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Abstract: The topological phases in materials have been studied in recent decades for their 
unique boundary states and transport properties. Photonic systems with band structures 
embrace the topological phases closely, where they not only provide platforms to testify the 
topological band theory, but also shed light on designing novel optical devices. In this review, 
we present exciting developments, supported by brief descriptions of prominent milestones of 
topological phases in photonic systems in recent years. These studies may sustain further 
developments of optical devices and offer novel methods for light manipulations. 
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1. Introduction 

As argued by P. W. Anderson in 1972 [1], nature is not in the way that can be understood by 
reductionism: that the cognition of a system can be understood by studying its individual, 
constituent parts and their interactions. Although it is primarily discussed in the field of 
condensed matter physics, this argument may find a support when we study the photonic 
crystals. While the basic physical laws describing electromagnetic (EM) waves are the 
Maxwell equations, understanding the physical properties of EM waves in photonic crystals 
needs a whole new conceptual structure which can be borrowed from condensed matter 
physics and topology. 

Photonic crystal (PC) branches from the idea to control the optical properties of materials 
in a similar way to control the electrical properties in condensed matter physics [2]. It was 
first proposed in 1987 by E. Yablonovitch [3] and S. John [4] that, by periodically arranging 
macroscopic materials with different dielectric constants (or functions) in space, the 
propagations of EM waves will be dramatically changed due to the refractions and reflections. 
Particularly, there is a kind of PCs that possess photonic band gap (PBG) suppressing the 
propagation of EM waves with certain frequencies [2]. In past few decades, tremendous 
studies of PCs consisting of all-dielectric materials [2], optical resonators [5] and 
metamaterials [6] with different lattice structures indicated the existence of various band 
properties which can be used to design novel optical devices. For a long time, the studies of 
PCs are focused on the local band structures with unique optical properties and their 
applications such as designing a mirror, a waveguide, and a cavity. 
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Recently, as the topological phases of matters have been discovered in electronic 
materials [7–9], the exploration of band properties in PCs meets a new inflexion where the 
overall topological properties have been focused. The topological phases of matters have 
unique effects which cannot be explained by the spontaneous symmetry-breaking mechanism 
such as the integer quantum Hall effect (IQHE) [10], quantum anomalous Hall effect (QASE) 
[11] and quantum spin Hall effect (QSHE) [12]. However, all of these topological phases can 
be well described by the topological band theory [9]. The topological band theory is primarily 
developed for describing the topological properties of single-particle Hermitian systems. The 
simplest case is the IQHE in 2-dimensional (2D) electron gas with a uniform external 
magnetic field applied in the vertical direction [10]. The energies of circular moving electrons 
are quantized to form the Landau levels which can be regarded as the band structures if we 
define an area with flux quantum as the lattice plaquette. In this case, the band structures are 
many flat bands independent of crystal momentum k while in real crystals the bands disperse 
with k. The topological protected quantized Hall conductivity is characterized by a non-trivial 
topological invariant which is the same as the non-trivial Chern number (or TKNN number) 
[13]. Since the translational symmetry always exists in crystals, the crystal momentum k is 
well defined. The band structures are calculated from the 

equation ( ) ( ) ( ) ( )n n nu E uk k k k where ( )k , ( )nu k  and ( )nE k  is the Bloch 

Hamiltonian, Bloch wavefunction and eigenvalue for the nth band respectively. As k goes 
around the Brillouin zone (BZ), the Bloch wave function acquires a geometric phase which is 
the Berry phase. The Chern number of the nth band is defined as the Berry phase 
accumulation when k goes around the whole BZ: 

 
21

d
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n
BZ

nC


  k  (1) 

where 
n n   is the Berry curvature and 

n n ni u u 
k

 is the Berry connection. The 

total Chern number is defined as the summation of the Chern numbers of all occupied bands 

1

N

n

nC C


  and does not change provided that the band gap separating occupied bands and 

empty bands remains finite. For the trivial insulating phase, the total Chern number equals to 
zero while for the non-trivial insulating phase, it equals to a non-zero integer. 

The emergence of topological phases in electronic materials is related to the wave-particle 
duality of electrons. This perception stimulates the exploration of topological phases in 
classic wave systems. In fact, in many systems with periodically modulated waves such as the 
PCs, phononic crystals [14], surface plasmons [15] and mechanic systems [16], the 
topological phases can emerge as the manifestation of geometric properties. 

In this Review, starting from the classification of topological phases with respect to 
symmetries, we give a presentation about topologically gapped phases as well as 
topologically gapless phases in photonics. Other topological phases in photonics such as 
topological non-Hermitian photonic systems, higher-order topological phases and geometric 
phases in photonic systems have been discussed. Finally, we conclude by providing the 
outlooks for future studies of topological phases in photonics. 

2. Topologically gapped phases in photonic crystals 

A unique character of topological gapped phases is that there is gapless edge state emerging 
at the interface between two topologically gapped phases within different topological classes 
[7, 8]. An easy but not rigorous way to understand this fact is that since nature has no 
mutation, if we go from a gapped phase to another gapped phase, at the interface, the gap 
must be closed and hence the gapless state emerges. Additionally, the edge state is robust 
against disorders and perturbations as long as the topological classes of both sides do not 
change. 
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2.1. Topological classification of gapped systems 

For the gapped systems, the Hamiltonians can be classified into topological equivalent classes 
in which the Hamiltonians can be adiabatically deformed into each other without closing the 
bandgaps [14]. The discrete symmetries play an important role in determining the band 
structures and therefore it is possible to topologically classify the gapped systems with respect 
to different discrete symmetries such as the time-reversal symmetry (T), particle-hole 
symmetry (C) and chiral symmetry (S). These three symmetries act on the single-particle 
Hamiltonian as: 
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1

1

( ) ( )
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TH T H

CH C H

SH S H


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k k
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 (2) 

In terms of the first quantization of the system where electrons are described by the 
wavefunctions and the energies of them are discretized, if the Hamiltonian is regularized on a 

finite lattice, we can represent the Hamiltonian by using a N N  matrix. Clearly, the discrete 

symmetries put constraints on the regularized Hamiltonian and determine the type of matrix 

that the quantum mechanical time-evolution operator  exp itH  in. For a concrete example, if 

T = 0, S = 0, and C = 0, there is no constrains and  exp itH  is an element of the unitary 

group ( )U N  which is regarded as the symmetric space of the matrix. Classified by Cartan in 

1926, in terms of these three symmetries, there are totally ten symmetric spaces which 
correspond to ten classes as listed in Table 1. Next, considering the non-linear sigma model 
(NLσM) for random systems which describes the boundary topological properties of gapped 
systems in ten symmetric classes, the topological classes and topological invariants can be 
determined by studying the homotopy groups for each target spaces of NLσM. The 
classification is shown in Table 1 which is regarded as the periodic table for topologically 
gapped phases [17, 18]. 

Classifications of topological gapped phases with respect to other discrete symmetries 
such as the reflection symmetry [17, 19, 20], point group symmetry [21], space group 
symmetry [22], order-two spatial symmetry [23] Floquet-Bloch system [24, 25] and non-
symmorphic symmetry [26] show the strong relation between discrete symmetries and 
topological properties of systems which provides instructions to experimental designations of 
system with certain topological gapped phases and boundary states 

2.2. Topological gapped photonic crystals without T symmetry 

The first theoretical prediction of topological gapped phase in photonic crystal (PC) which is 
described by a Hermitian single-particle effective Hamiltonian is given by Haldane and 
Raghu [27] in gyromagnetic 2D hexagonal PC. The master equation of PC is: 

 

1
2( )[ ( )] 

 

  r E r E  (3) 

where 


 and 


 are permeability tensors and permittivity tensor respectively.   and E  are 

the eigenfrequency and corresponding electric field. They proposed a photonic analog of 
IQHE in 2D PC slab. From the perspective of topological band theory, they defined the 
photonic Berry connection of the bands: 
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Table 1. - Classification of topological insulators and topological superconductors with 
respect to time-reversal symmetry (T), particle-hole symmetry (C) and chiral symmetry 
(S). Number 0 (1) for S means no (have) chiral symmetry. Since time-reversal operator 

and particle-hole operators are anti-unitary operators and square to 1 , there are three 

types: even, odd and absent which are represented by + 1, 1 and 0 respectively. d 
represents the spatial dimension of the system. The notation of ten classes follows the 

notation invented by Cartan, Altland and Zirnbauer (CAZ) [28, 29]. The entries 0, , 

2
 and 2  represents the topological invariants of each Hamiltonians which 

correspond to 0, an integer, an integer of mod 2 and an even integer respectively. Table. 1 
is reproduced with permission from [18]. Copyright 2010, IOP Publishing. 

 Symmetry d  

Class T C S 0 1 2 3 4 5 6 7 

A  0  0  0   0   0   0   0  

AIII  0  0  1  0   0   0   0   

AI  +1  0  0   0  0  0  2  0  2  2  

BDI  +1  +1  1  
2   0  0  0  2  0  2  

D  0  +1  0  
2  2   0  0  0  2  0  

DIII  -1  +1  1  0  2  2   0  0  0  2  

AII  -1  0  0  2  0  2  2   0  0  0  

CII  -1  -1  1  0  2  0  2  2   0  0  

C  0  -1  0  0  0  2  0  2  2   0  

CI  +1  -1  1  0  0  0  2  0  2  2
  

 ( )nn

n n
i


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k k k

A k E E  (4) 

where
nk

E  is the periodic part of the electric-field Bloch function. The corresponding Chern 

number for the photonic band is: 

 21
d ( )

2

nn nn
y x

yBZ

n

x

A A
C

k ki

 
 

  k  (5) 

where the BZ stands for the first Brillouin zone. To introduce topologically non-trivial pairs 
of Chern numbers near the degenerate points, they considered hexagonal lattice geometry 
where there are Dirac points in the Brillouin zone corners when both T and parity (P) 
symmetries are kept. If T and P are broken, the Dirac point degeneracy is lifted and the band 
structure of PC becomes gapped. However, if P is broken alone and the PC have only T 
symmetry, the Berry curvature: 

 ( )=

nn nn
y

xy

x

x

y

A A

k k

 


 
k  (6) 

is an odd function of k and the thus the Chern number equals to zero. In contrary, if T is 

broken alone and P is reserved, ( )xy k  is an even function of k and the Chern number is 

nonzero. To achieve topological non-trivial gapped phase in PC, considering the magneto-
optical effect which breaks T but keeps P: 
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the non-zero Chern number and corresponding unidirectional edge states emerge. Direct 
calculation of total Chern number shows that it is an integer. 

From the perspective of topological classification, since T = 0, C = 0, and S = 0, the target 

space of NLσM is (2 ) [ ( ) ( )]U n U n U n  as shown in [18]. Moreover, since the spatial 

dimensionality d = 2, the homotopy group is 
2 ( (2 ) [ ( ) ( )])U n U n U n   . Therefore, the 

PC is in class A and characterized by  type topological invariant which is the integer Chern 
number. The edge states are robust against elastic backscattering due to the topological 
protection of the bulk band gap. 

The first theoretical [30] and experimental realization [31] of this gapped photonic phase 
is proposed by Wang et al. in gyromagnetic PC. The experimental setup is shown in Fig. 1(a)-
(b). The 2D PC slab consists of gyromagnetic ferrite rods in the air with a square lattice 
structure. To forbid the radiation of EM wave to the air, the PC is covered by copper for 
confinement. The unidirectional edge states are measured by the transmission spectra in the 
forward direction and backward direction as shown in Fig. 1(e). Figure 1(c)-(d) present the 
numerical simulation results. 

 

Fig. 1. The experimental setup and numerical simulation results. (a). The layout of the PC 
consisted of gyromagnetic rods which are confined by metal walls. (b). The photograph of the 
PC with the top plate removed. (c). Numerical simulation shows that there is a unidirectional 
edge state propagating along the interface without backscattering which is robust against an 
obstacle. (d). The transmission spectra of the PC without confinement and the projected PC 
band structure. There is a clear suppress of transmission at the frequencies in the PBG. The red 
line represents the gapless edge state. (e). Transmission spectra of the confined PC where the 
spectra are non-reciprocal which shows the edge states propagate unidirectionally at the 
interface. (a)-(e) are reprinted with permission from [31]. Copyright 2009, Springer Nature. 
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The T-symmetry breaking topological gapped phases and their unique edge states in 
gyromagnetic PC have been extensively studied by others. For example, it was shown that the 
gapped phases and gapless edge states can emerge in PC without confinement where the 
dispersions of the gapless edge states are below the light line [32–34]. Besides, if several 
Dirac cone degeneracies simultaneously lifted, gapped phases with larger Chern number can 
be realized as shown in [35, 36] which can be easily understood as adding several copies of 
previous systems together in 2D. Another interesting phenomenon is that the topological 
gapped phase and robust edge states can exist even in amorphous systems [37, 38] which 
shows the topological characters of this phase. Similar studies [39–44] have discussed the 
realizations of T symmetry breaking phases in gyromagnetic PC. In terms of application, the 
T-symmetry breaking topological gapped phases have been proposed for designing novel 
optical devices [45–54]. 

In addition to the gyromagnetic materials, it is feasible to realize T-symmetry breaking 
topological gapped phases in other systems. As an example, it is proposed that, in 
optomechanical resonators where photons interact with phonons confined in a cavity, if we 
choose one circulation direction by using directional laser pumping, the T-symmetry breaking 
topological gapped phase emerges as a consequence of non-reciprocal transport of photons 
[55]. 

2.3. Topological gapped photonic crystals with T symmetry 

Previous studies of topological T-symmetry breaking gapped PC require magneto-optical 
effect which is limited to the microwave frequencies and becomes very weak in the optical 
domain [56]. To achieve topological gapped phases with robust edge states in optical 
frequencies, one possible approach is to find the photonic analog of QSHE where T symmetry 
is kept [12]. Comparing to T-symmetry breaking IQHE, QSHE in electric materials has two 
counter propagating edge states with different spin polarization in each propagating direction. 
Therefore, the net electric current and corresponding Chern number equal to zero while the 
net-spin current and corresponding spin Chern number are non-zero. 

However, comparing to electrons which are spin 1 2  fermions, the photons are spin-1 

bosons and have no counterparts of two degenerate modes in the spin degree of freedom. One 
way to solve this problem is to introduce a pseudo-spin degree of freedom and pseudo-T 

symmetry with 
2T 1   in PC which means that there are two degenerate modes connected 

by pseudo-T symmetry and can be regarded as spin degeneracy [57–59]. Imagining that there 
are two copies of modes in PC where there is no mixing between them, for each copy, there is 
a non-zero Chern number (spin Chern number) defined on that species. Moreover, since two 
modes are propagating in opposite directions, the spin Chern numbers of two species have 
opposite sign and thus the total Chern number vanishes. Nevertheless, we can define a non-
zero topological invariant for the PC by considering the subtraction rather than the summation 
of two spin Chern numbers. 

The first theoretical proposal [60] of QSHE in photonics utilized coupled resonator optical 
waveguide (CROW) arrayed in a 2D square lattice as shown in Fig. 2(c). The degenerate 
pseudo-spin up and pseudo-spin down states are represented by degenerate whispering-
gallery modes which propagate clockwise and counter-clockwise in CROW respectively as 
shown in Fig. 2(a). Furthermore, if there are no scatterers in resonators and waveguides, these 
two species of pseudo-spins propagating in opposite directions do not mix with each other 
which is similar to the spin-momentum locking in QSHE. The evanescent couplings between 
resonators lead to a tight-bind model for charged bosons with a synthetic magnetic field for 
photons in the perpendicular direction. For the system in Fig. 2(c), the tight-binding 
Hamiltonian is given by [60]: 

 
† † † †

2 2
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Here  is the coupling rate of optical modes and 
†

,x ya 



 ( ,x ya



) is the photon creation 

(annihilation) operator at lattice site (x, y) with pseudo-spin components, 1   . 

Consequently, the photonic band structure can be calculated by solving the tight-binding 
Hamiltonian as shown in Fig. 2(e). The T-symmetry preserving topological gapped phases are 

 

Fig. 2. QSHE in CROW. (a). Two coupled resonators with different lengths of the upper and 
lower branches. (b). If we introduce scatterers in resonators and waveguides, we can achieve 
in-plane magnetic field and spin-flip hopping terms. (c). 2D CROW which can be described by 
a tight-binding model. (d). Demonstration of forward- and backward-propagating edge states 
with different pseudo-spin components. The edge states are robust against disorders. (e). 
Projected band structure of CROW which shows two edge states in the band gaps. (a)-(e) are 
reprinted with permission from [60]. Copyright 2013, Springer Nature. 

characterized by the spin Chern number defined in the bulk bands and the topologically 
protected edge states appear which is robust against disorders as shown in Fig. 2(d). If we 
include semi-transparent scatterers inside the resonators and waveguides, two pseudo-spin 
components are coupled and we can achieve pseudo-spin-orbital interaction in CROW as 
shown in Fig. 2(b). The above system was realized in experiment [61] by using standard 
silicon-on-insulator technology which can be used to design optical robust delay lines. 

The edge states at the interface of two quantum spin Hall (QSH) topological gapped 
systems have some different features from the edge states in quantum Hall systems. First, the 
edge states are reciprocal which means that light can propagate either forward or backward. 

Second, from the viewpoint of classification Table [18], since T = 1, C = 0, and S = 0, the 

target space of NLσM is (2 ) / [ ( ) ( )]O n O n O n  as shown in [18]. Moreover, since the spatial 

dimensionality d = 2, the homotopy group is 
2 2( (2 ) / [ ( ) ( )])O n O n O n   . the system is in 

AII class and characterized by a 
2

 topological invariant. The robustness of edge states 

against sharp bending, random distribution of synthetic gauge field, lattice disorder has been 
experimentally verified. 

So far, we have reviewed the QSHE in CROW. Nevertheless, it is feasible to realize 
QSHE in other optical systems. For example, in free space, the light exhibits an intrinsic 
QSHE where there are evanescent surface modes with strong spin-momentum locking [62, 
63]. Here the spin components are represented by left- and right-handed circular polarizations 
of light which have opposite helicities. The spin vector is locked to the propagation vector. 
However, since it is an intrinsic property of EM wave, there is no pseudo-T symmetry with 

2T 1   and the real T symmetry for bosonic waves squares to + 1. Therefore, the 
corresponding edge states are not topologically protected by T symmetry and not free from 
backscattering. Nevertheless, this system provides robust unidirectional spin transport. 

Additionally, as proposed by Khanikaev et al. [64], QSHE can be realized in bianisotropic 
metamaterials. In this case, the spin components are represented by two linear combinations 
of transverse electric (TE) and transverse magnetic (TM) modes. These spins states are 

connected by a pseudo-T symmetry with 
2T 1  . Comparing to CROW, the bianisotropic 

metamaterials can be fabricated at the size which is in the same order of EM wavelength and 
therefore have an advantage in footprint [58]. The spin-polarized edge states are robust 
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against disorders and free from backscattering. Another advantage of using metamaterials to 
realize T-symmetric topological gapped phases is that it is possible to achieve reconfigurable 
topological phases as pointed by [65–68] where the PC consists of meta-waveguides with 
adjustable structures. By moving the metallic rods at different positions, the PC goes from 
symmetric (no bianisotropic with gapless Dirac cone) to asymmetric (bianisotropic with Dirac 
cone opened) structures [66]. The reduction of symmetry induces a mixing of the four 
original Dirac bands-the lower antisymmetric (symmetric) mode and upper symmetric 
(antisymmetric) mode to form two pseudo-spins with spin-momentum locked. Recently, this 
work has been generalized to all-dielectric bianisotropic metamaterials where the losses are 
reduced and could be realized at optical frequencies [69]. 

One of the key steps of realizing QSHE in PC is to construct pseudo-spins and 
corresponding T symmetry. Comparing to previous platforms with dedicated structures which 
may be difficult to realize in applications, recently, Wu and Hu [70] have theoretically 
proposed and experimentally realized [71] an all-dielectric material in which QSHE can be 

 

Fig. 3. QSHE in all-dielectric PCs. (a). Schematic plot of PC with the lattice vectors 
1a  and 

2a


, the lattice constant 
0a , the dielectric constants of rods and background 

d  and 
A , the 

diameter of rods d . (b). Band inversion process induced by reducing the lattice constant from 

extended phase to shrunk phase. (c). Numerical calculation of the projected band structures 
shows that there are two topological edge states with opposite group velocities emerging at the 

band gap. (d). Real space distribution of the 
zE field at point A and B indicated in (c). Two 

pseudo-spin components propagate along opposite directions. (e). Experimental setup of PC 
with extended and shrunk configurations. A square-shaped antenna array is used to selectively 
excite certain EM pseudo-spin state indicated by circular arrows. (f). Clockwise pseudo-spin 
state is excited and propagates along the interface of two topologically inequivalent 
configurations where the edge states are robust against sharp corners. (g). Transmission 
measured at two different positions indicated in (f) which shows that there is no backscattering 
of the edge states. (a)-(d) are reprinted with permission from [70]. Copyright 2015, American 
Physical Society. (e)-(g) are reprinted with permission from [71]. Copyright 2018, American 
Physical Society. 
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induced by deforming a honeycomb lattice of rods into triangular lattice of rod hexagons as 
shown in Fig. 3(a) and (e). As is known, at the Brillouin zone corners of honeycomb lattice 

K and K
, there are two-fold degenerate points which form the Dirac cone structures [27]. 

However, if we regard the honeycomb lattice as a triangular lattice of hexagonal clusters 
composed by six neighboring sites, the two Dirac cone structures at Brillouin zone corner will 
be moved to the Brillouin center  point and form doubly degenerate Dirac cones as shown 
in Fig. 3(b). Then the doubly degenerate Dirac cones are opened by extending or shrinking 

the clusters while keeping the 
6vC  symmetry of the hexagonal clusters. the TM modes hosted 

by the clusters which are regarded as “artificial atoms” exhibit electronic orbital-like p- and d-

wave shapes. For the upper bands, there are 
xp and yp  photonic orbitals while for the lower 

bands, there are xyd  and 2 2x y
d


 photonic orbitals [70, 72]. With respect to the inversion 

symmetry, these four states can be linearly combined into symmetric and asymmetric 

form =( ) 2x yp p ip   and 2 2=( ) 2
y xyx

d d id 
  which are two pseudo-spin components. 

A band inversion takes place as we reduce the lattice constant from extended phase to a 

shrunk phase which results in non-trivial 
2
topology and topologically protected edge states 

as shown in Fig. 3(c)-(g). 
Essentially, this approach is the same as the quantum valley Hall effect (QVHE) [73, 74]. 

The valley degree of freedom arises from the 
6vC  point group symmetry where the PC has 

two inequivalent Brillouin zone corners. It has been extensively studied in condensed matter 
physics for the potential application in valleytronics [75, 76]. If the photons cannot be 
scattered from one valley to another, the valley is a good degree of freedom which can be 
used to realize T-symmetric topologically gapped phases in PCs [77, 78]. An interesting case 
is that when the PC has both spin and valley degree of freedoms, then it is possible to design 
exotic spin-valley-polarized photonic states [79, 80]. 

The realization of QSHE and QVHE in photonics with T symmetry and topologically 
protected edge states has been extended to other systems such as the topological RF circuits 
[81], twisted optical resonators [82] which have been well reviewed in [57]. 

2.4 Crystalline symmetries protected topological gapped phases in PC 

2.4.1 Topological gapped PC with point group symmetries 

Other than aforementioned T and P symmetries, point group symmetries can also lead to non-
trivial topologically gapped phases [83]. For example, the topological crystalline insulators 
have been theoretically proposed [84] where there are topological metallic surface states with 

quadratic band degeneracy on high symmetric crystal surfaces which are protected by 
4C  

point group symmetry without spin-orbital coupling. The bulk bands and edge states are 
characterized by new topological invariants. 

Recently the studies of 2D PC in square lattice [85, 86] indicated that there are topological 
gapped phases as well as gapless edge states in both electronic materials and PCs which are 

protected by 
4C  point group symmetry. Moreover, the topological non-trivial PBG and robust 

edge states are characterized by 2D Zak phase with zero Berry curvature. 

2.4.2 Topological gapped PC with non-symmorphic group symmetry 

In addition to point group symmetry, there is another subset of space group symmetry which 
is the non-symmorphic group symmetry. The non-symmorphic group symmetry operation is a 
combination of a point group symmetry operation and a nonprimitive lattice transformation. 
A couple of recent studies about non-symmorphic symmetry in electronic materials have 
revealed the existence of topologically non-trivial gapped phases [87–90]. For the 

topologically gapped phases, a non-symmorphic crystalline insulator with 2 topology has 

been proposed which supports gapless boundary states with Mobius twisted energy dispersion 
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[90]. The non-symmorphic group symmetry protected topologically gapped phases do not 
require T symmetry and is not limited to fermionic systems. Therefore, it can appear in 
bosonic systems such as PCs. 

2.5 Floquet topological photonic gapped phases 

Previous studies of topologically non-trivial phases are all about static systems. When time-
dependent modulations are considered, new topological gapped phases emerge as the 
manifestation of non-equilibrium topological states. Moreover, the spectral properties such as 
the velocity of edge states, the bandgap of the bulk insulators can be directly controlled. 
Unlike the electronic materials where the time-dependent modulation is introduced by 
irradiation with microwave frequencies [91], in PCs, periodic modulation of the z-direction is 
regarded as time modulation. This kind of PCs with non-trivial topologically gapped phases 
are called photonic Floquet topological insulators (PFTI). The first experimental realization of 
PFTI achieved by Rechtsman et al. [92] They consider a 2D hexagonal photonic waveguide 
array periodically modulated in the z-direction as shown in Fig. 4(a)-(b). The waveguides are 
fabricated by using the femtosecond laser writing method. In analogy to Floquet topological 
insulator, the Maxwell equation which describes the paraxial propagation of light in this PC is 
transformed into the Schrödinger-type equation [92]: 

 2 0

0 0

( , , )1
( , , ) ( , , ) ( , , )

2
z

k x y z
i x y z x y z x y z

k n

n
     


  (9) 

where ( , , )x y z  is defined as 
0( , , ) ( , , )exp( )x y z x y z iik tz E x . E , x, t, 

0k  stand for 

electric field, unit vector, time, wavenumber in the ambient medium. ( , , )n x y z  is the 

effective potential. As the waveguides twist in the z-direction, the synthetic magnetic field 
appears and Floquet states with robust edge states emerge as shown in Fig. 4(c)-(d). 
Interestingly, the transverse group velocity of the edge state is relevant to the helix radius as 
shown in Fig. 4(e). 

 

Fig. 4. Floquet topological gapped phases in PCs. (a). Image of the PC at the input facet. (b). 
Schematic of the helical waveguides. (c). Band structure of the PC when rotation radius is not 
zero where there is a bandgap. (d). Projected band structure of (c). There are two edge states 
with non-zero group velocity. (e). The group velocity of edge states is relevant to the radius of 
rotation. (a)-(e) are reprinted with permission from [92]. Copyright 2013, Springer Nature. 
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The Floquet topological edge states are topologically robust against sharp corner and 
defect. In this example, fast-rotating modulation is considered in order to avoid coupling 
between different Flouquet orders. Recently, the hybridization of bands in different Floquet 
orders which non-trivial topology has been considered to form the anomalous Floquet 
topological insulator [25, 93, 94]. 

3. Topological gapless photonic crystals 

3.1 Topological classification of gapless systems 

The topological properties of band structure not only manifest itself on bandgaps in which 
there may be topologically protected edge states but also involve the band degeneracies which 
is regarded as gapless structures such as the gapless points, gapless nodal lines and gapless 
surfaces [95]. In terms of topology, the gapless structures are topologically stable in 
momentum space against disorders. For example, they can be moved or deformed but cannot 
disappear provided that there is no topological phase transition. In momentum space, the 
gapless structures can be regarded as magnetic singularities which determine the distribution 
of Berry curvature [96]. Similar to real space singularities of the electric field, for each 
gapless structure, a topological charge can be allocated to it which characterized the 
topological properties. Topological classification of gapless structures in momentum space 
for Hermitian single-particle systems has been done in [95]. We define the codimension of a 

gapless structure as 1Fp d d    where 
Fd  is the dimension of gapless structure, d is the 

spatial dimension of the system. Considering time-reversal, particle-hole and chiral 
symmetries, the gapless structures can be classified into ten classes with respect to different 
codimenions as shown in Table 2. The similarity between the classification table of gapless 
structures and the one of gapped phases has been revealed in [97]. 

Table 2. Topological classification of gapless structures. p  is the codimension of a gapless 

structure. There are totally ten distinct topological classes in which the topological 
charges have 8-fold periodicity with respect to codimensions of the gapless structures. 

The topological charges are defined as same as those in Table. 1. Table. 2 is reproduced 
with permission from [95]. Copyright 2013, American Physical Society. 

 Symmetry p  

Class T C S 1 2 3 4 5 6 7 8 

A
 

0  0  0   0   0   0   0  

AIII
 

0  0  1  0   0   0   0   

AI
 

+1  0  0  0  0  2  0  2  2   0  

BDI
 

+1  +1  1  0  0  0  2  0  2  2   

D
 

0  +1  0   0  0  0  2  0  2  2  

DIII
 

-1  +1  1  2   0  0  0  2  0  2  

AII
 

-1  0  0  2  2   0  0  0  2  0  

CII
 

-1  -1  1  0  2  2   0  0  0  2  

C
 

0  -1  0  2  0  2  2   0  0  0  

CI  +1  -1  1  0  2  0  2  2   0  0  

Considering the combinations between T and other symmetries such as the inversion 
symmetry P, classification of gapless structures with respect of combined PT and CP 
symmetries was provided in [98]. Since the classification is based on the single-particle 
systems, it can be directly applied in the photonic system and offer new approached on 
finding various topological gapless phases. 
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3.2 Topological gapless photonic crystals 

The gapless structures in PC have a significant influence on the transport properties of the 
bulk. For instance, the transmission of the PC at the frequency of gapless points will have a 
decay rate inversely proportional to the distance [99]. In terms of different dimensions, the 
gapless structures can be divided into gapless points, gapless nodal lines, and gapless 
surfaces. 

3.2.1 Topological gapless points in PCs 

Although the gapless points (GPs) in PC have been discovered in the very early work [27] 
where there are two gapless Dirac points (DPs) with linear dispersion at the Brillouin zone 
corners in the 2D hexagonal lattice, the topological properties of GPs themselves are not well 
studied. With defined basis, a typical Hamiltonian which describes the physics around the 
DPs is: 

 = ( )DP y yx xH q q    (10) 

where   is the expansion coefficient and ,( ), yx zq q qq  is the momentum displacement from 

the gapless point. , ,x y z   are three Pauli matrices. These Dirac points in 2D are protected by 

PT symmetry and characterized by a 
2
topological charge according to the classification of 

gapless structures with respect to PT symmetry [27, 98]. One can consider a PC where P and 
T symmetries are individually broken down but with PT symmetry, then the gapless points 
still exist. Moreover, two gapless points are connected with a Fermi arc at the boundary of BZ 
which can be seen in the projected band structures. The Fermi arc [100] can be understood in 
following way: If we cut the 2D system in momentum space along a certain line, we can 
regard the system along this line as a 1D TI. For the line located between two topological 
gapless points with different topological charges, the 1D system along the line have non-
trivial boundary states which located at the BZ boundary of 2D PC. However, if we move the 
1D system to cross the gapless point in momentum space, there is a topological phase 
transition happened and the gapped 1D chain becomes topologically trivial. The collection of 
the gapless endpoint forms a 1D gapless structure which is the Fermi arc. 

In 3D, there is another kind of gapless point which is the Weyl point (WP) [101–104]: 

 = ( + )WP y y zx x zH q q q     (11) 

Different from DP, the Hamiltonian of WP uses all three Pauli matrices and therefore cannot 
be gapped out by adding any terms. This means that WPs do not need any symmetry 
protection and are more stable than DPs. They can only disappear by merging two WPs with 
different chiralities into each other. Consequently, WPs always emerge and disappear in pairs 
which is guaranteed by the Nielsen-Ninomiya theorem [105]. 

The first theoretical realization of WPs in PC is proposed by Lu [106]. The 3D PC 
consists of double-gyroid (DG) structures with a threefold degeneracy at BZ center as shown 
in Fig. 5(a). By putting air-sphere on two gyroids, or applying a d.c. the magnetic field, P 
symmetry, and T symmetry is broken respectively, and WPs emerge as shown in Fig. 5(b). 
For WPs with different chiralities, there are Fermi arcs connecting them. Later, several 
theoretical and experimental studies on WPs in PC appear in [107–117]. However, in DG PC, 
the WPs are isolated in frequencies which may put restraints on the applications. Recently, 
proposed by Yang et al. [118] a PC with Weyl points which have the same frequencies and 
are separated from any other bands is experimentally realized as shown in Fig. 5(c)-(d). The 
helicoid Riemann surface states as shown in Fig. 5(e) are also studied as the topological 
surface states of WPs. 
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Fig. 5. WPs in PCs. (a). Double-gyroid (DG) structure of PC and the Brillouin zone (BZ). A 
sphere defect may be introduced in the structure to break T or P symmetry. (b). Band structures 
along a certain path in BZ of PC with different symmetries. The Weyl points (WPs) appear 
when P or T symmetry is broken. (c). Schematic of a saddle-shaped metallic inclusion and its 
BZ with WPs and surface-state arcs. (d). Band structures with ideal WPs. (e). Helicoid surface 
states plotted using Jacobi elliptic function. The arcs with different colors represent the 
evolution of equi-frequency arcs which connect WPs with opposite chirality. (a)-(b) are 
reprinted with permission from [106]. Copyright 2013, Springer Nature. (c)-(e) are reprinted 
with permission from [118]. Copyright 2018 Springer Science 

So far, the group velocities of two bands near WPs have different signs. However, it is 
possible to have WPs with two bands having the same group velocity which are the type-II 
WPs [117, 119]. With the increase of symmetry, multi-WPs can appear at the high-symmetry 
points in BZ [114, 116]. Besides the robust WPs, DPs [69, 83] can also appear in 3D which 
are protected by discrete symmetries. As pointed by Wang et al. there are type-II DPs 
protected by non-symmorphic screw symmetry which are the mother states of type-II WPs 
[120]. Additionally, in another work [121], it is pointed out that DPs can emerge and be 
protected by point group symmetry. 

3.2.2 Higher-dimensional topological gapless structures 

In previous sections, we have investigated the gapless point structures in momentum space 
which have zero dimensionality. A natural extension of topological gapless structures to 
higher dimensionalities in PCs have also been proposed and explored. As an example, in 3D 
electronic materials and PCs, the 1D gapless structures which are lines with different shapes 
have been proposed [122–131]. Furthermore, in electronic materials, for a 1D gapless bulk 
structure with different topological charges, the topological surface states which connect them 
are 2D states such as the drum-head states [132]. The 2D gapless structures such as the nodal 
surfaces which are protected by screw rotations and T symmetry are explored in [133]. 
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4. Other topological phases in photonic crystals 

4.1 Topological non-Hermitian photonic crystals 

Previously, we reviewed the studies of topological phases in Hermitian photonic systems in 
which the effective Hamiltonians are Hermitian matrices. However, if gain and loss of optical 
materials are considered, non-Hermiticity [134] is introduced in PCs [135, 136]. The 
emergent exceptional points [137] and exceptional rings in non-Hermitian PC have been 
studied in [138–142]. However, the topological properties in them were not well understood, 
especially in photonics. Recently, the topological band theory for non-Hermitian systems has 
been proposed [143–149]. Non-Hermitian Chern number, as well as another topological 
invariant which is the vorticity of the energy eigenvalues, were defined. The latter one has no 
counterpart in Hermitian systems which may introduce new topological phases. Gapless 
structures in non-Hermitian systems such as the non-Hermitian Weyl exceptional ring [142] 
have been theoretically proposed. The topological surface arcs connecting different Weyl 
exceptional rings with different topological charges may be very different from the Hermitian 
case [150]. 

4.2 Higher-order topological phases in photonic crystals 

Conventionally, dD TI has dD gapped bulk states and (d-1)D gapless boundary states. 
Recently, the concept of higher-order topological insulator (HOTI) [151–156] has been put 
forward to describe those TIs which have lower-dimensional gapless boundary states. 
Generally speaking, an nth-order TI is defined as a dD TI with (d-1)D, (d-2)D, …, (d-n-1)D 
gapped boundary states and (d-n)D gapless boundary states. For example, a second-order TI 
(SOTI) in 2D has gapped 2D bulk states and 1D boundary states. However, the 0D boundary 
states which are called corner states is gapless. The HOTIs broaden the family of non-trivial 
topological insulating phases. 

Originally, HOTI is thought to be realized in photonic systems with negative couplings 
which are not easy to be included [154]. Recently proposed by Xie et al. [157], a second-
order photonic topological insulator (SOPTI) can be realized by all-dielectric materials and 
simple structures with corner states as shown in Fig. 6. Moreover, controllable quasi-1D 
topological edge states which appear only in opposite directions are found which may be used 
to design topological switch between SOTI and topological crystalline insulators [158]. A 
similar work of SOPTI which is in the hexagonal lattice is reported as a PTI with topological 
defect modes [159]. 

 

Fig. 6. Second-order photonic topological insulator with corner states. (a). Schematic of the PC 
and its Brillouin zone. (b). The eigenmodes of a square supercell as shown in (c). There are 
four degenerate states in the middle of the PBG. (c). Corner states which are strongly localized. 
(a)-(c) are reprinted from [157]. 

4.3 Geometric phase and measurement of topological invariant in photonic crystals 

The topological properties of single-particle systems are characterized by the geometric phase 
such as Berry phase and Zak phase. As a photon goes around the Brillouin zone, beside the 
dynamical phase, it also acquires a phase on the wavefunction which is determined by the 
geometry and spin which have a non-trivial influence on the equation of motion [160]. 
Several experiments on measurements of geometric phase and topological invariant have 
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been proposed [161] and given [162, 163]. The gapless structures with non-trivial topological 
charges can be regarded as momentum-space magnetic monopoles. Direct measurement of 
topological charge of the gapless structures by using Aharonov-Bohm (AB) interferometer is 
presented in the cold-atom system [164] and photonic system [165]. The photonic analog of 
momentum-space AB effect is waiting to be found in the experiment. 

5. Conclusions and outlooks 

In previous sections, we briefly reviewed the exploration of various topological phases in 
photonic systems. The topological phases of single-particle Hermitian Hamiltonian can be 
divided into topologically gapped phases and topologically gapless phases. Starting from the 
topological classification, different implementations of topological phases with unique 
topological invariants were presented. Moreover, we revealed the relation between a variety 
of topological phases and discrete symmetries. To conclude, we would like to point out that 
the topology in photonics manifests itself in many different aspects including but not limited 
to previous contents. In future studies, a couple of topics about the topological photonics 
should be focused. 

First and foremost, since the topological band theory are based on the single-particle 
description which can be well described by K-theory [166], if we consider the interaction 
between particles such as the many-body effect in condensed matter physics, new topological 
phases appear which may be described by the topological quantum field theory (TQFT) [167]. 
Classification of topological phase in interacting bosons has been developed by Wen et al 
[168]. In photonic systems, in order to introduce an interaction between photons, nonlinearity 
[169] should be considered. Recently, a three-body interaction and Pfaffian states have been 
realized in circuit-QED systems in [170]. We expect more discoveries of topological phases 
in interacting photonics which beyond the description of single-particle topological band 
theory. 

Moreover, non-hermiticity induced topological phases in photonics are waiting to be 
explored. In photonic systems, the non-hermiticity is introduced by including gain and loss 
materials which is much easier to realize than introducing non-hermiticity in electronic 
materials. Therefore photonic systems provide us with convenient platforms to testify newly 
proposed non-Hermitian topological band theory [143]. More importantly, the topologically 
protected edge states with frequencies possessing positive imaginary parts may be used to 
design topological lasers [148, 149]. 

The topological properties are closely related to the geometry of the systems. The 
curvature of space and time have a non-trivial influence on the propagation of photons [171–
174], for instance, introducing synthetic gauge fields [175]. In a very recent work [176], a 1-
dimensional curved metamaterial with tunable spin-dependent geometric phase has been 
investigated. Due to the gauge freedom, the Rindler beam in general relativity has been 
generated. With the conveniences of easily controlled geometric structures in photonic 
systems, we expect more explorations on the topological photonics in curved space-time in 
future. 
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