

« Single-discount heuristics. The method is proposed
in [8]. It is also based on degree centrality. Instead of
simply using out-degree, it does not count the edge that
links to a seed.

o Degree-discount heuristics. It is also proposed in [8].
Although it is degree-based as well, the method is not as
simple as the former two. For each seed candidate v, if
we denote d,, as its out degree, and ¢, as the number of
its out neighbors that are seeds already, then we calculate
the metric 1+p x [d,, — 2t, — (d, — t,)t,p] and select the
node with the largest value as the new seed. The method
recalculates the metric for the remaining candidates and



IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. XX, NO. XX, XXXXX 2017 11

3500

3000 1
2500 - | 1
2000 - ) 1
1500 1

1000 I g

005 01 015 02 025 03 035 04 045 05
activation probability

(@)

ol 5 )o(A,)

005 01 015 02 025 03 035 04 045 05
activation probability

(b)

Fig. 3: Simulation results under ICM with different p

iteratively run the algorithm until £ seeds are picked.

Four cooperativeness levels a = 1,0.8,0.5, 0.2 are used when
comparing the four methods. However, none of the above three
methods take node noncooperation into consideration. That is
to say, for each method, once a seed set is decided, it will
be used in all four cooperativeness levels. Figure 4 shows
the performance comparison of these algorithms. We can see
that the hierarchy heuristic clearly outperforms the other three
under all «. Even in the case o = 0.8, the hierarchy heuristic
performs better than both single-discount and pure degree
heuristics in a cooperative network, and thus we do not show
the non-cooperative cases of both single-discount and pure
degree heuristics here. In other words, the modified hierarchy
heuristic is efficient and robust under non-cooperative ICM.

C. The budget allocation problem

As shown in Figure 4, the final active set will be larger if
there are more seeds or the network is more cooperative. If
budget is enough, we can use incentives to get all nodes to be

700

600
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N
5
8

Active set size
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g
g
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—6&— ¢=0.8, hierarchy
—+— 0=05, hierarchy
—— a=0.2, hierarchy
«a=1,degree-discount
— -~ a=0.8 degree-discount|
0=0.5,degree—discount| |
© =02 degree-discount
=1 single-discount
+  a=1, pure degree

L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Seed set size

Fig. 4: Comparison of different seed selection schemes (p =
0.1)

cooperative. In real life, however, the marketer only has a finite
budget to promote his product. Therefore, a tradeoff exists
between a larger seed set and a more cooperative network. In
this section, we conduct a simulation to illustrate the tradeoff.
The Arxiv’s co-authorship network is also used here and we
make the following parameter settings:

¢ The cost-of-influence parameter D = 100.

o The total budget B = 268440 and the cost of activating
a seed node » = 5368.8. It means K,,,, = 50, i.e., a
viral marketer can activate at most 50 seed nodes.

Under these settings, the simulation of the budget allocation
process works like this: Firstly, decide the seed size K =
1,2, ..., K;paz- Secondly, use the method described in Section
V-B to calculate o/ and pick the K seeds using the hierarchy
heuristic. Thirdly, use Algorithm 2 to distribute the remaining
budget B — Kr to the non-seed nodes, high out-degree first.
Finally simulate the diffusion process 10000 times and get
the average size of the final active set. We do simulations for
a = 0.05,0.10, ...,0.90, and Figure 5(a) shows the result. The
first observation from the figure is that the performances of
the hierarchy heuristic when the size of seed set is small are
unsatisfactory under all cooperativeness levels. This indicates
that no matter what the cooperativeness level is, it is always
unwise to spend all the money to encourage non-seed nodes.
Also we can conclude that the optimal policy varies according
to different . We select three cases: a = 0.2,0.5,0.8 for a
detailed illustration in Figure 5(b).

From the figure we can see that when o = 0.8, the
performance reaches the peak when 50 nodes are chosen as
seed nodes, i.e., the viral marketer uses all his budget to
activate seed nodes without providing incentives to non-seed
nodes. An important implication for the viral marketer is that
if the network is sufficiently cooperative, there is no need
to spend any budget on encouraging cooperation. However
when the network is not that cooperative, we should spare
some efforts to get people to actively participate. To be more
specific, if the network is cooperative (e.g. a = 0.8), we
should spend all budget on seeds, while if the network is non-
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Fig. 5: Simulation results of budget allocation, p = 0.1

cooperative (e.g. a = 0.2), the best result appears when 17
nodes are chosen as seed nodes.

D. BAP under LTM

We have shown the impact of node noncooperation on
influence diffusion under LTM in [24]. Here we further study
BAP under LTM through experiments. The process of budget
allocation is similar to that described in VI-C, except we
use the flow-based centrality metric proposed in [24] as the
seed node selection method under LTM. We investigate the
performance of BAP under LTM with different D, the cost-
of-influence parameter. The result of the budget allocation
simulation is shown in Figure 6. The x-axis represents the
number of initially active nodes and the y-axis represents the
final active set size. An immediate observation from the figure
is that the performance of the budget allocation algorithm
improves as D decreases on every seed node set size. This
is because a smaller D means it is cheaper to incentivize
non-seed nodes, and the performance improves due to more
cooperative non-seed nodes. Moreover, we can see that for

100
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5 6 7 8 9 10

4
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Fig. 6: Performance of the budget allocation problem with
different D under LTM

D = 0.01, the performance reaches the peak when 5 nodes
are chosen as seed nodes, while for D = 0.015 and 0.02,
the performance reaches the peak when ten nodes are chosen
as seed nodes, i.e. the viral marketer uses all his budget to
activate seed nodes without providing incentives to non-seed
nodes. An important implication for the viral marketer is that
if it is too expensive to incentivize non-seed nodes, there is
no need to spend any budget on encouraging cooperation.

VII. CONCLUSION

Influence maximization in noncooperative social networks is
studied in this paper. Firstly, we generalize the original ICM
into a noncooperative version and show that noncooperative
ICM also possesses the nice property (i.e., submodularity)
of the original ICM. Then, a two-stage solution is provided.
For the seed node selection stage, we propose a variant of
the hierarchy-based seed node selection strategy which takes
node noncooperation into consideration. For the influence
diffusion stage, a VCG-like incentive scheme is designed to
encourage node cooperation. The proposed mechanism is IR
and IC. Simulation results on a large co-authorship network
show that node cooperation is very important to achieve a
satisfactory advertising outcome. Evaluation results also indi-
cate that the modified hierarchy-based influence maximization
algorithm outperforms other seed node selection algorithms
under various noncooperative scenarios. We also study the
budget allocation problem between the two stages, and show
that a marketer can utilize them to tackle noncooperation
intelligently.
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